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1 Introduction

One of challenging problems in theoretical physics is to reveal the nature of the quantum

gravity. Especially the superstring theory is a good candidate for the quantum gravity

in which properties of black holes have been studied enormously. In this paper we will

study the quantum aspects of the black hole and the black string in superstring theory and

M-theory.

The type IIA superstring theory is perturbatively defined in 10 dimensions, and its

low energy limit is described by the type IIA supergravity. This theory contains black

hole solution which possesses SO(9) rotation symmetry. Interestingly the strong coupling

limit of the type IIA superstring theory is believed to be described by 11 dimensional M-

theory [1, 2]. The 11th direction is compactified on a circle and its radius is proportional

to the string coupling constant. The low energy limit of the M-theory is approximated by

the 11 dimensional supergravity [3], and it contains black hole solution which has SO(10)

rotation symmetry. Since the type IIA supergravity is obtained by Kaluza-Klein reduction
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of the 11 dimensional supergravity [4], the 10 dimensional black hole with SO(9) symmetry

is identified with a 11 dimensional black string which is stretching along the 11th direction.

The black string is stable against perturbation when the radius of the compactified

circle is small. However, as we enlarge the circle, it becomes unstable at the critical radius

and starts to transit to the black hole [5]. This phenomenon is called Gregory-Laflamme

instability and has been studied since 1993 [6]. In 2000, the fate of this instability is

analyzed and the existence of non-uniform black string is discussed in ref. [7]. After this

work, there appeared several analytic studies and numerical simulations in order to resolve

the final state of the unstable black string [8]–[14]. These show that, beyond the critical

radius, the black string transit into the non-uniform string and finally pinch off. It is

also revealed that the fate of the unstable black string depends on the dimension of the

spacetime and boost parameter [15, 16]. Comprehensive reviews on the Gregory-Laflamme

instabilities are collected in the book [17].

In this paper we focus on the black string solution in 11 dimensions and examine

its instability. Especially, since the superstring theory and M-theory contain quantum

corrections to the supergravity [18]–[21], it is natural to study quantum corrections to

the Gregory-Laflamme instability. This is one of the main purpose of this paper, and

we take into account R4 corrections to the 11 dimensional supergravity [22, 23]. These

corrections corresponds to the leading 1-loop corrections in the type IIA superstring theory,

and supersymmetric completions of these terms are discussed in refs. [24]–[30]. In this paper

we briefly review the structure of the R4 corrections in M-theory, and solve equations of

motion for the configurations of the black hole and the black string. We will call these

solutions quantum black hole and quantum black string, respectively. See refs. [31–33] for

the related works on this topic.

Another important task of this paper is to consider the Lorentz boost of the quantum

black string. In the case of classical black string, it is known that its instability highly

depends on the boost parameter [16]. Similarly we will see that the thermodynamics of

the quantum black string changes and the its transition point is also modified due to the

boost parameter. We also investigate the near horizon limit of the boosted quantum black

string, which corresponds to that of the nonextremal quantum black 0-brane.

Organization of this paper is as follows. In section 2, we review the higher derivative

corrections in M-theory, and derive equations of motion. We consider the quantum cor-

rections to the black hole and the black string and discuss the instability from entropic

arguments. In section 3, we boost the quantum black hole and black string, and examine

the Gregory-Laflamme instability. In section 4, the near horizon limit of the quantum black

string is investigated. Section 5 is devoted to the summary of this paper and future works.

Technical calculations on both quantum black hole and black string are explicitly shown

in appendices A and B.

2 Quantum black hole and black string in M-theory

2.1 Brief review of higher derivative corrections in M-theory

M-theory is defined as a strong coupling limit of type IIA superstring theory, and it is well

approximated by 11 dimensional supergravity in the low energy limit. Classical solutions

– 2 –



J
H
E
P
0
9
(
2
0
1
5
)
0
6
7

of 11 dimensional supergravity play important roles to reveal the structure of the M-theory.

In this section, we consider black hole and black string solutions in 11 dimensions. These

are quite simple and it is possible to discuss leading quantum corrections to them.

It is known that the leading correction comes from R4 terms [22, 23]. The bosonic

part of the M-theory effective action which is relevant to the graviton is given by

S11 =
1

2κ211

∫
d11x e

{
R+ γ

(
t8t8R

4 − 1

4!
ε11ε11R

4

)}
=

1

2κ211

∫
d11x e{R+ 24γ(RabcdRabcdRefghRefgh − 64RabcdRaefgRbcdhRefgh

+ 2RabcdRabefRcdghRefgh + 16RacbdRaebfRcgdhRegfh

− 16RabcdRaefgRbefhRcdgh − 16RabcdRaefgRbfehRcdgh)},
(2.1)

where a, b, c, · · · = 0, 1, · · · , 10 are local Lorentz indices. In this action, the expansion

parameter is expressed in terms of the 11 dimensional Planck length as

γ =
π2`6p
21132

. (2.2)

In eq. (2.1) pairs of indices are lowered for simplicity, but of course they should be con-

tracted by the flat metric. Note that the above action preserves local supersymmetry, and

fermionic terms are given in refs. [27]–[30]. Note also that γ ∼ g2s `
6
s , so if we reduce the

effective action (2.1) into 10 dimensions, it corresponds to 1-loop quantum correction to

the type IIA supergravity.

By varying the effective action (2.1) with respect to the vielbein, we obtain equations

of motion,

Eij ≡ Rij−
1

2
ηijR+ γ

{
−1

2
ηij

(
t8t8R

4− 1

4!
ε11ε11R

4

)
+RabciX

abc
j−2D(aDb)X

a
ij
b

}
= 0,

(2.3)

up to the linear order of γ. Here Da is a covariant derivative for local Lorentz indices and

Xabcd is defined as

Xabcd =
1

2

(
X ′[ab][cd] +X ′[cd][ab]

)
, (2.4)

X ′abcd = 96(RabcdRefghRefgh−16RabceRdfghRefgh+2RabefRcdghRefgh+16RaecgRbfdhRefgh

−16RabegRcfehRdfgh−16RefagRefchRgbhd+8RabefRceghRdfgh).

It is not obvious but possible to check that RabciX
abc

j = RabcjX
abc

i, hence Eij is a sym-

metric tensor. The explicit derivation of eq. (2.3) can be found in ref. [34].

2.2 Quantum black hole

First we briefly review Schwarzschild black hole solution in 11 dimensional supergravity.

The metric of the black hole is given by

ds2h = −Adt2 +A−1dr2 + r2dΩ2
9, A = 1−

r8h
r8
, (2.5)
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and the event horizon rhorizon is located at rhorizon = rh. From standard calculations, ADM

mass and entropy of the black hole are evaluated as

Mh =
9VS9r8h
2κ211

, Sh =
4πVS9r9h

2κ211
. (2.6)

Here 2κ211 = (2π)8`9p and `p is the Planck length in 11 dimensions.1 VS9 = π5

12 is the volume

of the 9 dimensional unit sphere.

Next let us take into account the quantum correction to the black hole by solving the

eq. (2.3) up to the linear order of γ. The leading part of the metric (2.5) itself is not a

solution of the eq. (2.3), so we should relax the ansatz. Most general static ansatz with

SO(10) rotation symmetry is given by

ds2h = −B−11 A1dt
2 +A−11 dr2 + r2dΩ2

9, (2.7)

A1 = 1−
r8h
r8

+
γ

r6h
a1

(
r

rh

)
, B1 = 1 +

γ

r6h
b1

(
r

rh

)
.

In order to make the equations of motion simple, we introduce following dimensionless

coordinates, τ = t
rh
, x = r

rh
, and insert the ansatz (2.7) into the eq. (2.3). Then the

equations of motion become

E1 = −x39a′1 − 8x38a1 − 9299558400x8 + 10492093440 = 0,

E2 = x39a′1 + 8x38a1 + x31(1− x8)b′1 − 312729600x8 − 879805440 = 0, (2.8)

E3 = x40a′′1 + 16x39a′1 + 56x38a1 + x32(1− x8)b′′1 − 4x31(1 + 2x8)b′1

+ 7192780800x8 − 11175183360 = 0,

where the prime represents the derivative with respect to x. By solving E1 = E2 = 0 with

requiring asymptotic flatness, we obtain

a1(x) = −349736448

x38
+

422707200

x30
+
ch
x8
,

b1(x) =
320409600

x30
, (2.9)

where ch is an integral constant. From this we see that the quantum corrections become

important when r < rh or 1 � γ
r6h

. Notice that ch can be absorbed by the redefinition of

rh like

r8h − γchr2h → r8h, (2.10)

up to linear order of γ. So physical quantities do not depend on ch at this order.2 The

remaining equation E3 = 0 is trivially satisfied by inserting eq. (2.9). The plots of A1(x)

are shown in appendix A.2.

1By using string length `s and string coupling constant gs, the Planck length is expressed as `p = `sg
1/3
s .

2r8h − γchr
2
h > 0 is required since the mass (2.14) should be positive.
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Now we call the metric of eq. (2.7) with eq. (2.9) the quantum black hole. Let us

investigate the thermodynamics of the quantum black hole. The event horizon is located

at rhorizon = rh − γ
8r5h
a1(1) up to the linear order of γ, and the temperature is given by

Th =
1

4π
B
− 1

2
1

dA1

dr

∣∣∣∣
rhorizon

=
2

πrh

{
1 + γ

(
9

8
a1(1) +

1

8
a′1(1)− 1

2
b1(1)

)
1

r6h

}
≡ 2

π
T̄h. (2.11)

By solving the above equation inversely, rh is expressed as

rh =
1

T̄h

{
1 + γ

(
9

8
a1(1) +

1

8
a′1(1)− 1

2
b1(1)

)
T̄ 6
h

}
, (2.12)

and from this relation, physical quantities can be expressed in terms of the temperature

up to the linear order of γ. For instance, the location of the event horizon is evaluated as

rhorizon =
1

T̄h

{
1 + γ

(
a1(1) +

1

8
a′1(1)− 1

2
b1(1)

)
T̄ 6
h

}
=

1

T̄h

(
1− 11137920γT̄ 6

h

)
. (2.13)

This reveals that the position of the event horizon slightly moves inward due to the quantum

correction, and its value does not depend on ch.

The ADM mass Mh is calculated as

2κ211
9VS9

Mh = r8h

(
1− γ ch

r6h

)
=

1

T̄ 8
h

{
1 + γ

(
9a1(1) + a′1(1)− 4b1(1)− ch

)
T̄ 6
h

}
,

=
1

T̄ 8
h

(
1− 16132608γT̄ 6

h

)
≡ M̄h. (2.14)

Note that although the effective action (2.1) contains the higher derivative terms, the

expression of the ADM mass formula does not [35]. The above correction just enters

through ch
x8

term in a1(x) and rh in eq. (2.12). On the other hand, the area law of the

entropy is modified by the higher derivative corrections [36, 37], and the black hole entropy

Sh is given by

2κ211
4πVS9

Sh = r9horizon(1− 2γX0101|x=1)

=
1

T̄ 9
h

(
1− 12099456γT̄ 6

h

)
= M̄

9/8
h

(
1 + 6049728 γM̄

−3/4
h

)
. (2.15)

As explained before, rhorizon, Mh and Sh are written in terms of Th, and do not depend on

the unknown constant ch. It is easy to see that the first law dMh = ThdSh holds up to the

linear order of γ.
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2.3 Quantum black string

In this section, we consider a black string solution which is constructed by aligning 10

dimensional black hole along the 11th direction. The 11th direction is compactified on a

circle and its radius is given by R11 = `sgs. In 11 dimensional supergravity, the black string

solution is simply given by

ds2s = −Fdt2 + F−1dr2 + r2dΩ2
8 + dz2, F = 1− r7s

r7
. (2.16)

The ADM mass and the entropy are calculated as

Ms =
8VS8r7s
2κ210

, Ss=
4πVS8r8s

2κ210
, (2.17)

where VS8 = 25π4

105 is the volume of the 8 dimensional unit sphere, and 2κ210 = 2κ211/(2πR11).

These expressions simply show that the 11 dimensional black string corresponds to the 10

dimensional black hole after the dimensional reduction.

Now we take into account the quantum corrections to the black string. Since the metric

does not satisfy the equations of motion (2.3), we relax the ansatz as follows.

ds2s = −G−11 F1dt
2 + F−11 dr2 + r2dΩ2

8 +G2dz
2, (2.18)

F1 = 1− r7s
r7

+
γ

r6s
f1

(
r

rs

)
, Gi = 1 +

γ

r6s
gi

(
r

rs

)
.

This is the most general ansatz which preserves SO(9) rotation symmetry. In order to

make the equations of motion simple, we introduce dimensionless coordinates, τ = t
rh
, x =

r
rh
, y = z

rh
, and insert the ansatz (2.18) into eq. (2.3). Then the equations of motion

become

E1 = −16x35f ′1 − 112x34f1 + 2x29(1− x7)g′′2 + x28(9− 16x7)g′2

− 63402393600x7 + 71292856320 = 0,

E2 = 16x35f ′1 + 112x34f1 + 16x28(1− x7)g′1 − x28(9− 16x7)g′2

− 2159861760x7 − 5730600960 = 0, (2.19)

E3 = 2x36f ′′1 + 28x35f ′1 + 84x34f1 + 2x29(1− x7)g′′1 − 7x28(1 + 2x7)g′1

− 2x29(1− x7)g′′2 + 14x35g′2 + 5669637120x7 − 8626383360 = 0,

E4 = 2x36f ′′1 + 32x35f ′1 + 112x34f1 + 2x29(1− x7)g′′1 − x28(5 + 16x7)g′1

− 1062512640 = 0.

By solving the equations of motion (2.3) up to the linear order of γ, the functions f1 and
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gi(i = 1, 2) are explicitly solved as

f1(x) = −1208170880

9x34
+

161405664

x27
+

5738880

13x20
+

956480

x13
+
cs
x7

+
819840

x7
I(x),

g1(x) =
1035722240

9x27
+

1721664

x20
+

22955520

13x13
+

1912960

x6
−1639680

x− 1

x7 − 1
+234240I(x),

g2(x) = −94330880

9x27
+

655872

x20
+

13117440

13x13
+

2186240

x6
+1873920I(x).

(2.20)

Here cs is an integral constant. The details of the derivation and an explicit form of I(x)

can be found in appendix B.2. There other integral constants are set to be zero so that the

geometry becomes asymptotically flat. Notice that cs can be absorbed by the redefinition

of rs up to the linear order of γ, so physical quantities do not depend on cs.

Let us investigate the thermodynamics of the quantum black string. The event horizon

is located at rhorizon = rs − γ
7r5s
f1(1), and the temperature is evaluated as

Ts =
1

4π
G
− 1

2
1

dF1

dr

∣∣∣∣
rhorizon

=
7

4πrs

{
1 + γ

(
8

7
f1(1) +

1

7
f ′1(1)− 1

2
g1(1)

)
1

r6s

}
≡ 7

4π
T̄s. (2.21)

By solving this inversely, rs is expressed as

rs =
1

T̄s

{
1 + γ

(
8

7
f1(1) +

1

7
f ′1(1)− 1

2
g1(1)

)
T̄ 6
s

}
. (2.22)

From this relation, rs is replaced with the temperature when we calculate physical quantities

up to the linear order of γ. For example, the location of the event horizon is given by

rhorizon =
1

T̄s

{
1 + γ

(
f1(1) +

1

7
f ′1(1)− 1

2
g1(1)

)
T̄ 6
s

}
=

1

T̄s

{
1− γ

(
587024224

117
+ 117120 I(1)

)
T̄ 6
s

}
. (2.23)

The location of the horizon moves inward and does not depends on cs, just like the case of

the quantum black hole.

The ADM mass of the black string Ms is evaluated as

2κ210
8VS8

Ms = r7s

(
1 + γ

1639680− cs
r6s

)
=

1

T̄ 7
s

{
1 + γ

(
1639680 + 8f1(1) + f ′1(1)− 7

2
g1(1)− cs

)
T̄ 6
s

}
=

1

T̄ 7
s

(
1− 4919040γT̄ 6

s

)
≡ M̄s. (2.24)

Note that we used 2κ210 = 2κ211/(2πR11). The mass formula itself is not modified, but the

corrections in the first line enter through x−7 terms in f1(x) and g2(x). On the other hand,

– 7 –
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the entropy Ss of the quantum black string receives the higher derivative corrections, and

is calculated as

2κ210
4πVS8

Ss = r8horizonG2(1)1/2(1− 2γX0101|x=1)

=
1

T̄ 8
s

(
1− 2810880γT̄ 6

s

)
= M̄8/7

s

(
1 + 2810880γM̄−6/7s

)
. (2.25)

The entropy formula is affected by the higher derivative corrections. Note that rhorizon,

Ms and Ss do not depend on cs, and the first law of the thermodynamics dMs = TsdSs is

satisfied up to the linear of γ.

2.4 Gregory-Laflamme instability of the quantum black string

It is known that the black string is unstable against perturbation when the size of the

compactified direction is large compared to the size of the black hole. In order to give

thermodynamic argument on this instability, so called Gregory-Laflamme instability, we

compare Sh with Ss for the equal mass.

In terms of a dimensionless parameter M = `sMh = `sMs, the entropy of the quantum

black hole is given by

Sh = 8π2
(
g3sM

9

99VS9

)1/8
{

1 +
10503

211π4
1

g4s

(
9VS9g5s
M

)3/4
}
, (2.26)

and that of the quantum black string is given by

Ss = 8π2
(
g2sM

8

88VS8

)1/7
{

1 +
305

27π4
1

g4s

(
8VS8g5s
M

)6/7
}
. (2.27)

Here we used 2κ211 = 2κ210(2πR11) = (2π)8`9sg
3
s . The instability of the black string is

estimated by comparing these two entropies. From eqs. (2.26) and (2.27), up to the linear

order of γ, the ratio of the entropies is evaluated as

Sh
Ss

= L

{
1 +

10503

211π4

(
98VS9

88VS8

)6
L42

g4s
− 305

27π4

(
99VS9

89VS8

)6
L48

g4s

}

∼ L+ 6.04
L43

g4s
− 5.69

L49

g4s
, (2.28)

where we defined

L ≡ (88VS8)1/7

(99VS9)1/8

(
g5s
M

)1/56

∼ 0.984

(
g5s
M

)1/56

. (2.29)

In the classical supergravity limit, if we increase L from zero, the Gregory-Laflamme tran-

sition from the black string to the black hole occurs at L = 1. By taking into account the

quantum effect, the transition point also depends on the value of gs like

L = 1− 0.350

g4s
. (2.30)

The plot of Sh/Ss is drawn in figure 1.

– 8 –



J
H
E
P
0
9
(
2
0
1
5
)
0
6
7

Finally let us clarify the validity of the approximation (2.28) qualitatively. So far we

have analyzed the black hole and black string solutions by considering quantum correc-

tions (2.1) in 11 dimensions. Since the 11th direction is compactified, the effective action

corresponds to the type IIA superstring theory and expanded by g2s e
2φ and `2s . Then

we can examine the validity of eq. (2.28) by estimating the other higher derivative terms

in the type IIA superstring theory, which can be done by evaluating the dilaton φ and

the Riemann tensor Rabcd in 10 dimensions from eq. (2.16). From the standard relation

ds2s = e−
2
3
φds210 + e

4
3
φdz2, we obtain

gse
φ = gs, `2sRabcd ∼

`2s
r2s
∼ `2sM̄−2/7s , (2.31)

at the horizon. Thus a generic term is estimated as

(g2s e
2φ)n(`2sRabcd)

m ∼ g2ns `2ms M̄−2m/7s ∼ g2n−4m/7s M−2m/7 ∼ g2n−2ms L16m. (2.32)

It is known that the leading tree, 1-loop and n(≥ 2)-loop corrections in the type IIA super-

string theory become (n,m) = (0, 3), (1, 3), (n, n+ 3), respectively [38]. So the estimations

of leading tree, 1-loop and n(≥ 2)-loop are given by g−6s L48, g−4s L48 and g−6s L16n+48, re-

spectively. In a similar way, from the dimensional analysis, the quantum corrections for the

quantum black hole are estimated like g2ns `2ms M̄
−m/4
h ∼ g2n−3m/4s M−m/4 ∼ g2n−2ms L14m.

From the above discussions, we expect that the ratio of the entropies (2.28) is reliable

when L ≤ 1 and 1 � g2s , if each term has a coefficient of order unity. It is interesting to

note that, around the transition point L ∼ 1, the supergravity approximation is valid when

gs goes to infinity, and quantum effects become quite important around gs ∼ 1.

3 Boosted quantum black hole and black string in M-theory

3.1 Boosted quantum black hole

From an observer at infinity, the quantum black hole is localized at the origin of 10 dimen-

sional space. Now let us Lorentz boost the quantum black hole along the 11th direction.

Then the observer see that the quantum black hole carries a momentum along the 11th

direction.

First the mass Mh and the momentum Qh of the boosted quantum black hole are

simply given by

2κ211
9VS9

Mh = r8h cosh η

(
1− γ ch

r6h

)
≡ M̄h,

2κ211
9VS9

Qh = r8h sinh η

(
1− γ ch

r6h

)
≡ Q̄h, (3.1)

where η is a boost parameter.3 By combining these two equations, the parameter of the

quantum black hole is expressed as

r8h

(
1− γ ch

r6h

)
= M̄h

(
1−

Q̄2
h

M̄2
h

)1/2

. (3.2)

3We assigned the same symbol Mh as in the section 2.2, since it would not cause any confusion.
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Figure 1. Plot of eq. (2.28) which is valid when L ≤ 1. A red line correspond to Sh = Ss.

Next we examine the entropy of the boosted quantum black hole. It is known that the

volume of the event horizon is invariant under the Lorentz boost [39]. The higher derivative

term X0101 = 1
4N

abN cdXabcd is invariant as well. Therefore the entropy formula is entirely

invariant under the Lorentz boost and given by eq. (2.15) by replacing M̄h with the right

hand side of eq. (3.2).

2κ211
4πVS9

Sh = M̄
9/8
h

(
1−

Q̄2
h

M̄2
h

)9/16
{

1 + 6049728γM̄
−3/4
h

(
1−

Q̄2
h

M̄2
h

)−3/8}
. (3.3)

Of course, eq. (2.15) is recovered when Q̄h = 0.

3.2 Boosted quantum black string

Let us briefly review the Lorentz boost of the black string (2.16) along 11th direction. The

boost is executed on (t, z)-plane and the metric becomes

ds2s = −F (coshβdt+ sinh βdz)2 + (sinh βdt+ coshβdz)2 + F−1dr2 + r2dΩ2
8

= −H−1Fdt2 +H

(
dz + (1−H−1)coshβ

sinhβ
dt

)2

+ F−1dr2 + r2dΩ2
8, (3.4)

where β is a boost parameter. Here H is defined as

H = 1 +
r7s sinh2 β

r7
, (3.5)
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and F is defined in eq. (2.16). This geometry corresponds to the nonextremal M-wave

solution in 11 dimensional supergravity, whose mass and momentum along the 11th direc-

tion are expressed by two parameters rs and β. We also use α7 ≡ 1/ sinh2 β for the boost

parameter.4 Note that the nonextremal M-wave solution is identified with the nonextremal

black 0-brane solution in 10 dimensions.

In the same way, it is possible to boost the quantum black string solution (2.18) along

the 11th direction, and the metric becomes

ds2s = −G−11 F1(coshβdt+ sinh βdz)2 +G2(sinh βdt+ coshβdz)2 + F−11 dr2 + r2dΩ2
8

= −H−11 F1dt
2 +H2

(
dz +

(
1−H−

1
2

2 H
− 1

2
3

)
coshβ

sinhβ
dt

)2

+ F−11 dr2 + r2dΩ2
8. (3.6)

Here F1 is defined in eq. (2.18), and Hi (i = 1, 2, 3) are expressed in terms of F1, G1 and

G2 as

H1 = G1G
−1
2 H2, H2 = G2 + (G2 −G−11 F1) sinh2 β, H3 = G−22 H2. (3.7)

Now we choose rs and α as independent parameters. Then the above functions can be

expressed up to the linear order of γ as

H1 = 1 +
1

α7x7
+

γ

r6sα
7

{
−f1(x) + (1 + α7)g1(x) +

(
1− 1

x7

)
g2(x)

}
,

H2 = 1 +
1

α7x7
+

γ

r6sα
7

{
−f1(x) +

(
1− 1

x7

)
g1(x) + (1 + α7)g2(x)

}
, (3.8)

H3 = 1 +
1

α7x7
+

γ

r6sα
7

{
−f1(x) +

(
1− 1

x7

)
g1(x) +

(
1− α7 − 2

x7

)
g2(x)

}
,

where x = r
rs

. By inserting eq. (2.20) and cs = 3747840 into the above, we obtain eq. (48)

in ref. [35]. In that paper cs = 3747840 is required so as to be consistent with the near

horizon limit which will be explained in section 4. Thus the geometry (3.6) is exactly the

same as that of the quantum M-wave solution in 11 dimensions. The dimensional reduction

of the metric corresponds to the quantum black 0-brane solution in 10 dimensions.

Let us examine the thermodynamics of the boosted quantum black string by choosing

cs = 3747840. The event horizon is located at rhorizon = rs− γ
7r5s
f1(1), and the temperature

is evaluated as

Ts =
1

4π
H
−1/2
1

dF1

dr

∣∣∣∣
rhorizon

=
7

4πrs

α7/2

√
1 + α7

{
1 + γ

(
8

7
f1(1) +

1

7
f ′1(1)− 1

2
g1(1)

)
1

r6s

}
=

7

4πrs

α7/2

√
1 + α7

(
1− 2810880γ

7r6s

)
. (3.9)

4These are related to r± as r7− = r7s sinh
2 β, r7+ = r7−(1 + α7) = r7s cosh

2 β.
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Note that α7/2
√
1+α7

= 1
coshβ comes from the time dilation of the quantum black string mea-

sured by the boosted observer.

The ADM mass and the momentum of the boosted quantum black string are calculated

as [35]

2κ210
8VS8

Ms = r7s

(
1 +

7

8α7
− 2108160γ

r6s

)
≡ M̄s,

2κ210
8VS8

Qs =
7r7s
√

1 + α7

8α7
≡ Q̄s. (3.10)

The momentum does not receive any quantum correction and is equal to the charge of N

D0-branes. By solving eqs. (3.10) inversely, up to the linear order of γ, the parameters α7

and r7s can be expressed as

α7 =

(
7p

8

)2

− 1, r7s= Q̄s p

(
1− 64

49p2

)
, (3.11)

where

p = p0 + 2108160γ p1,

p0 =
M̄s

2Q̄s

(
1 +

√
1 +

32Q̄2
s

49M̄2
s

)
, (3.12)

p1 = Q̄−6/7s

(
1 +

8

49p20

)−1{
p0

(
1− 64

49p20

)}1/7

.

It is easy to see that p0 →∞ and Qsp0 →Ms, if we take Qs → 0.

The entropy of the boosted quantum black string is obtained by taking into account

an expansion of the proper length along the 11th direction at the event horizon. From

eqs. (3.6) and (3.7), the expansion rate of the proper length at the event horizon is given

by
√
H2/G2|horizon =

√
1 + α7/α7/2. Thus, by multiplying this factor with eq. (2.25), we

obtain the entropy of the boosted quantum black string like

2κ210
4πVS8

Ss = r8horizon

√
1 + α7

α7/2
G2(1)1/2(1− 2γX0101|x=1)

= r8s

√
1 + α7

α7/2

(
1 +

2810880γ

7r6s

)

=
(
Q̄sp0

)8/7(
1− 64

49p20

)9/14
{

1 + 2810880γ
(
Q̄sp0

)−6/7(
1− 64

49p20

)−6/7}
.

(3.13)

In order to derive the second line, we used cs = 3747840. This satisfies the first law of the

black hole thermodynamics up to the linear order of γ.
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3.3 Gregory-Laflamme instability of the boosted quantum black string

The Gregory-Laflamme instability of the boosted black string is well discussed in refs. [16,

39]. In this subsection, we examine the Gregory-Laflamme instability of the boosted quan-

tum black string. In order to compare the entropy of the boosted black hole with that of

the boosted quantum black string, masses and charges should be equal respectively.

Now we set M = `sMh = `sMs and Q = `sQh = `sQs, and use the relation 2κ211 =

2κ210(2πR11) = (2π)8`9sg
3
s . Then the entropy of the boosted quantum black hole is ex-

pressed as

Sh = 8π2
(
g3sM

9

99VS9

)1/8(
1− Q2

M2

)9/16
{

1 +
10503

211π4
1

g4s

(
9VS9g5s
M

)3/4(
1− Q2

M2

)−3/8}
.

(3.14)

This is a generalization of eq. (2.26). In a similar way, the entropy of the boosted quantum

black string is given by

Ss = 8π2
(
g2sM

8

88VS8

)1/7(
Qp0
M

)8/7(
1− 64

49p20

)9/14

×

{
1 +

305

27π4
1

g4s

(
8VS8g5s
M

)6/7(
Qp0
M

)−6/7(
1− 64

49p20

)−6/7}
. (3.15)

Here p0 is defined in eq. (3.12) and written in terms of Q
M . This expression is a generalization

of eq. (2.27), and the ration of the entropies (2.28) is also generalized as

Sh
Ss
∼ L

(
1− Q2

M2

)9/16(
Qp0
M

)−8/7(
1− 64

49p20

)−9/14
×

{
1 + 6.04

L42

g4s

(
1− Q2

M2

)−3/8
− 5.69

L48

g4s

(
Qp0
M

)−6/7(
1− 64

49p20

)−6/7}
, (3.16)

where L is defined by eq. (2.29). The ratio of the entropies are parametrized by L, gs
and Q

M . From this equation, we can estimate the instability of the boosted quantum black

string. The plot of eq. (3.16) with Q
M = 0.9 is drawn in figure 2. From the plot we see

that, at transition point, the value of L for the boosted quantum black string is smaller

than that of the quantum black string. It is also interesting to note that there is another

transition point for gs < 4, though the validity of it depends on the structure of the higher

derivative terms as discussed below.

Finally let us examine the validity of eq. (3.16) by estimating the other higher derivative

terms. In order to do this, we simply repeat the discussions in the section 2.4. From

eq. (3.4), values of the dilaton φ and the Riemann tensor Rabcd in 10 dimensions are

estimated as

gse
φ = gs

(
1 +

1

α7

)3/4

= gs

(
1− 64

49p20

)−3/4
,

`2sRabcd ∼
`2s
r2s
wabcd(p0)

(
1 +

1

α7

)−1/2
∼ `2swabcd(p0)(Q̄sp0)

−2/7
(

1− 64

49p20

)3/14

, (3.17)
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Figure 2. Plot of eq. (3.16) with Q
M = 0.9. Red lines correspond to Sh = Ss.

at the horizon. Here explicit form of wabcd(p0) is different for each component, but becomes

constant if we take Q
M → 1. From the above a generic term is estimated as

(g2s e
2φ)n(`2sRabcd)

m ∼ g2ns `2ms M̄−2m/7s

(
Qp0
M

)−2m/7
(wabcd)

m

(
1− 64

49p20

)3(m−7n)/14

∼ g2n−2ms L16m(wabcd)
m

(
Qp0
M

)−2m/7(
1− 64

49p20

)3(m−7n)/14

∼ g2n−2ms L16m, (3.18)

where L is defined by eq. (2.29). In the last line, we simply dropped Q
M dependence, which

deeply depends on the structure of each higher derivative term. Therefore we roughly

estimate that the entropy of boosted quantum black string is valid when L ≤ 1 and 1� g2s ,

if each higher derivative term has a coefficient of order unity. This will also be true for the

boosted quantum black hole.

4 Near horizon limit of the boosted quantum black string and its insta-

bility

The gauge/gravity correspondence is a powerful tool to investigate the nonperturbative

aspects of the gauge theory [40–42]. In this section we consider the near horizon limit of N

D0-branes, which corresponds to the infinitely boosted (β →∞) quantum black string [43].

The momentum of the boost corresponds to the charge of N D0-branes, and is expressed as

Qs =
N

`sgs
. (4.1)

Since the boost parameter is given by α7 = 1/ sinh2 β, the near horizon limit corresponds

to α → 0. While taking this limit, we should fix the ’t Hooft coupling λ and the energy

scale U0 of the gauge theory on N D0-branes, which are written as

λ =
gsN

(2π)2`3s
, U0 =

rs
`2s
. (4.2)
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From eqs. (3.10) and (4.1), α approaches to zero like

α7 → 7VS8`4sU
7
0

(2π)9λ
, (4.3)

and `s also goes to zero in the limit.

Now we take the near horizon limit for the boosted quantum black string. First of all,

Qs is exactly given by eq. (4.1), so it is expressed in terms of `s, λ and N as

Qs =
N2

(2π)2`4sλ
. (4.4)

This approaches to the infinity by taking the near horizon limit. Next, Ms is given by

eq. (3.10) and it behaves like

Ms = Qs
8α7

7
√

1 + α7

(
1 +

7

8α7
− 2108160γ

r6s

)
→ N2

(2π)2`4sλ

(
1 +

3`4sU
7
0

35(2π)5λ
− 61π`4sU0λ

7N2

)
. (4.5)

By taking the near horizon limit, the leading term diverges like the charge. However, the

internal energy Es = Ms −Qs becomes finite and is given by

Ẽs =
3N2

(2π)735

(
Ũ7
0 −

9760π6Ũ0

3N2

)
, (4.6)

where Ẽs ≡ Es/λ
1/3 and Ũ0 ≡ U0/λ

1/3. The temperature (3.9) approaches to

T̃s = a1Ũ
5/2
0

(
1− 2440π6

7N2Ũ6
0

)
, a1 ≡

7

24(15π7)1/2
, (4.7)

where T̃s ≡ Ts/λ1/3. Inversely solving this, we obtain

Ũ0 = a
−2/5
1 T̃ 2/5

s

(
1 +

976π6a
12/5
1

7N2T̃
12/5
s

)
. (4.8)

Thus physical quantities can be expressed in terms of T̃s and N . Finally, the near horizon

limit of the entropy (3.13) is given by

Ss =
N2Ũ

9/2
0

28(15π7)1/2

(
1 +

2440π6

7N2Ũ6
0

)

=
4N2T̃

9/5
s

49a
4/5
1

(
1 +

976π6a
12/5
1

N2T̃
12/5
s

)

∼ 11.5N2T̃ 9/5
s

(
1 +

0.334

N2T̃
12/5
s

)
. (4.9)

– 15 –



J
H
E
P
0
9
(
2
0
1
5
)
0
6
7

This expression is the generalization of the discussion in ref. [43], and first derived in

ref. [34] by evaluating in the background of the near horizon geometry.

Let us examine the Gregory-Laflamme instability of the boosted quantum black string

in the near horizon limit. In order to do this, we need to compare the entropy (4.9) with

that of the boosted quantum black hole. By taking the near horizon limit of eq. (3.14), the

entropy of the boosted quantum black hole is expressed as

Sh =
N15/8Ũ

63/16
0

3
√

2(105)9/16π47/16

(
1− 1830π6

N2Ũ6
0

+
10503(105)3/8π21/8

210N5/4Ũ
21/8
0

)

=
N15/8T̃

63/40
s

3
√

2(105)9/16π47/16a
63/40
1

(
1− 1281π6a

12/5
1

N2T̃
12/5
s

+
10503(105)3/8π21/8a

21/20
1

210N5/4T̃
21/20
s

)

∼ 10.2N15/8T̃ 63/40
s

(
1− 0.438

N2T̃
12/5
s

+
1.79

N5/4T̃
21/20
s

)
. (4.10)

It is worth noting that the leading part behaves like N15/8 and the quantum effects consist

of two terms. It is challenging problem to explain these behaviors from the gauge theory

on N D0-branes.

The instability of the near horizon limit of the boosted quantum black string is inves-

tigated by comparing eq. (4.9) with eq. (4.10). Up to the next leading order, the ratio of

the entropies is given by

Sh
Ss
∼ L

(
1− 2257π6a

12/5
1

N2T̃
12/5
s

+
10503(105)3/8π21/8a

21/20
1

210N5/4T̃
21/20
s

)

∼ L

(
1− 0.772

N2T̃
12/5
s

+
1.79

N5/4T̃
21/20
s

)
,

∼ L

(
1− 2.93

L32/3

N2/3
+ 3.21

L14/3

N2/3

)
, (4.11)

where

L ≡ 49

12
√

2(105)9/16π47/16a
31/40
1 N1/8T̃

9/40
s

∼ 0.882

N1/8T̃
9/40
s

. (4.12)

The transition of the boosted quantum black string in the near horizon limit occurs at

L = 1− 0.277

N2/3
, (4.13)

up to O(N−4/3). This result is consistent with the discussion in ref. [43] in the classical

limit.

Let us examine the validity of eq. (4.11) by estimating the other higher derivative

terms. The near horizon limit of eq. (3.17) is given by

gse
φ ∼ Ũ

−21/4
0

N
∼ T̃

−21/10
s

N
∼ N1/6L28/3,

`2sRabcd ∼ Ũ
3/2
0 ∼ T̃ 3/5

s ∼ N−1/3L−8/3, (4.14)
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Figure 3. Plot of eq. (4.11) which is valid when L ≤ 1 and L−56 � N . A red line correspond

to Sh = Ss.

and a generic term is estimated as

(g2s e
2φ)n(`2sRabcd)

m ∼ T̃
(3m−21n)/5
s

N2n
∼ N (n−m)/3L8(7n−m)/3. (4.15)

The leading tree, 1-loop and n(≥ 2)-loop corrections in the type IIA superstring theory

become (n,m) = (0, 3), (1, 3), (n, n + 3), respectively. So the estimations of leading tree,

1-loop and n(≥ 2)-loop are given by N−1L−8, N−2/3L32/3 and N−1L16n−8, respectively.

Then the eq. (4.11) is valid when

L ≤ 1, L−56 � N, (4.16)

if each higher derivative term has a coefficient of order unity. The plot of eq. (4.11) is

drawn in figure 3.

5 Conclusion and discussion

In this paper we explored the quantum nature of the black hole and black string in 11

dimensions by taking into account the higher derivative R4 corrections. Especially we

clarified the transition from the quantum black string to the quantum black hole from

entropic arguments.

First we constructed the solutions of quantum black hole and black string up to the

linear order of `6p. These are asymptotically flat, but the behaviors near the event horizons

are quite different from the classical ones. We also investigated the thermodynamics of

these quantum solutions, which satisfy the first law of the thermodynamics. The entropies

of both quantum black hole and black string increase because of the quantum corrections.
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By comparing these two, we discussed the quantum nature of the Gregory-Laflamme in-

stability. When the string coupling constant gs is quite large, it is reasonable to trust the

classical analyses and from eq. (2.30) the transition occurs around

M ∼ 0.412 g5s + 8.09 gs. (5.1)

On the other hand, when gs ∼ 1, we should take into account other higher derivative correc-

tions more seriously. Notice also that we neglected the effect of the circle compactification

on the black hole to derive the above transition point. The effect of the compactification

on the black hole is investigated in ref. [44], and corrections to the Gregory-Laflamme in-

stability are explored analytically when the mass of the black hole is small in refs. [45, 46].

By consulting the result in ref. [46], we see that the entropy (2.26) is modified into

Sh = 8π2
(
g3sM

9

99VS9

)1/8
{

1 +
10503

211π4

(
98VS9

88VS8

)6
L42

g4s
+

ζ(8)

16VS9

(88VS8)8

(99VS9)7
1

L56

}

∼ 8π2
(
g3sM

9

99VS9

)1/8(
1 + 6.04

L42

g4s
+ 0.00101

1

L56

)
. (5.2)

The third term in the parenthesis corresponds to the effect of the circle compactification.

Therefore when the parameters are in the region of L ∼ 1 and 1 < gs < 5, the effect

of the compactification is negligible compared to the quantum correction. And when the

parameters are in the region of L ∼ 1 and 5 ≤ gs, both effects are negligible compared

to the leading part. When the mass of the black hole is not small, we have to employ

numerical calculation [47].

Second we boosted the quantum black hole and black string solutions, and showed that

the latter corresponds to the nonextremal quantum black 0-brane solution. Both entropies

depend on the boost parameter in a complicated way, and because of this, the transition

occurs for larger M than eq. (5.1). It is interesting to note that there appear another

transition point around gs ∼ 4 for Q
M = 0.9.

Finally we consider the near horizon limit of the boosted quantum black string. In

this limit, the boost parameter goes to the infinity, and physical quantities are expressed

in terms of the temperature. From eq. (4.13) the transition occurs around

Ts ∼
0.574

N5/9
+

0.707

N11/9
. (5.3)

This shows that quantum effects become important when the number of D0-branes N

becomes small.

As a future work it is interesting to understand the Gregory-Laflamme instability in

terms of the dual gauge theory. In fact numerical study of the thermal D0-branes system has

been investigated considerably in refs. [48]–[52], and especially the corresponding instability

is numerically discussed in ref. [51]. It is also of great interest to understand the Gregory-

Laflamme instability of the black string from the gauge theory side which is not stretching

to the 11th direction [53, 54]. In this paper we focused on gs correction in the type IIA

superstring theory, but it seems to be possible to examine α′ correction as well. Finally

the confirmations of the relation between thermodynamic and perturbative instabilities are

important directions [5, 55–57].
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A Calculations on quantum black hole

A.1 Explicit values of tensors

First we choose the vielbein of the quantum black hole as follows.

e0 = rhB
−1/2
1 A

1/2
1 dτ, e1 = rhA

−1/2
1 dx, e2 = rhxdθ1,

e3 = rhx cos θ1dθ2, e4 = rhx cos θ1 cos θ2dθ3, e5 = rhx cos θ1 cos θ2 sin θ3dθ4,

e6 = rhx cos θ1 sin θ2dθ5, e7 = rhx cos θ1 sin θ2 sin θ5dθ6, e8 = rhx sin θ1dθ7, (A.1)

e9 = rhx sin θ1 sin θ7dθ8, e10 = rhx sin θ1 cos θ7dθ9,

where A1(x) = 1 − 1
x8

+ γ
r6h
a1(x) and B1(x) = 1 + γ

r6h
b1(x). Then, up to the linear order

of γ, nonzero components of the Riemann tensor, Ricci tensor and scalar curvature are

calculated as

R0101 = − 36

r2hx
10

+ γ
x9a′′1 + x(1− x8)b′′1 − 12b′1

2r8hx
9

,

R0̂i0̂i =
4

r2hx
10

+ γ
x8a′1 + (1− x8)b′1

2r8hx
9

,

R1̂i1̂i = − 4

r2hx
10
− γ a′1

2r8hx
, Rîĵ îĵ =

1

r2hx
10
− γ a1

r8hx
2
,

R00 = γ
x9a′′1 + 9x8a′1 + x(1− x8)b′′1 − 3(1 + 3x8)b′1

2r8hx
9

, (A.2)

R11 = γ
−x9a′′1 − 9x8a′1 − x(1− x8)b′′1 + 12b′1

2r8hx
9

,

Rî̂i = γ
−2x8a′1 − 16x7a1 − (1− x8)b′1

2r8hx
9

,

R = γ
−x9a′′1 − 18x8a′1 − 72x7a1 − x(1− x8)b′′1 + 3(1 + 3x8)b′1

r8hx
9

,

where î, ĵ = 2, · · · , 10 and î 6= ĵ.
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Next we evaluate higher derivative terms up to O(γ). Nonzero components of Xabcd,

RXij ≡ RabciXabc
j and DDXij ≡ D(aDb)X

a
ij
b are evaluated as

X0101 = −44070912

r6hx
30

, X0̂i0̂i = −X1̂i1̂i = −2844672

r6hx
30

, Xîĵ îĵ =
1949952

r6hx
30

,

RX00 = −RX11 = −2968289280

r8hx
40

, RXî̂i = −14315520

r8hx
40

,

DDX00 = −1902182400(13− 11x8)

r8hx
40

, DDX11 =
900(3445248 + 781824x8)

r8hx
40

, (A.3)

DDXî̂i =
78182400(31− 23x8)

r8hx
40

, t8t8R
4 − 1

4!
ε11ε11R

4 =
1451934720

r8hx
40

,

where î, ĵ = 2, · · · , 10 and î 6= ĵ.

A.2 Plots of A1(x)

Let us examine the properties of A1(x) given in section 2.2. For simplicity we just set

ch = 0 below, so A1(x) is given by

A1(x) = 1− 1

x8
+ γ̃

(
422707200

x30
− 349736448

x38

)
, γ̃ =

γ

r6h
. (A.4)

The derivative of A1(x) is calculated as

A′1(x) =
8γ̃

x39
(
γ̃−1x30 − 1585152000x8 + 1661248128

)
. (A.5)

Then A′1(x) = 0 has one or two solutions when the minimum of the function in the paren-

theses becomes zero or negative, respectively. The function in the parentheses becomes

minimum when x22 = 422707200γ̃, and the minimum takes negative value when

−1162444800(422707200γ̃)4/11 + 1661248128 < 0 ⇔ 6.32× 10−9 < γ̃. (A.6)

Plots of A1(x) with γ̃ = 10−9 and 10−8 are shown in figure 4. In both cases, locations

of the event horizons are shifted inward compared with the classical case. Especially the

behavior of A1(x) with γ̃ = 10−8 is quite different around the event horizon, so a test

particle feels a repulsive force.

B Calculations on quantum black string

B.1 Explicit values of tensors

First we choose the vielbein of the quantum black hole as follows.

e0 = rsG
−1/2
1 F

1/2
1 dτ, e1 = rsF

−1/2
1 dx, e2 = rsxdθ1,

e3 = rsx cos θ1dθ2, e4 = rsx cos θ1 cos θ2dθ3, e5 = rsx cos θ1 cos θ2 sin θ3dθ4,

e6 = rsx cos θ1 sin θ2dθ5, e7 = rsx cos θ1 sin θ2 sin θ5dθ6, e8 = rsx sin θ1dθ7, (B.1)

e9 = rsx sin θ1 sin θ7dθ8, e\ = rsG
1/2
2 dy,
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Figure 4. Plots of A1(x) with γ̃ = 10−9 and 10−8.

where F1(x) = 1 − 1
x7

+ γ
r6s
f1(x) and Gi(x) = 1 + γ

r6s
gi(x). Then, up to the linear order

of γ, nonzero components of the Riemann tensor, Ricci tensor and scalar curvature are

calculated as

R0101 =− 28

r2sx
9

+ γ
2x8f ′′1 + 2x(1− x7)g′′1 − 21g′1

4r8sx
8

, R0î0î =
7

2r2sx
9

+ γ
x7f ′1 + (1− x7)g′1

2r8sx
8

,

R0\0\ =γ
7g′2

4r8sx
8
, R1î1î = − 7

2r2sx
9
− γ f ′1

2r8sx
, R1\1\ = γ

2x(1− x7)g′′2 − 7g′2
4r8sx

8
,

Rîĵîĵ =
1

r2sx
9
− γ f1

r8sx
2
, Rî\̂i\ = γ

(1− x7)g′2
2r8sx

8
, (B.2)

R00 =γ
2x8f ′′1 + 16x7f ′1 + 2x(1− x7)g′′1 − (5 + 16x7)g′1 + 7g′2

4r8sx
8

,

R11 =γ
−2x8f ′′1 − 16x7f ′1 − 2x(1− x7)g′′1 + 21g′1 + 2x(1− x7)g′′2 − 7g′2

4r8sx
8

,

Rî̂i =γ
−2x7f ′1 − 14x6f1 − (1− x7)g′1 + (1− x7)g′2

2r8sx
8

, R\\ = γ
x(1− x7)g′′2 + (1− 8x7)g′2

2r8sx
8

,

R=γ
−2x8f ′′1 −32x7f ′1−112x6f1−2x(1−x7)g′′1 +(5+16x7)g′1+2x(1−x7)g′′2 +2(1−8x7)g′2

2r8sx
8

,

where î, ĵ = 2, · · · , 9 and î 6= ĵ.

Next we evaluate higher derivative terms up to O(γ). Nonzero components of Xabcd,

RXij ≡ RabciXabc
j and DDXij ≡ D(aDb)X

a
ij
b are evaluated as

X0101 = −20321280

r6sx
27

, X0̂i0̂i = −X1̂i1̂i = −1270080

r6sx
27

, Xîĵ îĵ =
1192320

r6sx
27

,

RX00 = −RX11 = −1066867200

r8sx
36

, RXî̂i = −1088640

r8sx
36

,
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DDX00 =
198132480(−47 + 40x7)

r8sx
36

, DDX11 =
1701(1313280 + 317440x7)

2r8sx
36

, (B.3)

DDXî̂i =
236234880(4− 3x7)

r8sx
36

, t8t8R
4 − 1

4!
ε11ε11R

4 =
531256320

r8sx
36

,

where î, ĵ = 2, · · · , 9 and î 6= ĵ.

B.2 Solution of eq. (2.19)

Let us solve the equations of motion (2.19) for the quantum black string. First we consider

the following combinations.

E1 + E2

16x28(1− x7)
= g′1 +

1

8
xg′′2 +

4097640960

x28
= 0,

E1 + E2 + 8(E3 − E4)

2x28
= −16x7f ′1 − 112x6f1 − 7x(1− x7)g′′2 + 56x7g′2

+
2525644800

x28
− 10102579200

x21
= 0. (B.4)

These are solved as

g1 = c1 −
1

8
xg′2 +

1

8
g2 +

151764480

x27
,

f1 =
c2
x7
− 7(1− x7)

16x6
g′2 +

7

16x7
g2 −

5846400

x34
+

31570560

x27
. (B.5)

By inserting these solutions into E1 = 0, we obtain

E1

9x28
= x(1− x7)g′′2 + (1− 8x7)g′2 +

7640801280

x28
− 5922201600

x21

=

{
x(1− x7)g′2 −

282992640

x27
+

296110080

x20

}′
= 0. (B.6)

From this g2(x) is solved as

g2(x) = c3 + c4 log
x7

x7 − 1
− 94330880

9x27
+

655872

x20
+

13117440

13x13
+

2186240

x6
+1873920I(x),

(B.7)

where

I(x) = log
x7(x− 1)

x7 − 1
−

∑
n=1,3,5

cos
nπ

7
log
(
x2 + 2x cos

nπ

7
+ 1
)

− 2
∑

n=1,3,5

sin
nπ

7

{
tan−1

(
x+ cos nπ7

sin nπ
7

)
− π

2

}
, (B.8)

I ′(x) =
7(x− 1)

x(x7 − 1)
.

c3 and c4 are integral constants but should be zero so that the solution becomes asymptot-

ically flat and g2(1) is finite. g1(x) and f1(x) are determined by using eq. (B.5). c1 should

be zero because of the asymptotic flatness but c2 remains as a constant parameter. We have

solved three out of four equations in (2.19), but the remaining equation is automatically

satisfied.
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Figure 5. Plots of F1(x) with γ̃ = 10−8 and 10−7.

B.3 Plots of F1(x)

Let us examine the properties of F1(x) given in section 2.3. By taking into account the

near horizon limit, we set cs = 3747840 below, so F1(x) is given by

F1(x) = 1− 1

x7
+ γ̃

(
−1208170880

9x34
+

161405664

x27
+

5738880

13x20

+
956480

x13
+

3747840

x7
+

819840

x7
I(x)

)
, γ̃ =

γ

r6h
. (B.9)

Plots of F1(x) with γ̃ = 10−8 and 10−7 are shown in figure 5. In both cases, locations of the

event horizons are shifted inward compared with the classical case. Especially the behavior

of F1(x) with γ̃ = 10−7 is quite different around the event horizon, so a test particle feels

a repulsive force [34].
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