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1 Introduction

The ADE classification not only provides a beautiful structure in the mathematical science,

but also plays important roles in M-theory. As an example related to the M5-brane, there is

an ADE classification of six dimensional N = (2, 0) theories, coming from the classification

of the singularities on which the M5-branes are placed [1]. Even for the six dimensional

N = (1, 0) theories, the ADE classification continues to be crucial [2]. As we shall see

below, the ADE classification takes place also in the context of the M2-branes.

A large class of three dimensional N = 3 superconformal Chern-Simons theories can

be constructed by quiver diagrams as follows. For each vertex in the quiver diagram, we

assign a vector multiplet of a gauge group U(N), where N can be different for each vertex.

For each edge connecting two vertices, we assign a pair of hypermultiplets which are in the

bifundamental representation under the gauge groups on the two vertices. For these theo-

ries, the localization technique allows us to express the partition function on S3 as a finite

dimensional matrix model [4]. Then, it was shown in [5] that, if we require that the long

range force among the eigenvalues vanishes (also known as the balance condition in [6]), the

quivers have to take the form of the affine ADE-type, or ÂD̂Ê-type, Dynkin diagram, with

the rank of the gauge group N proportional to the comark of each vertex. The behaviour

of these matrix models in the limit N → ∞ was studied for the Â-type quivers in [7, 8], for

the D̂-type quivers in [5, 9, 10] and for the Ê-type quivers in [10]. Interestingly, under the
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further requirement that the sum of the Chern-Simons levels weighted by comarks vanishes,

the partition functions of all these theories of ÂD̂Ê-type have a universal scaling law

Z(N) ∼ exp

[
− 2

3
√
C
N

3
2

]
, (1.1)

with C some constant depending on the quivers. This scaling law is a characteristic

property of the M2-branes in the context of the AdS/CFT correspondence [11]. Indeed,

the ABJM theory, which corresponds to the Â1 case, is the theory of the M2-branes on

C
4/Zk [3].

For the ABJM theory, after this leading N
3
2 scaling behaviour was obtained in [12],

the partition function was studied in full detail. It was shown that the N
3
2 behaviour is

completed by the perturbative 1/N corrections into an Airy function [13],

Zpert(N) = eAC− 1
3 Ai

[
C− 1

3 (N −B)
]
, (1.2)

with some constants A [14], B and C, up to non-perturbative corrections in 1/N . Later it

was pointed out that the partition function of this theory can be rewritten as that of an

ideal Fermi gas system with N particles [15]. This formalism is so efficient that it not only

provided a simple rederivation of the above result, but even allowed the exact analysis of

the non-perturbative corrections [16–21].

In [15] the authors also showed that the Fermi gas formalism works for theories of

general Â-type quivers, and that the completion by an Airy function is universal for these

theories. The superconformal Chern-Simons theories of the Â-type quivers were also stud-

ied in detail, including the perturbative coefficients A,B,C and various non-perturbative

corrections [22–25].1

It was further conjectured in [15] that the completion by an Airy function is universal

even for other theories of the M2-branes. However, in the case of the D̂Ê-type quivers, it

was not trivial whether the universal behaviour of the Airy function is valid because of the

lack of the Fermi gas formalism due to their non-circular structure and the non-uniform

comarks.

In this paper we consider general D̂-type quivers, and obtain a positive answer to this

question. Here we shall explain our setup. We consider the quiver superconformal Chern-

Simons theory whose quiver is the D̂r Dynkin diagram. We call the two vertices on the left

end as µ and µ′, those on the right end as ν and ν ′, and label the others as 1, 2, · · · , r− 3,

as in figure 1. We take the Chern-Simons level of each gauge group as

kµ = k(s1 − s2), k′µ = k(−s1 − s2),

kν = k(sr−1 − sr), k′ν = k(sr−1 + sr),

km = k(sm+1 − sm+2), (m = 1, 2, · · · r − 3), (1.3)

with sm (m = 1, 2, · · · , r) extended to arbitrary real numbers. This choice is the most

general one under the aforementioned requirement of vanishing total level. Below, we shall

1The Nf flavor matrix model also allows the Fermi gas formalism which turns out to be equivalent to

that for some of the Â-type quiver. These matrix models were studied in [26–28]. The equivalence between

these matrix models is proven systematically in [29].
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Figure 1. The label of the vertices of the D̂r quiver. The number on each vertex is the rank of

the gauge group, which is proportional to the comark.

first present a Fermi gas description for the partition function of this theory in section 2.

In the Fermi gas formalism, it is rather convenient to introduce the chemical potential µ

dual to N and study the grand potential J(µ) defined by

eJ(µ) =
∞∑

N=0

eµNZ(N). (1.4)

Other than sm, the grand potential is controlled by two parameters, the chemical potential

µ and the overall Chern-Simons level k which plays the role of the Planck constant of this

quantum statistical system, ~ = 2πk. The grand potential turns out to be a cubic polyno-

mial of µ if we neglect the non-perturbative effects. In this manner, all order perturbative

corrections to the partition function in 1/N are taken into account. As a result, we obtain

the expression of an Airy function (1.2) in section 3. The coefficient C relevant to the

leading N
3
2 behaviour is obtained as

C =
1

π2k

(
1

σ0σ1
+

r−1∑

m=1

sm − sm+1

σmσm+1
+

sr
σrσr+1

)
, (1.5)

where the variables σ are given by

σm =
r∑

n=1

(|sm − sn|+ |sm + sn|)− 4|sm|, σ0 = 2(r − 2), σr+1 = 2
r∑

n=1

|sn|, (1.6)

with the reordered sm,

0 ≤ |sr| ≤ |sr−1| ≤ · · · ≤ |s1|. (1.7)

This coincides perfectly with the previous proposal in [10], where the authors further tried

to give a Fermi surface interpretation to their proposal. In the limit of k → 0, we can also

compute the coefficient B, and the result is

B =
π2C

3
− 1

6k

( r∑

m=1

1

σm
+

1

σr+1

)
+O(k). (1.8)

If we further restrict ourselves to the special values of sm

s1 = s2 = · · · = sr = 1, (1.9)

– 3 –
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we can compute the higher order corrections in k to the grand potential, including the

perturbative coefficients and the non-perturbative corrections. We analyse this model in

section 4 and conclude that, for the non-perturbative corrections, there are three kinds

of membrane instantons with exponents e−
2µ
r , e−

2µ
r−2 and e−

µ
2 . For the coefficient A, we

observe that the result is consistent with

A =
1

2

[
AABJM(2rk) + r2AABJM(2(r − 2)k)

]
, (1.10)

up to O(k5), where AABJM(k) denotes that coefficient for the ABJM theory. Both the

coefficient A and the membrane instantons are reminiscent of the expressions for the N = 4

supersymmetric theories of the Â-type quiver [23, 24].

2 Fermi gas formalism

In this section, we shall present a Fermi gas description for the superconformal Chern-

Simons theories of the D̂-type quiver.

The partition function of this theory is given by

Z(N) =

∫
DNµ

N !

DNµ′

N !

DNν

N !

DNν ′

N !

r−3∏

m=1

D2Nλ(m)

(2N)!

V

H
, (2.1)

with the integration measure

Dµi =
dµi

2π
e

ikµ
4π

(µi)
2
, Dµ′

i =
dµ′

i

2π
e

ik′µ
4π

(µ′

i)
2
,

Dνi =
dνi
2π

e
ikν
4π

(νi)
2
, Dν ′i =

dν ′i
2π

e
ik′ν
4π

(ν′i)
2
, Dλ(m)

a =
dλ

(m)
a

2π
e

ikm
4π

(λ
(m)
a )2 . (2.2)

Here the numerator V , coming from the vector multiplets in the adjoint representation, is

given by

V =
N∏

i<j

(
2 sinh

µi − µj

2

)2 N∏

i<j

(
2 sinh

µ′
i − µ′

j

2

)2 r−3∏

m=1

2N∏

a<b

(
2 sinh

λ
(m)
a − λ

(m)
b

2

)2

×
N∏

i<j

(
2 sinh

νi − νj
2

)2 N∏

i<j

(
2 sinh

ν ′i − ν ′j
2

)2

, (2.3)

and the denominator H, coming from the hypermultiplets in the bifundamental represen-

tation, is

H =

N,2N∏

i,a

(
2 cosh

µi − λ
(1)
a

2

)N,2N∏

i,a

(
2 cosh

µ′
i − λ

(1)
a

2

) r−4∏

m=1

2N,2N∏

a,b

(
2 cosh

λ
(m)
a − λ

(m+1)
b

2

)

×
2N,N∏

a,i

(
2 cosh

λ
(r−3)
a − νi

2

) 2N,N∏

a,i

(
2 cosh

λ
(r−3)
a − ν ′i

2

)
. (2.4)
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2.1 Density matrix from matrix model

To express the partition function (2.1) of the superconformal Chern-Simons matrix model

of the D̂-type quiver in terms of that of a Fermi gas system, in this subsection let us first

rewrite the generating function of the matrix model into a Fredholm determinant.

First, we rewrite the integrand of the matrix model (2.1) into2,3

V

H
= det

(
1

2 sinh
µi−µ′

j

2

)

N×N

det

(
1

2 cosh
µa−λ

(1)
b

2

)

2N×2N

r−4∏

m=1

det

(
1

2 cosh
λ
(m)
a −λ

(m+1)
b

2

)

2N×2N

× det

(
1

2 cosh λ
(r−3)
a −νb

2

)

2N×2N

det

(
1

2 sinh
νi−ν′j

2

)

N×N

. (2.5)

Here we have introduced the combined variables (µ)a=1,··· ,2N =
(
(µ)a=1,··· ,N , (µ′)a−N=1,··· ,N

)

and (ν)a=1,··· ,2N =
(
(ν)a=1,··· ,N , (ν ′)a−N=1,··· ,N

)
. Namely, the second factor in (2.5) is the

determinant of a matrix which is a vertical array of two N × 2N rectangular matrices, one

with components
(
2 cosh

µi−λ
(1)
b

2

)−1
and the other with components

(
2 cosh

µ′

i−λ
(1)
b

2

)−1
. Sim-

ilarly, the second last factor is the determinant of a matrix which is a horizontal array of two

2N ×N rectangular matrices,
((
2 cosh λ

(r−3)
a −νi

2

)−1)
2N×N

and
((
2 cosh

λ
(r−3)
a −ν′i

2

)−1)
2N×N

.

Note that in the above rewriting we have used the formulae

∏
i<j 2 sinh

µi−µj

2

∏
i<j 2 sinh

νi−νj
2∏

i,j 2 cosh
µi−νj

2

= det
1

2 cosh
µi−νj

2

,

∏N
i<j 2 sinh

µi−µj

2

∏N
i<j 2 sinh

νi−νj
2∏

i,j 2 sinh
µi−νj

2

= (−1)
1
2
(N−1)N det

1

2 sinh
µi−νj

2

, (2.6)

which follow from the Cauchy identity

∏
i<j(xi − xj)

∏
i<j(yi − yj)∏

i,j(xi + yj)
= det

1

xi + yj
, (2.7)

by the substitutions xi = eµi and yj = eνj or yj = −eνj .

Then, using the formula proved in appendix A of [32] with the same ranks, we can

combine the series of 2N × 2N determinants into

Z(N) =

∫
DNµ

N !

DNµ′

N !

DNν

N !

DNν ′

N !
detM(µi, µ

′
j) detL(µa, νb) detN(νi, ν

′
j). (2.8)

2We knew of a related work [31] from the reference list of [29]. In a seminar by Nadav Drukker at

Nagoya university, we learned that actually the authors of [31] had a similar idea in rewriting the integration

measure into a determinant of hyperbolic cosecant functions as in (2.5). We are grateful to Nadav Drukker

for valuable discussions.
3Since the singularities appearing in the first and last determinants are originally absent in (2.4), we

expect them to be harmless.
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Here the functions M , N and L denote4

M(µi, µ
′
j) =

1

2 sinh
µi−µ′

j

2

, N(νi, ν
′
j) =

1

2 sinh
νi−ν′j

2

,

L(µa, νb) =

∫ r−3∏

m=1

Dλ(m) 1

2 cosh µa−λ(1)

2

[ r−4∏

m=1

1

2 cosh λ(m)−λ(m+1)

2

]
1

2 cosh λ(r−3)−νb
2

, (2.9)

with the matrix in the second determinant in (2.8) given explicitly by

L(µa, νb) =

(
L(µi, νj) L(µi, ν

′
j)

L(µ′
i, νj) L(µ′

i, ν
′
j)

)
. (2.10)

Furthermore, if we use the formula in [32] for different ranks, we can perform the µ′ and

ν ′ integrations to find

Z(N) = (−1)N
∫

DNµ

N !

DNν

N !
det

(
L(µi, νj) (L •N)(µi, νj)

(M • L)(µi, νj) (M • L •N)(µi, νj)

)
, (2.11)

where • stands for either the µ′ integration or the ν ′ integration in (2.2). It should be clear

from the context which integration it stands for. For example, (M • L •N)(µi, νj) in the

lower-right block denotes

(M • L •N)(µi, νj) =

∫
Dµ′Dν ′M(µi, µ

′)L(µ′, ν ′)N(ν ′, νj). (2.12)

Now we can apply the formula (A.1) in our appendix A and find

Z(N) = (−1)N+ 1
2
(N−1)N

∫
DNµ

N !
pf P , P =

(
P11 P12

P21 P22

)
, (2.13)

with the four N ×N blocks given by

P11=−(L ◦N • L+ L •N ◦ L)(µi, µj), P12=(L ◦N • L+ L •N ◦ L) •M(µi, µj),

P21=−M •(L ◦N • L+ L•N ◦ L)(µi, µj), P22=M •(L ◦N • L+ L•N ◦ L) •M(µi, µj).

(2.14)

Here ◦ denotes the ν integration. If we further introduce the chemical potential µ and

define the grand potential J(µ) as (1.4), we find

eJ(µ) =

√
det(I + eµρ), (2.15)

by using the formula in appendix B. Here the density matrix ρ is

ρ = ΩP , (2.16)

4The rank N of the gauge group should not be confused with the function N(ν, ν′). Also, the chemical

potential µ appearing later should not be confused with the integration variables µi and µ′

i.

– 6 –
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and the other matrices are given in (B.2). Then it is not difficult to observe that the density

matrix can be put into

ρ =

(
−Mµµ′ 0

0 I

)(
Lµ′ν Lµ′ν′

Lµν Lµν′

)(
Nνν′ 0

0 Nν′ν

)(
Lν′µ Lν′µ′

Lνµ Lνµ′

)(
I 0

0 −Mµ′µ

)
. (2.17)

Here we have regarded the functions M , N and L as matrices, and contracted the adjacent

indices by integrations (2.2), without displaying • or ◦ explicitly. After suitable similarity

transformations and rearrangements, we can further put the density matrix into

ρ = −
(
Lνµ Lνµ′

Lν′µ Lν′µ′

)(
0 Mµµ′

Mµ′µ 0

)(
Lµν Lµν′

Lµ′ν Lµ′ν′

)(
0 Nνν′

Nν′ν 0

)
. (2.18)

2.2 Operator formalism for density matrix

In the previous subsection, we have reduced the study of the superconformal Chern-Simons

matrix model of the D̂-type quiver into an integration kernel ρ. To express the supercon-

formal Chern-Simons matrix model in terms of a Fermi gas system with N particles, we

need to further rewrite the integration kernel in the operator formalism. For this purpose,

we introduce the canonical coordinate/momentum operators q̂ and p̂ obeying the canonical

commutation relation

[q̂, p̂] = i~, (2.19)

with the Planck constant given by ~ = 2πk and normalize the coordinate eigenstate as

〈q|q′〉 = 2πδ(q − q′). (2.20)

It is not difficult to spell out each block in ρ (2.18) explicitly in terms of the hyperbolic

functions and the integrations. After rescaling the integration variables by 1/k, we find

that the density matrix is given by

ρ =

(
〈ν|ρ̂+|ν〉 〈ν|ρ̂−|ν ′〉
〈ν ′|ρ̂+|ν〉 〈ν ′|ρ̂−|ν ′〉

)
, (2.21)

with the operators ρ̂±

ρ̂+ =
1

2 cosh p̂
2

e−
i
2~

(sr−1−sr−2)q̂2 1

2 cosh p̂
2

e−
i
2~

(sr−2−sr−3)q̂2 · · · e− i
2~

(s3−s2)q̂2 1

2 cosh p̂
2

(2.22)

×
(
e−

i
2~

(s2−s1)q̂2
tanh p̂

2

2
e−

i
2~

(s1+s2)q̂2 + e−
i
2~

(s2+s1)q̂2
tanh p̂

2

2
e

i
2~

(s1−s2)q̂2
)

× 1

2 cosh p̂
2

e
i
2~

(s2−s3)q̂2 · · · e i
2~

(sr−2−sr−1)q̂2
1

2 cosh p̂
2

e
i
2~

(sr−1+sr)q̂2
tanh p̂

2

2
e−

i
2~

(sr−sr−1)q̂2 ,

ρ̂− =
1

2 cosh p̂
2

e−
i
2~

(sr−1−sr−2)q̂2 1

2 cosh p̂
2

e−
i
2~

(sr−2−sr−3)q̂2 · · · e− i
2~

(s3−s2)q̂2 1

2 cosh p̂
2

×
(
e−

i
2~

(s2−s1)q̂2
tanh p̂

2

2
e−

i
2~

(s1+s2)q̂2 + e−
i
2~

(s2+s1)q̂2
tanh p̂

2

2
e

i
2~

(s1−s2)q̂2
)

× 1

2 cosh p̂
2

e
i
2~

(s2−s3)q̂2 · · · e i
2~

(sr−2−sr−1)q̂2
1

2 cosh p̂
2

e
i
2~

(sr−1−sr)q̂2
tanh p̂

2

2
e

i
2~

(sr+sr−1)q̂2 .

– 7 –
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In the derivation we have used the formulae

〈q| 1

2 cosh p̂
2

|q′〉 = 1

k

1

2 cosh q−q′

2k

, 〈q|tanh
p̂
2

2
|q′〉 = i

k

1

2 sinh q−q′

2k

. (2.23)

Using this result we can simplify the grand potential (2.15). In (2.15) the determinant

is taken simultaneously over the functional space (or, in the operator formalism, the phase

space) and over the two dimensional space. However, since the left two components and

the right two components in (2.21) are identical, the determinant over the two dimensional

space can be taken trivially

eJ(µ) =
√
det(I + eµρ̂), (2.24)

with the density matrix purely in the phase space given by ρ̂ = ρ̂+ + ρ̂−. After performing

the similarity transformation to move e
i
2~

sr−1q̂
2
on the right end of ρ̂± in (2.22) into the

left end, we can use the relation

e
i
2~

sq̂2F (p̂)e−
i
2~

sq̂2 = F (p̂− sq̂), (2.25)

to rewrite the density matrix into

ρ̂ =
1

2 cosh p̂−sr−1q̂
2

· · · 1

2 cosh p̂−s2q̂
2

tanh p̂−s1q̂
2 + tanh p̂+s1q̂

2

2

× 1

2 cosh p̂+s2q̂
2

· · · 1

2 cosh p̂+sr−1q̂
2

tanh p̂−sr q̂
2 + tanh p̂+sr q̂

2

2
. (2.26)

3 Large N behaviour from Fermi surface analysis

In the previous section, after switching from the partition function Z(N) to the grand

potential J(µ), we find that J(µ) is expressed in terms of the Fredholm determinant (2.24)

of the density matrix (2.26). Since the relation is very similar to the case of the Â-type

quiver [15], we expect that the perturbative corrections to the partition function again sum

up to an Airy function as (1.2) with some constants C, B and A. Indeed, the expression of

the Airy function follows from the large E behaviour of the number of states with energy

smaller than E [15]5

n(E) = tr[θ(E − log ρ̂−1)] = 2

(
CE2 +B − π2C

3

)
+O(e−E). (3.1)

In this section we shall show this relation, with explicit expressions of C and B up to O(k),

by the technique used in [15].

For this purpose, let us consider the classical limit of the Fermi gas system (~ → 0).

Classically, the number of states n(E) is given by the phase space volume

n(E) =
1

2π~
vol{(q, p) ∈ R

2| log ρ−1
0 ≤ E}, (3.2)

5The overall factor 2 compared with the case of the Â-type quivers is due to the square-root in (2.24).
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Figure 2. The classical Fermi surface for {sm} = {1, 2, 3} at E = 10 (the solid red line) and the

polygon to which the Fermi surface approaches in the limit of E → ∞ (the dashed blue line).

where ρ0 is the classical density matrix obtained from ρ̂ (2.26) by neglecting the commu-

tators

log(ρ0(q, p))
−1 =

r∑

m=1

[
log

(
2 cosh

p− smq

2

)
+ log

(
2 cosh

p+ smq

2

)]
− log(2 sinh p)2. (3.3)

Since the right-hand side is independent of the signs and the ordering of sm, in this section

we assume sm ≥ 0 and (1.7) without loss of generality. The classical Fermi surface (i.e.

the boundary of the region with log ρ−1
0 ≤ E) is plotted in figure 2. Since the region is

symmetric under the reflections q 7→ −q and p 7→ −p, below we consider only the subregion

in the first quadrant R2
≥0. We can further divide the volume vol{(q, p) ∈ R

2
≥0| log ρ−1

0 ≤ E}
into the leading contribution in the limit of large E, Vpol, and the deviation from it, δV , as

n(E) =
2

π~
(Vpol − δV ). (3.4)

The main contribution Vpol can be computed by approximating the hyperbolic functions

by rational functions

Vpol = vol

{
(q, p) ∈ R

2
≥0

∣∣∣∣
r∑

m=1

[ |p− smq|
2

+
|p+ smq|

2

]
− 2|p| ≤ E

}
. (3.5)

Since the above subregion on the first quadrant is a polygon (see figure 2), whose vertices

are located at
(
0,

2E

σ0

)
,

(
2E

σm
,
2Esm
σm

)
,

(
2E

σr+1
, 0

)
, (3.6)

with σ given by sm as in (1.6), the volume of this subregion is

Vpol = 2E2

(
1

σ0σ1
+

r−1∑

m=1

sm − sm+1

σmσm+1
+

sr
σrσr+1

)
. (3.7)
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2
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p

Figure 3. The region contributing to vm is the region surrounded by the classical Fermi surface

(the solid red line), the boundary of the polygon (the dashed blue line) and the solid black lines

next to the line of p = smq. Each solid black line connects the origin and the midpoint on the edge

of the polygon.

Now we consider the deviation from the volume of the limit polygon, δV . First we

divide the region between the classical Fermi surface and the polygon into the pieces around

each line of p = smq and p = 0, as in figure 3, and call the volume of each piece vm and

vr+1 respectively,

δV =
r∑

m=1

vm + vr+1. (3.8)

Assuming that q and p are of order E on the classical Fermi surface, we can approximate

its segment near the line p = smq as

∑

ℓ6=m

[ |p− sℓq|
2

+
|p+ sℓq|

2

]
+ log 2 cosh

p− smq

2
+

|p+ smq|
2

− 2|p| = E, (3.9)

if we neglect the non-perturbative O(e−E) corrections. To calculate vm, it is convenient to

introduce the tilted coordinate (q̃, p̃) = (q, p− smq),

vm =

∫ p̃+

p̃−

dp̃(q(p̃)− q′(p̃)), (3.10)

where q(p̃) and q′(p̃) are the q̃-coordinate of a point (q̃, p̃) on the limiting polygon of the

Fermi surface and that on the approximant (3.9), and p̃± are the midpoints on the edges

of the polygon. Noting p − sℓq < 0 for ℓ < m and p − sℓq > 0 for ℓ > m in this piece, we

can compute vm as

vm =

∫ p̃+

p̃−

dp̃
2

σm

(
log 2 cosh

p̃

2
− |p̃|

2

)
≃ π2

3σm
. (3.11)
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Here, although originally the integral interval, [p̃−, p̃+] is finite, we can replace it with the

whole real axis (−∞,∞) without affecting the perturbative behaviour in (3.1), since the

integrand is exponentially small for large p̃. The contribution from the piece around p = 0

can be calculated similarly,

vr+1 =
π2

3σr+1
. (3.12)

Substituting these results (3.7), (3.8), (3.11), (3.12) into (3.4), we obtain the large E

expression of n(E) (3.1) with C and B given by (1.5) and (1.8).

So far we have been neglecting the quantum corrections. Though it is difficult to take

care of them due to the variety of arguments of the hyperbolic functions in the density

matrix (2.26), we can make the following estimation. There are two kinds of ~-corrections,

the Wigner transformation of each operator and the commutators of operators coming from

the Baker-Campbell-Hausdorff formula. According to the Wigner transformation formula,

the former corrections always start with the second derivatives of each term in (3.3). Also,

if the Hamiltonian is hermitian, since there are only nested commutators, the latter cor-

rections again start with the second derivatives.6 Therefore, since the second derivatives

of the hyperbolic functions are always exponentially suppressed, the quantum corrections

never change the asymptotic polygon of the Fermi surface in the limit of E → ∞. This en-

sures the behaviour of n(E) (3.1) with C uncorrected, and therefore that the perturbative

partition function is given as an Airy function even with all order quantum corrections.

On the other hand, B is possibly corrected due to the quantum effect.

4 A and instantons for special levels

In this section, we restrict ourselves to the cases where the Chern-Simons levels are given

by (1.3) with a uniform value of sm (1.9), where we set that value to be 1, which is always

possible by the redefinition of k. Under this restriction the exact large µ expansion of

the grand potential can be computed systematically order by order in k. As a result, we

obtain the constant part A (which appear in the partition function as (1.2)) and the non-

perturbative corrections (O(e−µ)) in the grand potential. These are just what we did in

the theory of the Â-type quiver with N = 4 supersymmetry enhancement [15, 23, 24].

For the simplicity of the explanation, let us define the Hamiltonian, e−Ĥ = ρ̂. After a

similarity transformation, the Hamiltonian is given explicitly by

e−Ĥ = e−
r−2
2

ÛeŜe−(r−2)T̂ eŜe−
r−2
2

Û , (4.1)

where we have introduced new variables

Û = log 2 cosh
Q̂

2
, T̂ = log 2 cosh

P̂

2
, Ŝ = log

tanh Q̂
2 + tanh P̂

2

2
, (4.2)

with Q̂ = p̂ + q̂ and P̂ = p̂ − q̂. Note that the Planck constant is doubled in the new

canonical variables, [Q̂, P̂ ] = i(2~).

6The requirement of hermiticity is essential also in the discussion in the Â-type quiver [15, 23].
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Although we are interested in the large µ expansion of the grand potential, the original

expression (2.24)

J(µ) =
∞∑

n=1

(−1)n−1

2n
enµZ(n), (4.3)

with

Z(n) = tr e−nĤ (4.4)

is valid only for small eµ. To achieve the large µ expansion from small eµ, in [24] we utilized

a reciprocal formula which follows from

∞∑

ℓ=−∞

(−eµ)ℓ

ℓ+ α
=

π

sinπα
e−αµ. (4.5)

This manipulation was further generalized in [33] by using the Mellin-Barnes integration

representation. Namely, we rewrite the grand potential as an integration

J(µ) = −
∫ ǫ+i∞

ǫ−i∞

dt

4πi
Γ(t)Γ(−t)Z(t)etµ, (4.6)

with 0 < ǫ < 1 and evaluate it in both the regions µ > 0 and µ < 0. Assuming µ < 0,

we can reproduce the series expansion (4.3) by collecting the residues of the integrand in

Re(t) > ǫ. Assuming µ > 0, on the other hand, we can evaluate the integration by pinching

the contour so that it encloses the region Re(t) < ǫ. As a result, we obtain the large µ

expansion of the grand potential from the residues of the integrand in Re(t) < ǫ.

To explicitly study the grand potential, we use the WKB ~-expansion, as in the ABJM

theory [15]. The ~-expansion of Z(n) takes the form

Z(n) =
1

~

∞∑

ℓ=0

~
2ℓZ2ℓ(n), (4.7)

where the overall factor 1/~ is due to the normalization by the unit volume of the phase

space. Note that, since quantum corrections contain ~ only through i~, the hermiticity

of the Hamiltonian ensures that quantum corrections only appear in even powers of ~.

Correspondingly, we also decompose the grand potential as

J(µ) =
1

~

∞∑

ℓ=0

~
2ℓJ2ℓ(µ). (4.8)

Below we first compute the classical limit Z0(n), by neglecting the ordering of the

operators and performing the phase space integral explicitly. Then, using the Mellin-

Barnes integration representation (4.6) we obtain the exact large µ expansion of J0(µ).

After that, we proceed to the quantum ~-corrections and determine J2(µ) and J4(µ) by

the same method.
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4.1 Classical limit

In the classical limit, all the operators can be regarded as c-numbers and the trace is the

(Q,P )-phase space integral divided by 4π~. As a result, Z0(n) is

Z0(n) =

∫
dQdP

4π
e−nH0 , (4.9)

with the classical Hamiltonian H0 given by

H0 = (r − 2)U + (r − 2)T − 2S. (4.10)

Here U , T and S are given by (4.2) with the operators Q̂ and P̂ replaced simply by

c-numbers Q and P respectively. Then, the integration in (4.9) is found to factorize as

Z0(n) =
(2n)!

4π

∑

a,b≥0,a+b=n

[∫
dQ

(2a)!

(
sinh Q

2

)2a
(
2 cosh Q

2

)rn−2b

]
·
[∫

dP

(2b)!

(
sinh P

2

)2b
(
2 cosh P

2

)rn−2a

]
. (4.11)

Using the integration formula (a ∈ Z≥0)

∫ ∞

−∞

dx

(2a)!

(
sinh x

2

)2a
(
2 cosh x

2

)m =
Γ
(
m
2 − a

)
Γ
(
m
2

)

22a · a!Γ(m)
, (4.12)

which can be derived recursively by integration by parts, starting with

∫ ∞

−∞
dx

1(
2 cosh x

2

)m =
Γ
(
m
2

)2

Γ(m)
, (4.13)

and the formula

∑

a,b≥0,a+b=n

Γ
(
x
2 − a

)
Γ(x)

a!Γ
(
x
2

)
Γ(x− 2a)

Γ
(
y
2 − b

)
Γ(y)

b!Γ
(
y
2

)
Γ(y − 2b)

=
Γ
(
x+y
2

)

2−2n · n!Γ
(
x+y
2 − n

) , (4.14)

which can be shown by considering the generating function with respect to n, we finally

obtain the following expression for Z0(n)

Z0(n) =
1

4π

Γ(2n+ 1)

Γ(n+ 1)

Γ
(
( r2 − 1)n

)2

Γ((r − 1)n)

Γ
(
r
2n

)2

Γ(rn)
. (4.15)

Plugging this into the Mellin-Barnes representation (4.6) and collecting the residues

in Re(t) ≤ 0, we obtain the exact large µ expansion of the classical grand potential

J0(µ) =
C0

3
µ3 +B0µ+A0 + Jnp

0 (µ). (4.16)

Here the first three perturbative terms come from the residue at t = 0. The coefficients

C0 and B0 are consistent with the classical Fermi surface analysis in section 3, and the

constant A0 is

A0 =
ζ(3)

π

(
1

r
+

r2

r − 2

)
. (4.17)
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The non-perturbative part Jnp
0 (µ) consists of three kinds of instantons

Jnp
0 (µ) =

∞∑

ℓ=1

c
(1)
ℓ e−

2ℓµ
r +

∞∑

m=1

(b(2)m µ+ c(2)m )e−
2mµ
r−2 +

∞∑

n=1

c(3)n e−
nµ
2 , (4.18)

with

c
(1)
ℓ = − (2ℓ)!

πr(ℓ!)2
Γ
(
2ℓ
r

)
Γ
(
−4ℓ

r

)
Γ
(
− (r−2)ℓ

r

)2

Γ
(
−2(r−1)ℓ

r

) ,

b(2)m = − 1

π(r − 2)2(m!)2
Γ
(
2m
r−2

)
Γ
(
− 4m

r−2

)
Γ
(
− rm

r−2

)2

Γ
(
−2(r−1)m

r−2

)
Γ
(
−2rm

r−2

) ,

c
(2)
m

b
(2)
m

= −ψ

(
2m

r − 2

)
+ 2ψ

(
− 4m

r − 2

)
+ (r − 2)ψ(m+ 1) + rψ

(
− rm

r − 2

)

− (r − 1)ψ

(
− 2(r − 1)m

r − 2

)
− rψ

(
− 2rm

r − 2

)
,

c(3)n =
(−1)n−1

8πn!

Γ
(
n
2

)
Γ
(
− (r−2)n

4

)2
Γ
(
− rn

4

)2

Γ
(
− (r−1)n

2

)
Γ
(
− rn

2

) , (4.19)

where ψ(x) is the di-gamma function ψ(x) = ∂x log Γ(x).

4.2 Quantum corrections

Now we shall go on to the quantum corrections. As in [15], with the help of the Wigner

transformation

(X̂)W =

∫
dQ′

2π

〈
Q− Q′

2

∣∣∣∣ X̂
∣∣∣∣Q+

Q′

2

〉
e

iQ′P
2~ , (4.20)

the trace of operators in Z(n) can be expressed as an integration of a c-function

Z(n) =

∫
dQdP

4π~
(e−nĤ)W. (4.21)

Practically, the Wigner transformation can be computed by

f(Q̂)W = f(Q), f(P̂ )W = f(P ), (X̂Ŷ )W = (X̂)W ⋆ (Ŷ )W, (4.22)

where the star product is given as ⋆ = exp[i~(
←−
∂ Q

−→
∂ P −←−

∂ P

−→
∂ Q)]. In this formulation, we

can compute all the ~-corrections systematically through the ⋆-product.

As in the case of the Â-type theories with N = 4 supersymmetry, there are two sources

of ~-corrections: the deviation of HW from H0, and the deviation of (e−nĤ)W from e−nHW .

The latter can be incorporated in the same way as in the Â-type theories, by applying the

Taylor expansion

f(X̂)W =

∞∑

ℓ=0

1

ℓ!

∂ℓf(XW )

∂Xℓ
W

Gℓ(XW), Gℓ(XW) =
(
(X̂ −XW)ℓ

)
W
, (4.23)
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with f(x) = e−nx. The former deviation can also be calculated similarly as in the Â-type

theories, by the Baker-Campbell-Hausdorff formula and the ⋆-product. In deriving the

Hamiltonian operator, all we have to do is to utilize the formula in appendix A of [15]

twice, combining first eŜ and then e−
r−2
2

Û to e−(r−2)T̂ in (4.1). Note that Ŝ is a composite

of Q̂ and P̂ in this case. This again can be treated by the formula (4.23) with f(x) = log x.

In summary, Z(n) is given by

Z(n) =

∫
dQdP

4π~
e−nH0

[
1 +

∞∑

ℓ=1

(−n)ℓ

ℓ!
(HW −H0)

ℓ

][
1 +

∞∑

ℓ=2

(−n)ℓ

ℓ!
Gℓ(HW)

]
. (4.24)

Though the calculation is now rather straightforward, let us note that the expression

is simplified if we introduce

U2 = 2 cosh
Q

2
, T2 = 2 cosh

P

2
, S2 = 2 sinh

Q+ P

2
. (4.25)

For example, the ~-corrections relevant to Z2(n) are given by

HW−H0 = ~
2

[
−(r − 2)(r2 + 2r + 2)

12U2
2

+
(r − 2)(r2 + 2r + 8)

24T 2
2

− (r − 2)(r − 4)

12S2
2

+
(r − 2)2(r + 4)

6U2
2T

2
2

− (r − 2)(r + 6)

3U2
2S

2
2

+
2r(r − 2)

3T 2
2 S

2
2

− 4U ′
2

3T2S3
2

− 4T ′
2

3U2S3
2

− 2(r2 − 3r + 8)U ′
2T

′
2

3U2T2S2
2

− 2(r − 2)(r + 2)U ′
2S

′
2

3U2T 2
2 S2

+
2(r−2)(2r+1)T ′

2S
′
2

3U2
2T2S2

]
+O(~4),

G2(HW) = ~
2

[
− r2

U2
2T

2
2

− 2r

U2
2S

2
2

− 2r

T 2
2 S

2
2

]
+O(~4),

G3(HW) = ~
2

[
−r(r2 + 4)

4U2
2

− r(r2 + 4)

4T 2
2

− r2

S2
2

+
2r3

U2
2T

2
2

+
2r(r − 2)

U2
2S

2
2

+
2r(r − 2)

T 2
2 S

2
2

+
4r2U ′

2T
′
2

U2T2S2
2

+
4r2U ′

2S
′
2

U2T 2
2 S2

+
4r2T ′

2S
′
2

U2
2T2S2

]
+O(~4), (4.26)

while Gℓ(HW) = O(~4) for ℓ ≥ 4. After substituting these into (4.24), we can integrate the

resulting expression by the same technique as in Z0(n). We finally obtain Z2(n) as

Z2(n) =
r2(r − 2)2n2(1− n)(1 + 2n)

96(1 + (r − 1)n)(1 + rn)
Z0(n). (4.27)

By a similar, though more lengthy, calculation, we also obtain Z4(n) as

Z4(n) =
r3(r − 2)2n3(n− 1)(2n+ 1)

92160(1 + rn)(3 + rn)(1 + (r − 1)n)(2 + (r − 1)n)(3 + (r − 1)n)[
(8−5r+r2)(96+(−110 + 82r)n+ (326− 58r+17r2)n2 + (92 + 124r−5r2)n3+14r2n4)

+ (−432 + 226r)n+ (−1616 + 530r)n2 + (−928 + 144r)n3 − 56rn4
]
Z0(n). (4.28)

Now let us consider the large µ expansion of the quantum corrections to the grand

potential. Remarkably, both Z2(n) and Z4(n) are expressed as Z0(n) times some rational
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Figure 4. Dynkin diagram of D̂3. The edges can be determined e.g. from the inner product

of the canonical basis eµ = (1,−1, 0), eµ′ = (−1,−1, 0), eν = (0, 1,−1), eν′ = (0, 1, 1). In our

parametrization (1.3), the levels are given by (kν′ , kµ, kν , kµ′) = 2k(1, 0, 0,−1). This is nothing but

the Â3 Dynkin diagram for the (3, 1)2k model, whose array of sm is given by (sν′ , sµ, sν , sµ′) =

(1, 1, 1,−1). See figure 1 in [23].

function of n. Therefore, J2(µ) and J4(µ) have the same three species of instantons as J0(µ),

since the infinite sequences of poles of Γ(t)Γ(−t)Z0(t) in Re(t) ≤ 0 remain unchanged in

the quantum corrections.7 On the other hand, the perturbative parts which come from the

residues at n = 0 are

J2(µ) =
r(r − 1)

48π
µ− r(r − 1)2

24π
+ Jnp

2 (µ),

J4(µ) = −r2(r − 1)(r2 − 5r + 8)

8640π
+ Jnp

4 (µ). (4.29)

Combining the classical value (4.17) and the quantum corrections (4.29) for the constant

part A, we find that the result is consistent with (1.10), at least up to O(~5). This is

reminiscent of a similar relation discovered for the (q, p)k models among the theories of the

Â-type quiver in [23]. Note that the Planck constant seems doubled compared with the

(q, p)k models. This can be understood by comparing two identical quivers D̂3 and Â3,

where our case with uniform sm = 1 is identified with the (3, 1)2k model. See figure 4.

5 Summary and discussion

In this paper we have studied the partition function of the N = 3 superconformal Chern-

Simons theories of the D̂-type quiver, and have shown that we can rewrite the partition

function into that of the Fermi gas system as in the case of the Â-type quiver. We find

that, again, the perturbative corrections of the partition function are summed up to the

Airy function, if the Hamiltonian of the Fermi gas system is hermitian. Though, for the

general D̂-type quiver, in section 3 we only consider the perturbative coefficients in the

classical limit k → 0, the Fermi gas formalism is very powerful and allows us in principle

to determine the quantum corrections and the non-perturbative instanton corrections.

To further proceed to studying the membrane instanton of the general D̂-type quivers

quantum-mechanically by the WKB expansion, it is, however, difficult to handle the non-

commutative operators in the density matrix, or the exact integration over the phase

7Though the rational functions have a finite number of poles with n < 0, all of them are canceled by the

zeroes of [Γ(rn)Γ((r − 1)n)]−1 in Z0(n) and none produce new instanton effects.
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space without taking the large µ limit. In the theories of the general Â-type quivers,

we have overcome the difficulties [23–25] by restricting ourselves to those with N = 4

supersymmetry [34]. Similarly, here in the theories of the D̂-type quivers, the difficulty is

resolved by choosing the quivers with uniform sm, as in section 4. For these special values

of the levels, we have found that the non-perturbative corrections consist of three kinds of

instantons, and have also observed that the constant A can be expressed in terms of that

in the ABJM theory (at least up to O(k5)). These are reminiscent of the results for the

theories of the Â-type quivers with the N = 4 supersymmetry [23, 24].

It is interesting to see whether the symmetry is enhanced for these cases with uniform

sm. Also, we hope to interpret these instanton exponents from the dual supergravity

picture, as membranes wrapping on the tri-Sasaki Einstein manifold, though the geometry

is more complicated than that for the Â-type quivers. Furthermore, we hope to proceed

to all the non-perturbative corrections including the worldsheet instantons which have not

been discussed at all in this work.

After seeing the Fermi gas formalism for the theories of the Â-type and D̂-type quivers,

it should be interesting to ask whether a Fermi gas formalism exists also for the Ê-type

quivers. Also, it is interesting to study other quivers with orthosymplectic groups in [9]

from the Fermi gas formalism. See e.g. [26].

A A pfaffian formula

Proposition. Let (φa)1≤a≤2N and (ψb)1≤b≤2N be functions on a measurable space. Then

we have
∫

DNx

N !
det

(
(φa(xi))1≤a≤2N

1≤i≤N

(ψa(xi))1≤a≤2N
1≤i≤N

)
= (−1)

1
2
(N−1)N pf Pab, (A.1)

with the skew-symmetric matrix P

Pab =

∫
Dx(φa(x)ψb(x)− φb(x)ψa(x)). (A.2)

Remark. The definition of the pfaffian for a skew-symmetric matrix P is given by

pf P = (−1)
1
2
(N−1)N 1

2NN !

∑

σ∈S2N

(−1)σ
N∏

i=1

Pσ(i)σ(i+N). (A.3)

Proof. We can prove it by skew-symmetrizing the matrix elements,

1

N !

∫
DNx det

(
(φa(xi))2N×N (ψa(xi))2N×N

)

=
1

N !

∫
DNx

∑

σ∈S2N

(−1)σ
N∏

i=1

φσ(i)(xi)ψσ(i+N)(xi)

=
1

N !

∑

σ∈S2N

(−1)σ
N∏

i=1

1

2

∫
Dx

(
φσ(i)(x)ψσ(i+N)(x)− φσ(i+N)(x)ψσ(i)(x)

)

= (−1)
1
2
(N−1)N pf P. (A.4)

– 17 –
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B Another pfaffian formula

Proposition. Let Pab(x, y) with a, b = 1, 2 be functions of two variables satisfying

Pba(y, x) = −Pab(x, y). Let P be a 2N × 2N skew-symmetric matrix consisting of four

N ×N blocks Pab whose (i, j)-component is Pab(xi, xj). Then, we have

∞∑

N=0

zN
∫

dNx

N !
(−1)

1
2
(N−1)N pf P =

√
det

(
I − zΩP

)
, (B.1)

with various matrices on the right-hand side defined by the identity operator as

Ω =

(
0 I

−I 0

)
, I =

(
I 0

0 I

)
. (B.2)

Here the pfaffian on the left-hand side is the finite dimensional one, while on the right-

hand side the determinant denotes simultaneously the 2×2 determinant and the Fredholm

determinant.

Remark. This is the continuum limit N∞ → ∞ of the following proposition (See e.g.

Proposition 2.1 in [35]). Note that, in taking the limit, we use pf(Ω+zP )2 = det(Ω+zP ) =

det(I − zΩP ), which follows from Ω
−1

= −Ω and detΩ = 1, and fix the overall signs by

setting P to be zero.

Proposition. Let P a,b with a, b = 1, · · · , 2N∞ be a skew-symmetric matrix. Then,

we have

(−1)
1
2
(N∞−1)N∞ pf(Ω + zP ) =

N∞∑

N=0

zN (−1)
1
2
(N−1)N

∑

1≤s1<···<sN≤N∞

pf P {s}, (B.3)

where P {s} consists of four N×N blocks whose (i, j)-component is given by Psi(+N),sj(+N):

P {s} =

(
(Psi,sj )N×N (Psi,sj+N )N×N

(Psi+N,sj )N×N (Psi+N,sj+N )N×N

)
. (B.4)
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