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1 Introduction

Dark matter (DM) can couple to a gauge invariant operator H†H, where H is the standard

model (SM) Higgs field. Since H†H is the lowest-dimensional Lorentz- and gauge-invariant

operator in the SM, such Higgs portal couplings to DM could dominate the interactions

between the visible sector and the dark sector [1–10]. If DM is a scalar, ϕ, the Higgs portal

operator, (ϕ†ϕ)(H†H), is renormalizable and the theory is in principle UV-complete. In

contrast, if DM is a fermion, χ, the Higgs portal interactions are of mass dimension five,

LEFT =
κ1
Λ

(χ̄χ)(H†H) +
iκ5
Λ

(χ̄γ5χ)(H†H). (1.1)

This necessarily implies the existence of new states at an energy scale Λ, the mediators be-

tween the Higgs field and the DM. Integrating out the mediators gives the above interactions

in an Effective Field Theory (EFT). The presence of mediators offers new opportunities to

experimentally search for the Higgs portal: instead of searching directly for DM, one can

search for the mediators instead.
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The mediators in general fall into two categories: i) mediators that are electroweak

singlets, or ii) mediators that are charged under the electroweak gauge group. In this

paper we explore the phenomenology of both categories using three minimal renormalizable

models of the Higgs portal (henceforth called UV completions). As a representative of the

first category we choose a model where both the DM and the mediator are electroweak

singlets (the singlet-singlet model). For the second category we consider two examples, a

model where DM can be an electroweak singlet (the singlet-doublet model), and a model

where DM is necessarily part of an electroweak multiplet (the doublet-triplet model).

For each model we compute the predicted relic density from thermal freeze-out and de-

termine the parameter space that is consistent with the observed dark matter relic density.

The viable parameter regions are confronted with bounds from direct detection, indirect

detection and collider experiments. Interestingly, we find that the combination of these

constraints often requires the mediators to have masses of similar magnitude as the DM

fermion, χ. This means that the EFT Lagrangian in eq. (1.1) is in general not a good

description for the computation of the relic density and the collider phenomenology. For

these observables, we therefore treat all fields in the dark sector as dynamical degrees of

freedom, i.e. we “integrate in” the Higgs portal.

Finally, we analyze how the UV Higgs portal completions can be probed by future

direct detection and collider experiments. In particular, we consider the upcoming 14-TeV

run of the Large Hadron Collider (LHC) with up to 3000 fb−1 luminosity, a future e+e−

collider with a center-of-mass energy of up to
√
s = 1 TeV, and a future pp collider with√

s = 100 TeV.

The paper is organized as follows. In section 2 we introduce the three minimal UV

completions of the fermion DM Higgs portal, in section 3 we calculate the respective ther-

mal relic densities, and in section 4 we estimate the DM direct detection rates. Section 5

deals with the constraints following from Higgs decays. In section 6 we combine all the

above constraints with the expected sensitivity of the LHC 14-TeV run and future colliders

on the mediators. Appendix A contains the analytic formulae for loop-induced DM-Higgs

interactions in a version of the doublet-triplet model that give the dominant direct detec-

tion signal.

2 The models

We start by introducing three minimal UV completions of the Higgs portal models with

fermionic DM: (A) the singlet-singlet model, (B) the singlet-doublet model, and (C) the

doublet-triplet model. All three examples are treated as simplified models rather than full

theories, i.e. we do not consider issues such as anomaly cancellation and stability under

renormalization group running to high scales.

2.1 The singlet-singlet model

The dark sector is assumed to consist of DM, which is a Z2-odd SM-singlet Majorana

fermion, χ, and of a mediator, which is a Z2-even real singlet scalar, φS . All SM fields are

Z2 even. This model has already been discussed at length in the literature, see for example

– 2 –
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refs. [11–17]. In this paper we update the limits on the model and show projections for the

14-TeV LHC and a future 100-TeV pp collider.

The relevant terms for interactions between the dark sector and the SM in the La-

grangian are

LS ⊃− µ20|H|2 − λ0|H|4 −
1

2
m2
S,0φ

2
S − V0(φS)− µ′0|H|2φS − λ′0|H|2φ2S

− 1

2
mχ,0χ̄χ−

1

2
y0χ̄χφS −

i

2
y5,0χ̄γ5χφS ,

(2.1)

where H is the SM Higgs field and V0(φS) contains cubic and quartic φS self-interactions.

Here we use the four-component notation for the Majorana fermion χ. The scalar fields

H and φS acquire the vacuum expectation values (vevs) v = 246 GeV and vS , respectively.

The vev v breaks the electroweak symmetry, while vS does not. We can therefore write

H = (G+, (v + h+ iG0)/
√

2)>, φS = vS + S, (2.2)

with G+, G0 the would-be Goldstone bosons eaten by the longitudinal components of the

W+ and Z bosons, respectively. In terms of h and S the interaction Lagrangian is

LS ⊃ µ2
(
h2 +

h3

v
+

h4

4v2

)
− 1

2
m2
SS

2 − V (S)− (µ′S + λ′S2)

(
vh+

1

2
h2
)

− 1

2
mχχ̄χ−

1

2
yχ̄χS − i

2
y5χ̄γ5χS,

(2.3)

where mχ = mχ,0 + y0vS is the DM mass, y = y0 and y5 = y5,0 are the parity-conserving

and parity-violating Yukawa couplings, respectively, and m2
S = m2

S,0 + λ′0v
2 + V ′′0 (vS) is

the singlet mass squared. The Higgs-singlet mixing parameter is given by µ′ = µ′0 + 2λ′0vS ,

while µ2 = µ20 + µ′0vS + λ′0v
2
S , and λ(

′) = λ
(′)
0 . We also define V (S) = µSS

3 + λSS
4 that

contains triple and quartic singlet scalar interactions.

The DM state χ interacts with the SM through Higgs-singlet mixing. For µ′ 6= 0, the

mass eigenstates h1,2 are admixtures of h and S,

h1 = cαh− sαS, h2 = sαh+ cαS. (2.4)

Here we use the abbreviations cα = cosα, sα = sinα. The mixing angle α and the masses

of h1,2 are given by

s2α =
1

2

(
1−

m2
S + 2µ2

∆m2

)
, m2

h1,2 =
1

2

(
m2
S − 2µ2 ∓∆m2

)
, (2.5)

with the mass splitting (∆m2)2 = (m2
S + 2µ2)2 + 4µ′2v2. The state h1 is the observed

SM-like scalar with mass mh1 = 125.09± 0.24 GeV [18], whereas h2 is mostly singlet-like.

The mixing angle α is constrained by the measured Higgs production and decay rates and,

depending on the mass mh2 , by the non-observation of a second Higgs scalar at the LHC, as

we show in section 6.1. In particular, Higgs-singlet mixing leads to the DM-SM interactions

(here and below L̂ denotes Lagrangian in the mass eigenstate basis)

L̂⊃−1

2
y
(
−sα χ̄χh1+cα χ̄χh2

)
− i

2
y5
(
−sα χ̄γ5χh1+cα χ̄γ5χh2

)
−
∑
f

yf√
2

(
cα f̄fh1+sα f̄fh2

)
,

(2.6)
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where yf is the SM Yukawa coupling of the fermion f . The scalar interactions also govern

direct detection signatures of spin-independent DM scattering off nuclei. Since the relevant

effective coupling χχq̄q is ∼ sin(2α) (see table 1), direct detection experiments set strong

constraints on the mixing angle α (see figures 3 and 4).

2.2 The singlet-doublet model

In this model the dark sector consists of two fermion fields, χD and χS , transforming under

the SM electroweak group SU(2)L ×U(1)Y as

χD ∼ (2, 1/2), χS ∼ (1, 0). (2.7)

The field χD = (χ+
D, χ

0
D) is a doublet of Dirac fermions with vector-like gauge interactions,

while the singlet χS can be either a Dirac or a Majorana fermion. We discuss both of these

possibilities. In the dark sector we impose a Z2 symmetry, χD,S → −χD,S , under which

the SM fermions are even. This forbids mixing with neutrinos and makes the lighter of the

two mass eigenstates in the dark sector stable.

Dirac singlet fermion. We first discuss the case where χS is a Dirac fermion. The

particle content of this model consists of two neutral Dirac fermions, χS and χ0
D, and a

charged Dirac fermion χ+
D. The relevant terms in the Lagrangian are

Lm ⊃ −mDχ̄DχD −mSχ̄SχS −
(
yχ̄DχSH + h.c.

)
. (2.8)

Without loss of generality, the Yukawa coupling y can be chosen real by redefining the

complex phase of the χD. After electroweak symmetry breaking (EWSB) this term intro-

duces the mixing between χS and χ0
D. For later convenience, we define the mixing angle

θa generally as

sin2 θa =
1

2

(
1 +

mD −mS

∆ma

)
, with (∆ma)

2 = (mS −mD)2 + a(yv)2 . (2.9)

Here a = 2, and the heavy and light mass eigenstates, χ0
h and χ0

l , are given by

χ0
h = cos θ2 χS + sin θ2 χ

0
D, χ0

l = − sin θ2 χS + cos θ2 χ
0
D, (2.10)

with the corresponding mass eigenvalues

m0
h,l =

1

2

(
mD +mS ±∆m2

)
. (2.11)

The charged state χ+
D has a mass m+ = mD. In the mass eigenstate basis, the interactions

of the neutral fermions with the Z and Higgs bosons read

L̂ ⊃ − g

2cW

[
cos2 θ2 χ̄

0
l γ
µχ0

l + sin2 θ2 χ̄
0
hγ

µχ0
h +

1

2
sin(2θ2)

(
χ̄0
hγ

µχ0
l + χ̄0

l γ
µχ0

h

)]
Zµ (2.12)

− y√
2

[
sin(2θ2)

(
χ̄0
hχ

0
h − χ̄0

l χ
0
l

)
+ cos(2θ2)

(
χ̄0
hχ

0
l + χ̄0

l χ
0
h

)]
h.

– 4 –
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It is interesting to consider two parameter limits of this model. For |mD − mS | � |yv|,
χS and χ0

D are maximally mixed, θ2 ≈ π/4. The two neutral mass eigenstates are split by

m0
h−m0

l ≈
√

2|yv|, while the charged state has a mass m+ = mD ≈ (m0
h+m0

l )/2, and thus

lies in between the two neutral states. Because of the large mixing, the DM coupling to

the Z boson is unsuppressed, so that direct DM detection searches exclude this possibility.

If |mD −mS | � yv, χ0
h is significantly heavier than χ0

l . For mD > mS , the DM state

is mostly a singlet, χ0
l ' −χS + θ′χ0

D with θ′ ' |yv|/
√

2(mD −mS). The coupling of DM

to the Z boson is thus suppressed, and the model is allowed by direct DM searches. In

contrast, if mS > mD, DM is mostly a doublet, χ0
l ∼ χ0

D, with unsuppressed couplings to

the Z boson. This possibility is therefore excluded by direct DM searches.

Majorana singlet fermion. The second possibility is that χS is a Majorana fermion.

This scenario corresponds to the bino-higgsino system (with decoupled wino) in the Min-

imal Supersymmetric Standard Model (MSSM) for tan β = 1 and y = g′/
√

2. Some phe-

nomenology of the singlet-doublet Majorana model has also been explored in refs. [19–23].1

We will slightly abuse the notation, such that in this subsection χS denotes a two-

component Weyl fermion, while χD and χcD are two left-handed Weyl fermions forming a

Dirac fermion. They transform under SU(2)L×U(1)Y as χD ∼ (2, 1/2) and χcD ∼ (2,−1/2).

The translation to four-component notation is given by (χD, εχ
c∗
D ) → χD, where the final

χD is the Dirac fermion in eq. (2.7) (here εij is the antisymmetric tensor in the SU(2)L
space). In two-component notation, the relevant terms in the Lagrangian read

Lm ⊃ mDχ
c
DεχD −

1

2
mSχSχS − y(H†χDχS − χSχcDεH) + h.c., (2.13)

where the contractions of Lorentz and SU(2)L indices are implicit (for Lorentz contractions

we use the convention of ref. [25]). Here and henceforth we assume that χD and χcD couple

with equal but opposite strength to the Higgs boson,2 and choose y to be real. This prevents

contributions to the electromagnetic dipole moment of the electron [20]. Furthermore, the

interactions in eq. (2.13) feature a global SU(2)R symmetry (broken by the hypercharge),

which protects the electroweak T parameter from large corrections. After EWSB, the

mass term for the neutral states is given by Lm = −1
2(M0)ijχiχj + h.c.. In the basis

χi = {χS , χc0D , χ0
D}, the mass matrix reads

M0 =

 mS − yv√
2

yv√
2

− yv√
2

0 −mD

yv√
2
−mD 0

 , (2.14)

1During the final stages of our work, a phenomenological study of the Majorana singlet-doublet model

with an analysis of collider constraints became available in ref. [24].
2One could write the Yukawa interaction more generally as yLH

†χDχS − yRχSχcDεH. By choosing the

phase of χS in eq. (2.13), mS can be made real and positive. Furthermore, by adjusting the phases of χD
and χcD, we can make mD and one of the Yukawa couplings, yL or yR, positive and real. Here we assume

that yL = yR = y, a choice motivated by reducing the corrections to the T parameter. Notice that changing

the sign of mD is equivalent to changing the sign of χD (or χcD), which implies changing the sign of yL (or

yR). This results in replacing −mD with mD and replacing yv/
√

2 with −yv/
√

2 (or replacing −yv/
√

2

with yv/
√

2) in eq. (2.14).

– 5 –
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which is diagonalized by the following transformation

χ0
h

χ0
m

χ0
l

 =

cos θ4 − 1√
2

sin θ4
1√
2

sin θ4

0 i√
2

i√
2

sin θ4
1√
2

cos θ4 − 1√
2

cos θ4


χSχc0D
χ0
D

 . (2.15)

The mixing angle θ4 is given by eq. (2.9) with a = 4. The masses of the three neutral

eigenstates, χ0
h,l and χ0

m, are

m0
h,l =

1

2

(
mD +mS ±∆m4

)
, m0

m = mD, (2.16)

respectively, while the mass of the charged state χ+
D is m+ = mD as in the Dirac χS case.

The couplings of the neutral fermions to Z and h are given by

L̂ ⊃ i
g

2cW

(
sin θ4 χ

0∗
h − cos θ4 χ

0∗
l

)
σ̄µχ0

mZµ + h.c. (2.17)

− y

2

[
sin(2θ4)

(
χ0
hχ

0
h − χ0

l χ
0
l

)
− 2 cos(2θ4)χ

0
hχ

0
l

]
h+ h.c..

Let us consider the parameter limits in this model. For mD ≈ mS (i.e. |mD −mS | � 2yv,

but mD & 2yv), the mixing angle is θ4 ' π/4. We have three Majorana states split by |yv|,
that is m0

h,l ' mD±|yv| and m0
m = mD. The lightest state, χ0

l , is the DM candidate. All Z

couplings to the DM field are thus off-diagonal. The DM direct detection signal due to tree-

level Z exchange is therefore kinematically forbidden, as long as the mass splitting ∆m4 is

larger than several hundred keV. This requirement is fulfilled for all the benchmarks that

we consider. At the same time, in the above limit of θ4 ' π/4 the coupling of the Higgs

boson to the DM field χ0
l is maximal and dominates spin-independent DM interactions

with nuclei.

In the limit |mD−mS | � yv with mD � mS , we have θ4 ' π/2. The states χ0
h and χ0

m

are quasi-degenerate with masses m0
h = mD + (yv)2/mD and m0

m = mD, respectively, and

form a pseudo-Dirac state. Its couplings to the Z boson are that of the neutral component

in a Dirac fermion electroweak doublet, if the mass splitting can be ignored. The lightest

state χ0
l is mostly a singlet with mass m0

l = mS − (yv)2/mD. In the decoupling scenario

mD � mS , yv, both the Z and Higgs exchange in direct DM searches are thus absent at

the tree level. This feature protects the decoupling scenario from being excluded by direct

DM searches. If instead the singlet decouples, i.e. if mS � mD, then the mixing angle is

θ4 ' 0. Now χ0
l and χ0

m are quasi-degenerate states with mass m0
l ≈ m0

m = mD. They

form a pseudo-Dirac fermion with unsuppressed couplings to the Z boson. This limit is

therefore excluded by direct DM searches.

For mD . 2yv, the lightest neutral state can be a pure doublet, χ0
m. In this sce-

nario, DM interactions with nuclei are absent at tree level. Up to radiative corrections

the DM state χ0
m is mass-degenerate with the charged state χ+

D, which leads to strong

co-annihilation (see section 3).
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2.3 The doublet-triplet model

In this model we assume that the dark sector consists of two fermions, an electroweak

doublet, χD, and a triplet, χT , that transform under SU(2)L ×U(1)Y as

χD ∼ (2, 1/2 + r), χT ∼ (3, r). (2.18)

We consider the cases r = 0,−1, in which both χD and χT have neutral components. For

r = 0, χT can be either a Dirac fermion or a Majorana fermion, while χD is always a Dirac

fermion. We thus consider three cases: r = −1 with Dirac triplet, r = 0 with Dirac triplet,

and r = 0 with Majorana triplet.

Dirac triplet fermion, r = −1. In this case the electroweak triplet is composed of a

neutral state, χ0
T , a singly charged state, χ−T , and a doubly charged state, χ−−T , while the

electroweak doublet contains a neutral state, χ0
D, and a charged state, χ−D, thus

χD =

(
χ0
D

χ−D

)
, χT =

(
χ−T /
√

2 χ0
T

χ−−T −χ−T /
√

2

)
. (2.19)

The mass terms and Yukawa interactions are

Lm ⊃ −mDχ̄DχD −mT Tr
(
χ̄TχT

)
−
(
yχ̄DχTH + h.c.

)
. (2.20)

After EWSB, the corresponding mass matrices in the bases {χ0
T , χ

0
D} and {χ−T , χ

−
D} are

M0 =

(
mT y v√

2

y v√
2
mD

)
, M− =

(
mT −y v2
−y v2 mD

)
, (2.21)

respectively, while the mass of χ−−T is mT . EWSB thus introduces mixing between both

neutral and charged states, so that the mass eigenstates are given by

χ0
h = cos θ2 χ

0
T + sin θ2 χ

0
D, χ+

h = cos θ1 χ
+
T + sin θ1 χ

+
D, (2.22)

χ0
l = − sin θ2 χ

0
T + cos θ2 χ

0
D, χ+

l = − sin θ1 χ
+
T + cos θ1 χ

+
D,

with the corresponding mass eigenvalues

m0
h,l =

1

2

(
mD +mT ±∆m2

)
, m+

h,l =
1

2

(
mD +mT ±∆m1

)
. (2.23)

The mixing angles θ2,1 and the mass splittings ∆m2,1 are defined in (2.9), with mS → mT .

Since the splitting in the neutral sector is larger than in the charged sector, ∆m2 > ∆m1,

the lightest neutral state χ0
l is a potential DM candidate if mD and mT have the same sign.

As in section 2.2, we use the freedom in the phase of χD to make y real and positive. In

the basis of mass eigenstates, the interactions of the neutral states with the Z and Higgs

bosons are given by

L̂ ⊃ g

cW

[(
1− sin2 θ2

2

)
χ̄0
hγ

µχ0
h +

(
1− cos2 θ2

2

)
χ̄0
l γ
µχ0

l −
sin 2θ2

4

(
χ̄0
hγ

µχ0
l + χ̄0

l γ
µχ0

h

)]
Zµ

− y√
2

[
sin(2θ2)

(
χ̄0
hχ

0
h − χ̄0

l χ
0
l

)
+ cos(2θ2)

(
χ̄0
hχ

0
l + χ̄0

l χ
0
h

)]
h. (2.24)
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We consider two parameter limits, i) almost degenerate doublet and triplet, and ii) the

decoupling limit. The degenerate case occurs for mD ≈ mT , so that |mD −mT | � |yv|. In

this case the mixing is maximal in both the neutral and charged sectors, θ2,1 ' π/4. The

mass eigenvalues are m0
h,l ' mT ± |yv|/

√
2 for the neutral states, and m−h,l ' mT ± |yv|/2

for the charged states.

In the decoupling limit mD,mT � yv, DM is either predominantly the neutral com-

ponent of the doublet (for mD < mT ) or of the triplet (for mT < mD), with a mixing

angle of O(y2v2/(mT − mD)2). The masses for the neutral states in the two cases are

m0
h ' mD(T ) + y2v2/(2|mD −mT |) and m0

l ' mT (D) − y2v2/(2|mD −mT |), while for the

charged states the mass deviation from mD,T is half as large. Since in this model the cou-

pling of DM to the Z boson is not suppressed, the direct DM detection searches exclude

the entire region of parameter space that is consistent with the observed DM relic density.

Dirac triplet fermion, r = 0. The electroweak doublet is composed of a neutral state,

χ0
D, and a charged state, χ+

D, while the electroweak triplet is composed of one neutral state,

χ0
T , and two charged states, χ+

T , χ
′−
T ,

χD =

(
χ+
D

χ0
D

)
, χT =

(
χ0
T /
√

2 χ+
T

χ′−T −χ0
T /
√

2

)
. (2.25)

The mass terms and Yukawa couplings are given in eq. (2.20). After EWSB, the mass

matrices for neutral and charged states are similar to eq. (2.21), but with M0 →M+ and

M− → M0, in the bases {χ+
T , χ

+
D} and {χ0

T , χ
0
D}, respectively, while χ′−T has a mass of

mT . The heavy and light states in the neutral and charged sectors have masses

m0
h,l =

1

2

(
mD +mT ±∆m1

)
, m+

h,l =
1

2

(
mD +mT ±∆m2

)
. (2.26)

The lightest neutral state can thus be lighter than the lightest charged state, if mD and mT

have opposite signs. However, as for the case r = −1, this model is excluded by constraints

from the DM relic density and direct detection searches. In particular, obtaining the correct

thermal relic density requires sizeable doublet-triplet mixing (see section 3), which leads

to large direct detection rates from coupling of the doublet component to the Z boson.

Majorana triplet fermion, r = 0. Taking instead the electroweak triplet to be a

Majorana fermion, i.e. χ±T = χ′±T in (2.25), while the doublet is still a Dirac fermion, the

mass terms and Yukawa interactions in the two-component notation are (see also eq. (2.13))

Lm ⊃ mDχ
c
DεχD −

1

2
mTTr

(
χTχT

)
− y(H†χTχD − χc>D εχTH) + h.c., (2.27)

where, as in the Majorana singlet-doublet model, we have introduced two left-handed Weyl

fermions transforming under SU(2)L×U(1)Y as χD ∼ (2, 1/2) and χcD ∼ (2,−1/2). As for

the Majorana singlet-doublet model, the form of the Yukawa coupling terms is restricted

by a global SU(2)R symmetry to protect the electroweak T parameter. We use the freedom

of field redefinitions to make mD and y real and positive.3 The mass mT is in general a free

3The sign of y can be flipped by adjusting the phases of χD and χcD, without affecting other terms in

the Lagrangian. Physical observables are thus insensitive to y ↔ −y.
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complex parameter, but restricted to real values in our analysis. After EWSB, the Yukawa

interactions mix the triplet and the doublet components. The three neutral Weyl fermions

χ0
i = {χ0

T , χ
c0
D , χ

0
D} have a Majorana mass term Lm ⊃ −1

2(M0)ijχ
0
iχ

0
j + h.c.. The charged

fermions have Dirac masses Lm ⊃ −χ−m(M+)mnχ
+
n + h.c., where the negatively charged

Weyl fermions are χ−m = {χ−T , χ
c−
D }, and the positively charged ones, χ+

n = {χ+
T , χ

+
D}. The

two mass matrices are

M0 =

mT y v2 −y v2
y v2 0 −mD

−y v2 −mD 0

 , M+ =

(
mT y v√

2

y v√
2
mD

)
. (2.28)

The mass matrix for neutral states is diagonalized by, cf. eq. (2.15),χ0
a

χ0
b

χ0
c

 =

cos θ2
1√
2

sin θ2 − 1√
2

sin θ2

0 i√
2

i√
2

sin θ2 − 1√
2

cos θ2
1√
2

cos θ2


χ0

T

χc0D
χ0
D

 , (2.29)

whereas the charged mass eigenstates are

χ+
a = cos θ2χ

+
T + sin θ2χ

+
D, χ+

c = − sin θ2χ
+
T + cos θ2χ

+
D . (2.30)

The mass spectrum is given by

m0
a,c = m+

a,c =
1

2

(
mD +mT ±∆m2

)
, m0

b = mD. (2.31)

In the basis of mass eigenstates, the couplings of neutral fermions to the Z and Higgs

bosons are given by

L̂ ⊃ − i g

2cW

(
sin θ2 χ

0∗
a − cos θ2 χ

0∗
c

)
σ̄µχ0

bZµ + h.c. (2.32)

− y

2
√

2

[
sin(2θ2)

(
χ0
aχ

0
a − χ0

cχ
0
c

)
− 2 cos(2θ2)χ

0
aχ

0
c

]
h+ h.c..

This scenario corresponds to the wino-higgsino system (with decoupled bino) in the MSSM

for tanβ = 1 and y = g. The DM phenomenology of the doublet-triplet Majorana model

for the case where 0 < mD . 200 GeV and y & 1 has been studied in ref. [26].4 In

this parameter region, one typically has the mass ordering mb < |ma,c|, so that the DM

candidate χ0
l = χ0

b is a pure doublet fermion. In this case χ0
l has no diagonal tree-level

couplings to the Z and Higgs bosons. The direct detection cross-section in this scenario is

loop-induced and thus suppressed (see section 4).

On the other hand, if mD, mT � 200 GeV, the mass ordering is mc < mb < ma and

the lightest neutral and charged states are mass-degenerate at tree-level. This degeneracy

is lifted by one-loop corrections involving gauge bosons, leading to [27–30]

M+ =

(
mT + δm+

T y v√
2

y v√
2

mD + δm+
D

)
. (2.33)

4Our notation corresponds to the one used in ref. [26] for χ0
1 = −iχ0

b , χ
0
2 = χ0

c , χ
0
3 = χ0

a, χ+
1 = χ+

c ,

χ+
2 = −χ+

a , and MD = −mD.
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−
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χ
0

l

χ
0

l

Z

Z

χ
0

m,h

Figure 1. Feynman diagrams for the dominant annihilation channels in the Majorana DM models

with fermion mediators.

In the limit mT ,mD, |mT −mD| � mZ the radiative splittings are given by

δm+
T =

g2

8π
(mW − c2WmZ), δm+

D =
e2

8π
mZ . (2.34)

The corrections to the off-diagonal elements in the mass matrix have been neglected above,

which is justified for yv � |mT −mD|. The one-loop corrections can also be neglected for

the calculation of the mixing angles. Since the corrections δm+
T and δm+

D are positive, the

lightest state of the spectrum is the neutral state χ0
c , a DM candidate. As is apparent in

eq. (2.32), the Z boson coupling to a DM pair χ0
cχ

0
c is absent and the Higgs coupling is

proportional to sin(2θ2). Direct detection signals are thus suppressed for a small mixing

angle θ2.

3 Thermal relic density

As described above, we assume that the fermionic Higgs portal is responsible for explaining

the entire dark matter density through thermal freeze-out in the early universe.

In the singlet-singlet model, DM preferentially annihilates into h2h2 and h2h1 final

states, if kinematically allowed. The amplitude for χχ → h2h2 is proportional to cos2 α,

where α is the h–S mixing angle, so that annihilation can be efficient even for very small

values of α. For mχ < (mh1 + mh2)/2, the main annihilation channels are into h1h1 and

W+W−, where the latter proceeds via off-shell h1,2 exchange in the s-channel. For small

values of mχ, the bb̄ final state can also become relevant. The rates for these processes grow

with sinα. The requirement of a sufficiently large annihilation cross-section then imposes

a lower bound on sinα.

For the Majorana DM models with fermion mediators (the Majorana singlet-doublet

model in section 2.2 and the Majorana doublet-triplet model in section 2.3), the main

channels for pair annihilation of the neutral DM candidates involve WW and ZZ final

states. These processes are mediated by one of the mediator fermion states in the t-channel,

see figure 1, since the Zχ0
l χ

0
l coupling vanishes exactly. For the Majorana singlet-doublet

model, annihilation via the s-channel Higgs-boson resonance is also a viable option for

m0
l ≈ mh/2. In this case, resonant enhancement from the Higgs-boson propagator leads

to a sufficiently large annihilation cross-section to produce the correct relic density. The

dominant annihilation final states are then given by the leading Higgs decay modes, i.e. bb̄,

WW ∗, gg and τ+τ−.

In contrast, in the Dirac singlet-doublet model, the DM annihilation mainly proceeds

through s-channel Z-boson exchange. Only for very large DM masses, m0
l ∼ O(1 TeV),
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annihilation into WW and ZZ final states through t-channel fermion exchange becomes

important.

In the singlet-doublet models (both for the Majorana and Dirac cases), the lightest

neutral fermion is constrained to be mostly singlet, to avoid the strong direct detection

bounds for doublet dark matter (see section 4). However, the singlet nature of DM in these

models also suppresses the annihilation cross-section, thus typically yielding too large of

a relic density. Nevertheless, the correct DM density could still be obtained if χ0
l χ
± and

χ0
l χ

0
m co-annihilation processes contribute at a sizeable level. As a result, the allowed

parameter space is limited to relatively small values for the mass splitting mD −mS . One

exception is the Higgs resonance region for the Majorana singlet-doublet model, where the

correct value for the annihilation cross-section can be obtained without co-annihilation.

In the scenario with pure doublet Majorana DM, χ0
m, the degeneracy of the states χ0

m

and χ+
D leads to strong co-annihilation. The correct thermal relic density is obtained only

if all dark particles lie above the TeV scale. Since such a scenario is not accessible at the

LHC or planned future colliders, e.g., a proton-proton collider with
√
s ≤ 100 TeV or an

e+e− collider with
√
s ≤ 1 TeV, we do not investigate this possibility further.

We have computed the relic density using MicrOMEGAs 3.6.9.2 [31], which automat-

ically incorporates co-annihilation processes and three-body final states through off-shell

W/Z production. The models described in the previous section have been implemented

into model files for CalcHEP [32], which is used for the matrix-element generation within

MicrOMEGAs. The relic density is then required to match the value obtained by the Planck

collaboration [33],

ΩDMh
2 = 0.1199± 0.0022. (3.1)

For the models with fermion mediators, this reduces the three-dimensional parameter space,

e.g. mD, mS/T , y, for each model down to two independent parameters. This is illustrated

by the solid colored lines in figures 5–8.

It is worth pointing out that the Majorana doublet-triplet model has two distinct

regions of parameter space that are compatible with the relic density constraint from

eq. (3.1). The first region is realized for mD . 200 GeV and y & 1, leading to a DM

candidate χ0
l = χ0

b that is an unmixed doublet state with mass of a few 100 GeV [26].

The second possibility is obtained for mD,mT & 1 TeV. In this case, the lightest

neutral and charged states, χ0
l = χ0

c and χ±l = χ±c , are split only by small radiative

corrections (see the end of section 2.3). As a result, there is strong co-annihilation and the

relic density comes out too small if the DM mass is below about 1 TeV.

Figure 2 shows the parameter space that is compatible with the relic density constraint

in both cases, as a function of the mass parameters mD,T and for several sample values

of y. To ensure perturbativity, an upper limit y < 3 has been imposed. Unfortunately,

the second scenario, where all the new fermion states are beyond 1 TeV, is inaccessible at

the LHC and planned future accelerators. Therefore we will not study it any further in

section 6.
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Figure 2. Range of Lagrangian parameters mD and mT compatible with the thermal relic density

constraints from eq. (3.1) in the Majorana doublet-triplet model. The curves correspond to different

values of the Yukawa coupling y.

4 Direct detection

The non-observation of DM scattering off atomic nuclei, referred to as direct detection,

leads to strong bounds on our models of fermion DM. At the tree level, spin-independent

interactions of the lightest neutral state of the spectrum, χ0
l , with quarks q inside the

nucleus are generally mediated by the Higgs boson and, in case χ0
l is a Dirac fermion, also

by the Z boson. Since the momentum transfer in DM-nucleus scattering is much smaller

than the Higgs or Z mass, spin-independent DM-quark interactions can be described by

an effective Lagrangian,

L̂χqEFT ⊃ −G
q
Z (χ̄0

l γµχ
0
l ) (q̄γµq)−Gqh (χ̄0

l χ
0
l ) (q̄q) . (4.1)

The Z- and Higgs-mediated effective couplings GqZ and Gqh are listed for our models in

table 1. We show only models with a suppressed Z coupling, which can pass the limits

from direct detection searches and simultaneously provide the correct DM relic density. By

comparing the dependence on the fermion mixing angle θa with the definition in (2.9), it

is apparent that all models favor a small Yukawa coupling y to evade bounds from direct

detection. At zero momentum transfer, the cross-section for spin-independent scattering

of a DM particle off a nucleus with mass number A and proton number Z is given by

σA =
kµ2A
π

∣∣Zfp + (A− Z)fn
∣∣2 fp=fn−→ σp

µ2A
µ2p
A2, (4.2)

where fp and fn are the DM couplings to protons and neutrons, σp = kµ2pf
2
p /π is the

DM-proton cross-section, µ2i = m2
χm

2
i /(mχ + mi)

2 is the reduced mass, and k = 1(4) if

DM is a Dirac (Majorana) fermion. In terms of the effective interactions in eq. (4.1), the
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Model DM GqZ Gqh fn/fp ≈

Majorana χS + S χS –
gmq
8mW

y sin(2α)
(

1
m2
h1

− 1
m2
h2

)
1

Dirac χS + χD χS −g2(T 3
q−2s2WQq)

4c2Wm2
Z

cos2 θ2
g

2m2
h

mq
mW

y√
2

sin(2θ2) − 1
1−4s2w

Majorana χS + χD χS – g
4m2

h

mq
mW

y sin(2θ4) 1

Majorana χT + χD χ0
D – 0 + g

4m2
h

mq
mW

δy 1

Majorana χT + χD χ0
T – g

4m2
h

mq
mW

y√
2

sin(2θ2) 1

Table 1. Effective DM-quark interactions from Z exchange (GqZ) and Higgs exchange (Gqh). The

column “DM” indicates the dominant component of the lightest neutral state in each model. The

ratio fn/fp gives the amount of isospin violation, assuming that Z exchange dominates. Further-

more, mh is the Higgs mass, g is the weak coupling constant, and T 3
q and Qq are the weak isospin

three-component and the electric charge of the quark q. The one-loop correction δy is given in

appendix A.

DM-proton coupling is given by

fp = δD
∑
q

GqZ +
∑
q

f
(p)
Tq G

q
h

mp

mq
+

2

27
f
(p)
TG

∑
Q

GQh
mp

mQ
, (4.3)

and analogously for fn with p→ n. Here δD = 1 (0) for a Dirac (Majorana) DM fermion,

q = u, d, s and Q = c, b, t denote light and heavy quarks, and f
(p)
TG = 1−

∑
u,d,s f

(p)
Tq , where

mpf
(p)
Tq = 〈p|mq q̄q|p〉 describes the matrix element of quarks inside the proton.

The results of direct detection searches are usually expressed in terms of the DM-

nucleon cross-section σN = kµ2Nf
2
N/π, taking the isotope abundances in the detector

material into account and assuming isospin-conserving couplings fN = fp = fn and

µ2N = µ2p ≈ µ2n. However, if DM is a Dirac fermion, the interaction through Z exchange

can induce significant isospin violation, resulting in fp 6= fn. When deriving bounds on the

DM-proton cross-section σp in our Dirac DM models, we therefore rescale the experimental

bounds on σN from ref. [34]

σp
σN

=

∑
i ηiµ

2
Ai
A2
i∑

i ηiµ
2
Ai
|Z + (Ai − Z)fn/fp|2

, (4.4)

where ηi denotes the abundance of isotope Ai. The ratio fn/fp for our models is listed in the

last column on table 1. The Z-exchange contribution in the Dirac singlet-doublet model

is so large that it dominates the DM-quark interaction. The resulting isospin breaking

leads to a cancellation in the DM-nucleus scattering amplitude. The bounds from direct

detection on this model are therefore much weaker than they would be when neglecting

isospin effects. Since isospin violation in Higgs exchange is very small, the cross-sections

in all other models are not subject to isospin breaking effects.

In our numerical analysis, we compare the DM-nucleon cross-sections computed with

MicrOMEGAs 3.6.9.2 [31] with the latest bounds from the LUX experiment [35] and pro-

jected bounds for the XENON1T experiment [36]. We use the values for the scalar nucleon
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quark form factors f
(p,n)
Tq given in table 3 of ref. [31].5 For the Dirac singlet-doublet model

we take into account isospin violation using (4.4), with the isotope abundances for Xenon

listed in table II of ref. [34]. The resulting bounds on the parameter space in each model

are displayed in the figures in section 6.

In models with Majorana DM, Z-mediated spin-independent scattering off nuclei is

generally absent at tree level, since the Majorana fermion is its own anti-particle, while

the vector current is odd under charge conjugation. In the Majorana doublet-triplet model

with pure doublet DM, χ0
l = χ0

b , also the Higgs-mediated scattering vanishes at tree level.

The reason is that χ0
b does not obtain its mass from the Higgs mechanism and does not

mix with the triplet through Yukawa interactions. A DM-Higgs interaction is induced at

one-loop through the exchange of dark fermions and electroweak gauge bosons,

L̂ = −δy
2
χ0
bχ

0
bh+ h.c.. (4.5)

The Yukawa correction δy is a function of the parameters y, m0
a = m+

a , and m0
c = m+

c . An

analytic expression is given in appendix A. This vertex generates an effective DM-nucleon

scalar interaction Gqh through Higgs exchange, as given in table 1. Scalar interactions are

also induced by box diagrams with W and Z bosons. These contributions are numerically

sub-leading if the Yukawa coupling y is large, which is the case if DM is a doublet. We

therefore neglect them in our analysis.

5 Higgs decays

In the singlet-singlet model, mixing between the doublet Higgs h and the singlet scalar S

leads to a universal suppression of all couplings of the SM-like scalar h1,

κt = κb = κτ = κW = κZ = cosα, (5.1)

where κi ≡ gh1ii/g
SM
hii . Thus the value of the mixing angle α can be constrained from

measurements of the Higgs production rates at the LHC and future colliders [40, 41].

In the doublet-triplet model, the decay rate of the Higgs boson into two photons,

Γ(h→ γγ), is changed at the one-loop level due to the presence of virtual charged fermions.

The decay ratio with respect to the SM rate, ΓSM(h→ γγ), is given by

Rγ =
Γ(h→ γγ)

ΓSM(h→ γγ)
=
∣∣∣1 +

Aχ
ASM

∣∣∣2. (5.2)

Here the one-loop amplitudes for the SM, ASM, and the charged fermions, Aχ, are defined as

ASM =
∑
f

NcQ
2
fAF (τf ) +AB(τW ) and Aχ =

∑
χ

Q2
χyχ

v

mχ
AF (τχ), (5.3)

5It should be kept in mind, however, that the values for f
(p,n)
Ts are subject to large theoretical uncertain-

ties [37, 38]. Hadronic uncertainties on f
(p,n)
Tu and f

(p,n)
Td can be reduced by using the method described in

ref. [39].
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where τi = m2
h/(4m

2
i ) and the loop functions for τ ≤ 1 are,

AF (τ) =
2

τ2

{
τ + (τ − 1) arcsin2√τ

}
,

AB(τ) = − 1

τ2

{
2τ2 + 3τ + 3(2τ − 1) arcsin2√τ

}
.

(5.4)

In terms of the mass eigenstates from eq. (2.31), the amplitude is given by

Aχ =
y sin(2θ2)√

2

{ v

m+
a
AF (τχ+

a
)− v

m+
c
AF (τχ+

c
)
}
, sin(2θ2) =

√
2yv

m+
a −m+

c
. (5.5)

Notice that Aχ is proportional to y2 and thus independent of the sign of the Yukawa

coupling. Furthermore, the contribution vanishes in the limit of no fermion mixing, so

that at least two charged fermions are required to induce the Higgs decay. Since AF (τ) is

monotonously increasing with τ and since m+
a > m+

c per definition, Aχ is always negative

for positive m+
a,c. The contribution of charged fermions thus depletes the h → γγ decay

rate below the SM expectation. As we will discuss in section 6, the measurements of Rγ
by the LHC collaborations set strong constraints on the Majorana triplet-doublet model

in the parameter space where the Yukawa coupling is sizeable.

6 Results and collider bounds

In what follows, numerical results for the allowed parameters for each of the Higgs portal

models introduced in section 2 will be shown. Besides constraints from the relic density

and direct DM detection, we also evaluate bounds from current LHC data at
√
s = 8 TeV

(LHC8), as well as projections for upcoming LHC runs at
√
s = 14 TeV (LHC14) and

future planned colliders. In particular we consider the reach of a proton-proton collider

with
√
s = 100 TeV (called FCC-hh in the following) and of a high-energy e+e− collider

with
√
s = 1 TeV, such as the planned International Linear Collider (ILC).

In the singlet-singlet model, the experimental sensitivity to the new states is due to

the Higgs-singlet mixing. This modifies the couplings of the SM-like Higgs, h1, to the

SM fermions and gauge bosons, which can be determined by measurements of the Higgs

production rate in different decay channels. One can also search directly for the second

scalar state, h2, in the same channels as for the SM Higgs, but with a different mass

and different production cross-section. The most sensitive channels are h2 → WW and

h2 → ZZ.

In the singlet-doublet and doublet-triplet models, the particle spectrum involving sev-

eral neutral and charged fermions can lead to LHC signatures with leptons and missing

energy. The most important channel is given by

qq̄′ →W ∗− → χ−χ0
m,h,

χ− → χ0
lW
∗− → χ0

l `
−ν̄`, χ0

m,h → χ0
lZ
∗ → χ0

l `
−`+, (` = e, µ)

(6.1)

and its charge-conjugated versions. The production process, mediated by an off-shell W

boson, is present both in the Majorana and Dirac DM models, and its rate is governed by
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the SU(2) gauge quantum numbers of the fermion multiplets. The only decay channel for

the lightest charged fermion is also through an off-shell W boson. For the next-to-lightest

neutral fermion, tree-level decays can be mediated by an off-shell Z or Higgs boson, but

the latter is suppressed to a negligible level by the small Higgs-boson width.

The process (6.1) leads to a final state of three leptons (3`) and missing energy, with a

phenomenology similar to the neutralino-chargino sector of the MSSM with heavy scalars.

This signature has been searched for by the ATLAS and CMS experiments [42, 43]. If

the mass difference between the DM fermion and the heavier fermions is small, which is

the case in the regions of parameter space where co-annihilation is important, the leptons

can become too soft to pass the usual multi-lepton selection cuts. In this case, mono-jet

searches provide the strongest limits from the published 8-TeV LHC data [44, 45].

Notice that the heavier neutral fermions χ0
m,h can in general also decay through a loop-

induced radiative decay, χ0
m,h → χ0

l + γ. However, the branching fraction is suppressed

to the percent level if either the heavy state, χ0
m,h, or the light state, χ0

l , has a dominant

doublet component [46], as is the case for the models considered here.

6.1 Singlet-singlet model

At colliders, this model can be most effectively tested by searching for the effects of the

singlet scalar mediator, S. It mixes with the Higgs, h, so that the mass eigenstates h1 and

h2 are admixtures of S and h, see eq. (2.4). As a result, the production and decays of the

SM-like scalar h1 to SM fermions and gauge bosons are suppressed by a common factor

cos2 α, as discussed in section 5.

When interpreting the CMS and ATLAS Higgs measurements, we need to distinguish

two cases. If mχ < mh1/2, then h1 → χχ̄ is allowed, and thus the invisible branching

ratio of the Higgs, Br(h → inv), could be sizeable. Allowing for an invisible decay of the

Higgs and demanding κV ≤ 1, ATLAS obtains in a global analysis κV > 0.93 at 95%

C.L., κf = 1.05± 0.16 and Br(h1 → inv) < 0.13 [47]. (CMS obtains a much looser bound

Br(h1 → inv) < 0.49 for κV ≤ 1 [48].) The invisible decay width is given by

Γ(h1 → χχ̄) =
mh1

16π
s2α

[
y2
(

1−
4m2

χ

m2
h1

)
+ y25

](
1−

4m2
χ

m2
h1

)1/2

, (6.2)

and thus depends on sα, as well as on y and y5. The correct relic abundance can be

obtained for y as small as O(10−2) [15]. This means that, allowing for all values of y, y5
that satisfy the Planck measurement (3.1), the strongest constraint on cα is not the bound

on Br(h1 → inv), but rather the bound on κV . We therefore have at 95% C.L.

cα > 0.93 for mχ < mh1/2, (6.3)

or sα < 0.37.

If mχ > mh1/2, the invisible decay width of the Higgs is zero. We can therefore use the

results of global fits of the Higgs data, where only κf = κb = κτ = κt and κV = κW = κZ
are varied. Combining the CMS results, κV = 1.01 ± 0.07 and κf = 0.87+0.14

−0.13 [48], and
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Figure 3. Allowed parameter space for the singlet-singlet model consistent with the requirement

that the thermal relic density of χ accounts for all dark matter in the universe, Ωχ = ΩDM. The

different colors (shapes) of the points indicate current and future 90% C.L. exclusions from direct

detection experiments. Also shown are current 95% C.L. limits from Higgs coupling measurements

at the LHC (dashed line), and future projections for LHC14 with 3000 fb−1 (dotted) and ILC with√
s ≤ 500 GeV (long dashed). The left panel corresponds to mχ < mh2

/2, which forbids the

annihilation channels χχ→ h2h1,2, while in the right panel mχ > mh2/2.

ATLAS results, κV = 1.09 ± 0.07, κf = 1.11+0.17
−0.15 [47], gives cα = 1.035 ± 0.045 or a 95%

C.L. lower bound

cα > 0.948 for mχ > mh1/2, (6.4)

corresponding to sα < 0.318. The bound (6.4) also applies for mχ just slightly below

mh1/2, where the invisible decay width of the Higgs is negligible because of phase space

suppression. The above results assume that h2 is not (approximately) mass degenerate

with h1. In the remainder of this subsection we will assume that this is true and that,

furthermore, h2 is appreciably heavier than h1. For bounds away from this limit in a

subset of our parameter space, see for instance ref. [49].

The bounds on α can be improved by Higgs coupling measurements at future collid-

ers [41]. The LHC with
√
s = 14 TeV and 3000 fb−1 luminosity (HL-LHC) can establish

a limit of c2α & 0.9 at 95% C.L., assuming that the central values of all observables agree

with the SM prediction. The projected reach of ILC with
√
s ≤ 500 GeV and 500 fb−1 is

c2α & 0.96.

In figure 3, these bounds are compared to the region of parameter space of the singlet-

singlet model that is consistent with the relic density constraint in eq. (3.1). The points in

the figure are obtained through a parameter scan, where the model parameters are varied

randomly within the following ranges:

100 GeV < mχ < 1000 GeV, − 10 < λ′ < 10, − 1000 GeV < µS < 1000 GeV. (6.5)

The values of µ′ and mS are determined from the mixing angle sα and the masses mh1,2 ,

see eq. (2.5), while λS is irrelevant for the relic density calculation. For simplicity and to

avoid constraints from CP violation, we take y5 = 0. For each random point, the value of

y is fixed by the relic density constraint, eq. (3.1), and the condition y < 3 is imposed to

– 17 –
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ensure perturbativity. Points shown as yellow circles are excluded by limits on the spin-

independent direct detection cross-section from LUX [35], while the red crosses and blue

dots are within and beyond the projected reach of XENON1T [36], respectively.

One can also search directly for the heavy Higgs, h2. The decay widths to SM fermions

and gauge bosons are given by

Γ(h2 → ff̄) = s2αΓ(H → ff̄)SM, Γ(h2 → V V ) = s2αΓ(H → V V )SM, (6.6)

where V = W,Z, γ, g, and Γ(H → XX)SM is the partial width of the would-be SM Higgs

if it had a mass mh2 . If only the SM decay channels are open, the branching ratios of

h2 are thus given by the branching ratios of the SM Higgs with mass mh2 . Similarly, the

production cross-section is σ(h2) = s2ασ(H)SM , and is given by the would-be SM Higgs

production with mass mh2 .

For mh2 > 2mh1 , the decay h2 → h1h1 is kinematically allowed. It proceeds through

the interactions

L ⊃ µ2h
3

v
− µ′

2
Sh2 − λ′vS2h− µSS3

= h2h
2
1

[
3
µ2

v
sαc

2
α −

µ′

2

(
c2α − 2s2α

)
cα − λ′v

(
s2α − 2c2α

)
sα − 3µScαs

2
α

]
+ · · · .

(6.7)

If the mixing angle is small, sα � 1, then the h2h1h1 coupling is equal to µ′/2. This means

that the h2 → h1h1 branching ratio can be large and will dominate over h2 →WW,ZZ, tt̄

for µ′ � v. On the other hand, if µ′ � v, the decay h2 → h1h1 will be subleading. It

is also possible to make the h2 → h1h1 branching ratio small while keeping sα large, by

canceling different contributions in eq. (6.7). For mh2 > 2mχ, the decay h2 → inv. is open

and can become dominant for sizeable values of y or y5. The actual constraint from h2
decays thus strongly depends on the specific realization of the model.

In figure 4 (left), we show the bounds from searches for direct decays of h2 into SM

final states. They can be expressed as a constraint on s2α×Br(h2 → V V, f f̄) as a function

of mh2 , where V = W,Z, γ, g. The most constraining channels are h2 → WW,ZZ, with

the resulting bound from CMS shown as a dashed black curve [52]. The searches in the

di-photon channel, h2 → γγ, are effective at lower h2 masses. The resulting bounds

from ATLAS [50] and CMS [51] are shown as solid curves in the upper left corner. In

figure 4 (right), we also show bounds on s2α × Br(h2 → h1h1) from di-Higgs searches. The

CMS [53] and ATLAS [54] bounds from h2 → h1h1 → 2γ2b are shown as solid black

and blue lines, respectively. The CMS bound from h2 → h1h1 → 4b [55] is shown as

a dashed black line. There are also CMS di-Higgs searches with di-photon and leptonic

final states [57] and h2 → ττ [58]. However, with their current precision these results

do not constrain sα. We see that relatively large mixing angles sα ∼ 0.3 are allowed for

all h2 masses, comparable to the constraints from global Higgs coupling measurements in

eq. (6.3). In figure 4 we also show as dashed (solid) red lines the projected exclusions

at 14 TeV LHC with 300 fb−1 (3000 fb−1) obtained in ref. [56]. At the end of the high

luminosity LHC run, mixing angles as small as sα ∼ 0.05 can be probed for mh2 ∼ 400 GeV.
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Figure 4. Left: existing bounds on s2α in the singlet-singlet model from h2 → γγ (solid lines from

ATLAS [50] and CMS [51]) and from h2 →WW,ZZ (dashed black line, CMS [52]) as a function of

the heavy scalar mass, mh2
. Right: bounds on s2α × Br(h2 → h1h1) from h2 → h1h1 → 2γ2b (solid

black from CMS [53], solid blue from ATLAS [54]) and from h2 → h1h1 → 4b (dashed black from

CMS [55]). The projected exclusions at the 14-TeV LHC with 300 fb−1 (3000 fb−1) [56] are shown

as dashed (solid) red lines. The colored points indicate the parameter region consistent with the

relic density constraint, Ωχ = ΩDM, with the different colors (shapes) denoting current and future

90% C.L. exclusions from direct detection experiments.

Notice that for large h2 masses, large mixings are additionally constrained by electroweak

precision tests [49, 59].

At a 100 TeV collider, one can also search directly for DM production through an

off-shell singlet mediator in the monojet signal, pp → h∗1(→ χχ̄)j, even if h1 does not

decay to DM [10]. This signature is quite challenging due to its very small cross-section,

and can thus be observed only in a small parameter region with mχ just above mh1/2.

More promising is the signal with two jets and missing energy, where the presence of an

additional jet allows for easier discrimination from the background [60].

As can be seen from the figures, current and future direct detection experiments can

cover a significantly larger portion of the parameter space of the singlet-singlet model

than collider experiments. However, there are also many parameter points that are not

constrained by available data from LUX, but that are excluded by LHC results for Higgs

couplings and heavy Higgs searches. Therefore, collider and direct detection experiments

provide complementary information for probing this model. On the other hand, the correct

relic density can be realized for very small values of the mixing angle, sin α . 0.01, which

cannot be tested conclusively either at colliders or through direct detection.

6.2 Majorana singlet-doublet model

For m0
l & 100 GeV, co-annihilation is required in the Majorana singlet-doublet model to

obtain the correct thermal relic density for weak Yukawa couplings, y < 1. This implies

that the mass difference m0
m −m0

l is preferred to be a few tens of GeV. For DM masses

in the TeV range the model thus becomes significantly fine-tuned. We therefore restrict

ourselves to the range m0
l < 1 TeV.
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Figure 5. Allowed parameter space for the Majorana singlet-doublet model, under the assumption

that Ωχ0
l

= ΩDM. The solid lines indicate the correct DM density for different values of the Yukawa

coupling y. The shaded regions are excluded by yielding too small of a relic density (bottom) and

by direct detection limits from LUX (top, red dashed). Also shown are projected 95% C.L. limits

from jet plus soft leptons at LHC14 with 300 fb−1 (short dashed) and 3000 fb−1 (dotted) and FCC-

hh with
√
s = 100 TeV and 3000 fb−1 (dot-dashed), as well as from ILC with

√
s = 1 TeV (long

dashed). The red dotted line depicts the expected 90% C.L. direct detection limit from XENON1T.

See text for details.

If the mass difference becomes too small, the relic density constraint cannot be satisfied

even for very small values of y. This is depicted by the shaded region at the bottom of fig-

ure 5. On the other hand, large values of y are constrained by limits on the spin-independent

direct detection cross-section from LUX [35] (see shaded region at the top of the plot).

In the remaining allowed part of parameter space, the mass difference m0
m − m0

l is

relatively small, so that the leptons from the process (6.1) are soft and fail the selection

cuts for the 3` signature [42, 43]. On the other hand, the production cross-section for (6.1)

is too small to be constrained by the available mono-jet data [44, 45]. As a consequence,

no bound on the cosmologically preferred parameter space of the singlet-doublet model is

obtained from LHC8 data (see also refs. [61–63]). Similarly, the projected reach for the 3`

signal of the LHC14 [64, 65] and FCC-hh [66, 67] does not extend into the white region in

figure 5.

Instead, requiring a hard initial-state jet can help to trigger on events with soft lep-

tons and improve the signal-to-background ratio for this case. Several authors have an-

alyzed this signature, consisting of at least one hard jet, large missing energy, and at

least two soft leptons, and found it to be promising for the parameter region preferred

by co-annihilation [46, 61, 68–70]. We have obtained the estimated 95% C.L. reach of

LHC14 by recasting the analysis of ref. [61]. Concretely, ref. [61] contains results for a

Majorana singlet-triplet scenario, with the dominant signal contribution stemming from

the process (6.1). In our case, since we have heavy doublet fermions instead of a triplet,

the production cross-section is reduced by a factor of two. After accounting for this change
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in the production rate, the projected limits shown by the short-dashed (for 300 fb−1) and

dotted (for 3000 fb−1) lines in figure 5 are obtained. As can be seen from the figure, such an

analysis will only be able to test this model for relatively small DM masses, m0
l . 250 GeV,

and only in the high-luminosity run of the LHC.

However, a much larger part of the parameter space can be probed with FCC-hh with√
s = 100 TeV. We use the results for higgsino and higgsino-bino scenarios in ref. [69],

which directly correspond to our Majorana singlet-doublet model. The authors of ref. [69]

have simulated the signals and backgrounds for the monojet signature and the jet plus

soft leptons signature. The projected 95% C.L. limit is shown by the dash-dotted line in

figure 5. We find that the astrophysically favored parameter space for m0
l . 900 GeV can

be covered.

Also shown in the figure is the projected reach of the ILC with
√
s = 1 TeV, which

has been evaluated by extrapolating the results of ref. [71]. Due to its clean environment

and low backgrounds, the ILC will be able to probe this model for masses of the doublet

fermions, m0
m = m+ = mD, up to almost half of the center-of-mass energy (see long-dashed

line in figure 5).

In addition to constraints from future collider experiments, the allowed parameter space

of the Majorana singlet-doublet model will also be probed by upcoming direct detection

experiments. The dotted red line in figure 5 indicates the projected reach of the XENON1T

experiment [36]. As evident from the figure, it will be able to cover large parts of the

parameter space, except for very small Yukawa couplings, y . 0.02.

The correct relic density in this model can also be achieved by annihilation of χ0
l pairs

through the Higgs resonance. In this case, co-annihilation does not play any role, and the

other fermion states can be much heavier than the DM state, as shown in figure 6. In

this scenario, both the annihilation and the direct detection cross-sections are mediated by

Higgs exchange, so that the direct detection bound from LUX [35] becomes independent of

the heavy fermion mass in this plot. It excludes part of the parameter space that produces

the correct relic density.

The remaining parameter space can be probed in three ways. The 3` signature from

the process (6.1) can be observed if the mass difference m0
m − m0

l is sufficiently large,

but the heavy states χ0
m and χ± are not too heavy. The first condition ensures that the

leptons can pass the trigger and selection requirements, while the second is related to the

need for a large enough signal production cross-section. For LHC14 with 3000 fb−1, we

estimate its 95% C.L. exclusion limit for this signature based on simulation results from

the ATLAS collaboration [65]. To account for the smaller cross-section in the Majorana

singlet-doublet model compared to the supersymmetric singlet-triplet scenario studied by

ATLAS, we conservatively take the 5σ rather than the 95% C.L. contour from figure 10

in ref. [65].6 For FCC-hh with
√
s = 100 TeV and 3000 fb−1, we adopt the results from

section III.C in ref. [66]. As evident from the horizontal bands in figure 6, the combination

of LHC14 and FCC-hh results can cover most of the astrophysically allowed parameter

space, except for relatively large values of the Yukawa coupling y.

6While this choice will underestimate the reach of LHC14, we note that the covered parameter space

does not change much between the 95% C.L. and 5σ contours from figure 10 in ref. [65].
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Figure 6. Allowed parameter space for the Majorana singlet-doublet model in the Higgs resonance

region, with the constraint Ωχ0
l

= ΩDM. The solid lines indicate the correct DM density for different

values of the Yukawa coupling y. The red-shaded region is excluded by direct detection limits from

LUX. Also shown are projected 95% C.L. limits from 3` searches at LHC14 with 3000 fb−1 (dotted

horizontal lines and shading) and FCC-hh with 3000 fb−1 (dot-dashed horizontal line and shading).

The vertical lines depict the projected limits from h → invisible measurements at LHC14 with

300 fb−1 (short dashed) and 3000 fb−1 (dotted), and at ILC with
√
s = 250 GeV (long dashed), as

well as from direct detection searches at XENON1T (red dotted). See text for details.

Alternatively, this scenario can be tested by measurements of the invisible Higgs width.

For χ0
l < mh/2, the Higgs boson can decay into pairs of DM particles, h → χ0

l χ
0
l , which

escape undetected. Future LHC data will be able to put strong limits on the invisible

branching fraction of 17% with 300 fb−1 and 6% with 3000 fb−1, under somewhat favorable

assumptions for the systematic errors [64]. A much more precise constraint of Br(h →
inv) < 0.3% is expected from ILC data taken at

√
s = 250 GeV (see table 2.6 in ref. [72]).

The corresponding bounds on the parameter space of the model are depicted by the vertical

lines in figure 6. These bounds do not depend on the heavy fermion mass, m0
m, since both

the thermal relic density and the Higgs invisible width are governed by the same hχ0
l χ

0
l

coupling.

Finally, future direct detection searches by XENON1T [36] will probe most of the

allowed parameter space, as depicted by the red dotted lines in figure 6. Combining the

projected limits from collider and direct detection experiments, only the parameter region

where the DM mass is very close to half the Higgs mass, 60.5 GeV . m0
l . 62 GeV, and

the mediator mass is very large, m0
m & 3 TeV, will remain inaccessible.

6.3 Dirac singlet-doublet model

As for the Majorana case, co-annihilation in the Dirac singlet-doublet model is active for

most of the parameter points that satisfy the relic density constraint. In fact, the predicted

value for Ωχ0
l

in this model is very sensitive to the mass difference m0
h −m0

l . Therefore,
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Figure 7. Allowed parameter space for the Dirac singlet-doublet model, with the constraint Ωχ0
l

=

ΩDM. The solid lines indicate the correct DM density for different values of the relative mass

difference δm ≡ (m0
h −m0

l )/m
0
l . The red-shaded region is excluded by direct detection limits from

LUX. Also shown are projected 95% C.L. limits from jet plus soft leptons searches at LHC14

with 300 fb−1 (short dashed) and 3000 fb−1 (dotted), and at FCC-hh with 3000 fb−1 (dot-dashed).

The reach of ILC with
√
s = 1 TeV is depicted by the long-dashed line, while the red dotted

line indicates the expected 90% C.L. limit from XENON1T. The gray region is excluded by the

Fermi-LAT indirect DM searches.

instead of displaying our results in the plane of m0
l and m0

h − m0
l , we chose m0

l and the

Yukawa coupling y as independent variables in figure 7.

As expected, large regions of the parameter space are excluded by direct detection

limits from LUX [35] (shaded region in plot), since the doublet component of χ0
l couples

to the Z boson and thus leads to sizeable DM-nucleon interactions. In the remaining

part of the parameter space, the mass difference m0
h − m0

l is small, which is illustrated

by the colored solid curves in figure 7. This bound will be improved by future results

from XENON1T [36] (red dotted line in plot), but the region with small mass differences

and small Yukawa couplings will remain difficult to probe by direct detection experiments.

The upper left corner of the parameter space in figure 7 with large y and small m0
l is

also excluded by indirect searches. The 95% C.L. bound from the latest analysis of dwarf

spheroidal galaxies by the Fermi satellite [73] is shown as a long-dashed line. The gray

region to the left of the line is excluded.

As explained in the previous section, scenarios with such small mass differences can

be best searched for by using the hard jet plus soft leptons signature at the LHC. The

expected 95% C.L. reach of LHC14 with 300 fb−1 and 3000 fb−1 from the analysis in ref. [61]

is shown by the dashed and dotted lines in figure 7, respectively. These bounds have been

obtained by rescaling the results of ref. [61] to account for the production cross-section of

pp→ χ−χ0
h, χ

+χ̄0
h in the Dirac singlet-doublet model. Also shown are the projected reach

of FCC-hh for the jet plus soft leptons signal from the analysis of ref. [69] (dash-dotted

line), as well as the reach of ILC with
√
s = 1 TeV (long-dashed line).
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Figure 8. Allowed parameter space for the Majorana doublet-triplet model, with the constraint

Ωχ0
l

= ΩDM. Each point in the m0
l –y parameter plane has two solutions for δm ≡ (m0

m −m0
l )/m

0
l ,

which are shown in the two panels. The red-shaded region at the bottom right is excluded by

yielding too small of a relic density, while the light shaded regions at the top are constrained by

data from LUX. Also shown are projected 95% C.L. limits from 3` searches at LHC14 with 300 fb−1

(short dashed) and 3000 fb−1 (dotted), and the 90% C.L. reach of XENON1T (red dotted). In the

left panel, the entire allowed parameter region can be covered by LHC with 3000 fb−1, as well as

by XENON1T. Notice that the whole viable parameter space in both panels is already excluded

by h → γγ data from LHC8, assuming that there are no new fields coupling to the Higgs boson

beyond the doublet and triplet fermions.

As is evident from the figure, LHC14 will be able to probe part of the astrophysically

viable parameter space, but only for light DM with m0
l . 250 GeV. In contrast, ILC with√

s = 1 TeV can extend this reach to about m0
l . 490 GeV, while FCC-hh is expected to

cover the entire allowed parameter region.

6.4 Majorana doublet-triplet model

In this subsection, we explore the parameter region of the Majorana doublet-triplet model

for a pure doublet DM candidate, corresponding to the left panel of figure 2. This scenario

is characterized by sizeable mass splittings between different dark sector fermion states, so

that co-annihilation is not important.

For this model, it is not possible to display our results in the plane of m0
l and m0

m−m0
l ,

since for some values of m0
l and m0

m there are more than two possible values of y that

satisfy the relic density constraint. Instead, as in the previous subsection, m0
l and the

Yukawa coupling y are used as independent variables. Even in this case, there is a two-

fold ambiguity for the value of mT for each point in the m0
l –y plane, as can be seen in

figure 2 (left). These two solutions are shown in the two panels in figure 8. The solid

colored curves indicate the correct relic density for different values of the relative mass

difference δm ≡ (m0
m −m0

l )/m
0
l . Notice that large values of y are constrained by vacuum

stability [26].

The region with small Yukawa couplings is excluded by the relic density constraint,

since the mass difference between the two doublet-dominated neutral fermion states is rela-

tively small in this case, leading to efficient χ0
l –χ

0
l annihilation. However, viable parameter
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points are obtained for larger Yukawa couplings, 1 . y < 3, where the upper bound is

imposed to ensure perturbativity, and for masses m0
l < 220 GeV.

As already mentioned in section 4, the DM-nucleon cross-section is loop-suppressed

in this scenario. Nevertheless, due to the large values of the Yukawa coupling y in the

viable parameter space, there are still important constraints from direct detection experi-

ments. The bounds from LUX [35] are shown in figure 8. With the improved sensitivity of

XENON1T [36], almost the entire parameter space of the model can be covered.

At the LHC, the heavier neutral and charged fermions can be produced according

to (6.1), leading to a 3` signal with missing energy. Since the mass differences are relatively

large in the cosmologically viable parameter region, no hard initial-state jet is required.

Both ATLAS and CMS have published limits on the production cross-section from 3`

searches [42, 43] (see also additional material available in ref. [74]), which can be compared

to the cross-section for the Majorana doublet-triplet model computed with CalcHEP. It

is found that the current data from ATLAS and CMS does not lead to any limit in the

parameter region shown in figure 8.

Additionally, this model is constrained by LHC data on the branching fraction of the

Higgs boson to two photons, as discussed in section 5. Since we require relatively light

masses and large Yukawa couplings of the new fermions to obtain the correct relic density,

the correction to Rγ is sizeable. In fact, one finds Rγ < 0.6 for the whole viable parameter

region shown in figure 8 (see also ref. [26]). This is in conflict with results from ATLAS and

CMS yielding Rγ = 1.17± 0.27 [75] and Rγ = 1.14+0.26
−0.23 [51] at the 68% C.L., respectively.

Assuming that the experimental uncertainties are Gaussian distributed, one thus finds that

the Majorana doublet-triplet model with pure doublet dark matter is excluded at more than

95% C.L. . .

However, it is worth pointing out that the h→ γγ branching fraction may be modified

by other new physics unrelated to the DM sector, so that the Majorana doublet-triplet

model may remain viable as part of a larger theory. In this case, the model can be probed

more robustly through direct searches for the dark sector fermions with future LHC data.

For the projected reach of 3` searches, we use figure 10 in ref. [65]. To account for the smaller

production cross-section due to the mixing between the dark fermions, we conservatively

use the 5σ contour in that figure in lieu of the 95% C.L. bound. Using these results, the

estimated reach of LHC14 with 300 fb−1 is illustrated by the short-dashed lines in figure 8.

For 3000 fb−1, we find that the entire viable parameter region in the left panel of figure 8

can be excluded with 3` data, while only a small corner in the lower left part of the right

panel remains.

7 Conclusions

When probing the fermionic dark matter Higgs portal at colliders, the mediators cannot be

integrated out, but rather must be considered as dynamical degrees of freedom. The inclu-

sion of new signatures due to the on-shell production of the mediators can substantially ex-

tend the reach of collider searches for Higgs portal models. Using the example of three sim-
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ple UV completions of the Higgs portal with scalar and fermion mediators, we have demon-

strated the complementarity of direct detection experiments and high-energy colliders.

In the case of a scalar mediator, there is no direct connection between direct detection

and collider observables, due to a large number of free parameters. For a singlet scalar,

the observed thermal relic density can be accommodated with small Higgs-singlet mixing,

especially if DM is heavier than the heavy scalar. Small mixing helps to evade direct

detection bounds, as well as collider bounds from Higgs coupling measurements and direct

searches for the heavier scalar. Future colliders, i.e. the HL-LHC, ILC or FCC-hh, and

direct detection experiments can cover a large part of the model’s parameter space. They

will, however, not be able to test it conclusively.

In models with fermion mediators, obtaining the correct relic density requires either

large Yukawa couplings or co-annihilation. The scenario with large Yukawa couplings

is generally strongly constrained by direct detection, as are models with unsuppressed

couplings to the Z boson. The co-annihilation scenario is viable for small Yukawa couplings

y . 0.1. Since it implies small mass splittings among the lightest states, dedicated search

strategies are needed at colliders. These compressed spectra can be searched for in mono-

jet signatures dressed with soft leptons, which are produced in the decay chain of the

mediators.

For singlet DM and a doublet fermion mediator, several scenarios can satisfy all cur-

rent bounds. If DM is a Majorana fermion, Z-mediated DM-nuclei interactions are ab-

sent and the co-annihilation scenario is viable for DM-mediator mass differences of about

10 − 30 GeV. While the LHC can access DM masses below 300 GeV, the scenario can be

conclusively tested with XENON1T and future colliders up to TeV-scale DM masses. In

the Higgs resonance region, mχ ∼ mh/2, the correct relic density can be obtained with-

out co-annihilation for Yukawa couplings y ∼ 0.1, if mediators are below the TeV scale.

The LHC (and future hadron colliders) can probe mediators up to (beyond) the TeV scale

with three-lepton signatures, leaving only a small corner of parameter space that neither

colliders nor XENON1T can reach.

If, in turn, DM is a Dirac fermion, the singlet-doublet model is viable only for tiny

Yukawa couplings y . 10−3, where Z-mediated DM-nuclei interactions are sufficiently

suppressed to evade LUX bounds. XENON1T can probe even smaller couplings. The

LHC will test the region mχ . 200 GeV for arbitrarily small Yukawa couplings. The ILC

and FCC-hh can cover higher masses and ultimately test the model conclusively.

In a model with one doublet and one triplet fermion field, which both carry weak

charges, the only viable scenario is pure-doublet DM, where Z- and Higgs-mediated DM-

nuclei interactions are absent at tree level. Despite the suppression, loop-induced scattering

still leads to significant constraints from direct detection searches. In addition, the model

in its minimal version is already excluded by the present Higgs property measurements

at the LHC, due to the contributions of charged fermions to the Higgs decay to two pho-

tons. If these can be canceled by a new contribution unrelated to the dark sector, the

extended model is viable for large Yukawa couplings y > 1 and DM masses below 200 GeV.

XENON1T and direct searches for electroweak particles at LHC14 can cover almost the

entire viable parameter space of this model.
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j gZjb gWjb ghjj,0 ghjj,+ k ghac,k

a +i g
2cW

sin θ2 +ig2 sin θ2 − y√
2

sin(2θ2) − y√
2

sin(2θ2) + − y√
2

cos(2θ2)

c −i g
2cW

cos θ2 +ig2 cos θ2 + y√
2

sin(2θ2) + y√
2

sin(2θ2) 0 + y√
2

cos(2θ2)

Table 2. Dark fermion couplings to SM bosons in the Majorana doublet-triplet model.

Since the mediators in our models are generally not much heavier than the DM parti-

cles, an effective Higgs portal description is not useful. Exceptions are the Higgs resonance

region in the Majorana singlet-doublet model and parts of the parameter space in the

singlet-singlet model, where the DM-mediator mass splitting can be sizeable.

In summary, collider searches and direct detection experiments can pin down models

with scalar mediators that have moderate mixing with the Higgs boson, and can fully

explore models with fermion mediators, apart from small regions of parameter space. This

is possible due to the combination of different experiments. The complementarity of probes

will become even more important in the case of a discovery.
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A Loop-induced Higgs boson interactions with Majorana DM

In this appendix, we give analytic formulae for the loop-induced Higgs coupling to DM in

the Majorana doublet-triplet model with doublet-like DM, χ0
` = χ0

b (see section 2.3). The

relevant term in the Lagrangian can be written as

L̂ = −δy
2
χ0
bχ

0
b h+ h.c.. (A.1)

We have calculated the Yukawa correction δy at the one-loop level in unitarity gauge in

the limit of zero momentum transfer to the Higgs boson. The result is given by

δy =
∑
i,j=a,c

[
ghij,0g

Z
ibg

Z∗
jb F (Z, χ0

i , χ
0
j ) + 2 ghij,+g

W
ib g

W∗
jb F (W,χ+

i , χ
+
j )
]

(A.2)

+
∑
i=a,c

[
g

cW
|gZib|2F (Z,Z, χ0

i ) + 2 g|gWib |2F (W,W,χ+
i )

]
,

where the couplings ghij,0 etc. are listed in table 2.
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The loop functions can be expressed as

F (B,χi, χj) =
1

16π2
1

m2
B

{
mi +mj

2mD

(
2m2

B + (mi −mD)(mj −mD)
)
B0(0,m

2
i ,m

2
j ) (A.3)

−A0(m
2
i )−2m2

B+
mi+mD

2mD
(m2

i−m2
B)B0(0,m

2
i ,m

2
B) +

mj−mD

2mD
(m2

j−m2
B)B0(0,m

2
j ,m

2
B)

+

[
(m2

i −m2
D)2 + (m2

i +m2
D − 2m2

B − 6mimD)m2
B

2mD(mj −mi)
B0(m

2
D,m

2
i ,m

2
B) + (i↔ j)

]}
,

F (B,B, χi) =
1

16π2
1

m2
B

{
m3
B

mD

2m2
D +mimD −m2

i − 2m2
B

(mi +mD)2 −m2
B

B0(0,m
2
B,m

2
B) (A.4)

+
mB

mD

(mi +mD)2 + 2m2
B

(mi +mD)2 −m2
B

[
m2
iB0(0,m

2
i ,m

2
i ) + (m2

i +m2
D −m2

B)
]

+
mi

2mDmB
(mi −mD)(m2

i−m2
B)B0(0,m

2
i ,m

2
B) +

mD−mi

2mB

(
A0(m

2
i ) +A0(m

2
B)
)

− 1

2mDmB

[
m4
B

(
(mi +mD)2 + 2(m2

i +m2
D)− 4m2

B

)
+ 2m2

BmimD(mi +mD)2

+m4
i (m

2
i +2mimD−m2

D) +m4
D(m2

D + 2mimD −m2
i )− 4m3

im
3
D

]
B0(m

2
D,m

2
i ,m

2
B)

(mi+mD)2−m2
B

}
,

where mD = m0
b is the doublet DM mass. The notation for the loop integrals A0 and B0

has been adopted from ref. [76]. Since χ0
b self-energy corrections do not contribute to the

hχ0
bχ

0
b vertex at one-loop, the result for δy as given above is finite without renormalization.

We have verified that our result is gauge invariant by calculating δy in Rξ gauge and

expanding the result in powers of the Higgs mass mh. The leading term δy(mh = 0)

in Rξ gauge corresponds to δy in unitarity gauge. We have checked that the remainder,

δy(mh) − δy(mh = 0), is numerically subleading in the parameter space where χ0
b is the

lightest neutral state and satisfies the relic density constraint (see figure 8). This indicates

that electroweak box diagrams, which contribute to the effective scalar interaction Gqh in

eq. (4.1) at the same order of mh as this remainder, are suppressed with respect to the

leading Higgs vertex contributions, which enter ∝ m−2h in the amplitude. Our calculation

has been performed with two independent computer codes, one of which is based on the

programs FeynArts [77] and FeynCalc [78]. Our result agrees with ref. [26].
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