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1 Introduction

The Large Hadron Collider (LHC) has confirmed the effective description of the electroweak

sector given by the Standard Model (SM) Lagrangian with the discovery of the Higgs bo-

son and the analysis of its properties. It also features a very strong potential for the

discovery or exclusion of new physics/particles, thus opening the possibility of investigat-

ing both strongly and weakly coupled extensions of the Standard Model. New vector-like

(VL) fermions are often present in many of the extensions of the SM, especially in relation

with the top sector (top partners, as for example in composite Higgs models [1–4], extra-

dimensional models [5–11], little Higgs models [12–14], gauge-Higgs models [15, 16], gauge

coupling unification [17, 18] and models with an extended custodial symmetry [19, 20]).

Both CMS [21] and ATLAS [22] have recently devoted a considerable effort in the analy-

ses apt to setting bounds on this type of new particles. Initially, simplifying assumptions

were considered (mixing only with the third generation of SM quark family or specific de-

cay modes) [23–33]. However the most recent analyses, due to larger data samples, allow

exploring more general situations with mixing of VL quarks with the first two genera-

tion of SM quarks [34–38]. There are some works analyzing the phenomenology of exotic

quarks [39]. Considering the presence of a complete multiplet of the symmetries of the
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Standard Model is however not enough in some realistic scenarios: in fact, theoretically

justified models often contain a multiplet of larger global symmetries which can be de-

scribed in terms of several multiplets which are close in mass. The various multiplets then

mix with each other via the Higgs interactions. The presence of general mixing struc-

tures and the interplay of different multiplets typically affects the tree-level and loop-level

bounds, thereby modifying the results expected by performing simplified analyses based

on a single particle or a single multiplet. This work is devoted to the detailed exploration

of general structures and mixing of more than one VL quark multiplet and, specifically, we

study in detail the implications of the presence of two VL quark multiplets mixings with

any of the 3 SM quark generation. We also focus on a specific sub-set of scenarios where

both VL multiplets contain a top partner (i.e. with electric charge +2/3 e), and where

eventual bottom partners (i.e. with electric charge −1/3 e) do not mix with the SM down

sector. This choice is done to minimise the constraints from flavour, which are very severe

on mixing in the down sector only. In the scenarios we selected, larger mixing angles are

allowed thus providing larger single production cross sections at the LHC. These scenar-

ios are also theoretically justified in models where the new physics couples dominantly to

the top quark. Of course, depending upon the multiplet considered, non-SM quarks, i.e.

quarks having non-SM electric charge, may be present in the considered multiplets. We

have estimated the constraints on such scenarios from electroweak precision (EWP) data

(oblique and non-oblique) and current LHC data.

The paper is organized as follows: in section 2 we classify (through their

(SU(2)L,U(1)Y ) quantum numbers) all the possible pairs of VL multiplets that can in-

teract with SM quarks via a SM Higgs doublet. In section 3 the Yukawa couplings of the

VL multiplets with SM quark generations are described. In the same section we have also

identified three kind of scenarios depending on the multiplet content, namely: top-type

multiplets, bottom-type multiplets and mixed multiplets. The mass matrices of the cases

we considered in our analysis are provided in section 3.5.

2 Vector-like multiplets

The minimal set of VL multiplets that can mix with SM quarks and a SM (or SM-like)

Higgs boson have been extensively studied in literature [23, 28, 32, 34–36, 40].

In tables 1–3 we list the SU(2)L×U(1)Y quantum numbers of the VL quark multiplets

that can have interactions — when taken alone or in pairs — with SM quark generations

and Higgs boson doublet under SU(2)L × U(1)Y symmetry. The tables are organized

as follows:

• top-type multiplets (table 1): multiplets containing one VL top partner but no bot-

tom partners (i.e. no VL quark with electric charge −1/3 e). In addition to a top

partner, these multiplets may contain quarks with exotic charges 5/3 e and 8/3 e.

• bottom-type multiplets (table 2): multiplets containing one VL bottom partner but

no top partners (i.e. no VL quark with charge 2/3 e). In addition to a bottom partner

these multiplets may contain quarks with exotic charges −4/3 e and −7/3 e.

– 2 –
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Multiplet ψ (SU(2)L,U(1)Y ) T3 QEM Yukawa to SM

Singlet 2/3 U (1, 2/3) 0 +2/3 Yes

Doublet 7/6

(

X5/3

U

)

(2, 7/6)
+1/2

−1/2

+5/3

+2/3
Yes

Triplet 5/3







X8/3

X5/3

U






(3, 5/3)

+2

+1

0

+8/3

+5/3

+2/3

No

Table 1. Quantum numbers for the top-type VL multiplets (up to triplets), explicitly indicating

weak isospin, hypercharge, electric charge (QEM ) and if a direct Yukawa coupling to SM quarks is

allowed.

Multiplet ψ (SU(2)L,U(1)Y ) T3 QEM Yukawa to SM

Singlet-1/3 D (1,−1/3) 0 -1/3 Yes

Doublet -5/6

(

D

Y −4/3

)

(2,−5/6)
+1/2

−1/2

−1/3

−4/3
Yes

Triplet -4/3







D

Y −4/3

Y −7/3






(3,−4/3)

0

−1

−2

−1/3

−4/3

−7/3

No

Table 2. Quantum numbers for the bottom-type VL multiplets (up to triplets), explicitly indicating

weak isospin, hypercharge, electric charge (QEM ) and if a direct Yukawa coupling to SM quarks is

allowed.

• mixed multiplets (table 3): multiplets containing both VL top and bottom partners.

In addition these multiplets may contain all of the exotic charged VL quarks.

The multiplets in these tables constitute the building blocks we will use to construct sce-

narios with 2 VL multiplets.1

3 New Yukawa couplings

The SM Yukawa couplings are the coefficients yi,ju and yi,jd , where u and d refer to the

coupling of the up-type and down-type quarks respectively and the indices i and j label

the three SM generations (i, j = 1, 2, 3). These couplings allow the interactions of the SM

quarks with the Higgs bosons according to the following Lagrangian terms:

LSM = −yi,ju Q̄i
LH̃u

j
R − yi,jd Q̄i

LHd
j
R + h.c. , (3.1)

where H = (2, 1/2) is the Higgs boson doublet coupling to down-type quarks, H̃ = iτ2H∗

is the same Higgs multiplet coupling to up-type quarks, QL = (2, 16) is the SM quark

1A model where quarks and leptons were taken as a part of quadruplet is given in [41].

– 3 –



J
H
E
P
0
9
(
2
0
1
5
)
0
1
2

Multiplet ψ (SU(2)L,U(1)Y ) T3 QEM Yukawa to SM

Doublet 1/6

(

U

D

)

(2, 1/6)
+1/2

−1/2

+2/3

−1/3
Yes∗

Triplet 2/3







X5/3

U

D






(3, 2/3)

+1

0

−1

+5/3

+2/3

−1/3

Yes

Triplet -1/3







U

D

Y −4/3






(3,−1/3)

+1

0

−1

+2/3

−1/3

−4/3

Yes

Quadruplet 7/6











X8/3

X5/3

U

D











(4, 7/6)

+3/2

+1/2

−1/2

−3/2

+8/3

+5/3

+2/3

−1/3

No

Quadruplet 1/6











X5/3

U

D

Y −4/3











(4, 1/6)

+3/2

+1/2

−1/2

−3/2

+5/3

+2/3

−1/3

−4/3

No

Quadruplet - 5/6











U

D

Y −4/3

Y −7/3











(4,−5/6)

+3/2

+1/2

−1/2

−3/2

+2/3

−1/3

−4/3

−7/3

No

Table 3. Quantum numbers for the mixed-type VL fermion multiplets (up to quadruplets), explic-

itly indicating weak isospin, hypercharge, electric charge (QEM ) and if a direct Yukawa coupling to

SM quarks is allowed. For the Doublet 1/6, one can write an independent Yukawa coupling with

the right-handed up and down quarks.

doublet, uR = (1, 23) and dR = (1,−1
3) are the SM singlets. After the Higgs boson gets its

Vacuum Expectation Value (VEV) we obtain:

LSM = − (m̃up)ij ūiLu
j
R −

(

m̃down
)ij

d̄iLd
j
R + h.c. ; (3.2)

where m̃up and m̃down are the SM up-type and down-type 3× 3 mass matrices for quarks.

In the following of the paper, we will work in the basis where the SM Yukawas are diagonal

and the eigenvalues are real and positive. This implies that the phases of the SM quark

fields are fixed (up to an overall phase — the Baryon number), and that a mixing matrix

ṼCKM appears in the couplings of the SM quark fields to the W boson. We anticipate that

this mixing matrix is not the measured CKM matrix, because of the effect of mixing to

the VL quarks.
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The presence of VL multiplets allows us to add Yukawa interactions between the VL

multiplets and the SM quarks. Due to SU(2) products of representations, new quark

doublets can couple with the SM right-handed singlets, while new quark singlets and triplets

can couple to SM left-handed doublets. However, as we are considering a more general case

in which more than one VL multiplet is present, new Yukawa interactions between two VL

quark multiplets and the SM Higgs doublet appear.

In the following we will not considered two multiplets of same type (same hypercharge).

As we are interested in the interplay of VL quarks, we have considered cases that satisfy

the following conditions:

• there must be two VL top quarks.

• eventual VL bottom quarks do not mix with SM bottom sector, i.e. we can take the

mixing to be zero without affecting the top sector, to ensure that the model is not

constrained too much by the stringent flavour physics and Zbb coupling bounds from

the bottom sector.

The latter conditions tells us that the only multiplet containing a bottom quark that we

allow is the Doublet-1/6, for which the Yukawa involving the down sector is independent

form the Yukawa involving the up sector. These conditions leave us with only four multiplet

combinations, namely:

• Singlet (Y = 2/3) + Doublet (Y = 7/6);

• Doublet (Y = 7/6) + Triplet (Y = 5/3);

• Singlet (Y = 2/3) + Doublet (Y = 1/6);

• Doublet (Y = 1/6) + Doublet (Y = 7/6).

The analytical expressions of the mass matrices for the above combinations will be derived

in the following. For the remaining cases with two different VL multiplets, the mass

matrices are presented in appendix A.

The notation we will use to refer to the new Yukawa and mass terms in the Lagrangian

is the following:

• LV−SM : Yukawa interactions between a VL multiplet and SM quarks;

• LV−V : Yukawa interactions between two VL multiplets;

• Lmass: mass terms after the Higgs boson acquires its VEV and pure VL mass terms.

We will also denote the non-SM Yukawa couplings as:

• λkI : Yukawa between the VL quark I = 1, 2 with the SM quark of generation k;

• λkId: Yukawa coupling of the Doublet-1/6 with the right handed bottom (this coupling

will be assumed to be very small in our analysis);

– 5 –
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• ξ1: Yukawa between two VL quarks, involving a left-handed doublet (or quadruplet)

and a right-handed singlet (or triplet);

• ξ2: Yukawa between two VL quarks, involving a left-handed singlet (or triplet) and

a right-handed doublet (or quadruplet).

After the Higgs develops its VEV, 〈H〉 = v√
2
(0, 1)T , these terms will generate mass terms

mixing the VL quarks among themselves and with the SM quarks. In the mass matrices

we will consistently use the following notation:

• ykI = λkI
v√
2
, when the mixing involves a VL doublet (or quadruplet);

• xkI = λkI
v√
2
, when the mixing involves a VL singlet (or triplet);

• ykId = λkId
v√
2
, when the mixing involves a VL doublet (or quadruplet) of down type

quark;

• xkId = λkId
v√
2
, when the mixing involves a VL singlet (or triplet) of down type quark;

• ω = ξ1
v√
2
and ω′ = ξ2

v√
2
, for the mixing among VL multiplets.

Note that for VL multiplets with the same quantum numbers as the SM quarks, a

direct mass mixing can be written down: however, this term is not physical, as it can be

easily removed by redefining the fields corresponding to the SM and VL quarks. In the

following, therefore, we will never consider this term in the Lagrangians. Finally, all the

new Yukawa couplings are potentially complex couplings: for each case, we will specify

the number of physical phases, recalling that we chose to work in the basis where the SM

Yukwas are real, positive and diagonal (thus 3 mixing angles and one phase are already

accounted for in ṼCKM). We also chose the VL masses to be real and positive, thus fixing

the relative phase between the left and right-handed components of the VL quarks.

3.1 Singlet Y = 2/3 and Doublet Y = 7/6

The Doublet Y = 7/6 couples to Singlets Y = 2/3 (both SM and VL):

LV−SM = −λk1 ψ̄1LHu
k
R − λk2Q̄LH̃ψ2R + h.c. , (3.3)

LV−V = −ξ1 ψ̄1LHψ2R − ξ2 ψ̄1RHψ2L + h.c. , (3.4)

where ψ1 = (2, 76) =
(

X
5/3
1 U1

)T
and ψ2 = (1, 23) = U2. In this Lagrangian, we can use the

relative phases between the two VL quarks to fix ξ1 > 0, so that ξ2 contains one physical

phase. The relative phase between the VL and the SM quarks can be used to fix one of

the 6 phases contained in λk1,2. In total, the model has 6 additional phases to the SM ones,

when all new Yukawas are non-vanishing. The mass Lagrangian is:

Lmass = −yk1 Ū1Lu
k
R − xk2u

k
LU2R − ωŪ1LU2R − ω′Ū1RU2L −M1 Ū1LU1R

−M2 Ū2LU2R −M1 X̄
5/3
1L X

5/3
1R + h.c. . (3.5)

– 6 –
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This leads to the mass matrix:

Mu =







(m̃up)3×3 03×1

(

xk2
)

3×1
(

yk1
)

1×3
M1 ω

01×3 ω′ M2






, M

X
5/3
1

=M1 , (3.6)

where m̃up is the SM 3× 3 mass matrix of up sector. The mass matrix can be diagonalised

by two unitarity matrices:

Mu = V u
L ·Mdiag

u · (V u
R )† . (3.7)

The general procedure for the diagonalisation of mass matrices is described in section 3.5.

3.2 Doublet Y = 7/6 and Triplet Y = 5/3

The Triplet Y = 5/3 couples to the Doublet Y = 7/6, which in turn couples to the SM

singlet uR:

LV−SM = −λk1 ψ̄1LHu
k
R + h.c. , (3.8)

LV−V = −ξ1 ψ̄1Lτ
aH̃(ψ2R)

a − ξ2 ψ̄1Rτ
aH̃(ψ2L)

a + h.c. , (3.9)

where ψ1 = (2, 76) =
(

X
5/3
1 U1

)T
and ψ2 = (3, 53) =

(

X
8/3
2 X

5/3
2 U2

)T
. We can again use

the relative phase between VL quarks to fix ξ1 > 0 (and leave ξ2 complex), and remove

one of the 3 phases of λk1, thus the model contains 3 additional physical phases. The mass

contributions from the Yukawa interactions, including the VL masses, give the Lagrangian:

Lmass = −yk1 Ū1Lu
k
R −

√
2ωŪ1LU2R − ωX̄

5/3
1L X

5/3
2R −

√
2ω′Ū1RU2L

−ω′X̄
5/3
1R X

5/3
2L −M1 Ū1LU1R −M1 X̄

5/3
1L X

5/3
1R −M2 Ū2LU2R

−M2 X̄
5/3
2L X

5/3
2R −M2 X̄

8/3
2L X

8/3
2R + h.c. , (3.10)

leading to the mass matrices:

Mu =







(m̃up)3×3 03×1 03×1
(

yk1
)

1×3
M1

√
2ω

01×3

√
2ω′ M2






, MX5/3 =

(

M1 ω

ω′ M2

)

, MX8/3 =M2 . (3.11)

Note that the mass matrix in the up sector is the same as the previous case (with x2 = 0),

while now there are two exotic charged quarks which mix via the Yukawa couplings ξ1,2.

3.3 Singlet Y = 2/3 and Doublet Y = 1/6

In this case, the two VL multiplets have the same quantum numbers of the SM quarks,

therefore one can replicate all the standard Yukawa couplings, including an independent

coupling for the right-handed downs dR:

LV−SM = −λk1 ψ̄1LH̃u
k
R − λk1d ψ̄1LHd

k
R − λk2Q̄

k
LH̃ψ2R + h.c. , (3.12)

LV−V = −ξ1 ψ̄1LH̃ψ2R − ξ2 ψ̄1RH̃ψ2L + h.c. , (3.13)

where ψ1 = (2, 16) = (U1 D1)
T and ψ2 = (1, 23) = U2. Like in the cases above, we can use

the relative phases of the VL quarks to make ξ1 > 0, and remove one of the 6 phases in

– 7 –
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λk1,2. The bottom coupling λk1d are also complex, however as explained above we will set

these couplings to zero in the following. The mass terms take the form (where we normalise

the mass parameters to have coefficient one for the top partners):

Lmass = −yk1 Ū1Lu
k
R − xk2u

k
LU2R − ωŪ1LU2R − ω′Ū2LU1R

−M1 Ū1LU1R −M2 Ū2LU2R −M1 D̄1LD1R + h.c. . (3.14)

The mass matrices, therefore, read:

Mu =







(m̃up)3×3 03×1 (xk2)3×1

(yk1 )1×3 M1 ω

01×3 ω′ M2






, Md =

(

(

m̃down
)

3×3
01×3

(0)3×1 M1

)

. (3.15)

Now, the mass matrix in the up sector is the same as the first case, while the down sector

mass matrix is diagonal (as we set to zero the mixing in the down sector). No exotic

charges are present in this case.

3.4 Doublet Y = 1/6 and Doublet Y = 7/6

This is the only case where we consider two doublets, thus both VL multiplets only couple

to the right-handed SM quarks:

LV−SM = −λk1 ψ̄1LH̃u
k
R − λk1d ψ̄1LHd

k
R − λk2 ψ̄2LHu

k
R + h.c. , (3.16)

where ψ1 = (2, 16) = (U1 D1)
T and ψ2 = (2, 76) =

(

X
5/3
2 U2

)T
. In this case, no Yukawa

coupling between the two VL multiplet is allowed, therefore one can use the two free phases

to remove one phase in λk1 and one in λk2, so that only 4 new phases are present in this

model. Once again, we will set λk1d = 0. The mass Lagrangian and mass matrices become:

Lmass = −yk1uŪ1Lu
k
R − yk1dD̄1Ld

k
R − yk2U2Lu

k
R

−M1 Ū1LU1R −M1 D̄1LD1R −M2 Ū2LU2R −M2 X̄
5/3
2L X

5/3
2R + h.c. , (3.17)

and

Mu =







(m̃up)3×3 03×1 03×1

(yk1 )1×3 M1 0

(yk2 )1×3 0 M2






, Md =

(

(

m̃down
)

3×3
03×1

(0)1×3 M2

)

, MX5/3 =M2 . (3.18)

The structure of the up-sector mass matrix is now different from the cases above.

3.5 Diagonalisation of the mass matrices

We have discussed so far four special cases, where two top partners mix with the up-sector

giving rise to 5× 5 mass matrices, while the down sector is always diagonal. More general

cases, and the form of the mixing matrices, can be found in appendix A. In the up sector,

the mass matrices can be diagonalised by two unitary 5× 5 matrices:

Mu = VL ·Mdiag
u · V †

R , (3.19)
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with:

Mdiag
u =















mu

mc

mt

mt′
1

mt′
2















. (3.20)

Indeed when two VL multiplet are present at the same time, there are three types of mixing

structures which can arise with the SM up quarks:

• Case A: two semi-integer isospin multiplets (as doublets, quadruplets, etc.). In this

case the mass matrix becomes:

M (A)
u =















m̃u 0 0

m̃c 0 0

m̃t 0 0

y11 y21 y31 M1 0

y12 y22 y32 0 M2















; (3.21)

• Case B: two integer isospin multiplets (as singlets, triplets, etc.). The mass matrix is:

M (B)
u =















m̃u x11 x12
m̃c x21 x22

m̃t x
3
1 x32

0 0 0 M1 0

0 0 0 0 M2















; (3.22)

• Case C: one semi-integer isospin multiplet and one integer isospin multiplet. The

mass matrix is:

M (C)
u =















m̃u 0 x12
m̃c 0 x22

m̃t 0 x32
y11 y21 y31 M1 ω

0 0 0 ω′ M2















. (3.23)

The VL multiplets considered in our analysis belong to the cases indicated in table 4, where

the combinations we are considering for our numerical analysis have been highlighted.

These mass matrices cannot be diagonalised analytically. One can obtain approximate

results in the limit where the VL masses M1,2 are much larger than the contribution from

the Yukawa couplings, and general results can be found in the appendix of ref. [36]. In

our numerical results, however, we will use a numerical procedure to find the correct mass

eigenstates and mixing angles, detailed in the next subsection.

Some models also contain two exotic quarks which mix via a 2 × 2 matrix, like in

section 3.2:

MX5/3 =

(

M1 ω

ω′ M2

)

. (3.24)
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2nd ↓ 1st → Singlet Y = 2
3 Doublet Y = 1

6 Doublet Y = 7
6 Triplet Y = 5

3

Singlet Y = 2
3 case B case C case C case B

Doublet Y = 1
6 case A case A case C

Doublet Y = 7
6 case A case C

Triplet Y = 5
3 case B

Table 4. Mixing structures for the VL quarks multiplets considered in our analysis. The combi-

nations we have studied in detail are in bold.

This mass matrix can be diagonalised by two Unitary matrices

MX = VXL ·Mdiag
X · V †

XR , (3.25)

with eigenvalues

M2
X1,2

=
1

2

(

M2
1 +M2

2 + ω2 + |ω′|2 ∓
√

(M2
1 +M2

2 + ω2 + |ω′|2)2 − 4|M1M2 − ωω′|2
)

.

(3.26)

Parametrising the mixing matrices as

VXL/R =

(

cosαL/R eiδL/R sinαL/R

−e−iδL/R sinαL/R cosαL/R

)

; (3.27)

the mixing angles and phases can be expressed as

e−iδL sin(2αL) = 2
M1ω

′ +M2ω

M2
X2

−M2
X1

, e−iδR sin(2αR) = 2
M1ω +M2ω

′

M2
X2

−M2
X1

. (3.28)

3.5.1 Numerical procedure

In order to evaluate the constraints and estimate the production cross-sections of VL quarks

at colliders we need to write the Lagrangians presented in section 3.1–3.4 in the mass basis.

In the SM the physical masses of quarks are uniquely defined by Yukawa couplings. The

introduction of VL quarks with couplings to all the three SM quark generations enlarges the

mass matrices and results in variation of the physical masses of SM quarks. In section 3.5

we have presented the structure of the 5×5 mass matrices in the gauge basis. The procedure

we have adopted for diagonalisation is the following:

• Step 1: using the new Yukawa Couplings (xi, yi, ω, ω
′) and the masses M1,M2 as

input parameters we write the five eigenvalue equations (one for each of the physi-

cal quarks):

|M †
uMu − λiI| = 0 , (3.29)

where Mu are the mass matrices and λi are the eigenvalues (square of physical

masses).
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• Step 2: the first three equations correspond to the three known values of SM quark

physical masses (mu,mc,mt). We solve these equations for the three SM Yukawa

couplings, namely m̃u, m̃c, m̃t.

• Step 3: we insert the SM Yukawa couplings obtained in Step 2 into the mass matrices

and diagonalize them again to get the mixing matrices (V u
L and V u

R ) and the physical

masses of the VL quarks.

In this process we only consider positive solution for the SM Yukawa couplings (Step 2), to

be consistent with our original choice. For simplicity, we also set all the new physical phases

to zero, allowing ourselves only a negative sign of the Yukawa couplings when physically

inequivalent to the positive sign. In the rest of the paper we shall focus on the flavour

conserving interactions for the SM part. We therefore do not discuss the general bounds

from flavour violation effects of these mixing matrices. We discussed flavour constraints in

the case of couplings of VL quarks to the third generation in [34], while the more general

flavour picture and its implications for LHC physics will be discussed in a further work.

4 Tree-level and electroweak precision bounds

4.1 Tree-level bounds on VL quarks

In order to study the tree-level bounds we need to recall the couplings of the VL fermions

to the gauge bosons and in particular to the Z boson. The complete structure is given in

the appendix B. The mass matrices are diagonalised as follows:

Mu = VL ·Mdiag
u · V †

R , (4.1)

so that the mass eigenstates are defined as:















u

c

t

t′1
t′2















L/R

= V †
L/R ·















u1

u2

u3

U1

U2















L/R

. (4.2)

In the mass eigenstate basis, the couplings of the Z boson read (for the up-quarks):

gIJZL =
g

2 cos θW

[

(

1− 4

3
sin2 θW

)

δIJ +
∑

K=4,5

(2T
(K)
3 − 1)V ∗,KI

L V KJ
L

]

, (4.3)

gIJZR =
g

2 cos θW

[

(

−4

3
sin2 θW

)

δIJ +
∑

K=4,5

2T
(K)
3 V ∗,KI

R V KJ
R

]

, (4.4)

where T
(K)
3 is the weak isospin of the VL quark K. Note that the modifications to the

couplings with respect to the SM values (including off-diagonal terms) are all proportional

to the V 4I
L/R and the V 5I

L/R elements of the mixing matrices. Let’s now consider the bounds

applied generation by generation.
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4.1.1 Bounds on the first generation

Atomic parity violation. The weak charge of a nucleus can be, in general, written

as [42]:

QW = (2Z +N)(g̃uZL + g̃uZR) + (Z + 2N)(g̃dZL + g̃dZR) , (4.5)

where gZ = g
2 cos θW

g̃Z . In our case:

δQW = (2Z +N)
∑

K=4,5

(

(2T
(K)
3 − 1)|V K1

L |2 + 2T
(K)
3 |V K1

R |2
)

. (4.6)

The strongest bound is for Cesium, for which 2Z +N = 188, and [43]:

QW |exp. = −73.20± 0.35 , QW |SM = −73.15± 0.02 . (4.7)

Neglecting the theoretical error on the SM value, which is rather small:

δQW = −0.05± 0.35 . (4.8)

4.1.2 Bounds on the second generation

Z-couplings measured at LEP. The couplings of the charm have been well measured

at LEP [44]:

gcZL = 0.3453± 0.0036 , gcZR = −0.1580± 0.0051 , correlation = 0.30 . (4.9)

One can use this input to reconstruct a χ2 distribution, and set bounds on the mixing

angles: the most conservative approach is to assume that the central values correspond To

the SM prediction, therefore any deviation must be smaller than the quoted errors. The

χ2 can be constructed as follows:

χ2 =
∑

i,j=1,2

δgi(V −1)ijδgj , (4.10)

where δg are the deviations in the two couplings (left and right handed) and:

V ij = ρijσiσj , where ρ =

(

1 0.30

0.30 1

)

, (4.11)

and σj are the errors. In the plots below, we will draw confidence levels at 68% (χ2 = 2.30

for 3 degrees of freedom), 95% (5.99) and 99% (9.21).

4.1.3 Bounds on the third generation

Wtb couplings measured at TeVatron and LHC. As there is no mixing in the bottom

sector, the value of Vtb is affected only by the mixing of the top with the VL quarks in the

left-handed sector:

|Vtb|2 = 1−
∑

K=4,5

|V K3
L |2 . (4.12)

A list of up-to-date direct measurements and lower bounds on Vtb can be found

here [45]. The strongest bound is from a CMS measurements of single top cross sec-

tions at 7 TeV [46], which gives |Vtb| > 0.92 at 95% CL. We will use this limit to define

the allowed region, even though all other searches, including Tevatron [47], CMS [48] and

ATLAS [49] at 8 TeV, have bounds |Vtb| > 0.80 at 95% CL (see also [50, 51] for summaries

of the most recent results).

– 12 –



J
H
E
P
0
9
(
2
0
1
5
)
0
1
2

4.2 Oblique corrections and other loop-level bounds

In the following we analyse the impact of the interplay of two VL multiplets with the

complete three SM generations in order to establish bounds from the electroweak precision

tests (EPW) in term of the oblique corrections. These bounds will be compared with

those coming from tree-level observables. In order to parameterise the effect of the loop

correction we will use the Peskin-Takeuchi S, T and U parameters, defined as [52, 53]:

S = 16π
[

Π′
33(0)−Π′

3Q(0)
]

, (4.13)

T =
4π

s2W c
2
Wm

2
Z

[Π11(0)−Π33(0)] , (4.14)

U = 16π
[

Π′
11(0)−Π′

33(0)
]

. (4.15)

where Πij are the scalar two point functions, related to the W , Z, and A one-loop two

point functions by:

ΠAA = e2ΠQQ , (4.16)

ΠZA =
e2

sW cW

(

Π3Q − s2WΠQQ

)

, (4.17)

ΠZZ =
e2

s2W c
2
W

(

Π33 − 2s2WΠ3Q + s4WΠQQ

)

, (4.18)

ΠWW =
e2

s2W
Π11 . (4.19)

For this work we have taken the SM reference point masses to be mh,ref = 126 GeV,

mt,ref = 173 GeV and mb,ref = 4.2 GeV. If ŜVL and T̂VL is the contribution of the model

(including VL quarks) to the S and T parameters then the deviations can be defined as [54]:

S = ŜVL − ŜSM , T = T̂VL − T̂SM , (4.20)

where the SM reference values, ŜSM and T̂SM , can be approximated as:

ŜSM ≃ Nc

6π

[

3− 1

3
ln

(

m2
t

m2
b

)]

, (4.21)

T̂SM ≃ Nc

16πs2W c
2
Wm

2
Z

[

m2
t +m2

b −
2m2

tm
2
b

m2
t −m2

b

ln

(

m2
t

m2
b

)]

. (4.22)

By fixing U = 0, the experimental results for the S and T parameters are given by [55, 56]:

S = 0.05± 0.09 , T = 0.08± 0.07 , (4.23)

where the correlation between S and T in this fit is ρST = 0.91.

If VL multiplets are present in the physical spectrum, the Πij two-point functions get

extra contributions from the new particles circulating in the loops. Obviously if other

particles than the VL quarks are present in a specific model of new physics, they may
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also contribute. Therefore the bounds obtained from the S and T parameters should be

taken with this restriction in mind. The detailed formulas for the contributions of the VL

particles to the S and T parameters are given in appendix C. In the numerical study we

have combined the tree-level and loop-level bounds from the S and T parameters, in the

case of two multiplets of VL quarks. This allows to study the effect of the interplay of the

two multiplets and the effect of the extra Yukawa couplings among the two VL multiplets

(ω and ω′ parameters). Even if in the previous sections we have calculated analytically

the general mixing structure under some approximations, for the numerical part of this

analysis the mixing angles have been computed exactly by numerically diagonalising the

mass matrices. Other loop-level bounds may apply to the vector-like multiplets from

precision measurements. For example loop corrections to the Zbb̄ vertex may be non-

negligible for large values of the couplings in our effective models even if we restrict our

study to the cases where the partner of the SM b-quark has the same quantum numbers

as the bL which assures protecting the Zbb̄ vertex at the tree level. We do not investigate

further this issue as in detailed models it is possible to implement a custodial protection

for the Zbb̄ coupling at loop level (see for example [16]). The same custodial protection

applies to the T-parameter while it does not to the S-parameter. In the following sections

we compute the bounds on the various multiplets from tree level constraints and compare

them in a simplified way to the EWP tests, as loop level constraints are more model

dependent (as in realistic models other particles are present beyond the VL multiplets

which may affect the loop contributions).

We have also estimated the constraints coming from ATLAS [57] and CMS [58] results

on loop induced Higgs decay processes h→ γγ and h→ gg at 2σ level. These results have

been discussed and relevant expressions are given in appendix E. Some salient features of

the constraints are [34, 59, 60]:

• VL quark mixing with third SM quark generation: constraints are very weak (in

comparison with EWP and tree level constraints).

• VL quark mixing with first two SM quark generations: constraints coming from VL

quark mixing with first and second generation of SM quarks are similar and are better

as compared to the above case (mixing with third SM generation). But still these

constraints are much weaker in comparison to other constraints considered in this

work.

• Mixing between VL sector alone: EWP constraints in most cases still provide better

constraints with the exception of the case where we have possibility of mixing in

exotic quark sector (mixing of X5/3). This happens in “Doublet (Y = 7/6) and

Doublet (Y = 1/6)”.

5 Results

For our numerical analysis we have considered the mass parameters M1 and M2 of the VL

quarks to be same, i.e. M1 =M2 =M . As the models have too many parameters to make

a meaningful scan, we will show results in two limiting cases, when possible:
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Figure 1. Singlet Y = 2/3 and Doublet Y = 7/6 (section 3.1. EWP bounds at 1 σ (red-dashed), 2

σ (green-dashed) and 3 σ (blue) for VL quarks coupling with the first (left panel) and third (right

panel) SM generations, compared with the region excluded at 3σ by tree-level bounds (yellow

region). Here, M = 800 GeV, and ω = ω′ = 0. Only the first quadrant is shown as the figures

are symmetric with respect to a sign change in the coordinates in the other 3 quadrants. Similar

considerations apply to all the other figures of the same type.

• the VL quarks can mix with a single SM generation, but not with each other (i.e.

ω ∼ ω′ ≪M);

• the VL quarks mix with each other (wherever possible), but the mixing with SM

quarks is very small.

The results in these simple limits can give a general idea on the allowed value of the mixing

parameters, even though the case where all of them are non-zero is more realistic. We will

focus on the benchmark value for the VL mass of 800 GeV as a recent CMS analysis [61]

sets a bound of 788 GeV under the assumption of strong pair production of VL quarks and

100% branching fractions to qW . Higher bounds apply in other LHC analyses in the case of

specific assumptions on the couplings, for example decay to third generation only. This is

however not the case in general when mixing to the light generations is allowed [38, 62]. In

the following we also consider cases in which the VL quark does not decay to qW . For these

cases the bound does not apply directly, but these VL quarks are in doublets containing

also other VL quarks for which the bound applies. As it is reasonable to assume that mass

splittings inside multiplets are not large compared to the mass scale of the multiplet, we

shall apply this 800 GeV benchmark value to all cases as an example. A more detailed

study of the LHC bounds and implications is postponed to a further study.

5.1 Singlet Y = 2/3 and Doublet Y = 7/6

This scenario contains — besides the SM particle spectrum — two VL top quarks and one

exotic quark with charge 5/3. The Yukawa couplings and mass matrices for this scenario
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Figure 2. Singlet Y = 2/3 and Doublet Y = 7/6 (section 3.1). Left panel: EWP bounds at 1σ

(red-dashed), 2σ (green-dashed) and 3 σ (blue) as a function of the new Yukawa couplings ω and

ω′ with M = 800 GeV. We have assumed that there is no mixing of VL quarks with the SM quark

generations i.e. xk2 = yk1 = 0. Right panel: bound from ATLAS (dashed blue) and CMS (solid red)

data on Higgs couplings to photons and gluons.

are given in section 3.1. The additional parameters (apart from the SM ones) are: xk2,

yk1 , ω, ω
′ and M with k running on SM quark generations. We first study the case where

ω′ ∼ ω ∼ 0, and the VL quarks couple to a single generation: in this case, setting ω′

to zero allows us to set both Yukawa couplings x2 and y1 to be real and positive. The

allowed regions in the parameter space, given the constraints from tree-level and EWP

tests discussed in section 4, are presented in figure 1. We see that for couplings to the light

generations (see appendix D for the plot with second generation), the tree level bounds

always dominate, and require the mixing of VL quarks to be rather small. The case of

the third generation is very different: the tree level bounds are very weak as they only

come from Vtb, while EWP tests allow for large mixings, especially via a compensation

between the doublet and singlet (in particular, y31 can assume very large values). This

situation can be very interesting in the single-production channel, where for instance the

top partner may be produced via couplings to the first generation (the smaller coupling

is easily compensated by the valence quark in the initial state [36]) and then decay into a

third generation quark [63–65].

In figure 2 left panel we show the EWP bounds in the plane of the Yukawa couplings

between VL quarks, ω and ω′, assuming that the other couplings are small. This plot gives

a general idea on the allowed size of ω and ω′: the bound is indeed not very strong, and

values up to 300 GeV are allowed. The plot is clearly symmetric under change of sign of

either ω or ω′, reflecting the one arbitrary phase in this sector. As we are approximately

decoupling the two t′s from the SM quarks, the mixing is dominated by the 2 × 2 block

of the VL quarks, similar to the matrix in eq. (3.24). We then see that the mixing angles

(eq. (3.28)) vanish when ω = −ω′, thus explaining the sharp dents in the excluded region.
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Figure 3. Doublet Y = 7/6 and Triplet Y = 5/3 (section 3.2). EWP bounds at 1σ (red-dashed),

2σ (green-dashed) and 3 σ (blue) for VL quarks coupling with the first (left panel) and third (right

panel) SM generations, compared with the region excluded at 3σ by tree-level bounds (yellow region

in the left panel). M = 800 GeV and ω = ω′.

This effect only appears in our limiting choice M1 = M2 and for negligible mixing to SM

quarks. In right panel of figure 2 we have shown the constraints coming from Higgs decays.

These constraints in some regions are at best comparable to the constraints coming from

EWP constraints.

5.2 Doublet Y = 7/6 and Triplet Y = 5/3

This scenario contains two VL top quarks and three exotic quarks: two with charge 5/3

and one with charge 8/3. All of these states contribute to the corrections to the EWP

tests. The Yukawa couplings and mass matrices for this scenario are given in section 3.2.

The additional Yukawa couplings in the model are: yk1 , ω, ω
′ and M with k running on

SM quark generations.

As there is a single Yukawa mixing involving the SM quarks, we decided to add a

non-vanishing ω in the scan, setting ω′ = ω. The combined bounds from tree-level and

EWP tests are given in figure 3 for scenarios where the VL quarks mix with either one

of the SM quark generation (case for second generation in appendix D). While three level

bounds only exclude a large mixing to the SM quarks in the case of light generations, a

bound on the VL Yukawa ω arises from the EWP bounds. For the light generations, both

Yukawas are constrained to be small. For third generation, the EWP bounds give similar

value near the axes, however there is a cancellation absent in the case of light generation

which opens the parameter space for ω = ω′ ∼ y31, so that larger mixing angles are allowed.

In figure 4 left panel, we show the EWP bounds in the plane of the new Yukawa

couplings ω and ω′. The bounds are not very strong, allowing values up to 200 GeV. We

also observe, like in figure 2, two dents for ω = −ω′ due to the vanishing of the mixing angles

(for M1 = M2). This is again an artifact of our choice of equal VL masses and vanishing
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Figure 4. Doublet Y = 7/6 and Triplet Y = 5/3 (section 3.2). Left panel: EWP bounds at 1σ

(red-dashed), 2σ (green-dashed) and 3σ (blue) as a function of the new Yukawa couplings ω and

ω′ with M = 800GeV. In addition the mixing of VL quarks with SM quarks is taken to be zero

i.e. yk1 = 0. Right panel: bound from ATLAS (blue) and CMS (red) data on Higgs couplings to

photons and gluons.

couplings to the SM quarks. In the left panel of 4 we show the bounds coming from the

measurement of the Higgs couplings in the same plane of the new Yukawa couplings ω

and ω′. These bounds are slightly better compared to the case of right panel of figure 2

due to the presence of exotic quarks (X5/3) mixing that can give sizable variation in Higgs

decays. These bounds are complementary to those of the EWP and slightly weaker in

most of the parameter space with present data. It is clear however that improvement on

these measurements is of great interest for constraining this particular model. In the other

cases examined in the present work, the bounds coming from the measurement of the Higgs

couplings are not shown, as they are further suppressed with respect to the present case

(for a detailed explanation see section 4.4 of [34]).

5.3 Singlet Y = 2/3 and Doublet Y = 1/6

This scenario contains a VL copy of the SM quarks: two VL top quarks and one VL bottom

quark. The additional Yukawa couplings in the model, described in section 3.3, are: yk1 ,

xk2, and M with k running on SM quark generations. Here we set the Yukawa in the down

sector yk1d = 0 to minimise bounds from flavour physics: this can be done independently

on the up sector.

In figure 5 we show the combined bounds from EWP tests for VL quarks mixing with

individual SM quark generations. As in the previous scenarios, the mixing between VL

quarks is taken to be zero, i.e. ω = ω′ = 0. This scenario exhibits quite distinctive features

depending on the VL mixings and masses. In the case of mixing with the third generation,

EWP bounds constrain quite tightly the allowed mixing parameters. In the case of mixing

with first generation only, tree level bounds are quite tight too up to a cancellation for
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Figure 5. Singlet Y = 2/3 and Doublet Y = 1/6 (section 3.3). EWP bounds at 1σ (red-dashed),

2σ (green-dashed) and 3 σ (blue) for VL quarks coupling with the first (left panel) and third (right

panel) SM generations, compared with the region excluded at 3σ by tree-level bounds (yellow region

in the left panel). Here, M = 800GeV, and ω = ω′ = 0.

Figure 6. Singlet Y = 2/3 and Doublet Y = 1/6 (section 3.3). Left panel: EWP bounds at 1σ

(red-dashed), 2σ (green-dashed) and 3σ (blue) as a function of the new Yukawa couplings ω and

ω′ with M = 800GeV. In addition the mixing of VL quarks with SM quarks is taken to be zero

i.e. yk1 = 0. Right panel: bound from ATLAS (blue) and CMS (red) data on Higgs couplings to

photons and gluons.

y11 ∼ x12 where the mixing can be arbitrarily large. This throat may suggest the possibility

of large compositeness in the light quark sector. However, we see that EWP bounds

exclude this region and point back to small mixing. For the case of mixing with second

generation (see appendix D), EWP bounds dominate and again force the scenario to small

mixing parameters.
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Figure 7. Doublet Y = 1/6 and Doublet Y = 7/6 (section 3.4). EWP bounds at 1σ (red-dashed),

2σ (green-dashed) and 3 σ (blue) for VL quarks coupling with the first (top left panel) and third (to

right panel) SM generations, compared with the region excluded at 3σ by tree-level bounds (yellow

region in the left panel). Bottom panel: bounds from ATLAS (dashed blue) and CMS (solid red)

data on Higgs couplings to photons and gluons considering VL couplings with first SM generation.

Plot for the coupling of VL quarks with second SM generation is similar.

In left panel of figure 6 we show the results of EWP bounds in ω-ω′ plane (the VL

top quarks mixing plane). The nature of the constraints and the features of the plot are

similar to the results of Singlet (Y = 2/3) + Doublet (Y = 7/6) as shown in figure 2. In

right panel of the same figure we have shown the constraints coming from Higgs decay.

5.4 Doublet Y = 1/6 and Doublet Y = 7/6

This scenario is particularly interesting as it corresponds to a bi-doublet of the custodial

SO(4) symmetry, which is often a basic ingredient for top partial compositeness in models
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of composite Higgs (see for instance [30]). This scenario contains two VL top quarks,

one VL bottom quark and one exotic quark with charge 5/3. The additional parameters,

described in section 3.4, are: yk1 , y
k
2 and M with k running on SM quark generations. Note

that for this scenario mixing between VL quarks (i.e. ω and ω′) is not allowed. Analogously

to the model discussed in the previous section 5.3, this model also introduces an additional

mixing in the bottom sector, which is again independent from the the mixing in the top

sector. Hence it is possible to impose the condition yk1d = 0 without affecting the top sector.

The results for the combined tree-level and EWP bounds are given in upper two panels

of figure 7. For the first generation (and the second, see appendix D), there is an interesting

cancellation in the tree-level bounds for |yk1 | = |yk2 |: this is a consequence of an enhanced

custodial symmetry, and this fact has been used in the literature to justify O(1) mixings of

VL quarks with light generations [66]. EWP bounds show a similar cancellation, however

along an axes which is a bit off compared to |yk1 | = |yk2 |, therefore a tension between the

two allowed regions develops for large mixings. Similar behaviour in the EWP bounds can

be seen in the case of mixing to the third generation only. We have shown the constraints

coming from Higgs decay in the bottom panel of figure 7 when VL quarks mixes with first

SM quark generation. As explained above in this case the presence of two doublets gives

rise to enhanced custodial symmetry and hence there is a allowed region of parameter space

along |yk1 | = |yk2 |. As shown in bottom panel of figure 7 this region can get constrained by

Higgs decay measurements.

5.5 Single production cross sections

In this section a comparison between the tree-level and loop-level bounds and the bounds

from single production processes at the LHC is provided for the scenarios above. The

relevance of single production is given by the fact that its cross-section depends on both

the masses of the VL quarks and their couplings to the SM quarks; moreover, it is well

known that single production becomes the dominant channel at the LHC, overcoming QCD

pair production, when quark masses are higher than a certain (model-dependent) value.

For typical scenarios where VL quarks mix predominantly with third generation and mixing

parameters are not too constrained by flavour physics and EWP tests, the mass bounds

from QCD pair production are already in the region where the single production channel

is relevant or even dominant [34]. So far, few experimental searches for single production

of VL quarks have been performed. The ATLAS experiment has performed two searches

including single production of VL quarks: in [67] a search for singly-produced VL quarks

coupling only with first generation is performed, while [68] is a search for for pair+single

production of VL quarks mixing with third generation only. The search [67] has already

been considered in a previous analysis [36] for comparing bounds from LHC and flavour

physics, and we will consider in this analysis part of the results obtained in that study. To

be specific, in the following we will consider the single production of a VL top partner in

association with a light jet, and the mass of the VL quark will be fixed to 800GeV. We

consider exclusive coupling to each of the three SM generations for each scenario.

The LHC bounds have been obtained by applying the model-independent parametri-

sation described in [36]. Considering the observed cross-section reported in the ATLAS
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Figure 8. Singlet Y = 2/3 and Doublet Y = 7/6 for mixing with first generation only (left), second

generation only (middle), third generation (right), and for a mass of the VL quarks of 800GeV.

The channel is T+jet. The grey contour lines correspond to cross-section values in picobarns at

14TeV. The region inside the red line is allowed by the S and T parameters. The region inside

the blue line is allowed by the tree-level bounds. The dashed black lines are the bounds from the

ATLAS search [67].

analysis [67] and the universal coefficients computed in [36] (tables 12–17) it is possible to

set bounds on the overall coupling strengths of the singly-produced VL quarks by using

the relations in sections 3 and 4 of [36].

In the plots presented in figures 8, 9, 10, 11 the LHC bounds are directly compared

with the tree-level and EWPT bounds. The region inside the red line is the one allowed by

the S and T parameters (oblique corrections) whereas the blue line marks the constraint

from tree-level bounds. The EWPT bound should be taken only as an indication are the

explicit assumption that no other extra states contribute to the corrections is imposed;

this simplification is not true in general, e.g. in a complete model containing other new

particles besides VL multiplets. The dashed black lines are the bounds at 3σ derived by

reinterpreting the results of the ATLAS search [67]. The grey lines represent the contours

of the LHC production cross-section (in pb) for the process of single production of a VL

top quark in association with a light jet (pp→ Tj).

The results of the “Singlet (Y = 2/3) and Doublet (Y = 7/6)” scenario are summarised

in figure 8. For this scenario, the tree-level bounds are the most stringent ones if VL quarks

mix to the light generations, and they are stronger than the current bound form the ATLAS

search. In both cases, the largest Tjet cross section allowed is between 0.5 and 1 pb. In the

case of mixing to the third generation only EWP and tree level bounds conspire to select

small mixing, and the single production at 14TeV is limited to small values around 100 fb.

Figure 9 shows the results for the “Doublet (Y = 7/6) and Triplet (Y = 5/3)” scenario. In

this case the oblique parameters constrain a much larger region of parameter space and this

is due to the much richer exotic quark (quarks with charges 5/3 and 8/3) spectrum, that

contributes to the corrections to the oblique parameters. The cross sections for the tjet

channel are much smaller than in the previous case, with value around 100 fb for mixing

to light generations: this is due to the suppression in the coupling of the t′ (belonging

to a doublet) to the W boson and a SM down-type quark. For the same reason, in the

case of coupling to third generation only, the channel is nearly absent. Figure 10 refers to
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Figure 9. Doublet Y = 7/6 and Triplet Y = 5/3 for mixing with first generation only (left) ,second

generation only (middle), third generation (right), and for a mass of the VL quarks of 800GeV.

The channel is T+jet. The grey contour lines correspond to cross-section values in picobarns at

14TeV. The region inside the red line is allowed by the S and T parameters. The region inside

the blue line is allowed by the tree-level bounds. The dashed black lines are the bounds from the

ATLAS search [67].

the “Singlet (Y = 2/3) and Doublet (Y = 1/6)” scenario. Due to the presence of a SM

type VL doublet, this scenario contains right handed charged gauge boson couplings which

give additional contributions to the oblique parameters. However, the tree-level constraints

are the most stringent for the parameter space of this scenario. We see that in the case

of mixing to the first generation, large production rates are allowed, with cross sections

above 1 pb and a region already probed by the ATLAS search. Smaller cross sections are

attained in the case of mixing to the second generation, while the maximum values drop to

about 100 fb for mixing to the third generation. This is the scenario than offers the largest

single-production cross sections, and it is a golden case to be studied at the Run 2 of the

LHC. Finally, in figure 11 the results for the “Doublet (Y = 1/6) and Doublet (Y = 7/6)”

scenario are presented. Again, though the presence of an exotic quark with charge 5/3

and of right-handed charged currents which contribute to the corrections to the oblique

parameters, the tree-level constraints are stronger for the most part of the parameter space.

The large mixings allowed in the cancellation region produce very large Tjet cross sections,

with the largest mixing already excluded by the ATLAS search. This is indeed a case where

single production can be the most promising channel for the observation of the VL quarks.

In the case of mixing the third generation, the single production vanishes: the reason for

this is that t′s belonging to doublets have very suppressed couplings to the Wb, thus they

cannot be produced in association with a light jet but only in association with tops.

An interesting common feature of all the scenario considered is that the LHC bounds

can be competitive if not stronger than the tree- and loop-level bounds. Indeed the current

LHC data we have considered are already able to constrain region of parameter space

otherwise allowed by other observables.

Another type of constraints can be obtained exploiting tools for the recasting of ex-

perimental searches for pair production of VL quarks. Considering the bounds on masses

and couplings of the VL multiplets it is possible to compute their branching ratios into SM

states, and through the recently developed software XQCAT [38, 62, 69], one can determine
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Figure 10. Singlet Y = 2/3 and Doublet Y = 1/6 for mixing with first generation only (left), second

generation only (middle), third generation (right), and for a mass of the VL quarks of 800GeV.

The channel is T+jet. The grey contour lines correspond to cross-section values in picobarns at

14TeV. The region inside the red line is allowed by the S and T parameters. The region inside

the blue line is allowed by the tree-level bounds. The dashed black lines are the bounds from the

ATLAS search [67].

Figure 11. Doublet Y = 1/6 and Doublet Y = 7/6 for mixing with first generation only (left), sec-

ond generation only (middle), third generation (right), and for a mass of the VL quarks of 800GeV.

The channel is T+jet. The grey contour lines correspond to cross-section values in picobarns at

14TeV (this channel is not allowed in the case of the plot on the right). The region inside the

red line is allowed by the S and T parameters. The region inside the blue line is allowed by the

tree-level bounds. The dashed black lines are the bounds from the ATLAS search [67].

the exclusion regions by considering results from dedicated searches in pair production and

other searches not specifically designed for VL quarks (such as SUSY analyses). This study

can be performed systematically for different combinations of VL multiplets, and we post-

pone this analysis to a subsequent paper, where we will compare the bounds obtained by

XQCAT with dedicated simulations for specific scenarios.

6 Conclusions

Vector-like quarks are predicted by many theoretically motivated models of new physics.

In most of these models VL quarks appear in complete multiplets and, usually, more than

one multiplet is predicted. In this analysis we have considered scenarios with multiple VL

quarks both from the point of view of the general mixing structure with the three Standard

Model generations and considering the mixing pattern of these multiplets for the deter-
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mination of mixing effects and precision electroweak observables both at tree-level and at

loop-level. The specific case of two different vector-like quark multiplets has been studied

in detail, with a special focus on multiplets containing a top partner. The main result of

our analysis is that tree-level and loop-level constraints provide complementary informa-

tion. Moreover the interplay of the vector-like multiplets among themselves and with the

Standard model quarks have important consequences for phenomenology as in some cases

large single production cross-sections are possible and coupling with light generations is not

necessarily suppressed. These results have phenomenological implications for LHC searches

as the bounds we have extracted pinpoint particular regions of the parameter space and

suggest that in realistic cases containing multiple multiplets of vector-like quarks, cancella-

tions are possible from tree-level bounds which allow large values of the mixing parameters.

Even if the EWP tests partially allow to limit these regions where cancellations occur, one

has to keep in mind that these loop-level constraints are valid under the assumption that

no other states apart from the vector-like multiplets contribute to the S and T parameters.

Therefore it is clear that direct searches by the LHC experimental collaborations in the

next run of the LHC will play a mayor role in constraining or discovering physics beyond

the Standard Model which contains vector-like multiplets.
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A Lagrangian and mass matrices with two VL multiples

The cases are classified into following four categories:

• Top type multiples: only have 2 top VL quarks and no bottom VL quark.

• Bottom type multiplets: only have 2 bottom VL quarks and no top VL quark.

• Hybrid multiplets: mixing of top and bottom VL quarks with SM quarks are indepen-

dent. Hence one can safely take mixing of bottom VL quarks with SM bottom sector

to be zero to satisfy all the flavour physics bounds without affecting the top sector.

• Mixed multiplets: remaining cases.
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A.1 Top multiplets

In this appendix we consider the multiplets that are presented in the list of tables 1, 2

and 3. The multiplets containing a top type partner but without any down type partner,

in terms of the (SU(2)L,U(1)Y ) quantum numbers, are the singlet (1, 2/3), the doublet

(2, 7/6), and the triplet (3, 5/3), all listed in table 1.

A.1.1 Singlet Y = 2/3 and Doublet Y = 7/6

Details are given in section 3.1.

A.1.2 Doublet Y = 7/6 and Triplet Y = 5/3

Details are given in section 3.2.

A.1.3 Singlet Y = 2/3 and Triplet Y = 5/3

LV−SM = −λk2Q̄k
LH̃ψ2R + h.c. , (A.1)

where ψ1 = (3, 53) =
(

X
8/3
1 , X

5/3
1 , U1

)T
and ψ2 = (1, 23) = U2. The mass lagrangian and

mass matrices are:

Lmass = −xk2ukLU2R −M1X̄
8/3
1L X

8/3
1R −M1X̄

5/3
1L X

5/3
1R

−M1Ū1LU1R −M2Ū2LU2R + h.c. , (A.2)

Mu =







(m̃up)3×3 03×1

(

xk2
)

3×1

01×3 M1 0

01×3 0 M2






, MX5/3 =M1, MX8/3 =M1 , (A.3)

where m̃up is the SM 3× 3 mass matrix of the up sector.

A.2 Bottom multiplets

The multiplets which do not contain a top type partner, but do contain a down type

partner, in terms of the (SU(2)L,U(1)Y ) quantum numbers, are the singlet (1,−1
3) and

the doublet (2,−5
6) and triplet (3,−4

3). All these multiplets are listed in table 2.

A.2.1 Singlet Y = −1/3 and Doublet Y = −5/6

LV−SM = −λk1d ψ̄1LH̃d
k
R + h.c. , (A.4)

LV−V = −ξ1 ψ̄1LH̃ψ2R − ξ2 ψ̄1RH̃ψ2L + h.c. , (A.5)

where ψ1 = (2,−5
6) =

(

D1, Y
−4/3
1

)T
and ψ2 = (1,−1

3) = D2. The mass lagrangian and

mass matrices are:

Lmass = −yk1dD̄1Ld
k
R − ωD̄1LD2R − ω′D̄1RD2L −M1 D̄1LD1R

−M1 Ȳ1LY1R −M2 D̄2LD2R + h.c. , (A.6)

Mu = (m̃up)3×3 , Md =







(

m̃down
)

3×3
03×1 03×1

(yk1d)1×3 M1 ω

01×3 ω′ M2






, MY −4/3 =M1 , (A.7)
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where m̃up and m̃down are the SM 3× 3 mass matrices of the up and down sectors respec-

tively.

A.2.2 Doublet Y = −5/6 and Triplet Y = −4/3

LV−SM = −λk1d ψ̄1LH̃d
k
R + h.c. , (A.8)

LV−V = −ξ1 ψ̄1Lτ
aH(ψ2R)

a − ξ2 ψ̄1Rτ
aH(ψ2L)

a + h.c. , (A.9)

where ψ1 = (2,−5
6) =

(

D1, Y
−4/3
1

)T
and ψ2 = (3,−4

3) =
(

D2, Y
−4/3
2 , Y

−7/3
2

)T
. The mass

lagrangian and mass matrices are:

Lmass = −yk1dD̄1Ld
k
R −

√
2ωD̄1LD2R − ωȲ

−4/3
1L Y

−4/3
2R −

√
2ω′D̄1RD2L − ω′Ȳ

−4/3
1R Y

−4/3
2L

−M1 D̄1LD1R −M1 Ȳ
−4/3
1L Y

−4/3
1R −M2 D̄2LD2R −M2 Ȳ

−4/3
2L Y

−4/3
2R

−M2 Ȳ
−7/3
2L Y

−7/3
2R + h.c. , (A.10)

Md =







(

m̃down
)

3×3
03×1 03×1

(yk1d)1×3 M1

√
2ω

01×3

√
2ω′ M2






, MY −4/3 =

(

M1 ω

ω′ M2

)

, MY −7/3 =M2. (A.11)

A.3 Hybrid multiplets

Multiplets where the mixing parameters of top and bottom sectors are independent. Hence

one can evade the constraints coming from b-sector by assuming mixing to be zero without

effecting top sector.

A.3.1 SM Doublet Y = 1/6 and singlet Y = 2/3

Details are given in section 3.3.

A.3.2 SM Doublet Y = 1/6 and Doublet Y = 7/6

Details are given in section 3.4.

A.3.3 SM Doublet Y = 1/6 and singlet Y = −1/3

LV−SM = −λk1 ψ̄1LH̃u
k
R − λk1d ψ̄1LHd

k
R − λk2dQ̄

k
LHψ2R + h.c. , (A.12)

LV−V = −ξ1 ψ̄1LHψ2R − ξ2 ψ̄1RHψ2L + h.c. , (A.13)

where ψ1 = (2, 16) = (U1, D1)
T and ψ2 = (1,−1

3) = D2. The mass lagrangian and mass

matrices are:

Lmass = −yk1 Ū1Lu
k
R − yk1dD̄1Ld

k
R − xk2dd

k
LD2R − ωD̄1LD2R − ω′D̄2LD1R

−M1 D̄1LD1R −M2 D̄2LD2R −M1 Ū1LU1R + h.c. , (A.14)

Mu =

(

(m̃up)3×3 03×1

(yk1 )1×3 M1

)

, Md =







(

m̃down
)

3×3
03×1 (xk2d)3×1

(yk1d)1×3 M1 ω

01×3 ω′ M2






. (A.15)
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A.3.4 SM Doublet Y = 1/6 and Doublet Y = −5/6

LV−SM = −λk1 ψ̄1LH̃u
k
R − λk1d ψ̄1LHd

k
R − λk2dψ̄2LH̃d

k
R + h.c. , (A.16)

where ψ1 = (2, 16) = (U1, D1)
T and ψ2 = (2,−5

6) =
(

D2, Y
−4/3
2

)T
. The mass lagrangian

and mass matrices are:

Lmass = −yk1 Ū1Lu
k
R − yk1dD̄1Ld

k
R − yk2dD̄2Ld

k
R −M1 Ū1LU1R −M1 D̄1LD1R

−M2 D̄2LD2R −M2 Ȳ
−4/3
2L Y

−4/3
2R + h.c. , (A.17)

Mu =

(

(m̃up)3×3 03×1

(yk1 )1×3 M1

)

, Md =







(

m̃down
)

3×3
03×1 03×1

(yk1d)1×3 M1 0

(yk2d)1×3 0 M2






, MY −4/3 =M2 .

(A.18)

A.4 Mixed multiplets

The remaining combinations contain multiplets with both a VL top partner and a VL

bottom partner but with non-independent mixing in the up and in the down sector. They

are listed in table 3. These combinations are not considered in our numerical studies,

however their mixing structure with the SM and the other VL multiplets is described in

the following.

A.4.1 SM Doublet Y = 1/6 and Triplet Y = 2/3

LV−SM = −λk1 ψ̄1LH̃u
k
R − λk1d ψ̄1LHd

k
R − λk2 Q̄

k
LH̃τ

aψa
2R + h.c. , (A.19)

LV−V = −ξ1 ψ̄1LH̃τ
aψa

2R − ξ2 ψ̄1RH̃τ
aψa

2L + h.c. , (A.20)

where ψ1 = (2, 1/6) = (U1, D1)
T and ψ2 =

(

X
5/3
2 , U2, D2

)T
. The mass lagrangian and

mass matrices are:

Lmass = −yk1 Ū1Lu
k
R − yk1dD̄1Ld

k
R−xk2

(

ūkLU2R+
√
2 d̄kLD2R

)

−ω
(

Ū1LU2R+
√
2D̄1LD2R

)

−ω′
(

Ū2LU1R +
√
2D̄2LD1R

)

−M1 Ū1LU1R −M1 D̄1LD1R −M2 Ū2LU2R

−M2 D̄2LD2R −M2 X̄
5/3
2L X

5/3
2R + h.c. , (A.21)

Mu =







(m̃up)3×3 03×1 (xk2)3×1

(yk1 )1×3 M1 ω

01×3 ω′ M2






, Md =







(

m̃down
)

3×3
03×1

√
2 (xk2)3×1

(yk1d)1×3 M1

√
2ω

01×3

√
2ω′ M2






,

MX5/3 = M2 . (A.22)
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A.4.2 SM Doublet Y = 1/6 and Triplet Y = −1/3

LV−SM = −λk1 ψ̄1LH̃u
k
R − λk1d ψ̄1LHd

k
R − λk2 Q̄

k
LHτ

aψa
2R + h.c. , (A.23)

LV−V = −ξ1 ψ̄1LHτ
aψa

2R − ξ2 ψ̄1RHτ
aψa

2L + h.c. , (A.24)

where ψ1 = (2, 16) = (U1, D1)
T and ψ2 =

(

3,−1
3

)

=
(

U2, D2, Y
−4/3
2

)T
. The mass lagrangian

and mass matrices are:

Lmass = −yk1 Ū1Lu
k
R−yk1dD̄1Ld

k
R−xk2

(√
2 ūkLU2R − d̄kLD2R

)

−ω
(√

2 Ū1LU2R − D̄1LD2R

)

−ω′
(√

2 Ū2LU1R − D̄2LD1R

)

−M1 Ū1LU1R −M1 D̄1LD1R −M2 Ū2LU2R

−M2 D̄2LD2R −M2 X̄
5/3
2L X

5/3
2R + h.c. , (A.25)

Mu =







(m̃up)3×3 03×1

√
2 (xk2)3×1

(yk1 )1×3 M1

√
2ω

01×3

√
2ω′ M2






, Md =







(

m̃down
)

3×3
03×1 −(xk2)3×1

(yk1d)1×3 M1 −ω
01×3 −ω′ M2






,

MX5/3 = M2 . (A.26)

A.4.3 Triplet Y = 2/3 and singlet Y = 2/3

LV−SM = −λk1 Q̄LH̃ψ1R − λk2 Q̄
k
LH̃τ

aψa
2R + h.c. , (A.27)

where ψ1 = (1, 23) = U1 and ψ2 = (3, 23) =
(

U2, D2, Y
−4/3
2

)T
. The mass lagrangian and

mass matrices are:

Lmass = −xk1ūkLU1R − xi2

(

ūiLU2R +
√
2 d̄iLD2R

)

−M1 Ū1LU1R −M2 Ū2LU2R −M2 D̄2LD2R −M2 Ȳ
−4/3
2L Y

−4/3
2R + h.c. , (A.28)

Mu =







(m̃up)3×3 (xk1)3×1 (xk2)3×1

01×3 M1 0

01×3 0 M2






, Md =

(

(

m̃down
)

3×3

√
2 (xk2)3×1

01×3 M2

)

,

MY −4/3 = M2 . (A.29)

A.4.4 Triplet Y = 2/3 and Doublet Y = 7/6

LV−SM = −λk1 ψ̄1LHu
k
R − λk2 Q̄

k
LH̃τ

aψa
2R + h.c. , (A.30)

LV−V = −ξ1 ψ̄1LHτ
aψa

2R − ξ2 ψ̄1RHτ
aψa

2L + h.c. , (A.31)
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where ψ1 = (2, 76) =
(

X
5/3
1 , U1

)T
and ψ2 = (3, 23) =

(

X
5/3
2 , U2, D2

)T
. The mass lagrangian

and mass matrices are:

Lmass = −yk1 Ū1Lu
k
R − xi2

(

ūiLU2R +
√
2 d̄iLD2R

)

− ω
(√

2 X̄
5/3
1L X

5/3
2R − Ū1LU2R

)

−ω′
(√

2 X̄
5/3
2L X

5/3
1R − Ū2LU1R

)

−M1 Ū1LU1R −M1 X̄
5/3
1L X

5/3
1R

−M2 X̄
5/3
2L X

5/3
2R −M2 Ū2LU2R −M2 D̄2LD2R + h.c. , (A.32)

Mu =







(m̃up)3×3 03×1 (xk2)3×1

(yk1 )1×3 M1 −ω
01×3 −ω′ M2






, Md =

(

(

m̃down
)

3×3

√
2 (xk2)3×1

01×3 M2

)

MY −4/3 =

(

M1

√
2ω√

2ω′ M2

)

. (A.33)

A.4.5 Triplet Y = 2/3 and singlet Y = −1/3

LV−SM = −λk1 Q̄k
LH̃τ

aψa
1R − λk2d Q̄

k
LHψ2R + h.c. , (A.34)

where ψ1 = (3, 23) =
(

X
5/3
1 , U1, D1

)T
and ψ2 = (1,−1

3) = D2. The mass lagrangian and

mass matrices are:

Lmass = −xk1
(

ūkLU1R +
√
2 d̄kLD1R

)

− xk2d d̄
k
LD2R −M1 X̄

5/3
1L X

5/3
1R −M1 Ū1LU1R

−M1 D̄1LD1R −M2 D̄2LD2R + h.c. , (A.35)

Mu =

(

(m̃up)3×3 (xk1)3×1

01×3 M1

)

, Md =







(

m̃down
)

3×3

√
2 (xk1)3×1 (xk2d)3×1

01×3 M1 0

01×3 0 M2






,

MX5/3 = M1 . (A.36)

A.4.6 Triplet Y = 2/3 and Doublet Y = −5/6

LV−SM = −λk1 Q̄k
LH̃τ

aψa
1R − λk2d ψ̄2LH̃d

k
R + h.c. , (A.37)

where ψ1 = (3, 2/3) =
(

X
5/3
1 , U1, D1

)T
and ψ2 = (2,−5/6) =

(

D2, Y
−4/3
2

)T
. The mass

lagrangian and mass matrices are:

Lmass = −xk1
(

ūkLU1R +
√
2 d̄kLD1R

)

− yk2d D̄2Ld
k
R −M1 X̄

5/3
1L X

5/3
1R −M1 Ū1LU1R

−M1 D̄1LD1R −M2 D̄2LD2R + h.c. , (A.38)

Mu =

(

(m̃up)3×3 (xk1)3×1

01×3 M1

)

, Md =







(

m̃down
)

3×3

√
2 (xk1)3×1 03×1

01×3 M1 0

(yk2d)1×3 0 M2






,

MX5/3 = M1 . (A.39)
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A.4.7 Triplet Y = −1/3 and singlet Y = 2/3

LV−SM = −λk1 Q̄k
LHτ

aψa
1L − λk2 Q̄

k
LH̃ψ2R + h.c. , (A.40)

where ψ1 = (3,−1/3) =
(

U1, D1, Y
−4/3
1

)T
and ψ2 = (1, 2/3) = U2. The mass lagrangian

and mass matrices are:

Lmass = −xk1
(√

2 ūkLU1R − d̄kLD1R

)

− xk2ū
k
LU2R −M1 Ū1LU1R −M1 D̄1LD1R

−M1 Ȳ
−4/3
1L Y

−4/3
1R −M2 Ū2LU2R + h.c. , (A.41)

Mu =







(m̃up)3×3

√
2 (xk1)3×1 (xk2)3×1

01×3 M1 0

01×3 0 M2






, Md =

(

(

m̃down
)

3×3
−(xk1)3×1

01×3 M1

)

,

MY −4/3 = M1 . (A.42)

A.4.8 Triplet Y = −1/3 and Doublet Y = 7/6

LV−SM = −λk1 Q̄k
LHτ

aψa
1L − λk2 Q̄

k
LH̃ψ2R + h.c. , (A.43)

where ψ1 = (3,−1/3) =
(

U1, D1, Y
−4/3
1

)T
and ψ2 = (2, 7/6) =

(

X
5/3
2 , U2

)T
. The mass

lagrangian and mass matrices are:

Lmass = −xk1
(√

2 ūkLU1R − d̄kLD1R

)

− xk2 ū
k
LU2R −M1 Ū1LU1R −M1 D̄1LD1R

−M1 Ȳ
−4/3
1L Y

−4/3
1R −M2 Ū2LU2R + h.c. , (A.44)

Mu =







(m̃up)3×3

√
2 (xk1)3×1 (xk2)3×1

01×3 M1 0

01×3 0 M2






, Md =

(

(

m̃down
)

3×3
−(xk1)3×1

01×3 M1

)

,

MY −4/3 = M1 . (A.45)

A.4.9 Triplet Y = −1/3 and singlet Y = −1/3

LV−SM = −λk1 Q̄k
LHτ

aψa
1L − λk2d Q̄

k
LHψ2R + h.c. , (A.46)

where ψ1 = (3,−1/3) =
(

U1, D1, Y
−4/3
1

)T
and ψ2 = (1,−1/3) = D2. The mass lagrangian

and mass matrices are:

Lmass = −xk1
(√

2 ūkLU1R − d̄kLD1R

)

− xk2d d̄
k
LD2R −M1 Ū1LU1R −M1 D̄1LD1R

−M1 Ȳ
−4/3
1L Y

−4/3
1R −M2 D̄2LD2R + h.c. , (A.47)

Mu =

(

(m̃up)3×3

√
2 (xk1)3×1

01×3 M1

)

, Md =







(

m̃down
)

3×3
−(xk1)3×1 (xk2d)3×1

01×3 M1 0

01×3 0 M2






,

MY −4/3 = M1 . (A.48)
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A.4.10 Triplet Y = −1/3 and Doublet Y = −5/6

LV−SM = −λk1d ψ̄1LH̃d
k
R − λk2 Q̄

k
LHτ

aψa
2L + h.c. , (A.49)

LV−V = −ξ1 ψ̄1LH̃τ
aψa

2R − ξ2 ψ̄1RH̃τ
aψa

2L + h.c. , (A.50)

where ψ1 = (2,−5/6) =
(

D1, Y
−4/3
1

)T
and ψ2 = (3,−1/3) =

(

U2, D2, Y
−4/3
2

)T
. The mass

lagrangian and mass matrices are:

Lmass = −yk1dD̄1Ld
k
R − xk2

(√
2 ūkLU2R − d̄kLD2R

)

− ω
(

D̄1LD2R +
√
2 Ȳ

−4/3
1L Y

−4/3
2R

)

−ω′
(

D̄2LD1R +
√
2 Ȳ

−4/3
2L Y

−4/3
1R

)

−M1 D̄1LD1R −M1 Ȳ
−4/3
1L Y

−4/3
1R

−M2 Ū2LU2R −M2 D̄2LD2R −M2 Ȳ
−4/3
2L Y

−4/3
2R + h.c. , (A.51)

Mu =

(

(m̃up)3×3

√
2 (xk2)3×1

01×3 M2

)

, Md =







(

m̃down
)

3×3
03×1 −(xk2)3×1

(

yk1d
)

1×3
M1 ω

01×3 ω′ M2






,

MY −4/3 =

(

M1

√
2ω√

2ω′ M2

)

. (A.52)

A.4.11 Triplet Y = 2/3 and Triplet Y = −1/3

LV−SM = −λk1 Q̄k
LHτ

aψa
1R − λk2 Q̄

k
LH̃τ

aψa
2R + h.c. , (A.53)

where ψ1 = (3,−1/3) =
(

U1, D1, Y
−4/3
1

)T
and ψ2 = (3, 2/3) =

(

X
5/3
2 , U2, D2

)T
. The mass

lagrangian and mass matrices are:

Lmass = −xk1
(√

2 ūkLU1R − d̄kLD1R

)

− xk2

(

ūkLU2R −
√
2 d̄kLD2R

)

−M1 Ū1LU1R −M1 D̄1LD1R −M1 Ȳ
−4/3
1L Y

−4/3
1R

−M2 Ū2LU2R −M2 X̄
5/3
2L X

5/3
2R −M2 D̄2LD2R + h.c. , (A.54)

Mu =







(m̃up)3×3

√
2 (xk1)3×1 (xk2)3×1

01×3 M1 0

01×3 0 M2






,

Md =







(

m̃down
)

3×3
−(xk1)3×1 −

√
2 (xk2)3×1

01×3 M1 0

01×3 0 M2






,

MY −4/3 = M1 , MX5/3 =M2 . (A.55)

B Couplings to gauge and Higgs bosons

The VL quarks couple to gauge bosons and the Higgs boson according to their quantum

numbers. In the following we give some general formulas for the case of two VL quarks

multiplets which were used for our numerical results and which can be easily generalised

for scenarios with more than two VL quark multiplets.
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Model α1 α2 αX5/3

1 αX5/3

2 αX8/3

1 αX8/3

2 αY −4/3

1 αY −4/3

2 αY −7/3

1 αY −7/3

2

A.1.1 0 0 1 0 0 0 0 0 0 0

A.1.2 0 0 1
√
2 0 −

√
2 0 0 0 0

A.1.3 0 0
√
2 0 −

√
2 0 0 0 0 0

A.2.1 0 0 0 0 0 0 1 0 0 0

A.2.2 0 0 0 0 0 0 1 −
√
2 0

√
2

A.3.1 1 0 0 0 0 0 0 0 0 0

A.3.2 1 0 0 1 0 0 0 0 0 0

A.3.3 1 0 0 0 0 0 0 0 0 0

A.3.4 1 0 0 0 0 0 0 1 0 0

A.4.1 1
√
2 0 −

√
2 0 0 0 0 0 0

A.4.2 1 −
√
2 0 0 0 0 0

√
2 0 0

A.4.3 0
√
2 0 −

√
2 0 0 0 0 0 0

A.4.4 0
√
2 1 −

√
2 0 0 0 0 0 0

A.4.5
√
2 0 −

√
2 0 0 0 0 0 0 0

A.4.6
√
2 0 −

√
2 0 0 0 0 1 0 0

A.4.7 −
√
2 0 0 0 0 0

√
2 0 0 0

A.4.8 −
√
2 0 0 1 0 0

√
2 0 0 0

A.4.9 −
√
2 0 0 0 0 0

√
2 0 0 0

A.4.10 0 −
√
2 0 0 0 0 1

√
2 0 0

A.4.11 −
√
2

√
2 0 −

√
2 0 0

√
2 0 0 0

Table 5. The coefficients αi, α
X5/3

i , αX8/3

i , αY −4/3

i and αY −7/3

i (i = 1, 2) in the two vector-like

multiplets models listed in appendix A.

B.1 W± boson couplings

In the gauge basis, the general expressions for the couplings of W± bosons in the two VL

multiplets models are given by

LW± =
g√
2

(

ū1L, ū
2
L, ū

3
L, Ū1L, Ū2L

)

· δL · γµ















d1L
d2L
d3L
D1L

D2L















W+
µ

+
g√
2

(

ū1R, ū
2
R, ū

3
R, Ū1R, Ū2R

)

· δR · γµ















d1R
d2R
d3R
D1R

D2R















W+
µ + h.c. , (B.1)
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with

δL =







I3×3

α1

α2






, δR =







03×3

α1

α2






. (B.2)

Note that the coefficients αi, which are listed in table 5, depend on the representation of

the i-th VL quark. In the mass basis, the left- and right-handed couplings can be written as

gIJWL =
g√
2
V L,IJ
CKM =

g√
2
V u†
L · δL · V d

L , (B.3)

gIJWR =
g√
2
V R,IJ
CKM =

g√
2
V u†
R · δR · V d

R , (B.4)

where V L
CKM and V R

CKM are the left- and right-handed CKM matrix, respectively. Notation

used for indices are capital indices I, J = 1, 2, 3, 4, 5 and i, j, k = 1, 2. The Lagrangian terms

for the couplings between exotic quark X5/3/Y −4/3 and top-type/bottom-type quarks can

be expressed as:

LW± =
g√
2

(

0, 0, 0, X̄
5/3
1L , X̄

5/3
2L

)

·







03×3

αX5/3

1

αX5/3

2






· γµ















u1L
u2L
u3L
U1L

U2L















W+
µ +h.c. . (B.5)

The mass matrix of the X5/3 system is diagonalised as:

MX5/3 = V X5/3

L ·





m
X

5/3
L

m
X

5/3
H



 · V X5/3†
R , (B.6)

where the mass eigenstates X
5/3
L and X

5/3
H are defined as:

(

X
5/3
L

X
5/3
H

)

L/R

= V X5/3†
L/R ·

(

X
5/3
1

X
5/3
2

)

L/R

. (B.7)

In the mass basis, the left- and right-handed couplings of X5/3 become:

gX
5/3,IJ

WL =
g√
2

(

I3×3

V X5/3

L

)†

·







03×3

αX5/3

1

αX5/3

2






· V u

L , (B.8)

gX
5/3,IJ

WR =
g√
2

(

I3×3

V X5/3

R

)†

·







03×3

αX5/3

1

αX5/3

2






· V u

R . (B.9)
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Similarly, the couplings of Y −4/3 can be expressed as

gY
−4/3,IJ

WL =
g√
2
V d†
L ·







03×3

αY −4/3

1

αY −4/3

2






·
(

I3×3

V Y −4/3

L

)

, (B.10)

gY
−4/3,IJ

WR =
g√
2
V d†
R ·







03×3

αY −4/3

1

αY −4/3

2






·
(

I3×3

V Y −4/3

R

)

. (B.11)

We also introduce the general expressions for the couplings between X5/3 and X8/3:

LW± =
g√
2

(

X̄
8/3
1L , X̄

8/3
2L

)

·
(

αX8/3

1

αX8/3

2

)

· γµ
(

X
5/3
1L

X
5/3
2L

)

W+
µ + h.c. . (B.12)

where i, j = 1, 2. Note that there is no mixing between X
8/3
1 and X

8/3
2 in the two VL

multiplets listed in appendix A. The left- and right-handed couplings of X8/3 in the mass

basis are given by:

gX
8/3,ij

WL =
g√
2

(

αX8/3

1

αX8/3

2

)

· V X5/3

L , (B.13)

gX
8/3,ij

WR =
g√
2

(

αX8/3

1

αX8/3

2

)

· V X5/3

R . (B.14)

For exotic quark Y −7/3, the couplings can be evaluated as:

gY
−7/3,ij

WL =
g√
2
V Y −4/3†
L ·

(

αY −7/3

1

αY −7/3

2

)

, (B.15)

gY
−7/3,ij

WR =
g√
2
V Y −4/3†
R ·

(

αY −7/3

1

αY −7/3

2

)

. (B.16)

B.2 Z boson couplings

In terms of Z boson couplings to the quark sector, and for the case of two VL quarks mixing

with any SM quark generation under consideration, it is possible to identify three scenarios

depending on where FCNCs appear. In the Top type multiplets listed in appendix A.1

FCNCs appear in the up quark sector; in the Bottom type multiplets listed in appendix A.2

FCNCs appear in the down quark sector; finally, in the Hybrid and Mixed multiplets,

appendix A.3, A.4, FCNCs appear in both sectors.

The general expression for the left-handed couplings of the Z in the up quark sector

can be written as:

LZ =
g

cW

(

ū1L, ū
2
L, ū

3
L, Ū1L, Ū2L

)

·
[(

1

2
−Qus

2
W

)

I5×5 −∆T up
3

]

γµ ·















u1L
u2L
u3L
U1L

U2L















Zµ , (B.17)
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with:

∆T up
3 =







03×3

(∆T3)
1,u

(∆T3)
2,u






, (B.18)

where I5×5 is the 5 × 5 unit matrix and (∆T3)
k,u = 1/2 − T k,u

3 is the differences between

the SM top-type quark and k-th generation VL quark. In the mass eigenstate basis, the

left-handed coupling becomes:

gu,IJZL =
g

cW

[

(

1

2
−Qus

2
W

)

δIJ −
∑

k=1,2

(∆T3)
k,u (V u∗

L )k+3,I (V u
L )k+3,J

]

. (B.19)

Analogously for the right-handed couplings we obtain:

gu,IJZR =
g

cW

[

(

−Qus
2
W

)

δIJ +
∑

k=1,2

T k,u
3 (V u∗

R )k+3,I (V u
R )k+3,J

]

. (B.20)

For bottom-type quark, we obtain the left- and right-handed couplings:

gd,IJZL =
g

cW

[

(

−1

2
−Qds

2
W

)

δIJ −
∑

k=1,2

∆T k,d
3

(

V d∗
L

)k+3,I (

V d
L

)k+3,J
]

, (B.21)

gd,IJZR =
g

cW

[

(

−Qds
2
W

)

δIJ +
∑

k=1,2

T k,d
3

(

V d∗
R

)k+3,I (

V d
R

)k+3,J
]

, (B.22)

where ∆T k,d
3 = −1/2 − T k,d

3 . The left-handed couplings of the Z in X5/3 quarks can be

written as:

LZ =
g

cW

(

X̄
5/3
1L , X̄

5/3
2L

)

·
[(

T 1,X
3

T 2,X
3

)

−QXs
2
W

(

1

1

)]

γµ ·
(

X
5/3
1L

X
5/3
2L

)

Zµ , (B.23)

where QX = 5/3. In the mass eigenstate, the coupling becomes:

gX
5/3,ij

ZL =
g

cW

[

−QXs
2
W δ

ij +
∑

k=1,2

T k,X
3

(

V X5/3∗
L

)ki (

V X5/3

L

)kj
]

. (B.24)

The right-handed couplings are

gX
5/3,ij

ZR =
g

cW

[

−QXs
2
W δ

ij +
∑

k=1,2

T k,X
3

(

V X5/3∗
R

)ki (

V X5/3

R

)kj
]

. (B.25)

For exotic quark Y −4/3 we obtain the left- and right-handed couplings are:

gY
−4/3,ij

ZL =
g

cW

[

−QY s
2
W δ

ij +
∑

k=1,2

T k,Y
3

(

V Y −4/3∗
L

)ki (

V Y −4/3

L

)kj
]

, (B.26)

gY
−4/3,ij

ZR =
g

cW

[

−QY s
2
W δ

ij +
∑

K=1,2

T k,Y
3

(

V Y −4/3∗
R

)ki (

V Y −4/3

R

)kj
]

, (B.27)
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where QY = −4/3. Similarly, the left- and right-handed couplings of the exotic quarks

X8/3 and Y −7/3 can be expressed as:

gX
8/3

ZL = gX
8/3

ZR =
g

cW

[

T k,X8/3

3 −QX8/3s2W

]

, (B.28)

gY
−7/3

ZL = gY
−7/3

ZR =
g

cW

[

T k,Y −7/3

3 −QY −7/3s2W

]

, (B.29)

where QX8/3 = 8/3 and QY −7/3 = −7/3.

B.3 Higgs boson couplings

In the interaction basis, the Yukawa interactions in top-type quarks can be written as:

LH =
1

v

(

ū1L, ū
2
L, ū

3
L, Ū1L, Ū2L

)

· [Mu −M ] ·















u1R
u2R
u3R
U1R

U2R















h+ h.c. , (B.30)

with:

M =







03×3

M1

M2






. (B.31)

In the mass eigenstate basis the coupling of top-type quark reads:

Cu,IJ =

(

Mdiag
u

)IJ

v
−

∑

k=1,2

Mk

v
(V u∗

L )k+3,I (V u
R )k+3,J . (B.32)

For bottom-type quark, we obtain:

Cd,IJ =

(

Mdiag
d

)IJ

v
−

∑

k=1,2

Mk

v

(

V d∗
L

)k+3,I (

V d
R

)k+3,J
. (B.33)

The Higgs is also allowed to couples to exotic charged VL quarks X5/3/Y −4/3 if the

scenario contains more than one of them: in this case, one can consider the formulas above

and removing the SM quark part:

CX,ij =

(

Mdiag
X

)ij

v
−

∑

k=1,2

Mk

v

(

V X5/3∗
L

)ki (

V X5/3

R

)kj
, (B.34)

CY,ij =

(

Mdiag
Y

)ij

v
−

∑

k=1,2

Mk

v

(

V Y −4/3∗
L

)ki (

V Y −4/3

R

)kj
. (B.35)
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Type of model Πx(p
2) =

A.1.1 Π
(A)
x (p2)

A.1.2 Π
(A)
x (p2) + Π

(B)
x (p2)

A.1.3 Π
(A)
x (p2) + Π

(B)
x (p2) + Π

(D)
x (p2)

A.2.1 Π
(A)
x (p2) + Π

(C)
x (p2)

A.2.2 Π
(A)
x (p2) + Π

(C)
x (p2) + Π

(E)
x (p2)

A.3.1 Π
(A)
x (p2)

A.3.2 Π
(A)
x (p2) + Π

(B)
x (p2)

A.3.3 Π
(A)
x (p2)

A.3.4 Π
(A)
x (p2) + Π

(C)
x (p2)

A.4.1 Π
(A)
x (p2) + Π

(B)
x (p2)

A.4.2 Π
(A)
x (p2) + Π

(C)
x (p2)

A.4.3 Π
(A)
x (p2) + Π

(C)
x (p2)

A.4.4 Π
(A)
x (p2) + Π

(B)
x (p2)

A.4.5 Π
(A)
x (p2) + Π

(B)
x (p2)

A.4.6 Π
(A)
x (p2) + Π

(B)
x (p2) + Π

(C)
x (p2)

A.4.7 Π
(A)
x (p2) + Π

(C)
x (p2)

A.4.8 Π
(A)
x (p2) + Π

(B)
x (p2) + Π

(C)
x (p2)

A.4.9 Π
(A)
x (p2) + Π

(C)
x (p2)

A.4.10 Π
(A)
x (p2) + Π

(C)
x (p2)

A.4.11 Π
(A)
x (p2) + Π

(B)
x (p2) + Π

(C)
x (p2)

Table 6. The Πx(p
2) (x = 11, 33, 3Q) in the two VL multiplets.

C Contributions to the S, T parameters from VL quarks

The contributions to the S and T parameters (the oblique corrections) can be written in

general form for the contribution of VL particles circulating in the loop for the one-loop

two point functions in terms of the couplings of these particles. The generic couplings to

W , Z are given explicitly in the previous section of the appendix. In the VL quark model,

the general formulas for S, T and U parameters are given by Π11(p
2), Π33(p

2), Π3Q(p
2)

and derivative of them with respect to p2. The Πx(p
2) (x = 11, 33, 3Q) can be decomposed

into the multiple parts Π
(i)
x (p2) (i = A,B, · · · , E) which are based on internal particles in

loop diagrams:

Πx(p
2) =

∑

i

Π(i)
x (p2) . (C.1)

The results of Πx(p
2) in all possible models under our assumptions are listed in table 6.
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The contributions of part A of Π11(p
2), loops of combinations of up- and bottom-type

quarks, are given by:

Π
(A)
11 (p2) =

1

g2

∑

I

∑

J

[

(

|gIJWL|2 + |gIJWR|2
)

ΠLL
T + 2Re

(

g∗,IJWL g
IJ
WR

)

ΠLR
T

]

(p2;uI , dJ) ,

(C.2)

where I, J = 1, 2, · · · , 5. We define the two point functions as:

ΠLL
T (p2; f1, f2) = − Nc

16π2
[

(4− 2D)B22 − 2p2(B1 +B21)
]

(p2,mf1 ,mf2) , (C.3)

ΠLR
T (p2; f1, f2) = − Nc

16π2
2mf1mf2B0(p

2,mf1 ,mf2) , (C.4)

where Nc is the color factor and Bi are the Passarino-Veltman functions, which are defined

by [70]. They satisfy the following relation at p2 = 0:

ΠLL
T (0; f, f) + ΠLR

T (0; f, f) = 0 . (C.5)

The part B, loops of combinations of top-type quarks and X
5/3
L/H , can be parametrised as:

Π
(B)
11 (p2) =

1

g2

∑

I

{

[(

|gX5/3,4I
WL |2 + |gX5/3,4I

WR |2
)

ΠLL
T

+2Re
(

gX
5/3∗,4I

WL gX
5/3,4I

WR

)

ΠLR
T

]

(p2;X
5/3
L , uI)

+
[ (

|gX5/3,5I
WL |2 + |gX5/3,5I

WR |2
)

ΠLL
T

+2Re
(

gX
5/3∗,5I

WL gX
5/3,5I

WR

)

ΠLR
T

]

(p2;X
5/3
H , uI)

}

. (C.6)

The part C, loops of combinations of bottom-type quarks and Y
−4/3
L/H , contributes to:

Π
(C)
11 (p2) =

1

g2

∑

I

{

[(

|gY −4/3,I4
WL |2 + |gY −4/3,I4

WR |2
)

ΠLL
T

+2Re
(

gY
−4/3∗,I4

WL gY
−4/3,I4

WR

)

ΠLR
T

]

(p2; dI , Y
−4/3
L )

+
[ (

|gY −4/3,I5
WL |2 + |gY −4/3,I5

WR |2
)

ΠLL
T

+2Re
(

gY
−4/3∗,I5

WL gY
−4/3,I5

WR

)

ΠLR
T

]

(p2; dI , Y
−4/3
H )

}

. (C.7)

The part D, loops of combinations of X
5/3
L/H and X8/3, gives:

Π
(D)
11 (p2) =

1

g2

∑

k=1,2

{

[(

|gX8/3,k1
WL |2 + |gX8/3,k1

WR |2
)

ΠLL
T

+2Re
(

gX
8/3∗,k1

WL gX
8/3,k1

WR

)

ΠLR
T

]

(p2;X
8/3
k , X

5/3
L )

+
[ (

|gX8/3,k2
WL |2 + |gX8/3,k2

WR |2
)

ΠLL
T

+2Re
(

gX
8/3∗,k2

WL gX
8/3,k2

WR

)

ΠLR
T

]

(p2;X
8/3
k , X

5/3
H )

}

. (C.8)
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The part E, loops of combinations of Y
−4/3
L/H and Y −7/3, evaluates to:

Π
(E)
11 (p2) =

1

g2

∑

k=1,2

{

[(

|gY −7/3,1k
WL |2 + |gY −7/3,1k

WR |2
)

ΠLL
T

+2Re
(

gY
−7/3∗,1k

WL gY
−7/3,1k

WR

)

ΠLR
T

]

(p2;Y
−4/3
L , Y

−7/3
k )

+
[ (

|gY −7/3,2k
WL |2 + |gY −7/3,2k

WR |2
)

ΠLL
T

+2Re
(

gY
−7/3∗,2k

WL gY
−7/3,2k

WR

)

ΠLR
T

]

(p2;Y
−4/3
H , Y

−7/3
k )

}

. (C.9)

The part A of Π33(p
2), loops of combinations of top-type/bottom-type quarks, is

given by:

Π
(A)
33 (p2) =

∑

I

{[(

1

2
−

∑

k=1,2

∆T k,u
3 | (V u

L )k+3,I |2
)2

+

(

∑

k=1,2

T k,u
3 | (V u

R )k+3,I |2
)2]

ΠLL
T (p2;uI , uI)

+

[

∑

k=1,2

T k,u
3 | (V u

R )k+3,I |2 − 2
∑

k=1,2

∑

l=1,2

∆T k,u
3 T l,u

3 | (V u
L )k+3,I |2| (V u

R )l+3,I |2
]

ΠLR
T (p2;uI , uI)

+

[(

− 1

2
−

∑

k=1,2

∆T k,d
3 |

(

V d
L

)k+3,I
|2
)2

+

(

∑

k=1,2

T k,d
3 |

(

V d
R

)k+3,I
|2
)2]

ΠLL
T (p2; dI , dI)

−
[

∑

k=1,2

T k,d
3 |

(

V d
R

)k+3,I
|2 + 2

∑

k=1,2

∑

l=1,2

∆T k,d
3 T l,d

3 |
(

V d
L

)k+3,I
|2|

(

V d
R

)l+3,I
|2
]

ΠLR
T (p2; dI , dI)

}

+2
∑

I<J

{[∣

∣

∣

∣

∣

∑

k=1,2

∆T k,u
3 (V u∗

L )k+3,I (V u
L )k+3,J

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∑

k=1,2

T k,u
3 (V u∗

R )k+3,I (V u
R )k+3,J

∣

∣

∣

∣

∣

2]

ΠLL
T (p2;uI , uJ)

−2

[

∑

k=1,2

∑

l=1,2

∆T k,u
3 T l,u

3 Re
(

(V u
L )k+3,I (V u∗

L )k+3,J (V u∗
R )l+3,I (V u

R )l+3,J
)

]

ΠLR
T (p2;uI , uJ)

+

[∣

∣

∣

∣

∣

∑

k=1,2

∆T k,d
3

(

V d∗
L

)k+3,I (

V d
L

)k+3,J
∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∑

k=1,2

T k,d
3

(

V d∗
R

)k+3,I (

V d
R

)k+3,J
∣

∣

∣

∣

∣

2]

ΠLL
T (p2; dI , dJ)

−2

[

∑

k=1,2

∑

l=1,2

∆T k,d
3 T l,d

3 Re

(

(

V d
L

)k+3,I (

V d∗
L

)k+3,J (

V d∗
R

)l+3,I (

V d
R

)l+3,J
)

]

ΠLR
T (p2; dI , dJ)

}

.

(C.10)

The part B, loops of X
5/3
L and X

5/3
H , is:

Π
(B)
33 (p2) =

∑

I=1,2

∑

J=1,2

{

T I,X
3 T J,X

3

[

(

|V X5/3,I1
L |2|V X5/3,J1

L |2 + |V X5/3,I1
R |2|V X5/3,J1

R |2
)

ΠLL
T (p2;X

5/3
L , X

5/3
L )

+2|V X5/3,I1
L |2|V X5/3,J1

R |2ΠLR
T (p2;X

5/3
L , X

5/3
L )

+2|V X5/3,I2
L |2|V X5/3,J2

R |2ΠLR
T (p2;X

5/3
H , X

5/3
H )
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+
(

|V X5/3,I2
L |2|V X5/3,J2

L |2 + |V X5/3,I2
R |2|V X5/3,J2

R |2
)

ΠLL
T (p2;X

5/3
H , X

5/3
H )

+2
(

Re
(

V X5/3∗,I1
L V X5/3,I2

L V X5/3,J1
L V X5/3∗,J2

L

)

+Re
(

V X5/3∗,I1
R V X5/3,I2

R V X5/3,J1
R V X5/3∗,J2

R

))

ΠLL
T (p2;X

5/3
L , X

5/3
H )

+2Re
(

V X5/3∗,I1
L V X5/3,I2

L V X5/3,J1
R V X5/3∗,J2

R

)

ΠLR
T (p2;X

5/3
L , X

5/3
H )

]}

. (C.11)

The part C, loops of Y
−4/3
L and Y

−4/3
H , is:

Π
(C)
33 (p2) =

∑

I=1,2

∑

J=1,2

{

T I,Y
3 T J,Y

3

[

(

|V Y −4/3,I1
L |2|V Y −4/3,J1

L |2 + |V Y −4/3,I1
R |2|V Y −4/3,J1

R |2
)

ΠLL
T (p2;Y

−4/3
L , Y

−4/3
L )

+2|V Y −4/3,I1
L |2|V Y −4/3,J1

R |2ΠLR
T (p2;Y

−4/3
L , Y

−4/3
L )

+2|V Y −4/3,I2
L |2|V Y −4/3,J2

R |2ΠLR
T (p2;Y

−4/3
H , Y

−4/3
H )

+
(

|V Y −4/3,I2
L |2|V Y −4/3,J2

L |2 + |V Y −4/3,I2
R |2|V Y −4/3,J2

R |2
)

ΠLL
T (p2;Y

−4/3
H , Y

−4/3
H )

+2
(

Re
(

V Y −4/3∗,I1
L V Y −4/3,I2

L V Y −4/3,J1
L V Y −4/3∗,J2

L

)

+ Re
(

V Y −4/3∗,I1
R V Y −4/3,I2

R V Y −4/3,J1
R V Y −4/3∗,J2

R

))

ΠLL
T (p2;Y

−4/3
L , Y

−4/3
H )

+2Re
(

V Y −4/3∗,I1
L V Y −4/3,I2

L V Y −4/3,J1
R V Y −4/3∗,J2

R

)

ΠLR
T (p2;Y

−4/3
L , Y

−4/3
H )

]}

.

(C.12)

The part D/E, loops of X8/3/Y −7/3, are:

Π
(D)
33 (p2) = 2

∑

k=1,2

(

T k,X8/3

3

)2
(

ΠLL
T +ΠLR

T

)

(p2;X
8/3
k , X

8/3
k ) , (C.13)

Π
(E)
33 (p2) = 2

∑

k=1,2

(

T k,Y −7/3

3

)2
(

ΠLL
T +ΠLR

T

)

(p2;Y
−7/3
k , Y

−7/3
k ) , (C.14)

where the Part D and E are exactly cancelled by the reason of (ΠLL
T + ΠLR

T )(p2;mf ,mf )

at p2 = 0:

Π
(D)
33 (p2 = 0) = 0 , Π

(E)
33 (p2 = 0) = 0 . (C.15)

The part A of Π3Q(p
2), loops of combinations of top-type/bottom-type quarks, is:

Π
(A)
3Q (p2) =

1

2

∑

I

{

Qu

(

ΠLL
T +ΠLR

T

)

(p2;uI , uI)−Qd

(

ΠLL
T +ΠLR

T

)

(p2; dI , dI)
}

+
∑

I

∑

k=1,2

{

Qu

[

−∆T k,u
3 | (V u

L )k+3,I |2 + T k,u
3 | (V u

R )k+3,I |2
]

ΠLL
T (p2;uI , uI)
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+Qu

[

T k,u
3 | (V u

R )k+3,I |2 −∆T k,u
3 | (V u

L )k+3,I |2
]

ΠLR
T (p2;uI , uI)

+Qd

[

−∆T k,d
3 |

(

V d
L

)k+3,I
|2 + T k,d

3 |
(

V d
R

)k+3,I
|2
]

ΠLL
T (p2; dI , dI)

+Qd

[

T k,d
3 |

(

V d
R

)k+3,I
|2 −∆T k,d

3 |
(

V d
L

)k+3,I
|2
]

ΠLR
T (p2; dI , dI)

}

. (C.16)

The part B/C, loops of X3/5/Y −4/3, are:

Π
(B)
3Q (p2) = QX

∑

k=1,2

{

T k,X
3

[(

|V X5/3,k1
L |2 + |V X5/3,k1

R |2
)

(

ΠLL
T +ΠLR

T

)

(p2;X
5/3
L , X

5/3
L )

+
(

|V X5/3,k2
L |2+|V X5/3,k2

R |2
)

(

ΠLL
T +ΠLR

T

)

(p2;X
5/3
H , X

5/3
H )

]

}

, (C.17)

Π
(C)
3Q (p2) = QY

∑

k=1,2

{

T
(k,Y )
3

[(

|V Y −4/3,k1
L |2+|V Y −4/3,k1

R |2
)

(

ΠLL
T +ΠLR

T

)

(p2;Y
−4/3
L , Y

−4/3
L )

+
(

|V Y −4/3,k2
L |2+|V Y −4/3,k2

R |2
)

(

ΠLL
T +ΠLR

T

)

(p2;Y
−4/3
H , Y

−4/3
H )

]

}

. (C.18)

The part D/E, loops of X8/3/Y −7/3, are:

Π
(D)
3Q (p2) = 2QX8/3

∑

k=1,2

T k,X8/3

3

(

ΠLL
T +ΠLR

T

)

(p2;X
8/3
k , X

8/3
k ) , (C.19)

Π
(E)
3Q (p2) = 2QY −7/3

∑

k=1,2

T k,Y −7/3

3

(

ΠLL
T +ΠLR

T

)

(p2;Y
−7/3
k , Y

−7/3
k ) , (C.20)

where the part D and E at p2 = 0 become

Π
(D)
3Q (p2 = 0) = Π

(E)
3Q (p2 = 0) = 0 . (C.21)

D Extra numerical results for VL multiplets

We collect in the present appendix extra numerical results which complete those shown in

the main text, in particular concerning the limits for the case of the VL quarks coupling

to the second SM generation; these are similar in form to those obtained for the coupling

to the first SM generation, but bounds vary considerably in some cases. See figure 12.

E Loop induced Higgs boson decay

The Higgs boson decays h → γγ and h → gg are sensitive to the new physics effects due

to the loop induced decay processes. The partial widths of them in the VL quark model

are calculated as

ΓVL(h→ γγ) =
GFα

2m3
h

128
√
2π3

∣

∣

∣

∣

Nc

∑

f

Q2
fIf (m

2
f ) + IW

∣

∣

∣

∣

2

, (E.1)

ΓVL(h→ gg) =
GFα

2
2m

3
h

64
√
2π3

∣

∣

∣

∣

∑

f

If (m
2
f )

∣

∣

∣

∣

2

, (E.2)
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Figure 12. EWP bounds at 1 σ (red-dashed), 2 σ (green-dashed) and 3 σ (blue) for VL quarks

coupling with the second SM generations, compared with the region excluded at 3σ by tree-level

bounds (yellow region in the left panel). We always choseM1 =M2 =M = 800GeV and ω = ω′ = 0

(except for the upper-right plot where ω = ω′ 6= 0). Upper left panel: singlet Y = 2/3 and Doublet

Y = 7/6. Upper right panel: Doublet Y = 7/6 and Triplet Y = 5/3. Lower left panel: singlet

Y = 2/3 and Doublet Y = 1/6. Lower right panel: Doublet Y = 1/6 and Doublet Y = 7/6.

Only the first quadrant is shown as the figures are symmetric with respect to a sign change in the

coordinates in the other three quadrants. Note that in the four plots the variables and the units on

the axis are not the same, so that they should not be compared directly as they refer to different

multiplets.

where If (x) and IW are the dimensionless functions, Nc is the color factor and Qf is electric

charge of particle f . In our numerical analysis, we consider the loop effects coming from all

SM quarks and VL quarks (i.e. f = u, d, · · · , t,VL quarks). The dimensionless functions
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are expressed by

If (m
2
f ) =

4

m2
h

(

yfv√
2

)

mf

[

2− (m2
h − 4m2

f )C0(0, 0,m
2
h;m

2
f ,m

2
f ,m

2
f )
]

, (E.3)

IW = −12m2
W

m2
h

[

1 +
m2

h

6m2
W

− (m2
h − 2m2

W )C0(0, 0,m
2
h;m

2
W ,m

2
W ,m

2
W )

]

, (E.4)

where yf is the Yukawa coupling of fermion particle f . The one-loop triangle function can

be rewritten as

C0(0, 0,m
2
h;m

2,m2,m2) = − 2

m2
h

f(τ) , (E.5)

where τ =
m2

h
4m2 and

f(τ) =



















arcsin2
√
τ τ ≤ 1

−1

4

[

log
1 +

√
1− τ−1

1−
√
1− τ−1

− iπ

]2

τ > 1
. (E.6)

In the VL quark model, the h → γγ decay is mediated by the W± bosons and fermions

loops, while the h→ gg decay comes from loops of VL and SM quarks. The loop effects of

quarks proportional to their Yukawa coupling. The Yukawa couplings of top-type SM and

VL quarks are given by

yuv√
2

= mu −
∑

k=1,2

MkRe
(

(V u∗
L )(k+3),1 (V u

R )(k+3),1
)

, (E.7)

ycv√
2

= mc −
∑

k=1,2

MkRe
(

(V u∗
L )(k+3),2 (V u

R )(k+3),2
)

, (E.8)

ytv√
2
= mt −

∑

k=1,2

MkRe
(

(V u∗
L )(k+3),3 (V u

R )(k+3),3
)

, (E.9)

yt′
1
v

√
2

= mt′
1
−

∑

k=1,2

MkRe
(

(V u∗
L )(k+3),4 (V u

R )(k+3),4
)

, (E.10)

yt′
2
v

√
2

= mt′
2
−

∑

k=1,2

MkRe
(

(V u∗
L )(k+3),5 (V u

R )(k+3),5
)

. (E.11)

Under our assumptions there is no deviation from the SM Yukawa couplings in the bottom-

type quarks. We can also consider the loop effects of the exotic charged VL quarks X/Y if

the VL quark model has more than two of them. For the VL quarks X5/3, we obtain the

couplings:

yXL
v√
2

= m
X

5/3
L

−
∑

k=1,2

MkRe

(

(

V X5/3∗
L

)k,1 (

V X5/3

R

)k,1
)

, (E.12)

yXH
v√
2

= m
X

5/3
H

−
∑

k=1,2

MkRe

(

(

V X5/3∗
L

)k,2 (

V X5/3

R

)k,2
)

. (E.13)
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In order to study the impacts on the loop induced Higgs boson decay in the VL model,

we introduce the scaling parameters κγ and κg:

Γ(h→ γγ) = κ2γΓSM(h→ γγ) , Γ(h→ gg) = κ2gΓSM(h→ gg) , (E.14)

where ΓSM are the expected partial width in the SM. The experimental values of κγ and

κg are precisely measured by the ATLAS [57]

κγ = 1.00± 0.12 , κg = 1.12± 0.12 , (E.15)

and the CMS [58]

κγ = 1.14+0.12
−0.13 , κg = 0.89+0.11

−0.10 . (E.16)
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