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1 Introduction

While bosonic string field theories have been well-understood [1–8], superstring field the-

ories remain mysterious. A formulation of supersymmetric theories in the early days [9],

which is a natural extension of bosonic theory, has some disadvantages caused by picture-

changing operators inserted into string products: singularities and broken gauge invari-

ances [10]. To remedy these, various approaches have been proposed within the same

Hilbert space of (β, γ) [11–17].

There exists an alternative formulation of superstring field theory: large space the-

ory [18–26]. Large space theories are formulated by utilizing the extended Hilbert space of

(ξ, η, φ) [27] and the WZW-like action including no explicit insertions of picture-changing

operators. One can check the variation of the action, the equation of motion, and gauge

invariance without taking account of these operators. Of course, the action implicitly

includes picture-changing operators, which appear when we concretely compute scatter-

ing amplitudes after gauge fixing. The singular behaivor of them is, however, completely

regulated and there is no divergence [28, 29].
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The cancellation of singularities can also occur in the small Hilbert space. Recently,

by the brilliant works of [30, 31], it is revealed how to obtain gauge-invariant insertions

of picture-changing operators into (super-) string products in the small Hilbert space: the

NS and NS-NS sectors of superstring field theories in the small Hilbert space is completely

formulated. In this paper, we find that using the elegant technique of [31], one can construct

the WZW-like action for NS-NS superstring field theory in the large Hilbert space.

A pure-gauge solution of small-space theory is the key concept of WZW-like formula-

tion of NS superstring field theory in the large Hilbert space, which determines the vertices

of theory, and we expect that it goes in the case of the NS-NS sector. There is an attempt

to construct non-vanishing interaction terms of NS-NS string fields utilizing a pure-gauge

solution GB of bosonic closed string field theory [22]. However, the construction is not

complete: the nonlinear gauge invariance is not clear and the defining equation of GB is

ambiguous. To obtain nonlinear gauge invariances, we have to add appropriate terms to

these interaction terms defined by GB at each order. Then, the ambiguities of vertices are

removed and we obtain the defining equation of a suitable pure-gauge solution GL, which

we explain in the following sections.

In this paper, we complete this construction begun in [22] by determining these ad-

ditional terms which are necessitated for the nonlinear gauge invariance and by giving

closed-form expressions for the action and nonlinear gauge transformations in the NS-NS

sector of closed superstring field theory. We propose the action

S =

∫ 1

0
dt 〈ηΨt, GL(t)〉, (1.1)

where Ψt is an NS-NS string field Ψ plus η̃-exact terms and GL is a pure-gauge solution to

the NS heterotic string equation of motion in the small Hilbert space of right movers. The

action has the WZW-like form and the almost same algebraic properties as the large-space

action for NS open and NS closed (heterotic) string field theory [20, 21].

This paper is organized as follows. In section 2 we show that cubic and quartic actions

can be determined by adding appropriate terms and imposing gauge invariance. In section

3, we briefly review the method of gauge-invariant insertions of picture-changing opera-

tors [30, 31] and provide some useful properties of the (−,NS) closed superstring products.

In section 4, first, we give the defining equation of GL and associated fields which are neces-

sitated to construct the NS-NS action. Then, we derive the WZW-like expression for the

action and nonlinear gauge transformations and show that η GL = 0 gives the NS-NS super-

string equation of motion just as other large-space theories. We end with some conclusions.

2 Nonlinear gauge invariance

Let κ be the coupling constant of closed string fields. We expand an action S for NS-NS

string field theory in powers of κ: S = 2
α′

∑
n κ

nSn+2. In the large Hilbert space, which

includes the ξ- and ξ̃-zero modes coming from bosonization of the βγ- and β̃γ̃-systems,

the NS-NS string field Ψ is a Grassmann even, (total) ghost number 0, left-mover picture

– 2 –



J
H
E
P
0
9
(
2
0
1
5
)
0
1
1

number 0, and right-mover picture number 0 state. The free action S2 is given by

S2 =
1

2
〈ηΨ, Q η̃Ψ〉, (2.1)

where Q is the BRST operator, η is the zero mode of the left-moving current η(z), and

η̃ is the zero mode of the right-moving current η̃(z̃) [19]. The bilinear is the c−0 -inserted

BPZ inner product: 〈A,B〉 ≡ 〈bpz(A)|c−0 |B〉, where c−0 = 1
2(c0 − c̃0). For brevity, we

use the symbol (G|p, p̃) which denotes that the total ghost number is G, the left-mover

picture number is p, and the right-mover picture number is p̃. Then, ghost-and-picture

numbers of Ψ, Q, η, and η̃ are (0|0, 0), (1|0, 0), (1| − 1, 0), and (1|0,−1) respectively. Note

that the inner product 〈A,B〉 gives a nonzero value if and only if the sum of A’s and B’s

ghost-and-picture numbers is equal to (G|p, p̃) = (3| − 1,−1). Computing the variation of

this action δS2 = 〈δΨ, ηQη̃Ψ〉, we obtain the equation of motion Qηη̃Ψ = 0 and find that

S2 is invariant under the gauge transformation

δ1Ψ = QΛ + ηΩ+ η̃ Ω̃, (2.2)

where Λ, Ω, and Ω̃ are gauge parameters of Q-, η, and η̃-gauge transformations respectively.

We would like to construct nonzero and nonlinear gauge-invariant interacting terms

S3, S4, S5, . . . using string fields Ψ belonging to the large Hilbert space. In the kinetic

term S2, there exist three generators of gauge transformations: Q, η, and η̃. However,

as we will see, only Q- and η-gauge invariances are extended to be nonlinear and η̃-gauge

invariance remains to be linear in our interacting theory. Consequently, with two nonlinear

and one trivial gauge invariances, the theory is Wess-Zumino-Witten-likely formulated.

In section 2, starting with the action proposed in [22] and adding appropriate terms at

each order of κ, we construct cubic and quartic terms S3, S4 of the action, whose nonlinear

gauge transformations of Q and η take WZW-like forms just as other large-space theories.

2.1 Cubic vertex

Let ξ and ξ̃ be the zero modes of ξ(z)- and ξ̃(z̃)-ghosts respectively, and X and X̃ be the

zero modes of left- and right-moving picture-changing operators respectively. The (n+2)-

point interaction term Sn+2 proposed in [22] includes 〈ηΨ,
[
(QQ̃Ψ)n, η̃Ψ

]
〉 to correspond

to the result of first quantization, where [A1, . . . , An] is the bosonic string n-product and

Q̃ := η̃ξ̃ ·Q·ξ̃η̃ is a projected BRST operator. This term becomes 〈ξV ,
[
(XX̃V)n, ξ̃V

]
〉 under

partial gauge fixing Ψ = ξξ̃ V(2|−1,−1). However, naive use of this term makes nonlinear

gauge invariance not clear. In this subsection, as the simplest example, we show that a

gauge-invariant cubic term S3 can be obtained by adding appropriate terms to

〈ηΨ, [QQ̃Ψ, η̃Ψ]〉 = 〈ηΨ, [X̃Q η̃Ψ, η̃Ψ]〉. (2.3)

Cyclicity. It would be helpful to consider the cyclicity of vertices. A (n+1)-point vertex

Vn is called a (BPZ-) cyclic vertex if Vn satisfies

〈A0, Vn(A1, . . . , An)〉 = (−)A0(A1+···+An)〈A1, Vn(A2, . . . , An, A0)〉. (2.4)

– 3 –
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The upper index of (−1)A means the ghost number of A. When the (n + 1)-point action

Sn+1 is given by Sn+1 =
1

(n+1)!〈Ψ, Vn(Ψ
n)〉 using a cyclic vertex Vn, its variation becomes

δSn+1 =
1

n!
〈δΨ, Vn(Ψ

n)〉. (2.5)

Then, if there exist a zero divisor of the state Vn(Ψ
n), it generates gauge transformations.

For example, bosonic string field theories and superstring field theories in the small Hilbert

space are the case and their gauge transformations are determined by L∞- or A∞-algebras.

Next, we consider the following case: a vertex V ′
n is not cyclic but has the following

property

δSn+1 =
1

n!
〈δΨ, V ′

n(Ψ
n) +Wn(Ψ

n)〉. (2.6)

Nonzero Wn implies that the cyclicity of Vn is broken. For instance, this relation holds

when V ′
n consists of a cyclic vertex with operator insertions: V ′

n(Ψ
n) = Vn(QΨk,Ψn−k) or

V ′
n consists of some combination of cyclic vertices V ′

n(Ψ
n) = Vm+1(Vn−m(Ψn−m),Ψm). In

this case, in general, a zero divisor of V ′
n +Wn gives the generator of gauge transforma-

tions. However, when Wn consists of lower Vk<n, there exists a special case that the zero

divisor of Vn gives the generator of gauge transformations just as WZW-like formulations

of superstring field theories in the large Hilbert space, which is the subject of this paper.

Adding terms. We know that naive insertions of operators which do not work as deriva-

tions of string products, such as ξ, ξ̃, X, X̃, and Q̃, makes nonlinear gauge invariances not

clear. We show that a cubic vertex satisfying the special case of (2.6) can be constructed

by adding appropriate terms and by imposing gauge invariances. Computing the variation

of (2.3), we obtain

δ
(
〈ηΨ, [QQ̃Ψ, η̃Ψ]〉

)
=〈δΨ, η[QQ̃Ψ, η̃Ψ] + Q̃[QΨ, η̃Ψ]− [Qη̃Ψ, Q̃Ψ]〉 (2.7)

=〈δΨ, η
{
2[QQ̃Ψ, η̃Ψ]+Q̃[QΨ, η̃Ψ]

}
+
{
2Q̃[Ψ, Qη̃ηΨ]−[η̃Ψ, ηQQ̃Ψ

}
〉.

We therefore add the term 〈ηΨ, Q̃[QΨ, η̃Ψ]〉 for (2.6). The variation of this term becomes

δ
(
〈ηΨ, Q̃[QΨ, η̃Ψ]〉

)
=〈δΨ, ηQ̃[QΨ, η̃Ψ] +Q[ηQ̃Ψ, η̃Ψ]− η̃[ηQ̃Ψ, QΨ]〉 (2.8)

=〈δΨ, η
{
Q̃[QΨ, η̃Ψ]+2[Qη̃Ψ, Q̃Ψ]

}
+
{
2[Qη̃ηΨ, Q̃Ψ]−[η̃Ψ, ηQQ̃Ψ

}
〉.

Hence, the term 〈ηΨ, [Qη̃Ψ, Q̃Ψ]〉 is necessitated for the property (2.6). The variation of

this term is given by

δ
(
〈ηΨ, [Qη̃Ψ, Q̃Ψ]〉

)
= 〈δΨ, η[Qη̃Ψ, Q̃Ψ] +Qη̃[ηΨ, Q̃Ψ]− Q̃[ηΨ, Qη̃Ψ]〉 (2.9)

= 〈δΨ, η
{
[QQ̃Ψ, η̃Ψ] + Q̃[QΨ, η̃Ψ] + [Qη̃Ψ, Q̃Ψ]

}

+
{
Q̃[Ψ, Qη̃ηΨ]− [Q̃Ψ, Qη̃ηΨ]− [η̃Ψ, ηQQ̃Ψ

}
〉.

Averaging these three terms, we obtain the cubic action satisfying (2.6)

S3 =
1

3!
〈ηΨ,

1

3

(
Q̃[QΨ, η̃Ψ] + [QQ̃Ψ, η̃Ψ] + [Qη̃Ψ, Q̃Ψ]

)
〉.
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The variation of this cubic action is given by

δS3 =
1

2
〈δΨ,

η

3

(
Q̃[QΨ, η̃Ψ] + [QQ̃Ψ, η̃Ψ] + [Qη̃Ψ, Q̃Ψ]

)
〉

+
1

2
〈δΨ,

1

3

(
Q̃[Ψ, ηQη̃Ψ]− [Q̃Ψ, ηQη̃Ψ]− [η̃Ψ, ηQQ̃Ψ]

)
〉

=
1

2
〈δΨ, V3(Ψ

3)〉 −
1

2
〈δΨ,

1

3

(
X̃[η̃Ψ, V1] + [X̃η̃Ψ, V1] + [η̃Ψ, X̃V1]

)
〉 (2.10)

Note that V1 = Qη̃ηΨ appears inW2 ≡
1
3

(
Q̃[Ψ, V1]− [Q̃Ψ, V1]− [η̃Ψ, X̃V1]

)
if one only if we

use X̃η̃ = [[Q, ξ̃]]η̃ instead of Q̃, where [[Q, ξ]] := Qξ − (−)QξξQ is the graded commutator.

Gauge invariance δ2S2+δ1(κS3). Let us determine second order gauge transformation

δ2Ψ satisfying δ2S2 + δ1(κS3) = 0. For this purpose, it is rather suitable to use a pair

of fundamental operators (Q, η, η̃, ξ̃) than to use a pair of composite operators such as

(Q, η, η̃, Q̃). For example, V1(Ψ) = ηQη̃Ψ appears inW2(Ψ
2) if and only if we use (Q, η, η̃, ξ̃)

and furthermore, while 〈Q̃[QΨ,Λ], ηQη̃Ψ〉 = 0, 〈X̃[Qη̃Ψ,Λ], ηQη̃Ψ〉 6= 0. The first order

Q-gauge transformation of S3 is given by

δ1,ΛS3 =
1

2
〈QΛ,

1

3

(
X̃[Qη̃Ψ, η̃ηΨ] + [X̃Qη̃Ψ, η̃ηΨ] + [Qη̃Ψ, X̃η̃ηΨ]

)
〉. (2.11)

Note that the zero mode X̃ of the right-mover picture-changing operator is inserted cyclicly.

We find that under the following second order gauge transformation

δ2,ΛΨ =
κ

3

{
X̃[Qη̃Ψ,Λ] + [X̃Qη̃Ψ,Λ] + [Qη̃Ψ, X̃Λ]

}

−
κ

6

{
X̃[η̃Ψ, QΛ] + [X̃η̃Ψ, QΛ] + [η̃Ψ, X̃QΛ]

}
, (2.12)

the cubic term S3 of the action is gauge invariant: δ2,ΛS2 + δ1,Λ(κS3) = 0. For brevity, we

define the following new string product which includes the zero mode X̃ of the right-mover

picture-changing operator

[A,B]L :=
1

3

(
X̃[A,B] + [X̃A,B] + [A, X̃B]

)
. (2.13)

This new product [A,B]L satisfies the same properties as original product [A,B], namely,

symmetric property [A,B]L = (−)AB[B,A]L and derivation properties of Q, η, and η̃. Note

that when we use this new product, the cubic term S3 of the action is given by

S3 =
1

3!
〈ηΨ, [Qη̃Ψ, η̃Ψ]L〉, (2.14)

and the variation δS3 becomes

δS3 =
1

2
〈δΨ, η[Qη̃Ψ, η̃Ψ]L + [ηQη̃Ψ, η̃Ψ]L〉. (2.15)

Then, we can quickly show that S2 + κS3 is gauge invariant up to O(κ2)

δ2,ΛS2 + δ1,Λ(κS3) = 〈δ2,ΛΨ, ηQη̃Ψ〉+
κ

2
〈δ1,ΛΨ, [Qη̃Ψ, η̃ηΨ]L〉 = 0, (2.16)

– 5 –
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under the following Q-gauge transformations

δ1,ΛΨ = QΛ, δ2,ΛΨ = κ[Qη̃Ψ,Λ]L −
κ

2
[η̃Ψ, QΛ]L. (2.17)

Similarly, we find that S2+κS3 is gauge invariant under η- and η̃-gauge transformations

δ1,ΩΨ = ηΩ, δ2,ΩΨ = −
κ

2
[η̃Ψ, ηΩ]L, (2.18)

δ
1,Ω̃

Ψ = η̃ Ω̃, δ
2,Ω̃

Ψ = −
κ

2
[η̃Ψ, η̃Ω̃]L, (2.19)

for example, as follows

δ2,ΩS2 + δ1,Ω(κS3) = 〈δ2,ΩΨ, ηQη̃Ψ〉+
κ

2
〈δ1,ΩΨ, [Qη̃Ψ, η̃ηΨ]L〉 = 0. (2.20)

Linear gauge invariance. In the same way as (2.20), the action S2 + κS3 is invariant

under

δ
1,Ω̃

Ψ = η̃ Ω̃, δ
2,Ω̃

Ψ = −
κ

2
[η̃Ψ, η̃Ω̃]L. (2.21)

Although it naively looks like nonlinear η̃-gauge invariance of the action, it is essentially

linear. Note that the second order η̃-gauge transformation δ
2,Ω̃

Ψ = η̃
(
− κ

2 [η̃Ψ, Ω̃]
L
)
as

well as the first order one δ
1,Ω̃

Ψ = η̃Ω̃ is η̃-exact. As a result, after the redefinition of the

η̃-gauge parameter

Ω̃′ ≡ Ω̃−
κ

2
[η̃Ψ, Ω̃]L + . . . , (2.22)

the η̃-gauge transformation δ
Ω̃′
Ψ ≡ δ

1,Ω̃
Ψ+ δ

2,Ω̃
Ψ+ . . . becomes linear

δ
Ω̃′
Ψ = η̃ Ω̃′. (2.23)

One can quickly check that δ
Ω̃
S2 = δ

Ω̃
S3 = 0 holds, or equivalently, the second input of

(2.15) is an η̃-exact state. Hence, S2+κS3 still remains invariant under the linear η̃-gauge

transformation.

2.2 Quartic vertex

We can construct the quartic term S4 and, in principle, higher interaction terms Sn>4 by

repeating the same procedure. More precisely, starting with 〈ηΨ, [(X̃Qη̃Ψ)2, η̃Ψ]〉, adding

appropriate terms for (2.6), and imposing the gauge invariance δ3S2+δ2(κS3)+δ1(κ
2S4) =

0, we obtain the quartic term S4. First, we consider the gauge invariance δ3S2+ δ2(κS3)+

δ1(κ
2S4) = 0.

To be δ3S2 + δ2(κS3) + δ1(κ
2S4) = 0. To be gauge invariant, the first order gauge

transformation of κ2S4 has to cancel δ3S2 + δ2(κS3). Note that δ2(κS3) is given by

δ2(κS3) =
κ2

4
〈Λ, 2

[
[Qη̃Ψ, η̃ηΨ]L, Qη̃Ψ

]L
+Q

[
[Qη̃Ψ, η̃ηΨ]L, η̃Ψ

]L
〉. (2.24)

Therefore, we have to consider the following terms

[
[A,B]L, C

]L
=

1

3 · 3

(
X̃
[
[X̃A,B] + [A, X̃B], C

]
+
[
[X̃A,B] + [A, X̃B], X̃C

])
(2.25)
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+
1

3 · 3

([
X̃[X̃A,B] + X̃[A, X̃B], C

]
+
[
X̃[A,B], X̃C

]
+ X̃

[
X̃[A,B], C

]
+

[
X̃2[A,B], C

])
,

where A,B,C = η̃Ψ, Qη̃Ψ, ηη̃Ψ, or Qηη̃Ψ. To cancel the second line by acting Q, the

quartic term S4 has to include the following types of terms

ξ̃
[
X̃[A,B], C

]
,

[
X̃[ξ̃A,B], C

]
,

[
X̃[A, ξ̃B], C

]
,

[
X̃[A,B], ξ̃C

]
,

[
ξ̃X̃[A,B], C

]
,

X̃
[
ξ̃[A,B], C

]
,

[
ξ̃[X̃A,B], C

]
,

[
ξ̃[A, X̃B], C

]
,

[
ξ̃[A,B], X̃C

]
.

Of course, we can repeat similar computations of above terms as we did in subsection 2.1.

However, there exists a reasonable shortcut. Note that, for example, the following relation

holds

Q
(
X̃
[
ξ̃[A,B], C

])
+ X̃

[
ξ̃[QA,B], C

]
+ (−)AX̃

[
ξ̃[A,QB], C

]

+ (−)A+BX̃
[
ξ̃[A,B], QC

]
+
(
X̃
[
X̃[A,B], C

])
= 0.

Hence, the three product L2+2(A,B,C) defined by

L2+2(A,B,C) :=
1

9 · 2

{
2
[
ξ̃X̃[A,B], C

]
− ξ̃

[
X̃[A,B] + [X̃A,B] + [A, X̃B], C

]

+ X̃
[
ξ̃[A,B], C

]
+
[
ξ̃
(
[X̃A,B] + [A, X̃B]

)
, C

]
+
[
ξ̃[A,B], X̃C

]

− X̃
[
[ξ̃A,B], C

]
−
[
X̃[ξ̃A,B], C

]
−
[
[ξ̃A,B], X̃C

]

− (−)A
([
X̃[A, ξ̃B], C

]
+ X̃

[
[A, ξ̃B], C

]
+
[
[A, ξ̃B], X̃C

])

− (−)A+B
([
X̃[A,B] + [X̃A,B] + [A, X̃B], ξ̃C

])}

+
{
(B,C,A)-terms

}
+
{
(C,A,B)-terms

}
(2.26)

and the two product [A,B]L defined by (2.13) satisfy an L∞-relation up to O(Ψ4):

QL2+2(A,B,C) + L2+2(QA,B,C) + (−)AL2+2(A,QB,C) + (−)A+BL2+2(A,B,QC)

+
[
[A,B]L, C

]L
+ (−)A(B+C)

[
[B,C]L, A

]L
+ (−)C(A+B)

[
[C,A]L, B

]L
= 0. (2.27)

This new three product L2+2(A,B,C) possesses the symmetric property and the deriva-

tion property of Q. Note that, however, the operator η does not act as a derivation

of L2+2(A,B,C). To see this fact, we introduce the derivation-testing operation ∆X for

X = Q, η, η̃

∆XL2+2(A,B,C) := XL2+2(A,B,C) + (−)XL2+2(XA,B,C) (2.28)

+ (−)X(1+A)L2+2(A,XB,C) + (−)X(1+A+B)L2+2(A,B,XC).

For example, ∆X[A,B]L = X[A,B]L + (−)X[XA,B]L + (−)X(1+A)[A,XB]L = 0 holds for

X = Q, η, and η̃. Computing ∆η/η̃L2+2(A,B,C), we find ∆ηL2+2(A,B,C) = 0 but

∆η̃L2+2(A,B,C) =
1

3 · 2

{
X̃
[
[A,B], C

]
+
[
ξ̃
(
[X̃A,B] + [A, X̃B]

)
, C

]
+
[
[A,B], X̃C

]}
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−
1

3

[
X̃[A,B], C

]
+
{
(B,C,A)-terms

}
+
{
(C,A,B)-terms

}
. (2.29)

∆η̃L2+2(A,B,C) 6= 0 means that the η̃-derivation property is broken. However, by adding

the appropriate term L1+3 satisfying ∆Q/ηL1+3(A,B,C) = 0, we can construct the three

product satisfying the L∞-relation (2.27) and η- and η̃-derivation properties ∆η/η̃(L2+2 +

L1+3) = 0.

Note that the following types of products have the Q-derivation property

M(A,B,C) =
[
X̃A, X̃B,C

]
+
[
[ξ̃A, X̃B], C

]
+ (−)(A+1)(B+C)

[
[X̃B,C], ξ̃A

]

+ (−)C(A+B+1)
[
[C, ξ̃A], X̃B

]
,

N(A,B,C) = X̃
[
ξ̃[A,B], C

]
+ ξ̃

[
X̃[A,B], C

]
,

namely, ∆QM = ∆QN = 0. Therefore, L1+3 is given by a linear combination of these M -

and N -types of products, whose coefficients are fixed by the cancellation of the second line

of (2.29) and the sum of N -type products:

L1+3(A,B,C) :=
1

8 · 2

{
X̃2

[
A,B,C

]
+
[
X̃2A,B,C

]
+
[
A, X̃2B,C

]
+
[
A,B, X̃2C

]}

+
1

8 · 2

{
ξ̃X̃

[
[A,B], C

]
+
[
[ξ̃X̃A,B], C

]

+ (−)A
[
[A, ξ̃X̃B], C

]
+ (−)A+B

[
[A,B], ξ̃X̃C

]}

+
1

8

{
X̃
[
X̃A,B,C

]
+ X̃

[
A, X̃B,C

]
+ X̃

[
A,B, X̃C

]

+
[
X̃A, X̃B,C

]
+
[
X̃A,B, X̃C

]
+
[
A, X̃B, X̃C

]}

−
1

8 · 2

{
ξ̃
[
[X̃A,B] + [A, X̃B], C

]
+ ξ̃

[
[A,B], X̃C

]

+ X̃
[
[ξ̃A,B], C

]
−
[
[ξ̃A, X̃B], C

]
−
[
[ξ̃A,B], X̃C

]

+ (−)A
(
X̃
[
[A, ξ̃B], C

]
−
[
[X̃A, ξ̃B], C

]
−
[
[A, ξ̃B], X̃C

])

+ (−)A+B
(
X̃
[
[A,B], ξ̃C

]
−
[
[X̃A,B], ξ̃C

]
−
[
[A, X̃B], ξ̃C

])}

+
1

4 · 3

{
X̃
[
ξ̃[A,B], C

]
+ [ξ̃[X̃A,B] + ξ̃[A, X̃B], C

]
+
[
ξ̃[A,B], X̃C

]

+ ξ̃
[
X̃[A,B], C

]
+
[
X̃
(
[ξ̃A,B]+(−)A[A, ξ̃B]

)
, C

]
+(−)A+B

[
X̃[A,B], ξ̃C

]}

+
{
(B,C,A)-terms

}
+
{
(C,A,B)-terms

}
. (2.30)

L1+3(A,B,C) satisfies ∆QL1+3(A,B,C) = 0 because of ∆QM = ∆QN = 0. Hence, we

define the following new three string product

[A,B,C]L := L2+2(A,B,C) + L1+3(A,B,C), (2.31)

which satisfies the same properties as the original three product [A,B,C], namely, the

L∞-relation and the η- and η̃-derivation properties

∆Q[A,B,C]
L +

[
[A,B]L, C

]L
+ (−)A(B+C)

[
[B,C]L, A

]L
+ (−)C(A+B)

[
[C,A]L, B

]L
= 0,

(2.32)
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∆η[A,B,C]
L = ∆η̃[A,B,C]

L = 0. (2.33)

Note also that the new product [A,B,C]L includes 〈ηΨ, [X̃Qη̃Ψ, X̃Qη̃Ψ, η̃Ψ]〉 (for

A,B = Qη̃Ψ, C = η̃Ψ) and this term becomes 〈ξV , [XX̃V , XX̃V , ξ̃V ]〉 under the par-

tial gauge fixing Ψ = ξξ̃V , which is necessitated for the correspondence to the result of first

quantization.

Quartic vertex S4. Let us now consider the quartic vertex having the property (2.6) and

determine the third order gauge transformation δ3Ψ. To obtain the gauge invariance δ3S2+

δ2(κS3)+δ1(κ
2S4) = 0, the quartic term S4 has to include the term 〈ηΨ, [Qη̃Ψ, Qη̃Ψ, η̃Ψ]L〉

because the L∞-relation (2.32) is the only way to eliminate the term
[
[A,B]L, C

]L
appear-

ing in δ3S2 + δ2(κS3). We therefore start with the following computation

δ
(
〈ηΨ, [Qη̃Ψ, Qη̃Ψ, η̃Ψ]L〉

)
= 4〈δΨ, η

{
[Qη̃Ψ, Qη̃Ψ, η̃Ψ]L +

1

2

[
[Qη̃Ψ, η̃Ψ]L, η̃Ψ

]L
}
〉

+ 4〈δΨ, 2[ηQη̃Ψ, Qη̃Ψ, η̃Ψ]L −
1

2

[
[ηQη̃Ψ, η̃Ψ]L, η̃Ψ

]L
〉

+ 4〈δΨ,
[
[η̃ηΨ, Qη̃Ψ]L, η̃Ψ

]L
〉. (2.34)

To obtain the quartic vertex having the property (2.6), the term 〈Ψ, η
[
[Qη̃Ψ, η̃Ψ]L, η̃Ψ

]L
〉

is necessitated. The variation of this term becomes

δ
(
〈Ψ, η

[
[Qη̃Ψ, η̃Ψ]L, η̃Ψ

]L
〉
)
= 2〈δΨ, η

[
[Qη̃Ψ, η̃Ψ]L, η̃Ψ

]L
+

[
[η̃ηΨ, Qη̃Ψ]L, η̃Ψ

]L
〉. (2.35)

Hence, the quartic term S4 defined by

S4 =
1

4!
〈ηΨ, [Qη̃Ψ, Qη̃Ψ, η̃Ψ]L +

[
[Qη̃Ψ, η̃Ψ]L, η̃Ψ

]L
〉, (2.36)

has the property (2.6) and its variation is given by

δS4 =
1

3!
〈δΨ, η

([
Qη̃Ψ, Qη̃Ψ, η̃Ψ

]L
+

[
[Qη̃Ψ, η̃Ψ]L, η̃Ψ

]L)
〉+

1

4
〈δΨ,

[
[Qη̃Ψ, η̃ηΨ]L, η̃Ψ

]L
〉

+
2

4!
〈δΨ,

[
η̃Ψ, [η̃Ψ, ηQη̃Ψ]L

]L
〉+

1

3
〈δΨ,

[
Qη̃Ψ, η̃Ψ, ηQη̃Ψ

]L
〉. (2.37)

Note that W3 =
3
2 [V2, η̃Ψ]L− [W2, η̃Ψ]L−2[Qη̃Ψ, V1, η̃Ψ]L (the second term and the second

line), where V1 = ηQη̃Ψ, V2 = η[Qη̃Ψ, η̃Ψ]L and W2 = [V1, η̃Ψ]L. Using this δS4, we can

determine the third order gauge transformation δ3Ψ satisfying δ3S2+δ2(κS3)+δ1(κ
2S4) =

0. Since the Q-gauge transformation δ2,Λ(κS3) + δ1,Λ(κ
2S4) is given by

κ2

2
〈Λ,

[
Qη̃Ψ, Qη̃Ψ, ηQη̃Ψ

]L
〉+

κ2

2
〈Λ,

[
[Qη̃Ψ, η̃Ψ]L, ηQη̃Ψ

]L
〉+

κ2

2
〈Λ,

[
Qη̃Ψ, [η̃Ψ, ηQη̃Ψ]L

]L
〉

+
κ2

12
〈QΛ,

[
η̃Ψ, [η̃Ψ, ηQη̃Ψ]L

]L
〉+

κ2

3
〈QΛ,

[
η̃Ψ, Qη̃Ψ, ηQη̃Ψ

]L
〉, (2.38)

we obtain the third order Q-gauge transformation

δ3,ΛΨ =
κ2

2
[Qη̃Ψ, Qη̃Ψ,Λ]L +

κ2

2

[
[Qη̃Ψ, η̃Ψ]L,Λ

]L
−
κ2

2

[
η̃Ψ, [Qη̃Ψ,Λ]L

]L
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−
κ2

12

[
η̃Ψ, [η̃Ψ, QΛ]L

]L
−
κ2

3
[η̃Ψ, Qη̃Ψ, QΛ]L. (2.39)

Similarly, the third order η- and η̃-gauge transformations are given by

δ3,ΩΨ = −
κ2

12

[
η̃Ψ, [η̃Ψ, ηΩ]L

]L
−
κ2

3

[
ηΩ, Qη̃Ψ, η̃Ψ

]L
, (2.40)

δ
3,Ω̃

Ψ = −
κ2

12

[
η̃Ψ, [η̃Ψ, η̃Ω̃]L

]L
−
κ2

3

[
η̃Ω̃, Qη̃Ψ, η̃Ψ

]L
. (2.41)

Note, however, that since δ
3,Ω̃

Ψ as well as δ
2,Ω̃

Ψ is η̃-exact, redefining η̃-gauge parameters as

Ω̃′ ≡ Ω̃−
κ

2
[η̃Ψ, Ω̃]L −

κ2

3

(
1

4

[
η̃Ψ, [η̃Ψ, Ω̃]L

]L
+
[
Qη̃Ψ, η̃Ψ, Ω̃

]L
)
+ . . . , (2.42)

the η̃-gauge transformation δ
Ω̃′
Ψ ≡ δ

1,Ω̃
Ψ+δ

2,Ω̃
Ψ+δ

3,Ω̃
Ψ+ . . . becomes linear δ

Ω̃′
Ψ = η̃Ω̃′.

In principle, we can construct higher vertices S5, S6, . . . by repeating these steps at each

order of κ. However, it is not easy to read a closed form expression by hand calculation

because higher order vertices consist of a lot of terms and each term has complicated

operator insertions. To obtain a closed form expression of all vertices in an elegant way,

we necessitate another point of view, which we explain in section 3.

3 Gauge-invariant insertions of picture-changing operators

In this section, we briefly review the coalgebraic description of string vertices [32–34] and

how to construct NS superstring vertices [31]. Since the NS string products satisfies L∞-

relations, the shifted NS string products satisfies L∞-relations up to the equation of motion.

3.1 Coalgebraic description of vertices

Let T (H) be a tensor algebra of the graded vector spaceH. As the quotient algebra of T (H)

by the ideal generated by all differences of products A1 ⊗ A2 − (−1)deg(A1)deg(A2)A2 ⊗ A1

for A1, A2 ∈ H, we can construct the symmetric algebra S(H). The product of states in

S(H) is graded commutative and associative as follows

A1A2 = (−1)deg(A1)deg(A2)A2A1, A1(A2A3) = (A1A2)A3, (3.1)

where A1, A2, A3 ∈ S(H). For us, H is the closed superstring state space, S(H) is the

Fock space of superstrings, and the Z2 grading, called degree, is just Grassmann parity.

The product of two multilinear maps L : Hn → Hl, M : Hm → Hk also becomes a map

L ·M : Hn+m → Hk+l which acts as

L ·M(A1A2 · · ·An+m) =
∑

σ

(−)σ(n,m)L(Aσ(1) · · ·Aσ(n)) ·M(Aσ(n+1) · · ·Aσ(n+m)). (3.2)

Note that the n-product of the identity map I : H → H on symmetric algebras is different

from the n-tensor product or the identity In on Hn:

In ≡
1

n!

n︷ ︸︸ ︷
I · · · I =

n︷ ︸︸ ︷
I⊗ · · · ⊗ I . (3.3)
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In other words, In is the sum of all permutations, In gives the sum of equivalent permuta-

tions, and Ik · Il is equivalent to the sum of different (k, l)-partitions of k + l.

The n string product Ln(A1A2 . . . An) ≡ [A1, . . . , An] defines a n-fold linear map Ln :

Hn → H. We can naturally define a coderivation Ln : S(H) → S(H) from the map

Ln : Hn → H. Specifically, the coderivation Ln acts on the HN ⊂ S(H) as

LnA = (Ln · IN−n)A, LnB = 0, (3.4)

where A ∈ HN≥n and B ∈ HN<n. Note that the commutator [[Lm,L
′
n]] of two coderivations

Lm and L′
n also becomes a coderivation of the (m+ n− 1)-product

[[Lm,L
′
n]] := Lm(L′

n · Im−1)− (−1)deg(Lm)deg(L′

n)L′
n(Lm · In−1). (3.5)

Hence, in the coalgebraic description, we can write L∞-relations of closed string products as

[[L1,Ln]] + [[L2,Ln−1]] + · · ·+ [[Ln,L1]] = 0, (3.6)

or, more simply,

[[L(s),L(s)]] = 0, (3.7)

where s is a real parameter and L(s) is the generating function for the bosonic string

products

L(s) =
∞∑

n=0

snLn+1. (3.8)

3.2 Gauge-invariant insertions

Let L
(n)
N+1 be a (N + 1)-product including n-insertions of picture-changing operators. We

consider a series of these inserted products

L[m](t) :=
∞∑

n=0

tnL
(n)
m+n+1, (3.9)

where t is a real parameter and L
(n)
m+n+1 acts on S(H) as (3.4). Note that the upper index

[m] on L[m](t) indicates the deficit in picture number of the products relative to what is

needed for superstrings: L[0](t) is the sum of all superstring products and L[m](0) is the

(m+1)-product of bosonic strings. To associate the generating functions L[0](t) of the NS

superstring products with (3.8), we define the following generating function

L(s, t) :=

∞∑

s=0

smL[m](t) =

∞∑

m,n=0

smtnL
(n)
m+n+1, (3.10)

where s is a real parameter. Note that powers of t count the picture number, and powers of s

count the deficit in picture number. These two parameters t and s connect the generating

function L(0, t) = L[0](t) for the NS superstring products and the generating function

L(s, 0) for the bosonic string products.
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The L∞-relations of bosonic products and derivation properties of η can be represented

by

[[L(s, 0),L(s, 0)]] = 0, (3.11)

[[ηηη,L(s, 0)]] = 0. (3.12)

Starting with these relations, we can construct the NS superstring products L(0, t) satis-

fying the L∞-relations and derivation properties of η, which we explain in this subsection.

Gauge-invariant insertions. To construct L(0, t) satisfying the L∞-relations and η-

derivation conditions

[[L(0, t),L(0, t)]] = 0, (3.13)

[[ηηη,L(0, t)]] = 0, (3.14)

we have to solve the following pair of differential equations

∂

∂t
L(s, t) = [[L(s, t),Ξ(s, t)]], (3.15)

∂

∂s
L(s, t) = [[ηηη,Ξ(s, t)]], (3.16)

with the initial conditions (3.11) and (3.12) at t = 0. As well as L(s, t), we define a

generating function Ξ(s, t) for gauge parameters

Ξ(s, t) :=
∞∑

m=0

smΞ[m](t) =
∞∑

m,n=0

smtnΞ
(n+1)
m+n+2. (3.17)

The solution of this pair of differential equations generates all products including appro-

priate insertions of picture-changing operators.

We can obtain the superstring L∞-relations (3.13) as a solution of the differential

equation
∂

∂t
[[L(s, t),L(s, t)]] =

[[
[[L(s, t),L(s, t)]],Ξ(s, t)

]]
, (3.18)

where Ξ(s, t) is a generating function for gauge parameters, if we impose the initial condi-

tion (3.11) at t = 0. Provided that L(s, t) satisfies (3.15), the equation (3.18) automatically

holds because of Jacobi identities
[[
[[L(s, t),L(s, t)]],Ξ(s, t)

]]
= 2

[[
[[L(s, t),Ξ(s, t)]],L(s, t)

]]
.

Further, the equation (3.15) leads to the equation

∂

∂t
[[ηηη,L(s, t)]] =

[[
[[ηηη,L(s, t)]],Ξ(s, t)

]]
+
[[
[[ηηη,Ξ(s, t)]],L(s, t)

]]
. (3.19)

Therefore, when L(s, t) satisfies the equation (3.16), we obtain

∂

∂t
[[ηηη,L(s, t)]] =

[[
[[ηηη,L(s, t)]],Ξ(s, t)

]]
−

1

2

∂

∂s
[[L(s, t),L(s, t)]] (3.20)

and the differential equation ∂
∂t [[ηηη,L(s, t)]] =

[[
[[ηηη,L(s, t)]],Ξ(s, t)

]]
(up to [[L(s, t),L(s, t)]])

with the initial condition (3.12) indicates the η-dirivative conditions (3.14) of the super-

string products. As a result, the pair of equations (3.15) and (3.16) generates inserted
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products L satisfying the L∞-relations [[L(s, t),L(s, t)]] = 0 and η-derivative conditions

[[ηηη,L(s, t)]] = 0.

Expanding (3.15) and (3.16) in powers of (s, t), we obtain the following formulae

L
(n+1)
m+n+2 =

1

n+ 1

n∑

k=0

m∑

l=0

[[
L
(k)
k+l+a,Ξ

(n−k+1)
m+n+2−k−l

]]
, (3.21)

[[ηηη,Ξ
(n+1)
m+n+2]] = (m+ 1)L

(n)
m+n+2, (3.22)

at each order of smtn and these formulae determine L
(n)
m+n+2 and Ξ

(n+1)
m+n+2 recursively.

Note that Ξ(s, t) is not unique, however, there exists the one including symmetric

insertions

Ξ
(n+1)
m+n+2 =

m+ 1

m+ n+ 3

(
ξL

(n)
m+n+2 − L

(n)
m+n+2

(
ξ · Im+n+1

))
. (3.23)

Therefore, we can always derive explicit forms of these inserted products as follows:

L
(0)
n+1 = given,

Ξ
(1)
n+1 =

n

n+ 2

(
ξL

(0)
n+1 − L

(0)
n+1

(
ξ · In

))
,

L
(1)
n+1 = [[Q,Ξ

(1)
n+1]] + [[L

(0)
2 ,Ξ(1)

n ]] + · · ·+ [[L(0)
n ,Ξ

(1)
2 ]],

Ξ
(2)
n+1 =

n− 1

n+ 2

(
ξL

(1)
n+1 − L

(1)
n+1

(
ξ · In

))
,

L
(2)
n+1 =

1

2

(
[[Q,Ξ

(2)
n+1]] + [[L

(0)
2 ,Ξ(2)

n ]] + [[L
(1)
2 ,Ξ(1)

n ]] + . . . ,

+ [[L
(0)
n−1,Ξ

(2)
3 ]] + [[L

(1)
n−1,Ξ

(1)
3 ]] + [[L(1)

n ,Ξ
(1)
2 ]]

)
,

...

Ξ
(n)
n+1 =

1

n+ 2

(
ξL

(n)
n+1 − L

(n)
n+1

(
ξ · In

))
,

L
(n)
n+1 =

1

n

(
[[Q,Ξ

(n)
n+1]] + [[L

(1)
2 ,Ξ(n−1)

n ]] + · · ·+ [[L(n−1)
n ,Ξ

(1)
2 ]]

)
. (3.24)

For example, we find that the lowest inserted product L
(1)
2 is given by

L
(1)
2 (A,B) = [[Q,Ξ

(1)
2 ]](A,B)

=
1

3

(
X[A,B] + [XA,B] + [A,XB]

)
, (3.25)

where L
(0)
2 (A,B) = [A,B], and the second lowest product L

(2)
3 is given by

L
(2)
3 (A,B,C) =

1

2

(
[[Q,Ξ

(2)
3 ]] + [[L

(1)
3 ,Ξ

(1)
3 ]]

)
(A,B,C), (3.26)

where L
(0)
3 (A,B,C) = [A,B,C] and

1

2
[[Q,Ξ

(2)
3 ]](A,B,C) =

1

8 · 2

{
X2

[
A,B,C

]
+ [X2A,B,C, ] + [A,X2B,C, ] + [A,B,X2C]

}

+
1

8 · 2

{
ξX[[A,B], C] + [[ξXA,B], C]
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+ (−)A[[A, ξXB], C] + (−)A+B[[A,B], ξXC]
}

+
1

8

{
X[XA,B,C] +X[A,XB,C] +X[A,B,XC]

+ [XA,XB,C] + [XA,B,XC] + [A,XB,XC]
}

−
1

8 · 2

{
ξ[[XA,B] + [A,XB], C] + ξ[[A,B], XC]

+X[[ξA,B], C]− [[ξA,XB], C]− [[ξA,B], XC]

+ (−)A
(
X[[A, ξB], C]− [[XA, ξB], C]− [[A, ξB], XC]

)

+ (−)A+B
(
X[[A,B], ξC]−[[XA,B], ξC]−[[A,XB], ξC]

)}

+
1

4 · 3

{
X[ξ[A,B], C]+[ξ[XA,B]+ξ[A,XB], C]+[ξ[A,B], XC]

+ ξ
[
X[A,B], C

]
+
[
X[ξA,B], C

]

+ (−)A
[
X[A, ξB], C

]
+ (−)A+B

[
X[A,B], ξC

]}

+
{
(B,C,A)-terms

}
+

{
(C,A,B)-terms

}
. (3.27)

1

2
[[L

(1)
2 ,Ξ

(1)
2 ]](A,B,C) =

1

9 · 2

{
2
[
ξX[A,B], C

]
− ξ

[
X[A,B] + [XA,B] + [A,XB], C

]

+X
[
ξ[A,B], C

]
+
[
ξ
(
[XA,B]+[A,XB]

)
, C

]
+
[
ξ[A,B], XC

]

−X
[
[ξA,B], C

]
−
[
X[ξA,B], C

]
−
[
[ξA,B], XC

]

− (−)A
([
X[A, ξB], C

]
+X

[
[A, ξB], C

]
+
[
[A, ξB], XC

])

− (−)A+B
([
X[A,B] + [XA,B] + [A,XB], ξC

])}

+
{
(B,C,A)-terms

}
+
{
(C,A,B)-terms

}
(3.28)

3.3 NS string products

The generating function L(0, t) of the superstring products, as well as that of bosonic ones

L(s, 0), has nice properties, which we explain in this subsection. Note that the above

L
(n)
n+1 obtained from (3.21) and (3.23) carries ghost-and-picture number (1 − 2n|n, 0). In

this sense, we write L
(n,0)
n+1 for this L

(n)
n+1, an NS superstring product with insertions of

left-moving picture-changing operators. L
(n,0)
n+1 gives the (n+ 1)-product of NS (heterotic)

superstring field theory in the small Hilbert space of left movers [31].

By construction, we can also obtain an NS superstring product L
(0,n)
n+1 with insertions of

right-moving picture-changing operators X̃ by replacing (η, ξ,X) with (η̃, ξ̃, X̃) in (3.21),

(3.22), and (3.23). In the rest, we consider these right-mover NS products {L
(0,n)
n+1 }

∞
n=0 and

write

[A0, A1, . . . , An]
L := L

(0,n)
n+1 (A0, A1, . . . , An). (3.29)

The right-mover NS products also satisfies L∞-relations
∑

σ

∑

k

(−1)|σ(A)|
[
[Aσ(1), . . . , Aσ(k)]

L, Aσ(k+1), . . . , Aσ(n)

]L
= 0. (3.30)

Note also that the n-product [A1, . . . , An]
L has ghost-and-picture number (3−2n|0, n−1).
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L∞-properties of right-mover NS string products. Let G be a ghost-and-picture

number (2|0,−1) state and A,A1, . . . , An be arbitrary states. We can define a shifted

BRST operator QG and shifted right-mover NS string products

QGA ≡ [A ]LG := QA+
∞∑

n=1

κn

n!
[Gn, A ]L, (3.31)

[A1, . . . , An]
L
G :=

∞∑

k=1

κk

k!
[Gk, A1, . . . , An]

L, (3.32)

in the same manner as shifted bosonic string products. Provided that the state G shifting

these products satisfies the equation of motion F(G) = 0 of NS (heterotic) string field

theory in the small Hilbert space of right movers

F(G) ≡ QG +

∞∑

n=1

κn

(n+ 1)!

[
Gn,G

]L
= 0, (3.33)

these shifted products satisfy (strong) L∞-relations:1

∑

σ

∑

k

(−1)|σ|
[
[Aσ(1), . . . , Aσ(k)]

L
G , Aσ(k+1), . . . , Aσ(n)

]L
G
= 0. (3.34)

Then, QG becomes a nilpotent operator.

4 WZW-like expression

In this section, first, we gives the defining equations of a formal pure-gauge GL and associ-

ated fields Ψt,Ψη,Ψδ. These are functions of NS-NS string fields Ψ and become key ingredi-

ents of our construction. Then, we present a closed form expression of WZW-like action for

NS-NS string field theory, the equation of motion, and the gauge invariance of the action.

4.1 Pure-gauge GL and ‘large’ associated field ΨX

The NS-NS string field Ψ is a Grassmann-even and ghost-and-picture number (0|0, 0) state

living in the large Hilbert space of left-and-right movers: ηΨ 6= 0 and η̃Ψ 6= 0.

A pure-gauge GL of right-mover NS theory. We can build a formal pure-gauge

solution GL of NS heterotic string field theory in the small Hilbert space of right-movers

with a finite gauge parameter η̃Ψ living in the left-mover large and right-mover small Hilbert

space by successive infinitesimal gauge transformations. The pure-gauge field GL = GL[η̃Ψ]

is a function of η̃Ψ, defined by the τ = 1 solution of the differential equation

∂

∂τ
GL[τ η̃Ψ] = Q η̃Ψ+

∞∑

n=1

κn

n!

[(
GL[τ η̃Ψ]

)n
, η̃Ψ

]L

≡ QGL[τ η̃Ψ]η̃Ψ (4.1)

1For general G, weak L∞-relations hold, which are equivalent to (strong) L∞-relations up to F(G).
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with the initial condition GL[0] = 0, where τ ∈ [0, 1] is a real parameter connecting 0 and

GL[η̃Ψ]. (See also [6, 20, 21], appendix A, and appendix B.) Solving the defining equation

(4.1) and setting τ = 1, we obtain the explicit form of the pure-gauge GL ≡ GL[τ = 1] as

follows

GL = Qη̃Ψ+
κ

2
[Qη̃Ψ, η̃Ψ]L +

κ2

3!

([
Qη̃Ψ, Qη̃Ψ, η̃Ψ

]L
+

[
[Qη̃Ψ, η̃Ψ]Lη̃Ψ

]L)
+ . . . . (4.2)

Note that GL is a Grassmann even and ghost-and-picture number (2|0,−1) state satis-

fying ηGL 6= 0 and η̃GL = 0, the field η̃Ψ is a Grassmann odd and ghost-and-picture num-

ber (1|0,−1) state satisfying η(η̃Ψ) 6= 0 and η̃(η̃Ψ) = 0, and the n-product [A1, . . . , An]
L

is a Grassmann odd and ghost-and-picture number (3 − 2n|0, n − 1) product satisfying

∆η/η̃[A1, . . . , An]
L = 0.

An associated field ψX with derivation X. In the rest, we simply write GL[τ ] for the

intermediate pure-gauge field rather than GL[τ η̃Ψ]. There exists a special string field ψX,

so-called an associated field, satisfying

(−1)XXGL = QGL
ψX, (4.3)

where X is a derivation of our right-mover (−,NS) string products [A1, . . . , An]
L:

(−1)XX[A1, . . . , An]
L +

n∑

i=1

(−1)X(A1+···+Ai−1)[A1, . . . ,XAi, . . . An]
L = 0. (4.4)

Utilizing the GL[τ ]-shifted two-product [A1, A2]
L
GL[τ ]

, the defining equation of ψX is given by

∂

∂τ
ψX[τ ] = X η̃Ψ+ κ

[
η̃Ψ, ψX[τ ]

]L
GL[τ ]

(4.5)

with the initial condition ψX[0] = 0. Note that ψX[τ ], as well as GL[τ ], is a function of τ η̃Ψ

and τ is a real parameter connecting 0 and ψX := ψX[1]. The associated filed ψX carries

ghost-and-picture number (GX + 1|pX, p̃X − 1), where (GX|pX, p̃X) is that of X.

A ‘large’ associated field ΨX. These pure-gauge field GL and associated field ψX belong

to the left-mover large and right-mover small Hilbert space: η GL 6= 0, η ψX 6= 0, and

η̃ GL = η̃ ψX = 0. Since η̃-cohomology is trivial in the large Hilbert space of left-and-right

movers, there exist large fields GL and ΨX such that

GL = η̃ GL, ψX = η̃ΨX. (4.6)

Note that the relation η̃XGL = −η̃ QGL
ΨX holds because of (−)XX(ηGL) = QGL

(η̃ΨX) and

η̃GL = 0. Hence, up to QGL
- and η̃-exact terms, these large-space fields GL and ΨX satisfy

XGL = −QGL
ΨX, (4.7)

and the defining equations (up to QGL
- and η̃-exact terms) of GL and ΨX are given by

∂

∂τ
GL[τ ] = −QGL[τ ]Ψ, (4.8)

– 16 –
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∂

∂τ
ΨX[τ ] = (−1)XXΨ+ κ

[
η̃Ψ,ΨX[τ ]

]L
GL[τ ]

, (4.9)

with the initial conditions GL[τ = 0] = 0 and ΨX[τ = 0] = 0. As well as GL and ψX, large

fields GL and ΨX are also functions of (Ψ, η̃Ψ). Here τ is a real parameter connecting 0

and η̃Ψ. With the initial condition ΨX[τ = 0] = 0, we find that the first few terms in ΨX

are given by

(−1)XΨX = XΨ+
κ

2
[η̃Ψ,XΨ]L +

κ2

3!

(
2[η̃Ψ, Qη̃Ψ,XΨ]L + [η̃Ψ, [η̃Ψ,XΨ]L]L

)
+ . . . . (4.10)

Note that the large associated field ΨX has the same ghost-and-picture number as X.

A t-parametrized large field Ψt. Let Ψ(t) be a t-parametrized path connecting Ψ(0) =

0 and Ψ(1) = Ψ. The above defining equations of GL, ψX, GL, and ΨX hold not only for

the field Ψ but for the t-parametrized field Ψ(t). Hence, we can built t-parametrized ones

GL(t), ψX(t), GL(t), and ΨX(t) by replacing Ψ with Ψ(t) in the defining equations of GL,

ψX, GL, and ΨX. For example, for X = ∂t, solving (4.9) with replacement of Ψ and setting

τ = 1, we obtain the t-parametrized field Ψt ≡ Ψ∂t(t)

Ψt = ∂tΨ(t)+
κ

2
[η̃Ψ(t), ∂tΨ(t)]L +

κ2

3!

(
2[η̃Ψ(t), Qη̃Ψ(t), ∂tΨ(t)]L

+ [η̃Ψ(t), [η̃Ψ(t), ∂tΨ(t)]L]L
)
+ . . . , (4.11)

which appears in the action for NS-NS string fields with general t-parametrization. Note

that this Ψt has the same ghost-and-picture number (0|0, 0) as NS-NS string field Ψ, and

the equation η̃Ψt = η̃Ψ holds for the linear path Ψ(t) = tΨ.

4.2 Wess-Zumino-Witten-like action

Let GL =
∑∞

n=0 κ
nG

(n)
L be the expansion of the pure-gauge GL in powers of κ. Here,

we propose a large-space WZW-like action utilizing the pure-gauge GL(t) and the large

associated field Ψt.

The generating function for Vn(Ψ
n). Recall that the kinetic term S2 =

1
2〈Ψ, V1(Ψ)〉

is given by V1(Ψ) = ηQη̃Ψ, which is equivalent to ηG
(0)
L . In section 2, we derived the

gauge-invariant cubic vertex V2 of S3 =
1
3!〈Ψ, V2(Ψ

2)〉

V2(Ψ
2) = η[Qη̃Ψ, η̃Ψ]L =

η

3!

(
X̃[Qη̃Ψ, η̃Ψ] + [X̃Qη̃Ψ, η̃Ψ] + [Qη̃Ψ, X̃η̃Ψ]

)
, (4.12)

and the gauge-invariant quartic vertex V3 of S4 =
1
4!〈Ψ, V3(Ψ

3)〉

V3(Ψ
3) = η

([
Qη̃Ψ, Qη̃Ψ, η̃Ψ

]L
+
[
[Qη̃Ψ, η̃Ψ]L, η̃Ψ

]L)
, (4.13)

which are equivalent to 2 · η G
(1)
L and 3! · η G

(2)
L respectively. Note that quintic vertex

V4(Ψ
4) = η

([
(Qη̃Ψ)3, η̃Ψ

]L
+
[
[(Qη̃Ψ)2, η̃Ψ]L, η̃Ψ

]L
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+ 3
[
[Qη̃Ψ, η̃Ψ]L, Qη̃Ψ, η̃Ψ

]L
+
[
[[Qη̃Ψ, η̃Ψ]L, η̃Ψ]L

]L)
, (4.14)

is also given by 4! · η G
(3)
L . Similarly, the relation Vn(Ψ

n) = n! · η G
(n−1)
L holds for the

(n+ 1)-point vertex Vn. Therefore, the pure-gauge solution GL

GL = Qη̃Ψ+
κ

2
[Qη̃Ψ, η̃Ψ]L +

κ2

3!

(
[Qη̃Ψ, Qη̃Ψ, η̃Ψ]L +

[
[Qη̃Ψ, η̃Ψ]L, η̃Ψ

]L)
+ . . . , (4.15)

defined by ∂τGL = QGL
(η̃Ψ) in (4.1) gives a generating function for vertices. Provided that

the t-parametrization of Ψ(t) is linear: Ψ(t) = tΨ, we find

∞∑

n=1

κn−1

(n+ 1)!
〈Ψ, Vn(Ψ

n)〉 =

∫ 1

0
dt 〈Ψ, η GL(t)〉. (4.16)

Note that all coefficients of Vn+1 and G
(n)
L match by the t-integral.

The generating function for Wn(Ψ
n). Let Ψδ =

∑∞
n=0 κ

nΨ
(n)
δ be the expansion of

the associated field Ψδ in powers of κ, where ‘δ’ is the variation operator. Recall that

the variation of S2 is given by δS2 = 〈δΨ, V1(Ψ) +W1(Ψ)〉 = 〈δΨ, ηQη̃Ψ〉, which means

W1(Ψ) = 0. In section 2, we also determined W2 and W3, as well as V2 and V3, appearing

in the calculation of the variation δS3 and δS4. Recall that W2 is given by

κ

2
〈δΨ,W2(Ψ

2)〉 = −
κ

2
〈δΨ, [η̃Ψ, V1(Ψ)]L〉, (4.17)

which is equivalent to 〈Ψ
(1)
δ , V1(Ψ)〉, and W3 is given by

κ2

3!
〈δΨ,W3(Ψ

3)〉 = −
κ2

3!
〈δΨ, [[V1(Ψ), η̃Ψ]L, η̃Ψ]L + 2[V1(Ψ), Qη̃Ψ, η̃Ψ]L〉

+
κ2

2
〈δΨ,

1

2
[V2(Ψ

2), η̃Ψ]L〉, (4.18)

which is equivalent to 〈Ψ
(1)
δ , κ

2!V2(Ψ
2)〉 + 〈Ψ

(2)
δ , V1(Ψ)〉. Similarly, the following relation

holds
κn

n!
〈δΨ,Wn(Ψ

n)〉 =
n−1∑

k=1

κk−1

k!
〈Ψ

(n−k)
δ , Vk(Ψ

k)〉. (4.19)

Hence, the associated field Ψδ

Ψδ = δΨ+
κ

2
[η̃Ψ, δΨ]L +

κ2

3!

(
[η̃Ψ, Qη̃Ψ, δΨ]L + 2

[
η̃Ψ, [η̃Ψ, δΨ]L

]L)
+ . . . , (4.20)

defined by ∂τΨδ = δΨ+ κ[η̃Ψ,Ψδ]
L
GL

in (4.9) determines Wn-terms.

The WZW-like action. Let Ψ(t) be a t-parametrized NS-NS string field satisfying

Ψ(0) = 0 and Ψ(1) = Ψ. Replacing NS-NS string fields Ψ with t-parametrized NS-NS string

fields Ψ(t) in (4.1) and (4.9), we obtain t-parametrized pure-gauge and large associated

fields: GL(t), Ψt, and Ψη(t). WZW-like NS-NS action consists of these fields, which we

explain in the rest. Since the relation

η GL(t) = −QGL(t)

(
η̃Ψη(t)

)
= η̃ QGL(t)Ψη(t) (4.21)
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holds and QGL
, η, and η̃ are nilpotent operators, the state η GL is a QGL

-, η-, and η̃-exact

state. The equation [[∂t, δ]]GL(t) = 0 implies ∂t(QGL(t)Ψδ(t)) = δ(QGL(t)Ψt).

Thus, we propose the following WZW-like action for NS-NS string field theory

S =
2

α′

∫ 1

0
dt 〈ηΨt, GL(t)〉, (4.22)

which reduces to (4.16) or the familiar WZW form (see appendix B)

S|Ψ(t)=tΨ = −
1

α′

(
〈Ψη,GL〉+ κ

∫ 1

0
dt〈Ψt, [Ψη(t),GL(t)]

L
GL(t)

〉

)
, (4.23)

if we set Ψ(t) = tΨ. Note that the (n+ 1)-point vertex includes n insertions of η̃ and the

action S is invariant under the linear2 gauge transformation δ
Ω̃′
Ψ = η̃ Ω̃′.

The equation of motion is given by

η GL =

∫ 1

0
dτ

(
η̃η QGL[τ ]Ψ

)
= 0, (4.24)

which is derived in subsection 4.3. Although the action includes the integral over a real

parameter t, the action S, the variation δS, the equation of motion η GL = 0, and gauge

transformations are independent of the t-parametrization or t-parametrized path Ψ(t).

4.3 Nonlinear gauge invariance

Here, we derive the equation of motion and the closed form expression of nonlinear gauge

transformations. Note that, for example, GL(t = 0) = 0, GL(t = 1) = GL, Ψδ(t = 0) = 0,

and Ψδ(t = 1) = Ψδ hold.

For this purpose, we prove that the variation δS does not includes t and is given by

δS = 〈Ψδ, η GL〉. (4.25)

Using the relation η̃ QGL
(∂tΨδ − δΨt + κ[Ψt, ψδ]

L
GL

) = 0, which is equivalent to ∂t(δGL) =

δ(∂tGL) with η̃ΨX = ψX, we find that the following equation holds for any t

〈δΨt, η GL(t)〉 = −〈δΨt, QGL(t)ψη(t)〉

= −〈∂tΨδ(t)− κ[Ψδ(t), ψt]
L
GL(t)

, QGL(t)ψη(t)〉

= 〈∂tΨδ(t), η GL(t)〉 − κ〈η GL(t), [Ψδ(t), ψt]
L
GL(t)

〉. (4.26)

Similarly, since η GL = 0, [[η,QGL
]] = 0, and ψX = ηΨX, we obtain

〈Ψt, δ
(
η GL(t)

)
〉 = 〈Ψt, η

(
QGL(t)ψδ(t)

)
〉 = −〈QGL(t)(ηΨt), ψδ(t)〉

= −〈ψδ(t), QGL(t)(ηΨt)〉 = −〈Ψδ(t), QGL(t)(ηψt)〉

= 〈Ψδ(t), η(QGL(t)ψt) + κ[η GL(t), ψt]
L
GL(t)

〉

= 〈Ψδ(t), ∂t
(
η GL(t)

)
〉+ κ〈η GL(t), [Ψδ(t), ψt]

L
GL(t)

〉. (4.27)

2Note that, however, GL and Ψt include a lot of η̃Ψ and as seen in 4.3, it does not mean that there are

no gauge transformations including nonlinear terms of η̃Ψ.
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Hence, the variation δS of the WZW-like action S is given by

δS =

∫ 1

0
dt
(
〈δΨt, η GL(t)〉+ 〈Ψt, δ(η GL(t))〉

)

=

∫ 1

0
dt

∂

∂t
〈Ψδ(t), η GL(t)〉 = 〈Ψδ, η GL〉, (4.28)

which does not include t-parametrized fields. The equation of motion is, therefore, given

by (4.24) and it is independent of t-parametrization of fields.

Since η GL is a QGL
-, η-, and η̃-exact state, we find that the action is invariant under

the following nonlinear Q- and η-gauge transformations and linear η̃-gauge transformation

Ψδ = QGL
Λ + ηΩ+ η̃ Ω̃, (4.29)

where Λ, Ω, and Ω̃ are gauge parameter fields whose ghost-and-picture numbers are

(−1|0, 0), (−1|1, 0), and (−1|0, 1) respectively. Note that Ψδ is an invertible function

of δΨ, at least in the expansion in powers of κ as follows

δΨ = Ψδ −
κ

2
[η̃Ψ,Ψδ]

L −
κ2

3!

(
1

2

[
η̃Ψ, [η̃Ψ,Ψδ]

L
]L

+ 2
[
η̃Ψ, Qη̃Ψ,Ψδ

]L
)
+O(κ3). (4.30)

For instance, an explicit expression for Q-gauge transformation δΛΨ and η-gauge transfor-

mation δΩΨ are given by

δΛΨ = QΛ + κ[Qη̃Ψ,Λ]L −
κ

2
[η̃Ψ, QΛ]L +O(κ2) (4.31)

δΩΨ = ηΩ−
κ

2
[η̃Ψ, ηΩ]L −

κ2

3

[
ηΩ, Qη̃Ψ, η̃Ψ

]L
−
κ2

12

[
[ηΩ, η̃Ψ], η̃Ψ

]L
+O(κ3). (4.32)

These gauge transformations are nonlinear. Note, however, that since η̃-gauge transforma-

tion

δ
Ω̃
Ψ = η̃Ω̃−

κ

2
[η̃Ψ, η̃Ω̃]L −

κ2

3
[η̃Ψ, Qη̃Ψ, η̃Ω̃]L −

κ2

12
[η̃Ψ, [η̃Ψ, η̃Ω̃]L]L +O(κ3) (4.33)

obtained from Ψδ
Ω̃
= η̃ Ω̃ consists of η̃-exact terms, it is equivalent to the linear η̃-gauge

transformation

δ
Ω̃′
Ψ = η̃ Ω̃′, (4.34)

where Ω̃′ is a redefined η̃-gauge parameter

Ω̃′ ≡ Ω̃−
κ

2
[η̃Ψ, Ω̃]L −

κ2

3!

(
2
[
η̃Ψ, Qη̃Ψ, η̃Ω̃

]L
+

1

2

[
η̃Ψ, [η̃Ψ, η̃Ω̃]L

]L
)
+O(κ3). (4.35)

As a result, although the action has three generators of gauge transformations, since one

of these gauge invariances reduces to trivial, the resulting theory is Wess-Zumino-Witten-

likely formulated with two nonlinear gauge invariances.

– 20 –



J
H
E
P
0
9
(
2
0
1
5
)
0
1
1

5 Conclusion

In this paper, we proposed WZW-like expressions for the action and nonlinear gauge trans-

formations in the NS-NS sector of superstring field theory in the large Hilbert space. Al-

though the action uses t-parametrized large fields Ψ(t) satisfying Ψ(0) = 0 and Ψ(1) = Ψ,

it does not depend on t-parametrization. Vertices are determined by a pure-gauge solution

of NS (heterotic) string field theory in the small Hilbert space of right movers, which is

constructed by NS closed superstring products (except for the BRST operator) including

insertions of right-moving picture-changing operators [31].

Gauge equivalent vertices. We used the (−,NS) string products, namely, the right

edge points at the diamonds of products in figure 5.1 of [31]. It would be possible to

write the large-space NS-NS action utilizing another but gauge-equivalent products in [31]

instead of the (−,NS) string products.

Ramond sectors. We have not analyzed how to incorporate the R sector(s). Our large-

space NS-NS action has the almost same algebraic properties as the large-space action for

NS closed string field theory. Thus, we can expect that the method proposed in [25, 26]

also goes in the NS-NS case.

It is very important to obtain clear understandings of the geometrical meaning of

theory, gauge fixing [35–37], the relation between two formulations: large- and small-space

formulations. However, our large-space formulation is purely algebraic and these aspects

remain mysterious.
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A Heterotic theory in the small Hilbert space

The action for heterotic string field theory in the small Hilbert space of right movers is

given by

S =
1

2
〈Φ, QΦ〉+

∞∑

n=1

κn

(n+ 2)!
〈Φ, [Φn,Φ]L〉, (A.1)

where the NS heterotic string field Φ is a ghost-and-picture number (2|0,−1) state in the

small Hilbert space of right movers and right-moving picture-changing operators X̃ inserted

product [A1, . . . , An]
L given by [31] carries ghost-and-picture number (3−2n|0, n−1). This

action is invariant under the following gauge transformation [6, 7]

δΦ = Qλ+
∞∑

n=1

κn

n!
[Φn, λ]L ≡ QΦλ, (A.2)

where λ is a gauge parameter carrying ghost-and-picture number (1|0,−1).
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Just as bosonic theory [5, 7], the equation of motion is given by

QΦ+
∞∑

n=1

κn

(n+ 1)!
[Φn,Φ]L = 0, (A.3)

and a pure-gauge GL is constructed by infinitisimal gauge transformations [6, 20, 21].

Therefore, GL is defined by the τ = 1 value solution GL ≡ GL[τ = 1] of the following

differential equation

∂

∂τ
GL[τ ] = Qλ+

∞∑

n=1

κn

n!

[
GL[τ ]

n, λ
]L

= QGL[τ ]λ, (A.4)

with the initial condition GL[τ = 0] = 0.

B Some identities

BPZ-properties. The c−0 -inserted BPZ inner product 〈A,B〉 := 〈bpz(A)|c−0 |B〉, bosonic

or heterotic string products, and a derivation operator X satisfy

〈A,B〉 = (−)(A+1)(B+1)〈B,A〉, (B.1)

〈[A0, . . . , An−1], An〉 = (−)A0+···+An−1〈A0, [A1, . . . , An]〉, (B.2)

〈XA,B〉 = (−)AX〈A,XB〉, (B.3)

where c−0 = 1
2(c0 − c̃0) and X = Q, η, η̃.

The Maurer-Cartan element. A pure-gauge solution GL satisfies the equation of mo-

tion F(GL) = 0 of NS heterotic string field theory in the small Hilbert space of right movers.

Using the defining equation of GL, we find that

∂

∂τ
F(GL) =

∂

∂τ

(
QGL +

∞∑

n=1

κn

(n+ 1)!

[
Gn
L,GL

]L
)

= QQGL
η̃Ψ+

∞∑

n=1

κn

n!

[
Gn
L, QGL

η̃Ψ
]L

= Q2
GL

(η̃Ψ), (B.4)

which leads to the differential equation ∂τF =
[
F , η̃Ψ

]L
GL

with the initial condition F(0) =

0. Hence, GL satisfies F(GL) = 0 and QGL
is a nilpotent operator. (See also [20, 21].)

The standard WZW form. Recall that when there exist higher sting products

[A1, . . . , An]
L (n > 2), a field-strength-like object fXY ≡ XψY − (−)XY Y ψX +

(−)Xκ[ψX , ψY ]
L
GL

is not zero fXY 6= 0 but a QGL
-exact state: QGL

fXY = 0, where X

and Y are derivation operators satisfying [[X,Y ]] = 0. Let

FXY ≡ XΨY + (−)(X+1)(Y+1)YΨX + κ[ΨX , ψY ]
L
GL

(B.5)

be a large field-strength-like object satisfying η̃FXY = (−)XfXY . Utilizing this Fηt and

the relation 〈Ψt, QGL
ψη〉 = 〈Ψη, ∂tGL〉, our WZW-like action can be rewritten as

S =
1

α′

∫ 1

0
dt

(
〈ηΨt, GL〉+ 〈Ψt, η GL〉

)
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=
1

α′

∫ 1

0
dt
(
〈Fηt − ∂tΨη − κ[Ψt, ψη]

L
GL
, GL〉 − 〈Ψt, QGL

ψη〉
)

=
1

α′

∫ 1

0
dt〈GL, Fηt〉 −

1

α′

∫ 1

0
dt
[(

〈∂tΨη,GL〉+ 〈Ψη, ∂tGL〉
)
+ κ〈Ψt, [ψη,GL]

L
GL

〉
]
. (B.6)

Recall also that the linear t-parametrization Ψ(t) = tΨ gives Ψt = Ψ up to η̃-exact

terms. When we identify τ and t, the defining equation of ψX becomes ∂tψX = Xη̃Ψ +

κ[η̃Ψ, ψX ]LGL
, which implies η̃

(
∂tΨX − (−)XXΨ + κ[Ψ, ψX ]LGL

)
= 0. Hence, provided that

Ψ(t) = tΨ, we obtain η̃Fηt = 0 and the action reduces to the familiar WZW-form:

S|Ψ(t)=tΨ = −
1

α′

(
〈Ψη, GL〉+ κ

∫ 1

0
dt 〈Ψt, [ψη(t),GL(t)]

L
GL(t)

〉

)
. (B.7)
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