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we turn our attention to the E6 (2,0) theory, which (unlike the A- and D-series) has no
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1 Introduction

In [1, 2], Gaiotto and collaborators introduced a construction for a class of 4D N = 2

superconformal theories, realizing them as compactifications of the 6D (2,0) theories on

a punctured Riemann surface. Because of its six-dimensional origin, this class of theories

(sometimes called class “S”) is endowed with a powerful set of tools [1–11] for studying its

physical properties. For a theory in this class, it is trivial to write its low-energy Seiberg-

Witten solution and study N = 2 S-duality [12], as well as compute central charges, the

global symmetry group, graded dimensions of the Coulomb branch, etc.

Equally interesting, the understanding of the theories in this class expands our knowl-

edge of what 4D N = 2 SCFTs actually exist. The set of N = 2 SCFTs includes ordinary

gauge theories (recently classified in [13]), some of which are realized from six dimensions,

but also isolated interacting fixed points of the renormalization group with no known La-

grangian description. Gaiotto’s construction generates infinitely many new examples of

these interacting theories. Thus, while it seems unlikely that this construction covers the

full gamut of 4D N = 2 SCFTs, it becomes interesting to ask what subset it does cover.

In [3], we started a systematic classification of the 4D N = 2 SCFTs, arising from the

AN−1 series of (2,0) theories. The classification is possible because the various pieces of

the construction can themselves be classified. The (2,0) theories are classified by a choice

of simply-laced Lie algebra j [14]; (a class of) punctures on the Riemann surface are labeled

by nilpotent orbits in j [15, 16], and degenerating Riemann surfaces can be decomposed

into a collection of three-punctured spheres connected by cylinders. The set of theories

becomes larger if we allow for the (2,0) theory to be “twisted” by an outer-automorphism

of j, when traversing a nontrivial cycle of the punctured Riemann surface, C. In particular,

a twist when circling a puncture introduces a new class of defects, called “twisted punc-

tures,” which are classified by nilpotent orbits in non-simply-laced Lie algebras obtained

by dividing j by the action of the outer automorphism [9, 17]. In [4], we extended the

classification of [3] to the (untwisted) DN series, and in [10] and [11] we incorporated Z2

outer automorphism twists in the A2N−1 series and in the DN series, respectively.

In this paper, we extend our classification program to the (2,0) theory of type E6.

We leave the study of this theory in the presence of Z2 outer automorphism twists for

another publication. There is no known construction of the E6 theory as a low-energy

theory of a stack of M5 branes, as was the case for the A- and D-series. Rather, the only

known construction is as a compactification of IIB string theory on a K3 manifold at an E6

singularity [14]. Still, computations are possible because the the 4D N = 2 compactification

of the E6 theory is controlled by a Hitchin system [2] with gauge group E6.

As a byproduct, we realize E6 gauge theory with matter in the 4(27), as well as F4

gauge theory with matter in the 3(26), as compactifications of the E6 (2,0) theory on a
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4-punctured sphere. The Seiberg-Witten solution to the E6 gauge theory, with Nf ≤ 3

27s, appeared first in [18]. Our solution to the superconformal F4 gauge theory is new.

2 The E6 theory

2.1 The Hitchin system

The Coulomb branch of the 4D N = 2 theories obtained from the compactification of the

6D (2,0) theory of type E6 on a Riemann surface C is described by the Hitchin equations

on C with complexified gauge group E6 [2]. We may also include codimension-two defects

of the (2,0) theory localized at points on C; we refer to these as “punctures”. A class

of punctures is classified by nilpotent orbits (or, equivalently, by embeddings of sl(2)) in

the complexified Lie algebra e6 [9]. One of the main points of the construction is that a

number of physical properties of the 4D theories can be computed directly from geometric

properties of the nilpotent orbits that label the punctures on C, without any detailed

knowledge of the (2,0) theory.

A puncture labeled by a nilpotent orbit O, and located at z = 0 on C, corresponds to

a local boundary condition for the Higgs field,

Φ(z) =
X

z
+ . . . (2.1)

where Φ is a holomorphic 1-form on C that takes values in e6 and transforms in the adjoint

representation of the gauge group, X is a representative of the nilpotent orbit d(O) in e6,

and . . . represents a generic regular function of z taking values in e6. Here, d(O) is the

image of O under the Lusztig-Spaltenstein map d [4, 7, 9]. Representatives of all nilpotent

orbits in e6 can be found in [19], and a diagram specifying the action of d, as well as other

properties of the e6 orbits, are collected in appendix C of [9] (taken from [20, 21]) When d

is not injective, we distinguish different punctures with the same d(O) by their Sommers-

Achar group C(O) [9], which is a discrete subgroup of E6, imposing gauge invariance of Φ

under the action of C(O).

As in our previous papers, we call O, which labels the puncture, the Nahm pole,

and d(O), which appears in the Hitchin system boundary condition, the Hitchin pole.

The physical properties of a puncture labeled by O will be directly related to geometric

properties of the orbits O and d(O), and the discrete group C(O).

Unlike classical Lie algebras, there is no natural parameterization of the nilpotent

orbits of exceptional Lie algebras in terms of partitions or Young diagrams. Instead, the

notation due to Bala and Carter is standard in the representation theory literature. This

notation has been briefly discussed in previous works [9, 16, 22], but, for completeness, we

review it in appendix A, and discuss how to extract relevant information from it.

2.2 k-differentials

The low-energy solution of the 4D N = 2 theory is encoded in the Seiberg-Witten curve,

which is given by the spectral curve of the Hitchin system, i.e., by the characteristic poly-

nomial for the Higgs field Φ, in representation R of e6:

ΣR : detR(Φ− λI) = λd + λd−2s2 + λd−3s3 + · · ·+ sd = 0,

– 3 –
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where d = dimR and the λd−1 is zero because Tr(Φ) = 0. Different choices of R will yield

different curves ΣR. However, as discussed in [23], the physical information that one can

extract from them is the same.

For a choice of R, let sk be the coefficient of λdim(R)−k, for k = 0, 1, 2, . . . , dim(R).

(s0 and s1 are trivial — they are 1 and 0, respectively.) The sk(z) are holomorphic k-

differentials on C (with poles at the punctures), and can be expressed as polynomials in

the trace invariants Pk = Tr(Φk). Notice that both the sk and the Pk are dependent on

the representation R.

On the other hand, we are actually interested in the Casimirs of Φ, which are the

independent k-differentials providing the gauge-invariant information contained in Φ. For a

Lie algebra g, the number of Casimirs is equal to the rank of g, and their scaling dimensions

are the exponents (minus 1) of g. Unlike the sk or the Pk, the Casimirs encode the non-

redundant gauge-invariant information in Φ.

In our previous papers [3, 4, 10, 11], the Lie algebra was of classical type, and R was

always chosen to be the smallest non-trivial representation (the fundamental for AN−1, or

the vector for DN ). In such cases, the coefficients sk directly provide a basis for the Casimirs

of Φ. For example, for g = AN−1, we have N − 1 Casimirs, of dimensions 2, 3, 4, . . . , N .

These dimensions match precisely those of the non-trivial coefficients sk if R is chosen

to be the fundamental representation. Thus, the sk can be taken to be the Casimirs of

AN−1. Similarly, for g = DN , the N Casimirs have degrees 2, 4, 6, . . . , 2N − 2;N . If R

is the vector representation, the sk with k odd vanish, and the non-trivial coefficients are

s2, s4, . . . , s2N−2, s2N . Here, s2N is the square of the Pfaffian, s2N = s̃2, and so s̃ has

dimension N . Thus, as before, the s2, s4, . . . , s2N−2; s̃ provide a basis of Casimirs of DN .

But if for AN−1 and DN we had chosen R to be, say, the adjoint representation, then,

for large enough N , the sk would not have given directly the Casimirs, but instead a lot

of redundant information. For example, for A5, there are five Casimirs, with dimensions

2, 3, 4, 5, 6. However, we have 34 non-trivial coefficients sk, with dimensions 2, 3, 4, . . . , 35.

These sk are polynomials in the five Casimirs.

For j = e6, the Casimirs have degrees 2,5,6,8,9,12. In our computations, we have chosen

R to be the adjoint representation of e6, as it is readily available in the form of structure

constants; we used those from the computer algebra system GAP 4 [24]. Instead of trying

to compute the 78 coefficients sk, we focus directly on the trace invariants Pk for values of k

only as large as needed to extract the Casimirs. For the adjoint representation of e6, the Pk
vanish for k odd, and are non-trivial for k even, except for P4 = 1

32(P2)2. Also, as we will

see below, to extract the Casimirs, we only need to consider the Pk for k = 2, 6, 8, 10, 12, 14.

From the Pk, one can construct a less-redundant basis,

φ2=
1

48
P2

φ6=
1

24

(
P6 −

7

4608
(P2)3

)
φ8=

1

30

(
P8 −

2

9
P6P2 +

155

663552
(P2)4

)
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φ10=−
1

105

(
P10 −

17

96
P8P2 +

77

6912
P6(P2)2 − 427

63700992
(P2)5

)
φ12=

1

155

(
P12−

107

504
P10P2+

515

32256
P8(P2)2− 41

108
(P6)2+

295

497664
P6(P2)3− 5669

9172942848
(P2)6

)
φ14=

1

4389

(
P14 −

3479

14880
P12P2 +

61391

3214080
P10(P2)2 − 539

2160
P8P6 −

139733

617103360
P8(P2)3

+
165781

4821120
(P6)2P2 −

3488947

44431441920
P6(P2)4 +

19596907

409480168734720
(P2)7

)

This basis was constructed so that it reduces the constraints in our punctures to a min-

imum. In particular, the pole coefficients for the minimal puncture have no redundancies;

that is, the φk are such that it not be possible to reduce their pole orders in z further by a

change of basis, for z a local coordinate centered at the minimal puncture. The φk basis also

makes apparent how the Casimirs of degree 5 and 9 appear. Specifically, φ10 and φ14 factor,

φ10 ≡ (φ5)2,

φ14 ≡ φ5φ9

These relations define the odd-degree differentials φ5 and φ9 (up to a sign, which

flips under the Z2 outer automorphism of E6). So, we can declare the k-differentials

{φ2, φ5, φ6, φ8, φ9, φ12} to be our basis of e6 Casimirs. In the following, by the φk, we will

refer to the Casimirs, and ignore the auxiliary differentials φ10 and φ14.

As for the Seiberg-Witten curve, to write it explicitly, we need to know how the 78

coefficients sk depend on the six Casimirs φk. Instead, it is much simpler to write down the

(representation independent) Seiberg-Witten geometry, given by an ALE fibration over C,

and which equivalently describes the low-energy solution of 4D N = 2 theories, but directly

using the Casimirs [25, 26]. Let us briefly review that construction.

2.3 ALE geometry

The 4D N = 2 SCFT constructed from the compactification of a 6D (2,0) theory of type

J (where J is of A-D-E type) on the Riemann surface C can also be obtained, in a dual

manner, from IIB string theory on a non-compact Calabi-Yau threefold, locally given by an

ALE fibration over C of type J [25, 26]. For e6, the threefold is realized as the hypersurface

X~u =
{

0 = w2 + x3 + y4 + ε2(z)xy2 + ε5(z)xy + ε6(z)y2 + ε8(z)x+ ε9(z)y + ε12(z)
}

⊂ tot(K6
C ⊕K4

C ⊕K3
C)
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where the εk(z) are k-differentials on C [22] (in the “Katz-Morrison basis” [27]), related to

our φk(z) by

ε2 =
1

2
φ2

ε5 =
1

6
φ5

ε6 =
1

72
(−3φ3

2 + 2φ6)

ε8 =
1

144
(−3φ4

2 + 4φ2φ6 − φ8)

ε9 =
1

72
(−φ2

2φ5 + 4φ9)

ε12 =
1

5184
(4φ12 + 6φ6

2 − 12φ3
2φ6 + 4φ2

6 + 3φ2
2φ8)

The φk(z), in turn, depend on the Coulomb branch parameters, ~u, as we determine below.

The Seiberg-Witten solution is obtained by computing the periods of the holomorphic

3-form, Ω, over a symplectic basis of (rational) 3-cycles on X~u which are locally of the form

of a 2-sphere in the fiber times a curve on C. In the conformal case (which will be our

focus in this paper), many of these cycles will necessarily be noncompact (the curve on C

being a open curve, stretching between punctures). But, precisely for the parabolic case

(where the Higgs field Φ(z) has simple poles at the punctures, with nilpotent residues), the

singularity is integrable, and the requisite periods of Ω are finite.

In our realization of F4 gauge theory in section 5.1.2, the differentials φ5(z) and

φ9(z) vanish identically. In this case, the Calabi-Yau, X~u, has a holomorphic involution,

y → −y, under which Ω → −Ω. The 3-cycles which give the Seiberg-Witten solution

are the anti-invariant cycles and the periods of Ω over those cycles are finite, despite the

slightly singular nature of X~u itself.

2.4 Puncture properties

We describe below how to compute the properties of a puncture. There is a systematic

way to compute every property of the puncture, except for the constraints, so it is easiest

to compute the other properties first, and use them to guess the constraints. Below, let O
be the Nahm nilpotent orbit that labels a given puncture, and su(2)O the associated su(2)

embedding in e6.

2.4.1 Flavour groups

Associated to each puncture O, there is a flavour group F = FO, whose Lie algebra f is

the centralizer of su(2)O in e6. A list of the centralizers for each O can be found in table

14 of [9], taken originally from [28].

Let fi be the simple, nonabelian factors in f. The level ki of fi is the central charge

of the fi current algebra. (See, e.g., [12] for a review.) Following [9], the ki can be com-

puted from the decomposition of the adjoint, 78, of e6 under the subalgebra su(2)O × f.

These decompositions can, in turn, be deduced from the Bala-Carter label for O, and are

summarized in the table in appendix A.

– 6 –
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Let the decomposition of the 78 be

e6 =
⊕
n

Vn ⊗Rn,i ,

where Vn is the n-dimensional irrep of su(2) (denoted by “n” in the table) and Rn,i is the

corresponding (reducible) representation of fi. Let ln,i be the index of Rn,i. Then, the level

of fi is ki =
∑

n ln,i.

For example, consider the 3A1 puncture, which has f = su(3)× su(2). From the table

in appendix A, we have, for f1 = su(3),

R1 = 8 + 3(1), R2 = 2(8), R3 = 8 + 1, R4 = 2(1),

and so the level is ksu(3) = 4l8 = 24. Similarly, for f2 = su(2), we have

R1 = 3 + 8(1), R2 = 8(2), R3 = 9(1), R4 = 2,

and thus the level is ksu(2) = l3 + 9l2 = 4 + 9× 1 = 13.

2.4.2 δnh and δnv

The conformal anomaly central charges of the 4D theory, a and c, can be conveniently

written in terms of effective numbers of hyper- and vector multiplets, nh and nv, as

a = (5nv +nh)/24 and c = (2nv +nh)/12. To each puncture, O, we associate contributions

δnh and δnv to nh and nv. The full nh and nv of the 4D theory are obtained by adding

the contributions from the punctures plus certain global terms. The formulas in eq.

(3.19) of [9] tell us that δnh and δnv can be computed from the decomposition of e6 into

eigenspaces of the Cartan element of su(2)O.

Here, let us recast those formulas in terms of the weighted Dynkin diagram for O,

which can be found in table 14 of [9]. Let ~x be the six-dimensional vector consisting of

the labels of the weighted Dynkin diagram for O. Now, for each root α of E6, let ~k be a

six-dimensional vector consisting of the (integer) components of α in any basis of simple

roots. The “Weyl vector” is ~W = 1
2

∑
~k≥0

~k, where the sum is over positive roots. Let n0

and n1/2 be the number of roots α that satisfy (~x/2)·~k = 0 and (~x/2)·~k = 1/2, respectively.

(The dot product is Euclidean.) In this notation, the formulas in eq. (3.19) of [9] are:

δnh(~x) = 8

(
1

12
h∨(E6) dim(E6)− 1

2
~W · ~x

)
+

1

2
n1/2

δnv(~x) = 8

(
1

12
h∨(E6) dim(E6)− 1

2
~W · ~x

)
− 1

2
n0

(2.2)

where h∨(E6) = 12 denotes the dual Coxeter number of E6.

For example, for ~x = ~0, corresponding to the maximal puncture, one has that the

adjoint of E6 decomposes trivially into singlets of su(2), 78→ 78(1), so n0(~0) = dim(E6)−
rank(E6), and n1/2(~0) = 0. Thus,

δnh(~0) =
2

3
h∨(E6) dim(E6) = 624

δnv(~0) =
2

3
h∨(E6) dim(E6)− 1

2
(dim(E6)− rank(E6)) = 588

– 7 –
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As a consistency check, we have the following relation between (δnh, δnv) and the complex

(manifold) dimension dimC(O) of O:

δnh − δnv =
1

2
(dim(E6)− rank(E6))− 1

2
dimC(O). (2.3)

The dimensions of the nilpotent orbits of E6 are listed in table 14 of [9].

For a non-trivial example, consider the puncture 2A1, which has weighted Dynkin

diagram

1 10 0 0

0

that is, ~x = (1, 0, 0, 0, 1; 0). One finds ~W = (8, 15, 21, 15, 8; 11), n1/2 = 16, n0 = 24. Thus,

nh(2A1) = 568 and nv(2A1) = 548, and one indeed checks (2.3) for dimC(2A1) = 32.

2.4.3 Pole structures

The “pole structure” is the set of leading pole orders {p2, p5, p6, p8, p9, p12} in the expansion

of the Casimirs φk in a coordinate z centered at the puncture, φk(z) ∼ 1/zpk .

To compute the pole structure, we need a representative of the Hitchin nilpotent orbit

d(O). A table of representatives of all nilpotent orbits of E6 can be found in table 2 of [19].

In this table, a nilpotent representative is given by a sum of weighted Dynkin diagrams,

and each weighted Dynkin diagram represents an element in the root vector space of e6 for

a positive root α, where α is such that its components in a basis of simple roots are given

by the labels of the Dynkin diagram. The nilpotent representative is the sum of these root-

vector space elements. This procedure is most easily understood in terms of an example.

Take, for instance, O = D4(a1). The Hitchin orbit, given by the Spaltenstein dual,

is the same, d(O) = O = D4(a1). This orbit has a nilpotent representative X given by a

sum of five elements [19],

+ + + +
0 0

1

0 000 1

0

0 00 0 0

1

0 01 0 0

0

1 01 0 0

0

1 00

The five summands above represent arbitrary non-zero elements Xαi (i = 1, . . . , 5) in the

root vector spaces for the positive roots

α1 = s2, α4 = s6,

α2 = s3 + s6, α5 = s4,

α3 = s3 + s4,

respectively, where {s1, . . . , s5; s6} is a basis of simple roots of E6. So, X = Xα1 +· · ·+Xα5 .

Fortunately, GAP4 provides a Chevalley basis for the adjoint representation of e6, so it is
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trivial to find elements Xαi . Once we know X, we compute Φ(z) using X as the residue

in (2.1), then the Casimir k-differentials φk as in section 2.2, and we finally find the

pole structure {1, 3, 4, 6, 6, 9} for the D4(a1) puncture. (Actually, there are three orbits,

D4(a1), A3 + A1 and 2A2 + A1, that map under Spaltenstein to D4(a1), so we have three

punctures with the same pole structure. However, the other properties of these punctures

are different.)

2.4.4 Constraints

The constraints for some E6 punctures are, in some cases, much less obvious than those

in the AN−1 and DN series. The guiding quantities to find constraints are δnv and the

(complex) dimension of the Hitchin nilpotent orbit, d. These are, respectively, the graded

and ungraded local contributions to the Coulomb branch.

Let us be specific. Let z be a local coordinate on C centered at the puncture, and let

c
(k)
l be the coefficient of z−l in the expansion of φk = φk(z) in z. Recall that, in the notation

of our previous papers, a “c-constraint” is a polynomial relation among coefficients c
(k)
l (of

homogeneous bi-degree in both k and l). On the other hand, an “a-constraint” is a relation

that defines a new quantity, a
(k)
l , of dimension k, in terms of the c

(k)
l . Only the c

(k)
l with

l > 0 parameterize the Hitchin nilpotent orbit [16]. In the absence of constraints, all the

c
(k)
l with 0 < l ≤ pk are independent, so their total number,

∑
pk, should be equal to

the dimension of the Hitchin nilpotent orbit. Thus, if there are no constraints,
∑
pk = d.

A c-constraint reduces the total number of independent parameters by one, whereas an

a-constraint does not affect this number. So, one should have:∑
pk − (number of c-constraints) = d

Hence, d tells us how many c-constraints exist. On the other hand, the graded sum of

the parameters, that is, the result of adding (2k − 1) for each parameter of degree k (in

the presence of “a”-constraints, k is not restricted to the degrees of the Casimirs), should

be equal to nv. An a-constraint replaces a parameter of a certain degree k by another

one of a different degree k′ < k. So, to get precisely nv, one must take into account all

a-constraints and c-constraints.

For example, consider the Higgs field near a D5 puncture, and the corresponding

k-differentials in the {φk} basis. We find the pole structure {1, 2, 3, 4, 4, 6}, and thus,∑
pk = 20. However, the 2A1 (Hitchin) nilpotent orbit, dual to D5, has dimension d = 16.

So, the difference, 4, is the number of c-constraints. Inspection of the k-differentials reveals

that the leading coefficients of φ8 and φ12 are proportional to, respectively, the square and

cube of a single quantity, which we call a
(4)
2 , of scaling dimension 4 and pole order 2:

φ8 =
c

(8)
4

z4
+ . . . , c

(8)
4 = 3

(
a

(4)
2

)2
,

φ12 =
c

(12)
6

z4
+ . . . , c

(12)
6 =

3

2

(
a

(4)
2

)3
.

Since there is no Casimir of E6 of dimension four, a
(4)
2 cannot be a coefficient in one

of the φk (or a polynomial in such coefficients), so we regard it as a basic, independent
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parameter. It is not hard to discover additional relations by inspection, and we see that

they, too, involve the a
(4)
2 parameter:

c
(6)
3 =

3

2
c

(2)
1 a

(4)
2 , c

(9)
4 = −1

4
a

(4)
2 c

(5)
2 , c

(12)
5 =

3

4
c

(8)
3 a

(4)
2

We can take one of the relations linear in a
(4)
2 , say the one for c

(6)
3 , as the a-constraint

(that is, the relation that defines a
(4)
2 unambiguously in terms of the c

(k)
l ), and the other

4 relations as the c-constraints. Assuming there are no more constraints, the independent

graded Coulomb branch dimensions are (n2, n3, n4, n5, n6, n8, n9, n12) = (1, 0, 1, 2, 2, 3, 3, 4).

Finally, we compute δnv =
∑

k(2k−1)nk = 238, which agrees with the result obtained from

the formula in section 2.4.2. We conclude that we have found the correct set of constraints

for this puncture.

As we will see next, when two punctures collide, we get a new puncture. Thus, working

with the k-differentials, we must be able to reproduce the pole structure and constraints

of the new puncture from those of the colliding punctures. We can regard this expectation

as another test of the correctness of our expressions.

2.4.5 Puncture collisions

Suppose we have two punctures on a plane, so the Higgs field has two simple poles with

residues X1 and X2. Near each puncture, the Higgs field Φ looks like eq. (2.1). In the

limit where the two punctures collide, the Higgs field has one simple pole with residue X =

X1 +X2 (by the residue theorem applied to the sphere that bubbles off), which corresponds

to a new puncture. Generically, X will be mass deformed. The mass deformations are in-

terpreted as VEVs of the scalars in the gauge multiplet associate to the factor in the gauge

group which becomes weakly coupled in the collision limit. One can also study this degen-

eration by computing the Casimirs φk from the Higgs field before taking the collision limit.

Alternatively, one can bypass the Higgs field, and study the collision directly with the

φk, by writing a generic k-differential with poles at the positions of the two punctures

(given by their pole structures), and imposing at each pole the constraints of the corre-

sponding puncture. Then, taking the collision limit, the pole structure and constraints of

the resulting puncture on the plane arise naturally.

As an example, let us see that the collision of two D5 punctures on a plane produces

an Sp(2) gauge group, gauged off an A3 puncture. Let us write generic Casimirs for the

collision, taking the D5 punctures to be at z = 0 and z = x:

φ2(z) =
u2 + zv2 + z(z − x)P2(z)

z(z − x)

φ5(z) =
u5 + zv5 + z(z − x)w5 + z2(z − x)P5(z)

z2(z − x)2

φ6(z) =
u6 + zv6 + z(z − x)w6 + z2(z − x)P6(z)

z3(z − x)3

φ8(z) =
u8 + zv8 + z(z − x)w8 + z2(z − x)y8 + z2(z − x)2P8(z)

z4(z − x)4
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φ9(z) =
u9 + zv9 + z(z − x)w9 + z2(z − x)P9(z)

z4(z − x)4

φ12(z) =
u12 + zv12 + z(z − x)w12 + z2(z − x)y12 + z2(z − x)2P12(z)

z6(z − x)6
,

where P2(z), P5(z), . . . , P12(z) denote regular functions in z. To solve the constraints at

each D5 puncture, we introduce new parameters s4 and t4 of dimension four, and write:

u6 =
3s4u2

4
, v6 =

3

2
(t4u2 + s4v2 + t4v2x),

u8 = 3s2
4, v8 = 3(2s4t4 + t24x),

u9 = −s4u5

4
, v9 = −1

4
(t4u5 + s4v5 + t4v5x),

u12 =
3s3

4

2
, v12 =

3

2
t4(3s2

4 + 3s4t4x+ t24x
2),

w12 =
3

4
(3s4t

2
4 + s4w8 + 2t34x), y12 = −3

4
(t34 − t4w8 − s4y8 − t4y8x)

In the collision limit, x → 0, the new puncture appears at z = 0. The expansion in z of

the Casimirs in this limit is:

φ2(z) =
u2

z2
+
v2

z
+ . . .

φ5(z) =
u5

z4
+ . . .

φ6(z) =
3s4u2

2z6
+

3(t4u2 + s4v2)

2z5
+
w6

z4
+ . . .

φ8(z) =
3s2

4

z8
+

6s4t4
z7

+
w8

z6
+ . . .

φ9(z) = −s4u5

4z8
− (t4u5 + s4v5)

4z7
+
w9

z6
+ . . .

φ12(z) =
3s3

4

2z12
+

9s2
4t4

2z11
+

3(3s4t
2
4 + s4w8)

4z10
− 3(t34 − t4w8 − s4y8)

4z9
+ . . . ,

where the . . . indicate less singular terms in z. So, u2 and s4 can be interpreted as the

VEVs of Coulomb branch parameters (of degree two and four) of the gauge group (which,

with a little more work, can be checked to be Sp(2)). In the limit u2, s4 → 0, we obtain the

Casimirs for the massless puncture, with pole orders {1, 4, 4, 6, 7, 9}, and with constraints

c
(9)
7 =

1

2
t̃4u5

c
(12)
9 = 6t̃34 −

3

2
w8t̃4,

where t̃4 ≡ −t4/2. Thus, we get precisely the pole structure and constraints of the A3

puncture.
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2.5 Global symmetries and the superconformal index

2.5.1 Cataloguing fixtures using the superconformal index

For the E6 theory, we find 880 fixtures with three regular punctures which correspond

to interacting SCFTs, possibly with additional decoupled hypermultiplets. Each of these

SCFTs has a manifest global symmetry group, which is given by the product of the flavor

symmetry groups of the three punctures. This global symmetry group may, in general,

become enhanced to a larger group.

To determine the global symmetry group and number of free hypermultiplets for each

of these fixtures, we use the superconformal index [29–33]. The superconformal index

of E-type class S theories has not yet been systematically studied. However, since the

methods used for A- and D-type theories generalize to any root system, we assume the

superconformal index1 for a fixture in the E6 theory takes the usual form

I(ai, τ) = A(τ)
∑
λ

∏3
i=1K(ai)P

λ(ai|τ)

P λ(atriv|τ)
(2.4)

where

• The sum is over λ labeling the highest weights of finite-dimensional irreducible rep-

resentations of e6.

• The P λ(ai|τ) are Hall-Littlewood polynomials, defined for a general root system by

P λ = W−1(τ)
∑
w∈W

w

eλ ∏
α∈R+

1− τ2e−α

1− e−α

 ,

W (τ) =

√√√√∑
w∈W
wλ=λ

τ2`(w)

where R+ denotes the set of positive roots, W the Weyl group, and `(w) the length of the

Weyl group element w.

• ai ≡ {eα}α∈R+ denotes a set of flavor fugacities dual to the Cartan subalgebra of the

flavor symmetry of the ith puncture. atriv denotes the set of fugacities dual to the

Cartan of the embedded su(2) of the trivial puncture.

• The K-factors are discussed in [32–35]. We will not need their detailed form for our

purposes.

• A(τ) is an overall, flavor fugacity independent normalization.

Consider a fixture corresponding to an interacting SCFT, with global symmetry Gglobal,

plus free hypermultiplets transforming in a representation R of a flavor symmetry F . Let

Gfixt ≡ Gglobal × F denote the global symmetry of the fixture. As discussed in [34], the

1In what follows we will consider the Hall-Littlewood limit of the index [32], which depends on one

superconformal fugacity, τ .
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number of free hypers in the fixture and the global symmetry of the fixture can be read off

from the first two non-trivial terms in the Taylor expansion of the index. Schematically,

this is given by

I = 1 + χRFτ + χadj
Gfixt

τ2 + . . . (2.5)

where χRF is the Weyl character of R and χadj
Gfixt

is the character of the adjoint representation

of Gfixt, where both of these representations are viewed as reducible representations of the

manifest symmetry algebra. By Taylor expanding Ifree = PE[τχRF ] (where PE denotes

the Plethystic exponential) and removing the contribution of the free hypermultiplets

in (2.5), we arrive at

ISCFT = I/Ifree

= 1 + χadj
Gglobal

τ2 + . . .

from which we can read off the global symmetry of the interacting SCFT.

2.5.2 Computing the expansion of the index

In (2.4) the term in the sum coming from the trivial representation of e6 gives, to second

order in τ , [34]

I = 1 + χadj
Gmanifest

τ2 + · · ·

encoding the manifest global symmetry group. The global symmetry group of the fixture

is enhanced if there are terms contributing at order τ2 coming from the sum over λ > 0.

To order τ2, (2.4) simplifies to2

I = 1 + χadj
Gmanifest

τ2 +

[∑
λ>0

∏3
i=1 χ

λ(ai|τ)

χλ(atriv|τ)

]
O(τ2)

(2.6)

To compute (2.6), we consider each e6 representation in the sum to be a reducible represen-

tation of su(2)× f and plug in the corresponding character expansion, where the embedded

su(2) has fugacity τ . The decomposition of any e6 representation in terms of su(2) × f

representations can be obtained using the projection matrices listed in appendix B.

Of the 881 fixtures involving three regular punctures, we find that 1 is a free-field

fixture, 60 are mixed fixtures and another 134 are interacting fixtures with an enhanced

global symmetry group. We list these in the tables below. For the remaining 686 interacting

fixtures, the global symmetry group is the manifest one.

2Since the theories considered here are all “good” or “ugly” (in the sense of [8]), the lowest possible

contribution from the sum over λ > 0 is at order τ (see [34] for a discussion of the superconformal index

in the context of the good/ugly/bad trichotomy of 4d N = 2 theories). From (2.6), we see that A(τ) and

K(ai) are both 1 + O(τ2), so we can set them both to one in the order τ2 approximation. We have also

used the fact that Pλ = χλ +O(τ2).
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As an example, consider the fixture

0

A2 + A1

E6(a1)

.

The manifest global symmetry is (E6)24 × SU(3)12 × U(1). The contributions at order τ2

come from the sum over the 27, 27, 78, 351, 351, 351′, 351
′
, and 650 of e6. The expansion

of the superconformal index is given by3

I = 1 + {(27, 1)1 + (27, 1)−1}τ + {(1, 1)0 + (78, 1)0+

+ (650, 1)0 + (27, 1)−2 + (351′, 1)−2 + (27, 1)2+

+ (351
′
, 1)2 + (78, 1)0 + (1, 8)0 + (27, 3)0 + (27, 3)0}τ2 + . . .

Due to the order τ term, this is a mixed fixture, with 27 free hypermultiplets transforming

in the fundamental representation of E6. The index of these free hypers is given by

Ifree = PE[τ{(27, 1)1 + (27, 1)−1}]
= 1 + {(27, 1)1 + (27, 1)−1}τ+

{(1, 1)0 + (78, 1)0 + (650, 1)0 + (27, 1)−2 + (351′, 1)−2 + (27, 1)2 + (351
′
, 1)2}τ2 + . . .

The index of the underlying SCFT is then

ISCFT = I/Ifree

= 1 + {(78, 1)0 + (1, 8)0 + (27, 3)0 + (27, 3)0}τ2

We recognize the coefficient of τ2 as the character of the adjoint representation of E8.

Computing the other numerical invariants of the fixture, we find that this is the (E8)12

theory of Minahan and Nemeschansky [36] with 27 additional free hypermultiplets.

2.6 Levels of enhanced global symmetry groups

Since the superconformal index gives the branching rule for the adjoint representation of

Gglobal under the subgroup Gmanifest, it most cases it is straightforward to determine the

level of each factor in Gglobal from those of Gmanifest: if Hk′ is a subgroup of Gk, then k is

given by [12]

k =
k′

IH↪→G

where IH↪→G is the index of the embedding of H in G.

There are two cases which require a little more work. The first is when a manifest U(1)

becomes enhanced to SU(2). Since we do not know how to assign a level to a U(1) flavor

3For simplicity, we write the dimension to stand for the character of the corresponding representation.

The subscript is the U(1) weight.
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symmetry (which would require a precise understanding of how the generator is normal-

ized), we cannot immediately determine the level of the enhanced SU(2) from the index.

The second case is when some factor Hk in Gmanifest is embedded diagonally as

Hk ↪→ Hk1 ×Hk2 .

Since the only embedding of H in itself has index one, in this case, all we know is that

k1 + k2 = k.

If any of these remain as factors in Gglobal (that is, if they do not combine with some

other factor, with known level, to enhance Gglobal), we cannot determine their levels from

the index, and must determine them using an S-duality. To do so, we look for a 4-punctured

sphere for which the SCFT appears in some degeneration, with Hki in the centralizer of

subgroup of Gglobal being weakly gauged.

Unfortunately, there are a few such fixtures for which no puncture can be gauged (some

of these can still be gauged in the twisted sector, which will be discussed in section 4). For

these, we do not have a way to determine the levels. In the end, there are two interacting

fixtures whose levels we cannot completely determine.

3 Tinkertoys

3.1 Regular punctures

The pole structure {p2, p5, p6, p8, p9, p12} of a puncture at z = 0 will be the leading pole

orders in z of the differentials φk(z) for k = 2, 5, 6, 8, 9, 12. Notice that in some cases there

are constraints, not just on the coefficient of this leading singularity, but also on subleading

terms in the Laurent expansion of the k-differentials.

Nahm
B-C label

Hitchin
B-C label

Pole
structure Constraints Flavour group (δnh, δnv)

0 E6 {1, 4, 5, 7, 8, 11} - (E6)24 (624, 588)

A1 E6(a1) {1, 4, 5, 7, 8, 10} - SU(6)18 (590, 565)

2A1 D5 {1, 4, 5, 7, 7, 10} - Spin(7)16 ×U(1) (568, 548)

3A1 (ns) (E6(a3),Z2) {1, 4, 5, 6, 7, 10} - SU(3)24 × SU(2)13 (549, 533)

A2 E6(a3) {1, 4, 5, 6, 7, 10} c
(12)
10 = −

(
c
(6)
5

)2
+

(
a

(6)
5

)2 SU(3)2
12 (536, 521)

A2 +A1 D5(a1) {1, 4, 5, 6, 7, 9} - SU(3)12 ×U(1) (523, 510)

2A2 D4 {1, 3, 5, 6, 6, 9} - (G2)12 (496, 484)

A2 + 2A1 A4 +A1 {1, 4, 4, 6, 7, 9} - SU(2)54 ×U(1) (510, 499)

A3 A4 {1, 4, 4, 6, 7, 9}

c
(9)
7 =

1

2
c
(5)
4 a

(4)
3

c
(12)
9 = 6

(
a

(4)
3

)3

− 3
2
c
(8)
6 a

(4)
3

Sp(2)10 ×U(1) (476, 466)
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Nahm
B-C label

Hitchin
B-C label

Pole
structure Constraints Flavour group (δnh, δnv)

2A2 +A1 (ns) (D4(a1), S3) {1, 3, 4, 6, 6, 9} - SU(2)26 (482, 473)

A3 +A1 (ns) (D4(a1),Z2) {1, 3, 4, 6, 6, 9} c
(12)
9 = a

(4)
3

(16

9

(
a

(4)
3

)2 − c(8)
6

)
SU(2)9 ×U(1) (465, 457)

D4(a1) D4(a1) {1, 3, 4, 6, 6, 9}
c
(8)
6 =

4

3

((
a

(4)
3

)2
+ 3

(
a
′(4)
3

)2
)

c
(12)
9 =

4

9
a

(4)
3

((
a

(4)
3

)2−9
(
a
′(4)
3

)2
) U(1)2 (456, 449)

A4 A3 {1, 3, 4, 6, 6, 9}

c
(8)
6 = 3

(
a

(4)
3

)2

c
(9)
6 =

1

4
c
(5)
3 a

(4)
3

c
(12)
9 = −

3

2

(
a

(4)
3

)3

c
(12)
8 = −

3

4
a

(4)
3 c

(8)
5

SU(2)8 ×U(1) (408, 402)

D4 2A2 {1, 3, 4, 5, 6, 8}

c
(8)
5 = − 4c

(6)
4 c

(2)
1 + 4c

(5)
3 a

(3)
2

−2
(
a

(3)
2

)2
c
(2)
1

c
(9)
6 = −

1

12
a

(3)
2

(
c
(6)
4 +

1

2

(
a

(3)
2

)2
)

c
(12)
8 = −

(
c
(6)
4 + 1

2

(
a

(3)
2

)2
)
·

·
(
c
(6)
4 − 3

2

(
a

(3)
2

)2
)

c
(12)
7 = −12c

(9)
5 a

(3)
2 − 2c

(6)
4 c

(6)
3

−c(6)
3

(
a

(3)
2

)2

SU(3)12 (368, 362)

A4 +A1 A2 + 2A1 {1, 3, 4, 5, 5, 7} - U(1) (400, 395)

D5(a1) A2 +A1 {1, 3, 4, 5, 5, 7}

c
(6)
4 = −

1

8

(
a

(3)
2

)2

c
(8)
5 = 2c

(5)
3 a

(3)
2

c
(12)
7 = −6c

(9)
5 a

(3)
2

U(1) (355, 351)

A5 (ns) (A2,Z2) {1, 2, 4, 4, 4, 6} - SU(2)7 (335, 331)

E6(a3) A2 {1, 2, 4, 4, 4, 6} c
(6)
4 =

(
a

(3)
2

)2
none (328, 325)
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Nahm
B-C label

Hitchin
B-C label

Pole
structure Constraints Flavour group (δnh, δnv)

D5 2A1 {1, 2, 3, 4, 4, 6}

c
(6)
3 =

3

2
c
(2)
1 a

(4)
2

c
(8)
4 = 3

(
a

(4)
2

)2

c
(9)
4 = −

1

4
a

(4)
2 c

(5)
2

c
(12)
6 =

3

2

(
a

(4)
2

)3

c
(12)
5 =

3

4
c
(8)
3 a

(4)
2

U(1) (240, 238)

E6(a1) A1 {1, 1, 2, 2, 2, 3} - none (168, 167)

Note that there is a special piece, consisting of three punctures: 2A2 +A1, A3 +A1 and

the special puncture D4(a1). For 2A2 + A1, the Sommers-Achar group is the nonabelian

group, S3. It acts on a(4), a′(4) as (
a(4)

a′(4)

)
→ γ

(
a(4)

a′(4)

)

for

γ ∈

{(
1 0

0 1

)
,

(
1 0

0 −1

)
,

1

2

(
−1 −3

1 −1

)
,

1

2

(
−1 3

−1 −1

)
,

1

2

(
−1 −3

−1 1

)
,

1

2

(
−1 3

1 1

)}

For A3 + A1, the Sommers-Achar group is the Z2 subgroup of S3, generated by a′(4) →
−a′(4). For D4(a1), the Sommers-Achar group is of course trivial, so that both a(4), a′(4)

survive as Coulomb branch parameters.

3.2 Free-field fixtures

We denote a 3-punctured sphere, in the tables below, by listing the Bala-Carter labels of the

three punctures. For the free-field fixtures, one of the punctures is an irregular puncture4

(in the sense used in our previous papers), which we denote5 by the pair, (O, Gk), where

O is the regular puncture obtained as the OPE of the two regular punctures which collide,

and this fixture is attached to the rest of the surface via a cylinder

(O, Gk)
G←−−−→ O

with gauge group G ⊂ F ⊂ E6. Here, F is the flavour symmetry group of the puncture,

O, and the levels are such that G has vanishing β-function.

# Fixture nh Representation

4Or, in the case of fixture 13, a full puncture, corresponding to the trivial orbit, 0.
5For brevity, we will often omit the level, k, when denoting an irregular puncture.
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# Fixture nh Representation

1
E6(a1)

E6(a1)
(A5, SU(2)1) 1 1

2(2)

2
E6(a1)

D5

(A4, SU(2)0) 0 empty

3
E6(a1)

E6(a3)
(2A2, SU(3)0) 0 empty

4
E6(a1)

A5

(2A2, (G2)4) 7 1
2(2, 7)

5
E6(a1)

D5(a1)
(A2 +A1, SU(3)0) 0 empty

6
E6(a1)

A4 +A1

(2A1, (G2)0) 0 empty

7
E6(a1)

D4

(A2, SU(3)0) 0 empty

8
E6(a1)

A4

(2A1, Spin(7)4) 8 1
2(2, 8)

9
E6(a1)

D4(a1)
(0, Spin(8)0) 0 empty

10
E6(a1)

A3 +A1

(0, Spin(9)4) 9 1
2(2, 9)

11
E6(a1)

2A2 +A1

(0, (F4)12) 26 1
2(2, 26)

12
E6(a1)

A3

(0, Spin(10)8) 20 1
2(4, 10)

13
E6(a1)

A2 + 2A1

0 54 (2, 27)

14
D5

D5

(A3, Sp(2)2) 4 1(4)

15
D5

E6(a3)
(2A1, SU(4)0) 0 empty

16
D5

A5

(2A1, Spin(7)4) 7 1
2(2, 7)
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# Fixture nh Representation

17
D5

D5(a1)
(A1, SU(5)2) 5 1(5)

18
D5

A4 +A1

(0, Spin(10)8) 16 1(16)

19
D5

D4

(A1, SU(6)6) 18 3(6)

3.3 Interacting fixtures with one irregular puncture

In the tables below, nd is the number of Coulomb branch parameters of degree d. The

total Coulomb branch dimension is
∑

d nd and the effective number of vector multiplets is

nv =
∑

d(2d− 1)nd.

Fixture (n2,n3,n4,n5,n6,n8,n9,n12) (nh, nv) Theory

E6(a1)

2A2
(0, (F4)12) (0, 0, 0, 0, 1, 0, 0, 0) (40, 11) (E8)12 SCFT

D5

A4
(0, Spin(10)8) (0, 0, 1, 0, 0, 0, 0, 0) (24, 7) (E7)8 SCFT

E6(a3)

E6(a3)
(0, (F4)12) (0, 2, 0, 0, 0, 0, 0, 0) (32, 10) [(E6)6 SCFT]2

E6(a3)

A5
(0, (F4)12) (0, 1, 0, 0, 1, 0, 0, 0) (39, 16) (E6)12 × SU(2)7 SCFT

A5

A5
(0, (F4)12) (0, 0, 0, 0, 2, 0, 0, 0) (46, 22) (F4)12 × SU(2)2

7 SCFT

The (E6)12 × SU(2)7 and (F4)12 × SU(2)2
7 first appeared in [4], as fixtures in the

untwisted D4 theory.

3.4 Interacting fixtures with enhanced global symmetry

# Fixture (n2,n3,n4,n5,n6,n8,n9,n12) (nh, nv) Gk

1
E6(a1)

A2
0 (0, 0, 0, 0, 2, 0, 0, 0) (80, 22) [(E8)12 SCFT]2

2

E6(a1)

3A1
0 (0, 0, 0, 0, 1, 0, 0, 1) (93, 34) (E8)24 × SU(2)13

3
E6(a1)

2A1
0 (0, 0, 0, 0, 1, 1, 0, 1) (112, 49) (E7)24 × Spin(7)16

4
E6(a1)

A1
A1 (0, 0, 0, 0, 1, 1, 1, 0) (100, 43) SU(12)18
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# Fixture (n2,n3,n4,n5,n6,n8,n9,n12) (nh, nv) Gk

5
D5

D4(a1)
0 (0, 0, 3, 0, 0, 0, 0, 0) (72, 21) [(E7)8 SCFT]3

6

D5

A3 +A1
0 (0, 0, 2, 0, 0, 1, 0, 0) (81, 29)

[(E7)8 SCFT]

×[(E7)16 × SU(2)9 SCFT]

7

D5

2A2 +A1
0 (0, 0, 1, 0, 0, 1, 0, 1) (98, 45) (E7)24 × SU(2)26

8
D5

A3
0 (0, 0, 2, 1, 0, 1, 0, 0) (92, 38)

[(E7)8 SCFT]

×[(E6)16 × Sp(2)10 ×U(1) SCFT]

9
D5

2A2
0 (0, 0, 1, 0, 1, 1, 0, 1) (112, 56) (E7)24 × (G2)12

10
D5

A2 + 2A1
A1 (0, 0, 1, 1, 0, 1, 1, 0) (92, 48) SU(8)18 × SU(2)36 ×U(1)

11
D5

A2 +A1
A1 (0, 0, 1, 1, 1, 1, 1, 0) (105, 59) SU(7)18 × SU(3)12 ×U(1)2

12
D5

A2
2A1 (0, 0, 1, 1, 2, 1, 0, 0) (96, 53) Spin(8)16 × SU(4)2

12 ×U(1)

13
D5

A2
A1 (0, 0, 1, 1, 2, 1, 1, 0) (118, 70) SU(6)18 × SU(3)2

12 ×U(1)2

14
D5

3A1
3A1 (0, 0, 1, 1, 1, 0, 0, 1) (90, 50) SU(6)24 × Sp(2)13

15
D5

3A1
2A1 (0, 0, 1, 1, 1, 1, 0, 1) (109, 65) Spin(7)16 × SU(4)24 × SU(2)13 ×

U(1)

16
D5

2A1
2A1 (0, 0, 1, 1, 1, 2, 0, 1) (128, 80) Spin(7)2

16 × SU(2)24 ×U(1)2

17
E6(a3)

A4 +A1
0 (0, 1, 0, 0, 1, 1, 0, 1) (104, 54) (E7)24

18
E6(a3)

D4
0 (0, 2, 0, 0, 1, 0, 0, 0) (72, 21) [(E8)12 SCFT]× [(E6)6 SCFT]2

19
E6(a3)

A4
0 (0, 1, 1, 0, 1, 1, 0, 1) (112, 61) (E7)24 × SU(2)8

20
E6(a3)

D4(a1)
A2 (0, 1, 2, 0, 2, 0, 0, 0) (72, 41) Spin(8)2

12 ×U(1)2

21
E6(a3)

D4(a1)
3A1 (0, 1, 2, 0, 1, 0, 0, 1) (85, 53) Spin(8)24 × SU(2)13

22
E6(a3)

D4(a1)
2A1 (0, 1, 2, 0, 1, 1, 0, 1) (104, 68) Spin(7)16 × SU(2)3

24
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# Fixture (n2,n3,n4,n5,n6,n8,n9,n12) (nh, nv) Gk

23
E6(a3)

A3 +A1
A2 (0, 1, 1, 0, 2, 1, 0, 0) (81, 49) Spin(7)2

12 × SU(2)9 ×U(1)

24
E6(a3)

A3 +A1
3A1 (0, 1, 1, 0, 1, 1, 0, 1) (94, 61) Spin(7)24 × SU(2)13 × SU(2)9

25
E6(a3)

A3 +A1
2A1 (0, 1, 1, 0, 1, 2, 0, 1) (113, 76) Spin(7)16 × SU(2)48 × SU(2)24 ×

SU(2)9

26
E6(a3)

2A2 +A1
A2 (0, 1, 0, 0, 2, 1, 0, 1) (98, 65) (G2)2

12 × SU(2)26

27
E6(a3)

2A2 +A1
3A1 (0, 1, 0, 0, 1, 1, 0, 2) (111, 77) (G2)24 × SU(2)26 × SU(2)13

28
E6(a3)

2A2 +A1
2A1 (0, 1, 0, 0, 1, 2, 0, 2) (130, 92) Spin(7)16 × SU(2)26 × SU(2)72

29
E6(a3)

A3
A2 (0, 1, 1, 1, 2, 1, 0, 0) (92, 58) SU(4)2

12 × Sp(2)10 ×U(1)

30
E6(a3)

A3
3A1 (0, 1, 1, 1, 1, 1, 0, 1) (105, 70) SU(4)24 × Sp(2)10 × SU(2)13

31
E6(a3)

A3
2A1 (0, 1, 1, 1, 1, 2, 0, 1) (124, 85) Spin(7)16×Sp(2)10×SU(2)24×U(1)

32
E6(a3)

A2 + 2A1
A2 + 2A1 (0, 1, 0, 1, 0, 1, 1, 1) (100, 69) SU(4)54 ×U(1)

33
E6(a3)

A2 + 2A1
A2 +A1 (0, 1, 0, 1, 1, 1, 1, 1) (113, 80) SU(3)54 × SU(3)12 ×U(1)

34
E6(a3)

2A2
A2 (0, 1, 0, 0, 3, 1, 0, 1) (112, 76) (G2)3

12

35
E6(a3)

2A2
3A1 (0, 1, 0, 0, 2, 1, 0, 2) (125, 88) (G2)24 × (G2)12 × SU(2)13

36
E6(a3)

2A2
2A1 (0, 1, 0, 0, 2, 2, 0, 2) (144, 103) Spin(7)16 × (G2)12 × SU(2)72

37
E6(a3)

A2 +A1
A2 +A1 (0, 1, 0, 1, 2, 1, 1, 1) (126, 91) SU(3)2

12 × SU(2)24 ×U(1)

38
A5

A4 +A1
0 (0, 0, 0, 0, 2, 1, 0, 1) (111, 60) (E7)24 × SU(2)7

39

A5

D4
0 (0, 1, 0, 0, 2, 0, 0, 0) (79, 27)

[(E8)12 SCFT]×
[(E6)12 × SU(2)7 SCFT]

40
A5

A4
0 (0, 0, 1, 0, 2, 1, 0, 1) (119, 67) (E7)24 × SU(2)8 × SU(2)7
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# Fixture (n2,n3,n4,n5,n6,n8,n9,n12) (nh, nv) Gk

41
A5

D4(a1)
A2 (0, 0, 2, 0, 3, 0, 0, 0) (79, 47) Spin(8)2

12 × SU(2)7

42
A5

D4(a1)
3A1 (0, 0, 2, 0, 2, 0, 0, 1) (92, 59) Spin(8)24 × SU(2)13 × SU(2)7

43
A5

D4(a1)
2A1 (0, 0, 2, 0, 2, 1, 0, 1) (111, 74) Spin(7)16 × SU(2)3

24 × SU(2)7

44
A5

A3 +A1
A2 (0, 0, 1, 0, 3, 1, 0, 0) (88, 55) Spin(7)2

12 × SU(2)9 × SU(2)7

45
A5

A3 +A1
3A1 (0, 0, 1, 0, 2, 1, 0, 1) (101, 67) Spin(7)24 × SU(2)13 × SU(2)9 ×

SU(2)7

46
A5

A3 +A1
2A1 (0, 0, 1, 0, 2, 2, 0, 1) (120, 82)

Spin(7)16 × SU(2)48 × SU(2)24

× SU(2)9 × SU(2)7

47
A5

2A2 +A1
A2 (0, 0, 0, 0, 3, 1, 0, 1) (105, 71) (G2)2

12 × SU(2)26 × SU(2)7

48
A5

2A2 +A1
3A1 (0, 0, 0, 0, 2, 1, 0, 2) (118, 83) (G2)24×SU(2)26×SU(2)13×SU(2)7

49
A5

2A2 +A1
2A1 (0, 0, 0, 0, 2, 2, 0, 2) (137, 98) Spin(7)16 × SU(2)72 × SU(2)26 ×

SU(2)7

50
A5

A3
A2 (0, 0, 1, 1, 3, 1, 0, 0) (99, 64) SU(4)2

12 × Sp(2)10 × SU(2)7

51
A5

A3
3A1 (0, 0, 1, 1, 2, 1, 0, 1) (112, 76) SU(4)24 × Sp(2)10 × SU(2)13 ×

SU(2)7

52
A5

A3
2A1 (0, 0, 1, 1, 2, 2, 0, 1) (131, 91)

Spin(7)16 × Sp(2)10 × SU(2)24

× SU(2)7 ×U(1)

53
A5

A2 + 2A1
A2 + 2A1 (0, 0, 0, 1, 1, 1, 1, 1) (107, 75) SU(4)54 × SU(2)7 ×U(1)

54
A5

A2 + 2A1
A2 +A1 (0, 0, 0, 1, 2, 1, 1, 1) (120, 86) SU(3)54× SU(3)12× SU(2)7×U(1)

55
A5

2A2
A2 (0, 0, 0, 0, 4, 1, 0, 1) (119, 82) (G2)3

12 × SU(2)7

56
A5

2A2
3A1 (0, 0, 0, 0, 3, 1, 0, 2) (132, 94) (G2)24× (G2)12×SU(2)13×SU(2)7

57
A5

2A2
2A1 (0, 0, 0, 0, 3, 2, 0, 2) (151, 109) Spin(7)16 × (G2)12 × SU(2)72 ×

SU(2)7

58
A5

A2 +A1
A2 +A1 (0, 0, 0, 1, 3, 1, 1, 1) (133, 97) SU(3)2

12× SU(2)24× SU(2)7×U(1)
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# Fixture (n2,n3,n4,n5,n6,n8,n9,n12) (nh, nv) Gk

59
D5(a1)

D5(a1)
0 (0, 2, 0, 1, 0, 0, 1, 0) (86, 36) (E7)18 × (E6)6 ×U(1)

60
D5(a1)

A4 +A1
A1 (0, 1, 0, 1, 1, 1, 1, 0) (97, 57) SU(7)18 ×U(1)2

61
D5(a1)

D4
0 (0, 2, 0, 1, 1, 0, 1, 0) (99, 47) (E6)18 × (E6)6 × SU(3)12 ×U(1)

62
D5(a1)

A4
A1 (0, 1, 1, 1, 1, 1, 1, 0) (105, 64) SU(7)18 × SU(2)8 ×U(1)2

63

D5(a1)

D4(a1)
A2 + 2A1 (0, 1, 2, 1, 0, 0, 1, 0) (73, 45) SU(3)54−k−k′ ×SU(3)k×SU(3)k′ ×

U(1)

64
D5(a1)

D4(a1)
A2 +A1 (0, 1, 2, 1, 1, 0, 1, 0) (86, 56) SU(3)12 × SU(2)3

18 ×U(1)3

65
D5(a1)

D4(a1)
A2 (0, 1, 2, 1, 2, 0, 1, 0) (99, 67) SU(3)2

12 ×U(1)5

66

D5(a1)

A3 +A1
A2 + 2A1 (0, 1, 1, 1, 0, 1, 1, 0) (82, 53) SU(3)54−k×SU(3)k×SU(2)9×U(1)

67
D5(a1)

A3 +A1
A2 +A1 (0, 1, 1, 1, 1, 1, 1, 0) (95, 64)

SU(3)12 × SU(2)36 × SU(2)18

× SU(2)9 ×U(1)2

68
D5(a1)

A3 +A1
A2 (0, 1, 1, 1, 2, 1, 1, 0) (108, 75) SU(3)2

12 × SU(2)9 ×U(1)3

69
D5(a1)

2A2 +A1
A2 + 2A1 (0, 1, 0, 1, 0, 1, 1, 1) (99, 69) SU(3)54 × SU(2)26 ×U(1)

70
D5(a1)

2A2 +A1
A2 +A1 (0, 1, 0, 1, 1, 1, 1, 1) (112, 80) SU(3)12×SU(2)54×SU(2)26×U(1)

71
D5(a1)

A3
A2 + 2A1 (0, 1, 1, 2, 0, 1, 1, 0) (93, 62) SU(3)18×SU(2)36×Sp(2)10×U(1)2

72
D5(a1)

A3
A2 +A1 (0, 1, 1, 2, 1, 1, 1, 0) (106, 73) SU(3)12×Sp(2)10×SU(2)18×U(1)3

73
D5(a1)

A3
A2 (0, 1, 1, 2, 2, 1, 1, 0) (119, 84) SU(3)2

12 × Sp(2)10 ×U(1)3

74
D5(a1)

A2 + 2A1
2A2 (0, 1, 0, 1, 1, 1, 1, 1) (113, 80) (G2)12 × SU(3)54 ×U(1)

75
D5(a1)

2A2
A2 +A1 (0, 1, 0, 1, 2, 1, 1, 1) (126, 91) (G2)12 × SU(3)12 × SU(2)54 ×U(1)

76
A4 +A1

A4 +A1
A2 (0, 0, 0, 1, 3, 1, 0, 0) (88, 57) SU(4)2

12 ×U(1)
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77
A4 +A1

A4 +A1
3A1 (0, 0, 0, 1, 2, 1, 0, 1) (101, 69) SU(4)24 × SU(2)13 ×U(1)

78
A4 +A1

A4 +A1
2A1 (0, 0, 0, 1, 2, 2, 0, 1) (120, 84) Spin(7)16 × SU(2)24 ×U(1)2

79
A4 +A1

D4
2A1 (0, 1, 0, 1, 2, 1, 0, 0) (88, 51) Spin(8)16 × SU(4)12 ×U(1)2

80
A4 +A1

D4
A1 (0, 1, 0, 1, 2, 1, 1, 0) (110, 68) SU(6)18 × SU(3)12 ×U(1)2

81
A4 +A1

A4
A2 (0, 0, 1, 1, 3, 1, 0, 0) (96, 64) SU(4)2

12 × SU(2)8 ×U(1)

82
A4 +A1

A4
3A1 (0, 0, 1, 1, 2, 1, 0, 1) (109, 76) SU(4)24× SU(2)13× SU(2)8×U(1)

83
A4 +A1

A4
2A1 (0, 0, 1, 1, 2, 2, 0, 1) (128, 91) Spin(7)16 × SU(2)8 × SU(2)24 ×

U(1)2

84
A4 +A1

D4(a1)
D4(a1) (0, 0, 4, 0, 1, 0, 0, 0) (64, 39) SU(2)9

8

85
A4 +A1

D4(a1)
A3 +A1 (0, 0, 3, 0, 1, 1, 0, 0) (73, 47) SU(2)3

16 × SU(2)9 × SU(2)3
8

86
A4 +A1

D4(a1)
2A2 +A1 (0, 0, 2, 0, 1, 1, 0, 1) (90, 63) SU(2)26 × SU(2)3

24

87
A4 +A1

D4(a1)
A3 (0, 0, 3, 1, 1, 1, 0, 0) (84, 56) Sp(2)10 × SU(2)3

8 ×U(1)3

88
A4 +A1

D4(a1)
2A2 (0, 0, 2, 0, 2, 1, 0, 1) (104, 74) (G2)12 × SU(2)3

24

89
A4 +A1

A3 +A1
A3 +A1 (0, 0, 2, 0, 1, 2, 0, 0) (82, 55) SU(2)32×SU(2)2

16×SU(2)2
9×SU(2)2

8

90
A4 +A1

A3 +A1
2A2 +A1 (0, 0, 1, 0, 1, 2, 0, 1) (99, 71) SU(2)48 × SU(2)26 × SU(2)24 ×

SU(2)9

91
A4 +A1

A3 +A1
A3 (0, 0, 2, 1, 1, 2, 0, 0) (93, 64)

Sp(2)10 × SU(2)16 × SU(2)9

× SU(2)8 ×U(1)2

92
A4 +A1

A3 +A1
2A2 (0, 0, 1, 0, 2, 2, 0, 1) (113, 82) (G2)12×SU(2)48×SU(2)24×SU(2)9

93
A4 +A1

2A2 +A1
2A2 +A1 (0, 0, 0, 0, 1, 2, 0, 2) (116, 87) SU(2)72 × SU(2)2

26

94
A4 +A1

2A2 +A1
A3 (0, 0, 1, 1, 1, 2, 0, 1) (110, 80) Sp(2)10×SU(2)26×SU(2)24×U(1)

95
A4 +A1

2A2 +A1
2A2 (0, 0, 0, 0, 2, 2, 0, 2) (130, 98) (G2)12 × SU(2)72 × SU(2)26
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96
A4 +A1

A3
A3 (0, 0, 2, 2, 1, 2, 0, 0) (104, 73) Sp(2)2

10 × SU(2)8 ×U(1)3

97
A4 +A1

A3
2A2 (0, 0, 1, 1, 2, 2, 0, 1) (124, 91) (G2)12 × Sp(2)10 × SU(2)24 ×U(1)

98
A4 +A1

2A2
2A2 (0, 0, 0, 0, 3, 2, 0, 2) (144, 109) (G2)2

12 × SU(2)72

99
D4

D4
0 (0, 2, 0, 1, 2, 0, 1, 0) (112, 58) (E6)18 × (E6)6 × SU(3)2

12

100
D4

A4
2A1 (0, 1, 1, 1, 2, 1, 0, 0) (96, 58) Spin(8)16 × SU(4)12 × SU(2)8 ×

U(1)2

101
D4

A4
A1 (0, 1, 1, 1, 2, 1, 1, 0) (118, 75) SU(6)18×SU(3)12×SU(2)8×U(1)2

102
D4

D4(a1)
A2 + 2A1 (0, 1, 2, 1, 1, 0, 1, 0) (86, 56) SU(3)12 × SU(2)3

18 ×U(1)3

103
D4

D4(a1)
2A2 (0, 1, 2, 0, 2, 0, 0, 0) (72, 41) Spin(8)2

12 ×U(1)2

104
D4

D4(a1)
A2 +A1 (0, 1, 2, 1, 2, 0, 1, 0) (99, 67) SU(3)2

12 ×U(1)5

105
D4

D4(a1)
A2 (0, 1, 2, 1, 3, 0, 1, 0) (112, 78) SU(3)3

12 ×U(1)4

106
D4

A3 +A1
A2 + 2A1 (0, 1, 1, 1, 1, 1, 1, 0) (95, 64)

SU(3)12 × SU(2)36 × SU(2)18

× SU(2)9 ×U(1)2

107
D4

A3 +A1
2A2 (0, 1, 1, 0, 2, 1, 0, 0) (81, 49) Spin(7)2

12 × SU(2)9 ×U(1)

108
D4

A3 +A1
A2 +A1 (0, 1, 1, 1, 2, 1, 1, 0) (108, 75) SU(3)2

12 × SU(2)9 ×U(1)3

109
D4

A3 +A1
A2 (0, 1, 1, 1, 3, 1, 1, 0) (121, 86) SU(3)3

12 × SU(2)9 ×U(1)2

110
D4

2A2 +A1
2A2 +A1 (0, 1, 0, 0, 1, 1, 0, 1) (84, 54) (G2)12 × Sp(2)26

111
D4

2A2 +A1
2A2 (0, 1, 0, 0, 2, 1, 0, 1) (98, 65) (G2)2

12 × SU(2)26

112
D4

A3
A2 + 2A1 (0, 1, 1, 2, 1, 1, 1, 0) (106, 73)

Sp(2)10 × SU(3)12 × SU(2)36

× SU(2)18 ×U(1)2

113
D4

A3
2A2 (0, 1, 1, 1, 2, 1, 0, 0) (92, 58) Spin(7)12×SU(4)12×Sp(2)10×U(1)

114
D4

A3
A2 +A1 (0, 1, 1, 2, 2, 1, 1, 0) (119, 84) SU(3)2

12 × Sp(2)10 ×U(1)3
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115
D4

A3
A2 (0, 1, 1, 2, 3, 1, 1, 0) (132, 95) SU(3)3

12 × Sp(2)10 ×U(1)2

116
D4

2A2
2A2 (0, 1, 0, 0, 3, 1, 0, 1) (112, 76) (G2)3

12

117
A4

A4
A2 (0, 0, 2, 1, 3, 1, 0, 0) (104, 71) SU(4)2

12 × SU(2)2
8 ×U(1)

118
A4

A4
3A1 (0, 0, 2, 1, 2, 1, 0, 1) (117, 83) SU(4)24× SU(2)13× SU(2)2

8×U(1)

119
A4

A4
2A1 (0, 0, 2, 1, 2, 2, 0, 1) (136, 98) Spin(7)16 × SU(2)2

8 × SU(2)24 ×
U(1)2

120
A4

D4(a1)
D4(a1) (0, 0, 5, 0, 1, 0, 0, 0) (72, 46) SU(2)10

8

121
A4

D4(a1)
A3 +A1 (0, 0, 4, 0, 1, 1, 0, 0) (81, 54) SU(2)3

16 × SU(2)9 × SU(2)4
8

122
A4

D4(a1)
2A2 +A1 (0, 0, 3, 0, 1, 1, 0, 1) (98, 70) SU(2)26 × SU(2)3

24 × SU(2)8

123
A4

D4(a1)
A3 (0, 0, 4, 1, 1, 1, 0, 0) (92, 63) Sp(2)10 × SU(2)4

8 ×U(1)3

124
A4

D4(a1)
2A2 (0, 0, 3, 0, 2, 1, 0, 1) (112, 81) (G2)12 × SU(2)8 × SU(2)3

24

125
A4

A3 +A1
A3 +A1 (0, 0, 3, 0, 1, 2, 0, 0) (90, 62) SU(2)32×SU(2)2

16×SU(2)2
9×SU(2)2

8

126
A4

A3 +A1
2A2 +A1 (0, 0, 2, 0, 1, 2, 0, 1) (107, 78)

SU(2)48 × SU(2)26 × SU(2)24

× SU(2)9 × SU(2)8

127
A4

A3 +A1
A3 (0, 0, 3, 1, 1, 2, 0, 0) (101, 71)

Sp(2)10 × SU(2)16 × SU(2)9

× SU(2)2
8 ×U(1)2

128
A4

A3 +A1
2A2 (0, 0, 2, 0, 2, 2, 0, 1) (121, 89)

(G2)12 × SU(2)48 × SU(2)24

× SU(2)9 × SU(2)8

129
A4

2A2 +A1
2A2 +A1 (0, 0, 1, 0, 1, 2, 0, 2) (124, 94) SU(2)72 × SU(2)2

26 × SU(2)8

130
A4

2A2 +A1
A3 (0, 0, 2, 1, 1, 2, 0, 1) (118, 87)

Sp(2)10 × SU(2)26 × SU(2)24

× SU(2)8 ×U(1)

131
A4

2A2 +A1
2A2 (0, 0, 1, 0, 2, 2, 0, 2) (138, 105) (G2)12×SU(2)72×SU(2)26×SU(2)8

132
A4

A3
A3 (0, 0, 3, 2, 1, 2, 0, 0) (112, 80) Sp(2)2

10 × SU(2)2
8 ×U(1)3
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# Fixture (n2,n3,n4,n5,n6,n8,n9,n12) (nh, nv) Gk

133
A4

A3
2A2 (0, 0, 2, 1, 2, 2, 0, 1) (132, 98)

(G2)12 × Sp(2)10 × SU(2)24

× SU(2)8 ×U(1)

134
A4

2A2
2A2 (0, 0, 1, 0, 3, 2, 0, 2) (152, 116) (G2)2

12 × SU(2)72 × SU(2)8

We were unable to determine the SU(3) levels in fixtures 63 and 66.

3.5 Mixed fixtures

We find many “new” SCFTs in our list of mixed fixtures. For each fixture in the table

below, we list the global symmetry group, the graded Coulomb branch dimensions, and

the effective number of vector and hypermultiplets of the SCFT. The effective number of

hypermultiplets, for the fixture as a whole, is the sum of the nh listed in the table and the

number of free hypermultiplets in the last column. When the hypermultiplets transform

under the nonabelian part of the “manifest” global symmetry of the fixture, we list that

representation. Otherwise, we just give their number.

All SCFTs in the list below are “new”, except for the (E6)6 SCFT, the (E6)12×SU(2)7

SCFT, the SU(4)3
8 SCFT, and the (E8)12 SCFT, which have previously appeared in the

classification of the A- and D-series fixtures, and the (E7)16×SU(2)9 and (G2)12×Sp(2)26

SCFTs, which appeared above.

# Fixture (n2,n3,n4,n5,n6,n8,n9,n12) (nh, nv) Theory

1
E6(a1)

A2 +A1

0 (0, 0, 0, 0, 1, 0, 0, 0) (40, 11) (E8)12 SCFT + 1(1, 27)

2
E6(a1)

3A1

A1 (0, 0, 0, 0, 1, 0, 0, 0) (40, 11) (E8)12 SCFT + 1
2
(1, 2, 1) + 1(3, 1, 6)

3
E6(a1)

2A1

A1 (0, 0, 0, 0, 1, 1, 0, 0) (72, 26) Spin(20)16 SCFT + 1(6, 1)

4

D5

2A2 +A1

A1 (0, 0, 1, 0, 0, 1, 0, 0) (57, 22) (E7)16 × SU(2)9 + 1
2
(2, 1) + 1(1, 6)

5
D5

A2 + 2A1

3A1 (0, 0, 1, 1, 0, 0, 0, 0) (42, 16) SU(8)10 × SU(3)12 + 1(2; 3, 1) +
1
2
(3; 1, 2)

6
D5

A2 + 2A1

2A1 (0, 0, 1, 1, 0, 1, 0, 0) (68, 31) (E6)16 × Sp(2)10 ×U(1) + 1(2, 1)

– 27 –



J
H
E
P
0
9
(
2
0
1
5
)
0
0
7

# Fixture (n2,n3,n4,n5,n6,n8,n9,n12) (nh, nv) Theory

7
D5

2A2

A1 (0, 0, 1, 0, 1, 1, 0, 0) (72, 33) Spin(7)12 × Spin(12)16 SCFT + 1(1, 6)

8
D5

A2 +A1

3A1 (0, 0, 1, 1, 1, 0, 0, 0) (60, 27) SU(8)12 × SU(4)10 + 1
2
(1; 1, 2) +

1(1; 3, 1)

9
D5

A2 +A1

2A1 (0, 0, 1, 1, 1, 1, 0, 0) (82, 42)
Spin(10)16 × SU(4)12 × SU(2)10

×U(1) + 1 free hyper

10
D5

A2

3A1 (0, 0, 1, 1, 2, 0, 0, 0) (76, 38) SU(6)2
12 × SU(2)12 + 1

2
(1, 1; 1, 2)

11
E6(a3)

D5(a1)

0 (0, 2, 0, 0, 0, 0, 0, 0) (32, 10) [(E6)6) SCFT]2 + 1(27)

12
E6(a3)

A4 +A1

A1 (0, 1, 0, 0, 1, 1, 0, 0) (64, 31) Spin(13)16 ×U(1) + 1(6)

13
E6(a3)

A4

A1 (0, 1, 1, 0, 1, 1, 0, 0) (72, 38) Spin(12)16 × SU(2)8 × U(1) SCFT +

1(1, 6)

14
E6(a3)

D4(a1)

A2 + 2A1 (0, 1, 2, 0, 0, 0, 0, 0) (40, 19) SU(4)3
8 SCFT + 3(2)

15
E6(a3)

D4(a1)

A2 +A1 (0, 1, 2, 0, 1, 0, 0, 0) (56, 30) Spin(8)12 × SU(2)3
8 × U(1)2 +

3 free hypers

16
E6(a3)

A3 +A1

A2 + 2A1 (0, 1, 1, 0, 0, 1, 0, 0) (51, 27) Sp(3)9 × SU(4)16 + 2(1, 2)

17
E6(a3)

A3 +A1

A2 +A1 (0, 1, 1, 0, 1, 1, 0, 0) (66, 38)
Spin(7)12 × Sp(2)9 × SU(2)32 ×U(1)

+2 free hypers

18
E6(a3)

2A2 +A1

A2+2A1 (0, 1, 0, 0, 0, 1, 0, 1) (70, 43) Sp(3)26 + 1(1, 2)

19
E6(a3)

2A2 +A1

A2 +A1 (0, 1, 0, 0, 1, 1, 0, 1) (84, 54) (G2)12 × Sp(2)26 + 1 free hyper

– 28 –



J
H
E
P
0
9
(
2
0
1
5
)
0
0
7

# Fixture (n2,n3,n4,n5,n6,n8,n9,n12) (nh, nv) Theory

20
E6(a3)

A3

A2 + 2A1 (0, 1, 1, 1, 0, 1, 0, 0) (64, 36) Sp(4)10 × SU(2)2
16 ×U(1)2 + 1(1, 2)

21
E6(a3)

A3

A2 +A1 (0, 1, 1, 1, 1, 1, 0, 0) (78, 47) SU(4)12 × Sp(3)10 × U(1)2 +

1 free hyper

22
E6(a3)

A2 + 2A1

2A2 (0, 1, 0, 0, 1, 1, 0, 1) (84, 54) (G2)12 × Sp(2)26 + 1(2, 1)

23
E6(a3)

2A2

A2 +A1 (0, 1, 0, 0, 2, 1, 0, 1) (98, 65) (G2)2
12 × SU(2)26 + 1 free hyper

24
A5

D5(a1)

0 (0, 1, 0, 0, 1, 0, 0, 0) (39, 16) (E6)12 × SU(2)7 SCFT + 1(1, 27)

25
A5

A4 +A1

A1 (0, 0, 0, 0, 2, 1, 0, 0) (71, 37) Spin(13)16 × SU(2)7 + 1(1, 6)

26
A5

A4

A1 (0, 0, 1, 0, 2, 1, 0, 0) (79, 44)
Spin(12)16 × SU(2)8 × SU(2)7 SCFT

+1(1, 1, 6)

27
A5

D4(a1)

A2 + 2A1 (0, 0, 2, 0, 1, 0, 0, 0) (47, 25) Sp(2)3
8 × SU(2)7 + 3(1, 2)

28
A5

D4(a1)

A2 +A1 (0, 0, 2, 0, 2, 0, 0, 0) (63, 36)
Spin(8)12 × SU(2)3

8 × SU(2)7

+3 free hypers

29
A5

A3 +A1

A2 + 2A1 (0, 0, 1, 0, 1, 1, 0, 0) (58, 33) Sp(3)9 × Sp(2)16 × SU(2)7 + 2(1, 1, 2)

30
A5

A3 +A1

A2 +A1 (0, 0, 1, 0, 2, 1, 0, 0) (73, 44)
Spin(7)12 × Sp(2)9 × SU(2)32

×SU(2)7 + 2 free hypers

31
A5

2A2 +A1

A2+2A1 (0, 0, 0, 0, 1, 1, 0, 1) (77, 49) Sp(3)26 × SU(2)7 + 1(1, 1, 2)

32
A5

2A2 +A1

A2 +A1 (0, 0, 0, 0, 2, 1, 0, 1) (91, 60) (G2)12 × Sp(2)26 × SU(2)7 +

1 free hyper
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33
A5

A3

A2 + 2A1 (0, 0, 1, 1, 1, 1, 0, 0) (71, 42)
Sp(4)10 × SU(2)32 × SU(2)7 ×U(1)

+1(1, 1, 2)

34
A5

A3

A2 +A1 (0, 0, 1, 1, 2, 1, 0, 0) (85, 53)
SU(4)12 × Sp(3)10 × SU(2)7 ×U(1)

+1 free hyper

35
A5

A2 + 2A1

2A2 (0, 0, 0, 0, 2, 1, 0, 1) (91, 60) (G2)12 × Sp(2)26 × SU(2)7 + 1(1, 2, 1)

36
A5

2A2

A2 +A1 (0, 0, 0, 0, 3, 1, 0, 1) (105, 71) (G2)2
12 × SU(2)26 × SU(2)7 +

1 free hyper

37
D5(a1)

A4 +A1

3A1 (0, 1, 0, 1, 1, 0, 0, 0) (52, 25) SU(6)12× Spin(7)10 + 1
2
(1, 2) + 1(3, 1)

38
D5(a1)

A4 +A1

2A1 (0, 1, 0, 1, 1, 1, 0, 0) (74, 40)
Spin(10)16 × SU(2)10 × SU(2)32

×U(1) + 1 free hyper

39
D5(a1)

A4

3A1 (0, 1, 1, 1, 1, 0, 0, 0) (60, 32)
SU(5)12 × SU(4)10 × SU(2)8 ×U(1)

+
1

2
(1; 1, 2) + 1(1; 3, 1)

40
D5(a1)

A4

2A1 (0, 1, 1, 1, 1, 1, 0, 0) (82, 47)
Spin(10)16 × SU(2)8 × SU(2)10

×U(1)2 + 1 free hyper

41
D5(a1)

D4(a1)

2A2 +A1 (0, 1, 2, 0, 0, 0, 0, 0) (40, 19) SU(4)3
8 SCFT + 1(2) + 3 free hypers

42
D5(a1)

D4(a1)

2A2 (0, 1, 2, 0, 1, 0, 0, 0) (56, 30)
Spin(8)12 × SU(2)3

8 ×U(1)2

+3 free hypers

43
D5(a1)

A3 +A1

2A2 +A1 (0, 1, 1, 0, 0, 1, 0, 0) (51, 27) SU(4)16 × Sp(3)9 + 1
2
(2, 1) +

2 free hypers

44
D5(a1)

A3 +A1

2A2 (0, 1, 1, 0, 1, 1, 0, 0) (66, 38)
Spin(7)12 × Sp(2)9 × SU(2)32 ×U(1)

+2 free hypers

45
D5(a1)

2A2 +A1

2A2+A1 (0, 1, 0, 0, 0, 1, 0, 1) (70, 43) Sp(3)26 + 1 free hyper
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46
D5(a1)

2A2 +A1

A3 (0, 1, 1, 1, 0, 1, 0, 0) (63, 36)
Sp(3)10 × SU(3)16 × SU(2)9 ×U(1)

+
1

2
(2, 1) + 1 free hyper

47
D5(a1)

2A2 +A1

2A2 (0, 1, 0, 0, 1, 1, 0, 1) (84, 54) (G2)12 × Sp(2)26 + 1 free hyper

48
D5(a1)

A3

2A2 (0, 1, 1, 1, 1, 1, 0, 0) (78, 47) Spin(7)12 × Sp(3)10 × U(1)2 +

1 free hyper

49
D5(a1)

2A2

2A2 (0, 1, 0, 0, 2, 1, 0, 1) (98, 65) (G2)2
12 × SU(2)26 + 1 free hyper

50
A4 +A1

A4 +A1

A2 + 2A1 (0, 0, 0, 1, 1, 1, 0, 0) (60, 35) SU(3)32 × Sp(3)10 + 1(2)

51
A4 +A1

A4 +A1

A2 +A1 (0, 0, 0, 1, 2, 1, 0, 0) (74, 46) SU(4)12 × SU(2)10 × SU(2)32
2 +

1 free hyper

52
A4 +A1

A4

A2 + 2A1 (0, 0, 1, 1, 1, 1, 0, 0) (68, 42) SU(3)32 × Sp(2)10 × SU(2)8 × U(1) +

1(1, 2)

53
A4 +A1

A4

A2 +A1 (0, 0, 1, 1, 2, 1, 0, 0) (82, 53)
SU(4)12 × SU(2)32 × SU(2)10

×SU(2)8 ×U(1) + 1 free hyper

54
D4

A4 +A1

3A1 (0, 1, 0, 1, 2, 0, 0, 0) (68, 36) SU(6)12 × SU(3)2
12 + 1

2
(1; 1, 2)

55
D4

A4

3A1 (0, 1, 1, 1, 2, 0, 0, 0) (76, 43)
SU(6)12 × SU(3)12 × SU(2)8 ×U(1)

+
1

2
(1, 1; 1, 2)

56
D4

D4(a1)

2A2 +A1 (0, 1, 2, 0, 1, 0, 0, 0) (56, 30) Spin(8)12 × SU(2)3
8 + 1(1, 2)

57
D4

A3 +A1

2A2 +A1 (0, 1, 1, 0, 1, 1, 0, 0) (66, 38)
Spin(7)12 × Sp(2)9 × SU(2)16 ×U(1)

+
1

2
(1, 1, 2)

58
D4

2A2 +A1

A3 (0, 1, 1, 1, 1, 1, 0, 0) (77, 47)
SU(4)12 × Sp(2)10 × SU(2)16

×SU(2)9 ×U(1) +
1

2
(1, 2, 1)
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59
A4

A4

A2 + 2A1 (0, 0, 2, 1, 1, 1, 0, 0) (76, 49)
Sp(2)10 × SU(2)32 × SU(2)2

8 ×U(1)2

+1(1, 1, 2)

60
A4

A4

A2 +A1 (0, 0, 2, 1, 2, 1, 0, 0) (90, 60)
SU(4)12 × SU(2)10 × SU(2)2

8 ×U(1)2

+1 free hyper

4 A detour through the twisted sector

There are several fixtures on our list, where the levels of the enhanced flavour symme-

try group cannot be determined by considerations from the untwisted sector alone. For

instance, consider the pair of fixtures,

D4

0
D4

(E6)18 × (E6)6 × SU(3)12
2 SCFT

and D4

0

(E6)18 × (E6)6 × SU(3)12 × U(1) SCFT

D5(a1)

In each case, only the diagonal (E6)24 ⊂ (E6)24−k × (E6)k is manifest. Moreover, the only

gaugings, available in the untwisted sector, have Abelian centralizers in (E6)24−k × (E6)k,

which makes determining the individual levels (as opposed to their sum) difficult.

To fix the ambiguity, we need to make recourse to the Z2-twisted sector. While a full

discussion of the Z2-twisted sector is beyond the scope of this paper, we will borrow a few

results of that analysis, deferring a full discussion to a future paper.

The twisted punctures are labeled by nilpotent orbits in F4. We will denote them by

their Bala-Carter labels, and colour them grey. The empty fixture

B3

F4

(0, SU(6))

empty

will allow us to gauge an SU(6)24 ⊂ (E6)24−k×(E6)k. The centralizer is SU(2)24−k×SU(2)k,

from which we can read off the “missing” information about the levels.
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We will also need the free-field fixture

F4

D5(a1)

(Ã2, SU(3))

3 of SU(3)

and the interacting fixture

F4

(E6)6 SCFT

D4

(Ã2, G2)

which is a realization of the (E6)6 SCFT. Finally, we will also need two “new” interacting

fixtures

Fixture (n2, n3, n4, n5, n6, n8, n9, n12) (nh, nv) Global Symmetry

Ã2

D5(a1)

B3

(0, 2, 1, 2, 1, 0, 1, 0) (83, 63) (G2)10 × SU(2)18 × SU(2)6 ×U(1)

D4

Ã2
B3

(0, 2, 1, 2, 2, 0, 1, 0) (96, 74) (G2)10 × SU(3)12 × SU(2)18 × SU(2)6

In both cases, all of the global symmetry except the SU(2)18 is manifest (in particular,
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the SU(2)6 is manifest). The 4-punctured sphere

D4

D4

0(0, SU(6))
F4

B3

SU(6)

(E6)24−k × (E6)k × SU(3)12
2 SCFTempty

has global symmetry

F = SU(3)2
12 × SU(2)24−k × SU(2)k

The S-dual

D4

F4 B3

G2

(G2)10 × SU(3)12 × SU(2)18 × SU(2)6 SCFT

D4

Ã2

(E6)6 SCFT

(Ã2, G2)

manifestly has one of the SU(2) levels as k = 6, which determines the other level to be 18.

Similarly, for

D4

0(0, SU(6))
F4

B3

SU(6)

(E6)18 × (E6)6 × SU(3)12 × U(1) SCFTempty

D5(a1)

the global symmetry group is

F = SU(3)12 × SU(2)24−k × SU(2)k ×U(1)

Now there are two S-dual presentations of the theory:

F4 B3

G2

(G2)10 × SU(2)18 × SU(2)6 × U(1) SCFT

D4

Ã2

(E6)6 SCFT

(Ã2, G2)
D5(a1)
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and

D4

F4 B3

SU(3)

(G2)10 × SU(3)12 × SU(2)18 × SU(2)6 SCFT

Ã2

3

(Ã2, SU(3))
D5(a1)

Again, the fact that one of the SU(2) levels is manifest suffices to determine the other.

As another example, consider the pair of fixtures

D4

SU(3)12 × SU(2)54−k−k′ × SU(2)k × SU(2)k′ × U(1)3 SCFT

A2 + 2A1

D4(a1) (4.1)

and

D4

SU(3)12 × SU(2)54−k × SU(2)k × SU(2)9 × U(1)2 SCFT

A2 + 2A1

A3 + A1

(4.2)

In each case, only the diagonal SU(2)54 subgroup, of the indicated SU(2)s, is manifest.

Moreover, these fixtures are not gaugeable within the untwisted theory. So there is no

obvious way to determine the individual SU(2) levels. Fortunately, the twisted sector

provides the empty fixture

F4

F4

(D4, SU(3))

empty
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which allows us to gauge the SU(3)12 symmetry of each of these fixtures:

F4

SU(3)
F4

(D4, SU(3)) D4

D4(a1)

A2 + 2A1

and

F4

SU(3)
F4

(D4, SU(3)) D4

A2 + 2A1

A3 + A1

From the S-duals

F4

Spin(8)

F4

D4(a1)A2 + 2A1

(0, Spin(8))0

(E7)18 × U(1) SCFT (E6)6 SCFT

and

F4

Spin(9)

F4

A3 + A1A2 + 2A1

0

(E7)18 × U(1) SCFT 1(9) + (E6)6 SCFT

(0, Spin(9))

and the Lie-algebra embeddings

(e7)k ⊃ (f4)k ⊕ su(2)3k

(e7)k ⊃ so(9)k ⊕ su(2)2k ⊕ su(2)k

(e7)k ⊃ so(8)k ⊕ su(2)k ⊕ su(2)k ⊕ su(2)k

we determine the levels in (4.1) and (4.2) to be k = k′ = 18.
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Finally, let us turn to the mixed fixture

D4

D4(a1)
2A2 + A1

Spin(8)12 × SU(2)24−k1−k2
× SU(2)k1

× SU(2)k2
SCFT

1(1, 2) +

Only the diagonal SU(2)24 ⊂ SU(2)24−k1−k2
× SU(2)k2

× SU(2)k2
is manifest. Gauging the

SU(3)12 symmetry of the D4 puncture, as before, we find that the S-dual is a Spin(8) gauge

theory, with matter in the 1(8v) + 1(8s) + 1(8c) + 2(1), coupled to two copies of the (E6)6

SCFT.

Spin(8)

F4 F4

0(0, Spin(8))
D4(a1) 2A2 + A1

(E6)6 SCFT 1(26) + (E6)6 SCFT

From this, we read off the levels of the three SU(2)s: k1 = k2 = 24− k1 − k2 = 8.

5 Applications

5.1 E6 and F4 gauge theory

5.1.1 E6 + 4(27)

E6 gauge theory, with four fundamental hypermultiplets, is superconformal. It is realized

as the 4-punctured sphere

E6(a1) E6(a1)

A2 + 2A1

0 0

A2 + 2A1

E6

2(27) 2(27)

z1 z2

z3 z4
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The S-dual theory is an SU(2) gauging of the SU(4)54 × SU(2)7 × U(1) SCFT, with an

additional half-hypermultiplet in the fundamental.

E6(a1)

E6(a1) A2 + 2A1

A5

A2 + 2A1

SU(2)

1
2(2) SU(4)54 × SU(2)7 × U(1) SCFT

(A5, SU(2))

The k-differentials, which determine the Seiberg-Witten solution, are

φ2(z) =
u2 z12z34 (dz)2

(z − z1)(z − z2)(z − z3)(z − z4)

φ5(z) =
u5 z12z

4
34 (dz)5

(z − z1)(z − z2)(z − z3)4(z − z4)4

φ6(z) =
u6 z

2
12z

4
34 (dz)6

(z − z1)2(z − z2)2(z − z3)4(z − z4)4

φ8(z) =
u8 z

2
12z

6
34 (dz)8

(z − z1)2(z − z2)2(z − z3)6(z − z4)6

φ9(z) =
u9 z

2
12z

7
34 (dz)9

(z − z1)2(z − z2)2(z − z3)7(z − z4)7

φ12(z) =
u12 z

3
12z

9
34 (dz)12

(z − z1)3(z − z2)3(z − z3)9(z − z4)9

(5.1)

The gauge coupling, τ = θ
π + 8πi

g2 , is determined by the SL(2,C)-invariant cross-ratio

f(τ) ≡ −θ
4
2(0, τ)

θ4
4(0, τ)

=
z13z24

z14z23
(5.2)

and, for calculational purposes, it is usually convenient to use SL(2,C) to fix

(z1, z2, z3, z4) = (0,∞, f(τ), 1) in (5.1).

The solution to E6 gauge theory with Nf ≤ 3 fundamental hypermultiplets was first

found in [18].
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5.1.2 F4 + 3(26)

F4 gauge theory, with three fundamentals, is also superconformal. It is realized as

E6(a1) E6(a1)

A2 + 2A1

(0, F4)
0

2A2 + A1

F4

1(26) 2(26) + 2(1)

z1 z2

z3 z4

The S-dual theory is an SU(2) gauging of the Sp(3)26 × SU(2)7 SCFT, with additional

matter in the 1
2(2) + 2(1).

E6(a1)

E6(a1) 2A2 + A1

A5

A2 + 2A1

SU(2)

1
2(2) Sp(3)26 × SU(2)7 SCFT + 2(1)

(A5, SU(2))

The nonzero k-differentials, which determine the Seiberg-Witten solution, are the same as

in (5.1) but with φ5(z) ≡ 0 ≡ φ9(z). The gauge coupling is again given by (5.2). Physically,

this theory is obtained by Higgsing E6 → F4, using one of the hypermultiplets in the 27.

In practice, given the solution to E6+4(27), the solution to F4+3(26)+2(1) is obtained

by noting that

• There is a Z2 symmetry, σ : (u5, u9) 7→ (−u5,−u9), acting on the Coulomb branch

of the E6 + 4(27).

• The Coulomb branch geometry of F4 +3(26)+2(1) is the geometry of the fixed-locus

of σ.

5.2 Adding (E8)12 SCFTs

Starting with the E6+4(27) Lagrangian field theory, we can start replacing hypermultiplets

in the 27 with copies of the (E8)12 SCFT. For n 27s and 4− n copies of the (E8)12 SCFT,

the flavour symmetry group of the theory is

F = SU(3)4−n
12 ×U(n)54

In each of these cases, the S-dual theory is an SU(2) gauging of the SU(3)4−n
12 × SU(n)54×

SU(2)7×U(1) SCFT, with an additional half-hypermultiplet in the fundamental (the U(1)

is absent for n = 0).
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5.2.1 n = 3

With one copy of the (E8)12 SCFT,

E6(a1) E6(a1)

A2 + A1

0 0

A2 + 2A1

E6

2(27) 1(27) + (E8)12 SCFT

is dual to

E6(a1)

E6(a1) A2 + 2A1

A5

A2 + A1

SU(2)

1
2(2) SU(3)54 × SU(3)12 × SU(2)7 × U(1) SCFT

(A5, SU(2))

5.2.2 n = 2

With two copies of the (E8)12 SCFT, there are two possible realizations. Either

E6(a1) E6(a1)

A2 + A1

0 0

A2 + A1

E6

1(27) + (E8)12 SCFT 1(27) + (E8)12 SCFT

dual to

E6(a1)

E6(a1) A2 + A1

A5

A2 + A1

SU(2)

1
2(2) SU(3)12

2 × SU(2)54 × SU(2)7 × U(1) SCFT

(A5, SU(2))
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or

E6(a1) E6(a1)

A2

0 0

A2 + 2A1

E6

2(27) [(E8)12 SCFT ]2

dual to

E6(a1)

E6(a1) A2

A5

A2 + 2A1

SU(2)

1
2(2) SU(3)12

2 × SU(2)54 × SU(2)7 × U(1) SCFT

(A5, SU(2))

These give two, apparently distinct, realizations of the SU(3)2
12× SU(2)54× SU(2)7×U(1)

SCFT.

5.2.3 n = 1

With three copies of the (E8)12 SCFT, we have

E6(a1) E6(a1)

A2

0 0

A2 + A1

E6

1(27) + (E8)12 SCFT [(E8)12 SCFT ]2

dual to

E6(a1)

E6(a1) A2

A5

A2 + A1

SU(2)

1
2(2) SU(3)12

3 × SU(2)7 × U(1) SCFT

(A5, SU(2))
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5.2.4 n = 0

Finally, the E6 gauging of four copies of the (E8)12 SCFT,

E6(a1) E6(a1)

A2

0 0

A2

E6

[(E8)12 SCFT ]2 [(E8)12 SCFT ]2

is dual to

E6(a1)

E6(a1) A2

A5

A2

SU(2)

1
2(2) SU(3)12

4 × SU(2)7 SCFT

(A5, SU(2))

5.3 Connections with F-theory

Placing n D3-branes at a IV∗, III∗ or II∗ singularity in F-Theory yields an N = 2 su-

perconformal field theory on the world-volume of the D3-branes [37, 38]. For n = 1 these

are, respectively, the (E6)6, (E7)8 and (E8)12 superconformal field theories of Minahan and

Nemenschansky [36]. For higher n, the properties of these SCFTs were computed in [39].

The results may be summarized as follows

F-Theory
singularity Flavour symmetry

Graded Coulomb
branch dimensions (nh, nv)

IV∗ (E6)6n × SU(2)(n−1)(3n+1) n3l = 1, l = 1, 2, . . . , n
(
3n2 + 14n− 1, n(3n+ 2)

)
III∗ (E7)8n × SU(2)(n−1)(4n+1) n4l = 1, l = 1, 2, . . . , n

(
4n2 + 21n− 1, n(4n+ 3)

)
II∗ (E8)12n × SU(2)(n−1)(6n+1) n6l = 1, l = 1, 2, . . . , n

(
6n2 + 35n− 1, n(6n+ 5)

)
In [34], Gaiotto and Razamat proposed a realization of these (n ≥ 2) SCFTs as a

mixed fixture, with one free hypermultiplet, in the AN−1 theory, for N = 3n, 4n and 6n,

respectively.

Theory Fixture Manifest flavour symmetry Enhanced to
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IV∗

[n3] [n3]

[n2, n − 1, 1]
SU(3)2

6n × SU(2)6n ×U(1)2 (E6)6n × SU(2)k + 1
2
(2)

III∗

[(2n)2] [n4]

[n3, n − 1, 1]
SU(2)8n × SU(4)8n × SU(3)8n ×U(1)2 (E7)8n × SU(2)k + 1

2
(2)

II∗
[(3n)2] [(2n)3]

[n5, n − 1, 1]
SU(2)12n × SU(3)12n × SU(5)12n ×U(1)2 (E8)12n × SU(2)k + 1

2
(2)

For n = 2, the SU(2) flavour symmetry is manifest, and one readily verifies that it has

the predicted level (given that the hypermultiplet transforms as 1
2(2) under the SU(2)).

But, for n ≥ 3, only the U(1) Cartan is manifest and it is not easy to determine the level

of the SU(2).

We have, of course, numerous realizations of the n = 1 theories. But we also find

examples of the higher-n theories

• We find the n = 2 IV∗ SCFT as one of our fixtures in section 3.3 and as part of a

product SCFT in fixture 39 of section 3.4. It also appeared as an interacting fixture

in the D4 theory in [4].

• We find the n = 2 III∗ SCFT as mixed fixture 4 in section 3.5 and as part of a

product SCFT in fixture 6 of section 3.4.

• We find the n = 2 II∗ SCFT as interacting fixture 2 in section 3.4.

• We find the n = 3 III∗ SCFT as interacting fixture 7 in section 3.4.

In particular, the latter gives a nice check of the SU(2) level for n = 3.

Further examples can be found in the Z2-twisted sector. Notably, the fixtures

E6(a1)

Ã2 + A1

0
and

F4

A2 + Ã1

0
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provide realizations, respectively, of the n = 3, 4 IV∗ SCFTs. Again, the SU(2) levels agree

with the predictions of [39]. Together with the above examples, these exhaust all the IV∗,

III∗ and II∗ theories with nonzero graded Coulomb branch dimensions in degrees ≤ 12.

6 Isomorphic theories

In our table of interacting fixtures with enhanced global symmetry in section 3.4, we find

several SCFTs which seem to be realized in more than one way. Most of these isomorphisms

can be checked by various dualities. Some, however, cannot and we list them below.

E6(a3)

D4(a1)

A2
'

D4(a1)

2A2

D4

' Spin(8)2
12 ×U(1)2 SCFT

E6(a3)

A3 + A1

A2
'

A3 + A1

2A2

D4

' Spin(7)2
12 × SU(2)9 ×U(1) SCFT

E6(a3)

2A2 + A1

A2
'

2A2 + A1

2A2

D4

' (G2)2
12 × SU(2)26 SCFT

E6(a3)

2A2

A2
'

2A2

2A2

D4

' (G2)3
12 SCFT

D5(a1)

D4(a1)
A2 + A1 '

D4(a1)
A2 + 2A1

D4

' SU(3)12 × SU(2)3
18 ×U(1)3 SCFT
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D5(a1)

D4(a1)

A2
'

D4(a1)
A2 + A1

D4

' SU(3)2
12 ×U(1)5 SCFT

D5(a1)

A3 + A1

A2 + A1 '

A3 + A1

A2 + 2A1

D4

' SU(3)12×SU(2)36×SU(2)18×SU(2)9×U(1)2 SCFT

D5(a1)

A3 + A1

A2
'

A3 + A1

A2 + A1

D4

' SU(3)2
12 × SU(2)9 ×U(1)3 SCFT

D5(a1)
A2

A3

' A2 + A1

D4

A3

' SU(3)2
12 × Sp(2)10 ×U(1)3 SCFT

It would be nice to check these conjectured isomorphisms by comparing the expansions

of the superconformal indices for these pairs of fixtures to higher order in τ .
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A Bala-Carter labels

In the twisted and untwisted sectors of the A and D series, punctures were in one-to-

one correspondence with certain classes of partitions [1, 9, 10, 40]. The partition denotes
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how the fundamental representation (vector representation, in the case of so(N)) of g6

decomposes into representations of the corresponding (Nahm) su(2). Moreover, one can also

read off the centralizer, f, of su(2) inside g, as well as the decomposition of the fundamental

representation of g under su(2)× f, from the partition (see (2.7) in [9]). The decomposition

under su(2) × f for each puncture is precisely the information needed to compute the

flavour group levels in section 2.4.1, as well as the expansion of the superconformal index

in section 2.5. In what follows, we will explain how these decompositions are obtained for

the punctures in the e6 theory.

In contrast to classical g, nilpotent orbits in the exceptional Lie algebras, which label

our punctures, are not naturally classified by partitions. Here, we recall the classification

of Bala and Carter [41, 42], following the exposition in [43]. Their theorem states that

there is a one-to-one correspondence between nilpotent orbits in g and (conjugacy classes

of) pairs (l, Ol) where l is a Levi subalgebra7 of g and Ol is a distinguished8 nilpotent orbit

in l. By the Jacobson-Morozov theorem, any representative X of Ol embeds in a standard

triple9 {H,X, Y } ⊂ l, where H ∈ h. l then has a decomposition into adH -eigenspaces

l =
⊕
k∈Z

lk

where lk = {x ∈ l | [H,x] = kx}. Let l′ ≡ l0 and u′ ≡ ⊕0<k∈Zlk. Then, p = l′ + u′ is a

parabolic subalgebra of l, with explicit Levi decomposition into a Levi subalgebra l′ and

the nilradical u′ of p. (Notice that the Cartan of l is contained in l′, so rank(l′) = rank(l).)

A nilpotent orbit in g is then given the label XN (ai), called the Bala-Carter label,

where XN is the Cartan type of the semisimple part of l, and i is the number of simple

roots in l′. The case i = 0 is denoted just by XN , and corresponds to the principal orbit

in l, which is always distinguished.

There are 16 conjugacy classes of Levi subalgebras of E6. These are specified by their

semisimple parts: 0, A1, 2A1, 3A1, A2, A2 + A1, 2A2, A2, A2 + 2A1, A3 + A1, D4, A4,

A4 + A1, A5, D5, and E6. Here, kAN denotes the direct sum of k copies of AN . The

label 0 denotes the Cartan subalgebra, for which the only distinguished orbit is the zero

orbit. For l of classical type, distinguished orbits in l are easily specified in terms of their

partition: for l of type A, the only distinguished orbit is the principal orbit (which, for

AN−1, has partition [N ] ), while for l of type B,C,D, distinguished orbits are those for

which the partition has no repeated parts. It was found by Bala and Carter that, for l of

type G2, F4, E6, E7, and E8, there are 2, 4, 3, 6, and 11 distinguished orbits, respectively.

The distinguished orbits in the Levi subalgebras listed above give rise to 21 nilpotent

orbits in e6. We list these in the table below, along with the centralizer, f, and the de-

6For untwisted (twisted) punctures in the A and D series, g is of type A (B) and D (C), respectively.
7A Levi subalgebra h ⊂ l ⊂ g is a reductive subalgebra, l, containing the Cartan subalgebra, h, of g. See

section 3.8 of [43] for an introduction.
8A nilpotent orbit, O, in g is distinguished if and only if the only Levi subalgebra of g, containing O, is

g itself.
9Any su(2) subalgebra of g is spanned by a standard triple {H,X, Y } of nonzero elements of g satisfying

the bracket relations [H,X] = 2X, [H,Y ] = −2Y , and [X,Y ] = H.
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composition of the 27 and 78 of e6 under su(2) × f.10 But, before that, let us give a few

examples of how to obtain the decomposition of the 27 for various embeddings.

First, consider l = D4. In this case there are two distinguished orbits, with partitions

[7,1] and [5,3], corresponding to nilpotent orbits D4 and D4(a1), respectively, in e6. The

first has centralizer su(3) and the second, u(1)2. We can obtain the decomposition of the 27

for each of these by embedding su(2) in the so(8) factor in so(8)×u(1)2 ⊂ so(10)×u(1) ⊂ e6.

The 27 of e6 decomposes under so(10)× u(1) as

e6 ⊃ so(10)× u(1)

27 = 1−4 + 102 + 16−1

The 10 and 16 of so(10) decompose under so(8)× u(1) as

so(10) ⊃ so(8)× u(1)

10 = 12 + 1−2 + (8v)0

16 = (8s)1 + (8c)−1

so we have

e6 ⊃ so(8)× u(1)× u(1)

27 = 10,−4 + 12,2 + 1−2,2 + (8v)0,2 + (8s)1,−1 + (8c)−1,−1

For D4(a1), we embed su(2) in so(8) by taking

so(8) ⊃ su(2)

8v,s,c = 5 + 3

which gives

e6 ⊃ su(2)× u(1)× u(1)

27 = 10,−4 + 12,2 + 1−2,2 + 30,2 + 31,−1 + 3−1,−1 + 50,2 + 51,−1 + 5−1,−1

For D4, we embed su(2) in so(8) by taking

so(8) ⊃ su(2)

8v,s,c = 7 + 1

which gives

e6 ⊃ su(2)× u(1)× u(1)

27 = 10,−4 + 12,2 + 1−2,2 + 10,2 + 11,−1 + 1−1,−1 + 70,2 + 71,−1 + 7−1,−1

10The decomposition of the 27 determines a projection matrix, which can be used to obtain the decompo-

sitions of higher-dimensional representations. We list a projection matrix for each puncture in appendix B.

The decomposition of the 78 determines the levels of the flavor groups, as described in section 2.4.1.

– 47 –



J
H
E
P
0
9
(
2
0
1
5
)
0
0
7

For this embedding, the u(1)2 centralizer enhances to su(3). To see this, we can make a

change of basis so that the two u(1) charges are given in terms of the old ones by

q′1 =
1

2
(q1 + q2)

q′2 =
1

2
(q1 − q2)

Then the decomposition becomes

e6 ⊃ su(2)× u(1)× u(1)

27 = 1−2,2 + 12,0 + 10,−2 + 11,−1 + 10,1 + 1−1,0 + 71,−1 + 70,1 + 7−1,0

where we recognize these u(1)2 charges as the weights (in the Dynkin basis) of the 6 and

3 of su(3). Thus, the decomposition of the 27 is given by

e6 ⊃ su(2)× su(3)

27 = (1, 6) + (7, 3)

Now, consider l = E6. There are three distinguished orbits in e6, giving rise to nilpotent

orbits E6, E6(a1), and E6(a3). The decomposition of the 27 for each of these can be obtained

by taking the inner product of the Cartan element H of the embedded su(2) (which can

be read off from the weighted Dynkin diagram) into the weight vectors of the 27.

We conclude this appendix with a summary of the nilpotent orbits in e6 and the

corresponding decompositions of the 27 and the 78 under su(2)× f.

Bala-Carter f 27 78

0 e6 (1; 27) (1; 78)

A1 su(6) (1; 15) + (2; 6) (1; 35) + (2; 20) + (3; 1)

2A1 so(7)× u(1)
(1;72 + 1−4)

+ (2; 8−1) + (3; 12)

(1;10 + 210)

+ (2; 83 + 8−3) + (3; 70 + 10)

3A1 su(3)× su(2) (1;6, 1) + (2; 3, 2) + (3; 3, 1)
(1;8, 1) + (1; 1, 3) + (2; 8, 2)

+ (3; 1, 1) + (3; 8, 1) + (4; 1, 2)

A2 su(3)× su(3) (1;3, 3) + (3; 1, 3) + (3; 3, 1)
(1;8, 1) + (1; 1, 8) + (3; 1, 1)

+ (3; 3, 3) + (3; 3, 3) + (5; 1, 1)

A2 +A1 su(3)× u(1)
(1; 32) + (2; 3−1 + 11)

+ (3; 30 + 1−2) + (4; 11)

(1; 80 + 10) + (2; 31 + 3−1 + 1−3 + 13)

+ (3; 3−2 + 32 + 10 + 10)

+ (4; 31 + 3−1) + (5; 10)

2A2 g2 (1; 1) + (3; 7) + (5; 1) (1; 14) + (3; 7 + 1) + (5; 7 + 1)

A2 + 2A1 su(2)× u(1)
(1;12 + 1−4) + (2; 4−1)

+ (3; 32) + (4; 2−1)

(1;10 + 30) + (2; 43 + 4−3)

+ (3; 10 + 30 + 50) + (4; 23 + 2−3)

+ (5; 30)

A3 sp(2)× u(1)
(1;5−2 + 14) + (4; 41)

+ (5; 1−2)

(1;100 + 10) + (3; 10)

+ (4; 43 + 4−3) + (5; 50) + (7; 10)

2A2 +A1 su(2)
(1; 1) + (2; 2) + (3; 3)

+ (4; 2) + (5; 1)

(1;3) + (2; 4 + 2) + (3; 3 + 1 + 1)

+ (4; 2 + 2) + (5; 3 + 1) + (6; 2)
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Bala-Carter f 27 78

A3 +A1 su(2)× u(1)

(1;14 + 1−2) + (2; 2−2)

+ (3; 11) + (4; 21)

+ (5; 11 + 1−2)

(1;10 + 30) + (2; 2)0

+ (3; 13 + 1−3 + 10 + 10)

+ (4; 23 + 2−3 + 20)

+ (5; 13 + 10 + 1−3)

+ (6; 2)0 + (7; 10)

D4(a1) u(1)× u(1)

12,2 + 10,−4 + 1−2,2

+ 31,−1 + 30,2 + 3−1,−1

+ 51,−1 + 50,2 + 5−1,−1

10,0 + 10,0 + 30,0

+ 32,0 + 31,3 + 31,−3 + 30,0

+ 3−2,0 + 3−1,−3 + 3−1,3 + 30,0

+ 52,0 + 51,3 + 51,−3 + 50,0

+ 5−2,0 + 5−1,−3 + 5−1,3

+ 70,0 + 70,0

A4 su(2)× u(1)
(1;2−5) + (3; 1−2)

+ (5; 21 + 14) + (7; 1−2)

(1;30 + 10) + (3; 23 + 2−3 + 10)

+ (5; 16 + 10 + 1−6)

+ (7; 23 + 2−3 + 10) + (9; 10)

D4 su(3) (1; 6) + (7; 3) (1; 8) + (3; 1) + (7; 8) + (11; 1)

A4 +A1 u(1)
2−5 + 3−2 + 41

+ 54 + 61 + 7−2

10 + 23 + 2−3 + 30 + 30 + 43 + 4−3

+ 56 + 50 + 5−6 + 6−3 + 63

+ 70 + 8−3 + 83 + 90

D5(a1) u(1)
1−4 + 2−1 + 32

+ 6−1 + 72 + 8−1

10 + 23 + 2−3 + 30 + 30 + 50

+ 63 + 6−3 + 70 + 70

+ 83 + 8−3 + 90 + 110

A5 su(2) (1; 1) + (5; 1) + (6; 2) + (9; 1)
(1; 3) + (3; 1) + (4; 2) + (5; 1) + (6; 2)

+ (7; 1) + (9; 1) + (10; 2) + (11; 1)

E6(a3) − 1 + 5 + 5 + 7 + 9
3 + 3 + 3 + 5 + 5 + 5

+ 7 + 7 + 9 + 9 + 11 + 11

D5 u(1) 12 + 1−4 + 5−1 + 92 + 11−1

10 + 30 + 53 + 5−3 + 70 + 90

+ 113 + 110 + 11−3 + 150

E6(a1) − 5 + 9 + 13 3 + 5 + 7 + 9 + 11 + 11 + 15 + 17

E6 − 1 + 9 + 17 3 + 9 + 11 + 15 + 17 + 23

B Projection matrices

Our classification of interacting and mixed fixtures using the superconformal index, car-

ried out in section 2.5, required that we know the decomposition of a number of higher-

dimensional e6 representations (and not just the 27 and the 78) under su(2) × f. These

are trivial to obtain using LieART [44], provided we know a projection matrix for each

embedding [44, 45].

From the decomposition of the 27, listed in the table above, one obtains a projection

matrix simply by defining a 6× rk (su(2)× f) matrix, M , such that the LieART command

In[1]= Project[M,WeightSystem[Irrep[E6][1,0,0,0,0,0]]]

gives the corresponding su(2) × f weights. This projection matrix can then be used to

obtain the decomposition of any e6 irrep under su(2)× f.

Below, we list a projection matrix for each embedding, following the conventions of

LieART.
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Bala-Carter f Projection Matrix

A1 su(6)



−1 −2 −3 −2 −1 −2

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0



2A1 so(7)× u(1)


2 3 4 3 2 2

0 0 0 0 0 1

0 0 1 0 0 0

0 1 0 1 0 0

2 1 0 −1 −2 0



3A1 su(3)× su(2)


2 3 4 3 2 1

1 2 1 0 0 1

0 0 1 2 1 1

0 1 2 1 0 1



A2 su(3)× su(3)


2 2 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−1 −2 −3 −2 −1 −2



A2 +A1 su(3)× u(1)


3 5 7 5 3 3

0 0 0 1 0 0

0 1 1 0 0 1

1 1 −1 −1 −1 −1



2A2 g2

4 6 8 6 4 4

0 1 0 1 0 1

0 0 1 0 0 0


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Bala-Carter f Projection Matrix

A2 + 2A1 su(2)× u(1)

 3 4 6 4 3 4

1 4 6 4 1 2

−1 −2 0 2 1 0



A3 sp(2)× u(1)


4 7 10 7 4 6

0 1 0 1 0 0

0 0 1 0 0 0

−2 −1 0 1 2 0



2A2 +A1 su(2)

(
4 6 9 6 4 5

0 2 3 2 0 1

)

A3 +A1 su(2)× u(1)

 4 8 11 8 4 5

0 0 1 0 0 1

−2 −1 0 1 2 0



D4(a1) u(1)× u(1)

 4 8 10 8 4 6

1 1 0 −1 −1 0

−1 1 0 −1 1 0



A4 su(2)× u(1)

 6 10 12 10 6 6

0 1 1 0 0 0

−2 −1 −3 −2 2 0



D4 su(3)

6 10 16 10 6 10

0 0 1 2 1 0

1 2 1 0 0 0


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Bala-Carter f Projection Matrix

A4 +A1 u(1)

(
6 10 12 10 6 7

−2 −4 −6 −2 2 −3

)

D5(a1) u(1)

(
7 12 18 12 7 10

−1 −2 0 2 1 0

)

A5 su(2)

(
8 14 19 14 8 10

0 0 1 0 0 0

)

E6(a3) −
(

8 14 18 14 8 8
)

D5 u(1)

(
10 18 24 18 10 10

−1 −2 0 2 1 0

)

E6(a1) −
(

12 22 30 22 12 16
)

E6 −
(

16 30 42 30 16 22
)

As an example, let’s work out the decomposition of the 51975 for the orbit 2A2.

Running LieART, we obtain the decomposition with the following two lines of code:

In[1]= ProjectionMatrix[E6,ProductAlgebra[SU2,G2]]=

4 6 8 6 4 4

0 1 0 1 0 1

0 0 1 0 0 0

 ;

In[2]= DecomposeIrrep[Irrep[E6][1,0,1,0,0,0],ProductAlgebra[SU2,G2]]
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Out[2]= (1, 1) + 14(3, 1) + 10(5, 1) + 13(1, 7) + 13(7, 1) + 25(3, 7) + 5(9, 1) + 34(5, 7)

+ 4(11, 1) + 25(7, 7) + 9(1, 14) + 17(9, 7) + 16(3, 14) + 6(11, 7) + 22(5, 14)

+ 2(13, 7) + 15(7, 14) + 10(9, 14) + 3(11, 14) + (13, 14) + 6(1, 27) + 25(3, 27)

+ 23(5, 27) + 21(7, 27) + 9(9, 27) + 4(11, 27) + 5(1, 64) + 12(3, 64) + 13(5, 64)

+ 9(7, 64) + 4(9, 64) + (11, 64) + 4(1, 77) + 6(3, 77) + 2(3, 77′) + 8(5, 77)

+ (5, 77′) + 4(7, 77) + (7, 77′) + 2(9, 77) + (3, 182) + (1, 189) + 2(3, 189)

+ 2(5, 189) + (7, 189)

This works for all of the orbits above, except for D4(a1), as the LieART command

“DecomposeIrrep” does not seem to work when the target subalgebra has more than one

u(1) factor. In this case, getting the decomposition is only slightly more complicated. For

example, we obtain the decomposition of the 27 of E6 as follows:

In[1]= ProjectionMatrix[D5,ProductAlgebra[D4,U1]]=


1 0 0 0 0

0 1 0 0 0

0 0 1 1 0

0 0 1 0 1

0 0 0 1 1

 ;

In[2]= ProjectionMatrix[D4,ProductAlgebra[A1]]=
(

4 6 4 4
)
;

In[3]= DecomposeIrrep[ DecomposeIrrep[ DecomposeIrrep[

Irrep[E6][1, 0, 0, 0, 0, 0], ProductAlgebra[D5, U1]],

ProductAlgebra[D4, U1], 1], ProductAlgebra[A1], 1]

Out[3]= (1)(2)(2)+(1)(0)(-4)+(1)(-2)(2)+(3)(1)(-1)+(3)(0)(2)

+(3)(-1)(-1)+(5)(1)(-1)+(5)(0)(2)+(5)(-1)(-1)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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