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1 Introduction

The AdS/CFT correspondence has drastically changed our view on the interrelations be-

tween field theory and quantum gravity. However, at the level of specific results, it seems

fair to assess that it has not brought as many new results in quantum gravity as in field the-

ory. Indeed, while it has allowed access to regimes of field theory previously unexplored,

the amount of work using field theory results to learn about quantum gravity has been

smaller. One of the main reasons of this state of affairs is of course the paucity of known

results in the relevant regimes of field theory.

Localization has emerged as a powerful technique to drastically simplify very specific

computations in supersymmetric field theories, allowing in some cases to obtain exact

results [1–4]. In particular, for 4d N = 2 super Yang Mills theories with a Lagrangian

description, the evaluation of the vev of certain circular Wilson loops boils down to a

matrix model computation [1]. Furthermore, for the particular case of N = 4 SYM, the

matrix model is Gaussian [1, 5, 6], so all the integrals can be computed exactly. This has

been done for G = U(N), SU(N) first for a Wilson loop in the fundamental representation,

and more recently for other representations [7, 8]. Even though the quantities that can be

computed thanks to localization must satisfy a number of conditions that make them non-

generic, it seems pertinent to ask whether these exact results in field theories can teach us

something about the holographic M/string theory duals, beyond the supergravity regime.

There have been a number of works trying to use the localization of Wilson loops in

four dimensional N = 2 Yang Mills theories to probe putative string duals [9–11]. This is
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a potentially very exciting line of research, as it may reveal properties of holographic pairs

that have not been fully established to date. In this work we will take a slightly different

route, by applying localization to probe a known example of holographic duality. We

will consider N = 4 SYM with gauge group G = SO(N), Sp(N), which is dual to type IIB

string theory compactified on AdS5×RP
5 with various choices of discrete torsion [12].1 This

duality is closely related to the original proposal for G = SU(N), but it displays a number of

novel features, related to the presence of non-orientable surfaces in the 1/N expansion of the

field theories, or equivalently to the existence of homologically non-trivial non-orientable

subvarieties in the gravity background. Our aim is to explore some of these features at finite

gs and α′/R2, taking advantage of the possibility of computing exactly the vev of certain

Wilson loop operators for these field theories. While our focus is on non-local operators,

the physics of local operators of these field theories at finite N has been explored in [16, 17].

Our first task will be to compute the vev of 1/2-BPS circular Wilson loops in various

representations, for Euclidean N = 4 SYM with gauge groups G = SO(N), Sp(N). Even

before we start thinking about holography, the evaluation of these vevs has interesting

applications within field theory. For instance, for G = U(N), SU(N), they immediately

allow us to compute the Bremsstrahlung functions for the corresponding heavy probes,

using the relation [18]

B(λ,N)R =
1

2π2
λ∂λ log〈WR〉 (1.1)

valid for any representation R. These Bremsstrahlung functions in turn completely de-

termine various quantities of physical interest, like the total radiated power [18, 19] and

the momentum fluctuations of the corresponding accelerated probe [20]. These vevs also

determine the exact change in the entanglement entropy of a spherical region when we add

a heavy probe [21].2 Finally, they can also be used to carry out detailed tests of S-duality

in N = 4 SYM [7].

The technical computation of these vevs is quite similar to the ones performed for

unitary groups, and amounts to introducing a convenient set of orthogonal polynomials

to carry out the matrix model integrals. In fact, since for all Lie algebras g the matrix

model is Gaussian, the relevant orthogonal polynomials are Hermite polynomials, and the

computation of vevs ends up amounting to the evaluation of matrix elements for a N -

fermion state of the one-dimensional harmonic oscillator,

〈W 〉 = 〈Ψg|W |Ψg〉
〈Ψg|Ψg〉

(1.2)

the only difference being the parity of the one-fermion states involved: for su(n), |Ψ〉 is

built by filling the first N eigenstates of a harmonic oscillator, for so(2n) filling the first

1The precise statement is actually more subtle: given a Lie algebra g, there is a variety of Lie groups

G associated to it, and all of them define different gauge theories. These gauge theories have the same

correlators of local operators, but differ in the spectrum of non-local operators [13]. In the case of N = 4

SYM, theories with the same g and different G each have their own holographic dual, differing by a choice

of quantization of certain topological term in the type IIB action [14, 15]. We are grateful to Ofer Aharony

for clarifying correspondence on this point.
2It is worth keeping in mind that for the computation of the entanglement entropy [21], it is convenient

to use a normalization of the Wilson loops different from the one used in this work.
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N even states and for g = so(2n+ 1), sp(n) the first N odd eigenstates [16, 17, 22, 23].

The computations are straightforward, and reveal exact relations among various vevs. For

Wilson loops in the respective fundamental representations we find that

〈W (g)〉SO(2N)
Sp(N)

= 〈W (g)〉U(2N) ∓
1

2

∫ g

0
dg′ 〈W (g′)〉U(2N) (1.3)

where g = λ/4N . This in an exact relation, valid for any value of λ and N .

Once we have obtained these exact field theory results, we shift gears towards string

theory. In the past, the exact computation of circular Wilson loops of N = 4 SU(N) SYM

has been used for precision tests of AdS/CFT [24–26]. Our attitude in the present work

will be different, we will take for granted the holographic duality, and we aim to use the

exact field theory results to learn about string theory on AdS5×RP
5. Our first observation

actually doesn’t even rely on the actual computation of the vevs of Wilson loops, it can be

made just by noticing that for SU(N), the N -fermion state |Ψ〉 in (1.2) is the groundstate

of the fermionic system dual to the LLM sector [27] of AdS5×S5. We use this observation

to revisit the question [28] of what is the analogue of the LLM sector for type IIB on AdS5×
RP

5, and argue that it is given by geometries built out of fermions whose wavefunctions

have fixed parity, even for SO(2N) and odd for SO(2N + 1), Sp(N). In this latter case,

those are the wavefunctions of the half harmonic oscillator [28]. Still in the LLM sector,

we point out that the absence or presence of discrete torsion in the gravity dual correlates

with the sign of the one-fermion Wigner quasi-distribution at the origin of phase space.

Another aspect of the holographic duality where we can put our exact results to work

is perturbative string theory around AdS5 × RP
5. The idea is not new: consider the vev

of the circular Wilson loop in the fundamental representation of SU(N), which is known

exactly [6]; in principle, string perturbation theory ought to reproduce the 1/N expansion

of this vev by world-sheet computations at arbitrary genus on AdS5 × S5. In practice,

these world-sheet computations are currently well out of reach. We would like to claim

that some of our results for G = SO(N), Sp(N) might have a better chance of being

reproduced by direct world-sheet arguments than those of G = SU(N). To see why, let’s

recall some generic facts about the large N expansion of gauge theories. In this limit,

Feynman diagrams rearrange themselves in a topological expansion of two-dimensional

surfaces, weighted by Nχ, where χ is the Euler characteristic of the surface, namely,

χ = −2h+ 2− c− b

for a surface with h handles, c crosscaps and b boundaries. For a U(N), SU(N) field theory

with all the fields in the adjoint, gauge invariant quantities admit a 1/N2 expansion (rather

than 1/N) as befits orientable surfaces. For instance, for the vev of the circular Wilson loop

in the fundamental representation of U(N) the relevant world-sheets have a single boundary

and an arbitrary number of handles, and in [6] it was explicitly shown that this vev admits

a 1/N2 expansion. On the other hand, it is well-known that the 1/N expansion of field

theories with G = SO(N), Sp(N) contains both even and odd powers of 1/N [29], signaling

the presence of non-orientable surfaces.3 On general grounds, as discussed in detail below,

3See [30, 31] for the 1/N expansion of 2d Yang-Mills theory with G = SO(N),Sp(N).
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we can classify the world-sheets as having an arbitrary number of handles, and zero, one or

two crosscaps. However, a closer inspection of eq. (1.3) reveals that in a 1/N expansion, the

first term of the r.h.s. corresponds to orientable world-sheets, while the second one to world-

sheets with a single crosscap. We thus learn that, for these quantities, the contribution

from world-sheets with a single crosscap is given by an integral of the contribution from

orientable world-sheets, while world-sheets with two cross-caps don’t contribute. These

two features are peculiar to the very specific vevs we have considered. Nevertheless, since

they have been derived from exact field theory relations, before actually carrying out the

1/N expansion, it is conceivable that they could be deduced in string theory by symmetry

arguments, without having to carry out the world-sheet computations.

The structure of the paper is as follows. In section 2 we define the field theory quantities

we want to evaluate, and recall that thanks to localization, they boil down to matrix

model computations. We then compute the vev of circular Wilson loops for various gauge

groups and representations. In section 3 we discuss implications for string theory of the

computations presented in the previous section. Some very basic facts about classical simple

Lie algebras that we use in the main text are collected in appendix A, while in appendix

B we present an alternative derivation of some of the results obtained in section 3.

2 Computations

This section is entirely devoted to the computation of vevs of circular Wilson loops inN = 4

SYM, leaving for the next section the discussion of the implications of the results found

here. Technically, the evaluation of these vevs of Wilson loops is possible since they localize

to a computation in a Gaussian matrix model [1, 5, 6], with matrices in the Lie algebra g. To

carry out the remaining integrals, we resort to the well-known technique of orthogonal poly-

nomials (see [32, 33] for reviews). Besides the specific results we find, the main point to keep

in mind from this section is that for all classical Lie algebras, the orthogonal polynomials are

Hermite polynomials, the main difference being the restrictions on their parity. Namely, for

the A, B/C and D series, the Hermite polynomials that play a role have unrestricted, odd

and even parity, respectively. This observation will become important in the next section.

The field theory quantities we want to compute are vevs of locally BPS Wilson opera-

tors. These Wilson loops are determined by a representation R of the gauge group G and

a contour C,
WR[C] =

1

dim RTrRPexp

(

i

∫

C
(Aµẋ

µ + |ẋ|Φiθ
i)ds

)

(2.1)

We have fixed the overall normalization of the Wilson loop by the requirement that at

weak coupling, 〈WR〉 = 1 +O(g). We will be interested in the case when the signature is

Euclidean and the contour is a circle. These Wilson loops are 1/2 BPS and remarkably

the problem of the evaluation of their vev localizes to a Gaussian matrix model computa-

tion [1, 5, 6],

〈W 〉R =
1

dim R

∫

g
dMe

− 1
2g
tr M2

TrReM

∫

g
dMe

− 1
2g
tr M2

– 4 –
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where the integrals are over the Lie algebra g and g = λ/4N . These integrals can be

reduced to integrals over the Cartan subalgebra h (see [7] for details), and one arrives at

〈W 〉R =
1

dim R

∫

h
dX∆(X)2e

− 1
2g
tr X2

TrReX

∫

h
dX∆(X)2e

− 1
2g
tr X2

(2.2)

where the Jacobian ∆(X)2 is given by a product over positive roots of the algebra,

∆(X)2 =
∏

α>0

α(X)2 (2.3)

As in [7], it is convenient to write the insertion of the Wilson loop as a sum over the weights

of the representation,

TrRe
X =

∑

v∈Ω(R)

n(v)ev(x) (2.4)

where Ω(R) is the set of weights v of the representation R, and n(v) the multiplicity of

the weight. Now that we have introduced the matrix integrals that we want to compute

let’s very briefly recall the technique we will use to solve them, the method of orthogonal

polynomials. Given a potential W (x), we can define a family of orthogonal polynomials

pn(x) satisfying
∫ ∞

∞
dx pm(x)pn(x)e

− 1
g
W (x) = hnδmn

We will choose these polynomials to be monic, namely pn(x) = xn + O(xn−1). More

precisely, in all the cases in this work, the potential is W (x) = 1
2x

2, and the orthogonal

polynomials are Hermite polynomials,

pn(x) =
(g

2

)
n
2
Hn

(

x√
2g

)

(2.5)

so in our conventions

hn = gn
√

2πg n!

For future reference, recall that these polynomials have well-defined parity, pn(−x) =

(−1)npn(x). The key point is that in all cases we will encounter in this work, the Jacobian

∆(X)2 in (2.3) can be substituted by the square of a determinant of orthogonal polynomi-

als. Once we perform this substitution, we expand the determinants using Leibniz formula

and carry out the resulting integrals. Note also that the determinant of orthogonal poly-

nomials combined with the Gaussian exponent is (up to a normalization factor) the Slater

determinant that gives the wave-function of an N -fermion state,

|ΨN (x1, . . . , xN )〉 = C|Hi(xj)e
− 1

4g
x2
j |

so in all cases the computations we perform can be thought of as normalized matrix ele-

ments for certain N -fermion states

〈O〉mm =
〈ΨN |O|ΨN 〉
〈ΨN |ΨN 〉 (2.6)
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where the specific |ΨN 〉 depends on the algebra g. For G = SO(N), Sp(N), these Slater de-

terminants involving one-fermion wavefunctions of definite parity also appear in the study

of certain local operators [16, 17].

Having reviewed all the ingredients we now turn to some explicit computations. We

use some very basic facts of classical Lie algebras, that we have collected in appendix A.

2.1 su(n)

This case is the best studied one, corresponding to the familiar Hermitian matrix model. It

is customary to work with U(N), and we will do so in what follows; the modification needed

when dealing with SU(N) is mentioned below. While none of the results recalled here are

new, having them handy will be helpful in what follows. In this case, the Jacobian (2.3) is

∏

α>0

α(X)2 =
∏

1≤i<j≤N

|xi − xj |2

This Vandermonde determinant can be traded by a determinant of polynomials, which

due to the Gaussian potential is convenient to choose to be the first N Hermite polynomi-

als (2.5),
∏

1≤i<j≤N

|xi − xj | = |pi−1(xj)| (2.7)

The partition function can be computed using (2.7)

Z =

∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxN

∏

1≤i<j≤N

|xi − xj |2 e−
1
2g

(x2
1+···+x2

N
)
=

=

∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxN |pi−1(xj)|2 e−

1
2g

(x2
1+···+x2

N
) = N !

N−1
∏

i=0

hi (2.8)

In the last step we used the following integral of Hermite polynomials [34], that we will

apply repeatedly in this work,

∫ ∞

−∞
Hm(x)Hn(x)e

−(x−y)2dx = 2n
√
πm! yn−mLn−m

m (−2y2) n ≥ m (2.9)

where Lα
n(x) are generalized Laguerre polynomials.

Let’s recall briefly the computation of Wilson loops. Consider first the Wilson loop in

the fundamental representation.4 The new integral to compute is

∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxN

∏

1≤i<j≤N

|xi − xj |2 (ex1 + · · ·+ exN ) e
− 1

2g
(x2

1+···+x2
N
)
=

= N

∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxN |pi−1(xj)|2 ex1e

− 1
2g

(x2
1+···+x2

N
)

4A Lie algebra of rank r has r fundamental weights, which are the highest weights of the r fundamental

representations. In Physics ‘fundamental representation’ often refers to the representation with highest

weight w1.

– 6 –



J
H
E
P
0
9
(
2
0
1
4
)
1
6
9

where we already used (2.7). Now applying (2.9) and recalling (2.8) we arrive at [6]

〈W (g)〉U(N) =
1

N

N−1
∑

k=0

Lk(−g)e
g

2 =
1

N
L1
N−1(−g)e

g

2 (2.10)

The remaining U(N) fundamental representations are the k-antisymmetric representation.

The exact vevs of the corresponding Wilson loops were computed in [8]. In order to evaluate

vevs of Wilson loops for SU(N), we have to modify the insertion to [6, 35]

TrRe
X → e−

|R|
N

TrX TrRe
X

2.2 so(2n)

The Jacobian ∆(X)2 for these algebras is

∏

α>0

α(X)2 =
∏

1≤i<j≤N

|x2i − x2j |2

The key argument to evaluate all the integrals we will encounter in this case rests on two

facts: first, the expression above for ∆2(X) is a Vandermonde determinant of {x2i } and

second, even polynomials p2i(x) involve only even powers of x, so it is possible to replace

∏

1≤i<j≤N

|x2i − x2j |2 = |p2(i−1)(xj)|2 (2.11)

It is worth pointing out that while for g = su(n), the Hermite polynomials that appear

in eq. (2.7) correspond to the first N eigenstates of the harmonic oscillator, for so(2n)

what appears in (2.11) are the first N even eigenstates, so only those will contribute to

the computation of the partition function and the vev of Wilson loops. Let’s start by

evaluating the partition function of the corresponding matrix model,

Z =

∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxN

∏

1≤i<j≤N

|x2i − x2j |2e−
1
2g

(x2
1+···+x2

N
)

Performing the substitution (2.11), we arrive at

Z = N !
N−1
∏

i=0

h2i (2.12)

Let’s now compute the vev of Wilson loops in various fundamental representations. As

a first example, let’s choose the representation with highest weight w1. The 2N weights

of this representation are ei and −ei for i = 1, . . . , N . After diagonalization, the matrix

model that computes the vev of the Wilson loop is

〈W (g)〉SO(2N) =
1

Z

∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxN

∏

1≤i<j≤N

|x2i − x2j |2
ex1 + e−x1

2
e
− 1

2g
(x2

1+···+x2
N
)

– 7 –
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Performing the substitution (2.11), taking into account (2.12) and using (2.9) we arrive at

〈W (g)〉SO(2N) =
1

N

N−1
∑

k=0

L2k(−g)eg/2 (2.13)

Let’s now compute the vev of a Wilson loop in a spinor representation.5 The spinor

representation with highest weight wN−1 has weights of the form

1

2
(±e1 ± e2 ± · · · ± eN )

with an odd number of minus signs, while the representation with highest weight wN has

weights with an even number of minus signs. Let’s focus on the representation with highest

weight wN ,

〈W 〉wN
=

1

Z
1

2N−1

∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxN

∏

1≤i<j≤N

|x2i −x2j |2
∑

{si=±}∏
i si=1

e
1
2
(s1x1+···+sNxN )e

− 1
2g

(x2
1+···+x2

N
)

For each si = −, we change variables x̃i = −xi, and deduce that all 2N−1 terms contribute

the same to the full integral,

〈W 〉wN
=

1

Z

∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxN

∏

1≤i<j≤N

|x2i − x2j |2e
1
2
(x1+···+xN )e

− 1
2g

(x2
1+···+x2

N
)
=

=
1

Z

∫ ∞

0
dx1 . . .

∫ ∞

0
dxN

∏

1≤i<j≤N

|x2i − x2j |2
N
∏

i=1

(

e
xi
2 + e−

xi
2

)

e
− 1

2g
(x2

1+···+x2
N
)

Now the remaining integrals can be solved as before. After using the substitution (2.11) the

details are quite similar to the computation of the vev of Wilson loops in antisymmetric rep-

resentations of U(N) [8], so we will skip the details and just present the final result. Define

the N ×N matrix Dij , with entries involving generalized Laguerre polynomials Lα
n(x),

Dij = L2j−2i
2i−2 (−g/4)eg/8

Then, the vev of the Wilson loop in the wN representation is

〈W 〉wN
= |Dij |

Expanding the determinant, and following identical steps as those presented in [8], we can

rewrite this vev as

〈W 〉wN
= PN (g)e

λ
32

where PN (g) is a polynomial in g of degree N(N − 1)/2 that can be written as a sum

involving ordered N-tuples,

PN (g) =
∑

0≤τ1<τ2<...τN≤2N−2

N
∏

m=1

τm!

(2m− 2)!

∣

∣

∣

∣

(

2i

τj

)∣

∣

∣

∣

2
(g

4

)N(N−1)−∑N
m=1 τm

5In AdS5 × RP
5, these Wilson loops are dual to a D5-brane wrapping RP

4 ⊂ RP
5 [12].
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The other spinor representation, with highest weight wN−1, has weights with an odd num-

bers of minus signs, but applying the same change of variables x̃i = −xi to all minus signs,

we immediately arrive at the same integral as before, so we conclude that both vevs are

the same,

〈W 〉wN−1
= 〈W 〉wN

2.3 sp(n)

In this case we have
∏

α>0

α(X)2 =
∏

1≤i<j≤N

|x2i − x2j |2
N
∏

i=1

x2i

Again, since odd Hermite polynomials involve only odd powers of x, it is possible to sub-

stitute the Jacobian by the square of a determinant of orthogonal polynomials

∏

1≤i<j≤N

|x2i − x2j |2
∏

i

x2i = |p2i−1(xj)|2 (2.14)

where now the polynomials that appear correspond to the first N odd eigenstates of the

harmonic oscillator. The partition function can be readily computed

Z = N !
N
∏

i=1

h2i−1 (2.15)

Let’s now turn to the computation of Wilson loops. Let’s compute for example the vev of

the Wilson loop in the representation with highest weight w1. The weights are ei and −ei
for i = 1, . . . , N . After diagonalization, the matrix model that computes the vev of the

Wilson loop is

〈W (g)〉Sp(N) =
1

Z

∫ ∞

∞
dx1 . . . dxN

∏

1≤i<j≤N

|x2i − x2j |2
∏

i

x2i
ex1 + e−x1

2
e
− 1

2g
(x2

1+...x2
N
)

Using the substitution (2.14), taking into account (2.15) and (2.9), we arrive at

〈W (g)〉Sp(N) =
1

N

N−1
∑

k=0

L2k+1(−g)eg/2 (2.16)

2.4 so(2n + 1)

The Jacobian is the same as for sp(n), so it admits the same replacement

∏

α>0

α(X)2 =
∏

1≤i<j≤N

|x2i − x2j |2
N
∏

i=1

x2i

The partition function is essentially the same as for sp(n), eq. (2.15). Let’s compute some

vevs of Wilson loops. As a first example, consider the representation with highest weight
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w1. The weights of this representation are ei and −ei for i = 1, . . . , N plus the zero weight.

After diagonalization, the matrix model that computes the vev of the Wilson loop is

〈W (g)〉SO(2N+1) =
1

2N + 1

1

Z

∫ ∞

∞
dx1 . . . dxN

∏

1≤i<j≤N

|x2i − x2j |2
∏

i

x2i

(

1 + ex1 + e−x1 + · · ·+ exN + e−xN
)

e
− 1

2g
(x2

1+···+x2
N
)

Now, the measure is the same as for sp(n), so the same substitution (2.14) works here, and

we arrive at

〈W (g)〉SO(2N+1) =
1

2N + 1

(

1 + 2
N−1
∑

k=0

L2k+1(−g)eg/2

)

For the spinor representation of so(2n+ 1), the computation proceeds along the same lines

as for the spinor representations of so(2n). Let’s just quote the result; define the N × N

matrix

Bij = L2j−2i
2i−1 (−g/4)eg/8

Then

〈W 〉wN
= |B|

3 Implications

In the last section we have computed the exact vev of circular Wilson loops of N = 4

SYM, for various representations of different gauge groups. In what follows, we are going

to discuss some features and implications of the results we have obtained. Our main interest

is trying to derive lessons for the holographic duals of these gauge theories.

The string dual of N = 4 SYM with gauge group SU(N) is of course type IIB string

theory on AdS5 × S5. For N = 4 with gauge groups SO(N), Sp(N) one can argue for

the string duals as follows [12]. Start by placing N parallel D3-branes at an orientifold

three-plane. Taking the near horizon limit, the theory on the world-volume of the D3-

branes becomes N = 4 SYM with gauge group SO(N), Sp(N) while the supergravity

solution becomes AdS5 × RP
5 (Recall that RP

5 is S5/Z2 with Z2 acting as xi ∼ −xi).

This orientifold is common to all the holographic duals for SO(2N), SO(2N + 1), Sp(N).

The additional ingredients that discriminate among these duals are the possible choices

of discrete torsion. Let’s recall very briefly the identification of these supergravity du-

als, referring the interested reader to [12] for the detailed derivation. In the presence

of the orientifold, the B-fields BNS and BRR become twisted two-forms. The possible

choices of discrete torsion for each of them are classified by H3(RP5, Z̃) = Z2, so calling

θNS and θRR these two choices, there are all in all four possibilities. Using the trans-

formation properties of N = 4 SYM with different gauge groups under Montonen-Olive

duality, it is possible to identify the choices of discrete torsion for the respective gravity

duals. The choices (θNS , θRR) = (0, 0), (0, 1/2), (1/2, 0), (1/2, 1/2) correspond to the gauge

groups SO(2N), SO(2N + 1), Sp(N), Sp(N) respectively.6

6These last two Sp(N) theories differ by their value of the θ angle.
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3.1 The LLM sector

The first aspect of the holographic duality that we are going to consider is the analogue of

the LLM geometries [27] in AdS5 ×RP
5. Let’s recall briefly that LLM [27] constructed an

infinite family of ten dimensional IIB supergravity solutions, corresponding to the backre-

action of 1/2 BPS states associated to chiral primary operators built out of a single chiral

scalar field. These ten dimensional solutions are completely determined by a single function

u(x1, x2) of two spacetime coordinates. For regular solutions, this function can take only the

values u(x1, x2) = 0, 1 defining a “black-and-white” pattern on the x1, x2 plane.7 On the

field theory side, the dynamics of this sector of operators ofN = 4 SU(N) SYM is controlled

by the matrix quantum mechanics of N fermions on a harmonic potential [36, 37]. The one-

fermion phase space (q, p) gets identified with the (x1, x2) plane displaying the “black-and-

white” pattern. In particular, the ground state of the system is given by filling the first N

states of the harmonic oscillator; in the one-fermion phase space, this corresponds to a circu-

lar droplet, which in turn is the pattern giving rise to the AdS5×S5 solution in supergravity.

The fermion picture can be inferred directly from the supergravity solutions [38–40].

This is the LLM sector of the duality between type IIB on AdS5 × S5 and N = 4

SU(N) SYM. What is the similar sector for N = 4 SYM with G = SO(N), Sp(N) ? We are

going to propose an answer motivated by the fact that the groundstate of the LLM sector

for SU(N) is precisely the N-fermion state |ΨN 〉 that appears in the matrix model that

computes Wilson loops, eq. (2.6). We then propose that for the other classical Lie algebras,

it also holds that the corresponding |Ψg〉 in eq. (2.6) is the groundstate of the fermionic

system dual to the LLM sector. We can imagine starting with the matrix model for U(2N),

so in the ground state the fermions fill up the first 2N energy levels, and then the orientifold

projects out either the even or odd parity eigenstates, depending on the gauge group we

consider. The LLM sectors are certainly richer than just the groundstate: they are given

by a matrix quantum mechanics that allows for excitations. Our complete proposal is that

the full LLM sectors are given by any N fermion state built from one-fermion eigenstates

of fixed parity: even parity for SO(2N) and odd parity for SO(2N + 1), Sp(N),

ψ(−x) = (−1)sψ(x) (3.1)

where s = 0, 1 depending on the gauge group. This picture is especially easy to visualize for

SO(2N+1), Sp(N) since in these cases we are keeping odd-parity eigenstates, which are the

eigenstates of an elementary problem in 1d quantum mechanics: the “half harmonic oscil-

lator” where we place an infinite wall at the origin of a harmonic oscillator potential. This

identification between the orientifold in AdS5×RP
5 and the projection from the harmonic

oscillator to the half harmonic oscillator was pointed out in [28], where it was suggested

to hold for any SO(N), Sp(N) group. According to our argument, this identification holds

for SO(2N + 1), Sp(N), but it does not for SO(2N), since in this case the states preserved

by the orientifold action are the even parity ones.

We can formalize this identification as follows. In [28] it was argued that the orientifold

projection acts in the (x1, x2) plane of LLM geometries as (x1, x2) ∼ (−x1,−x2). Since the

7This function u(x1, x2) is related to the function z(x1, x2) of the original paper [27] by u = 1/2− z.
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(x1, x2) plane is identified with the one-fermion phase space, this identification amounts to

implementing a parity projection in phase space. To do so, one can define [41] the following

parity operator in phase space

Πq,p =

∫ ∞

−∞
ds e−2ips/~ |q − s〉 〈q + s| (3.2)

and the projectors

P±
q,p =

1

2
(1±Πq,p)

In particular, Π(0,0) is the parity operator about the origin of phase space: it changes ψ(q)

into ψ(−q) and ψ̂(p) into ψ̂(−p), so the similarity with the orientifold action is apparent.

The projectors P±
0,0 project on the space of wavefunctions symmetric or antisymmetric

about the origin, and the orientifold projection amounts to keeping one of these subspaces.

Going forward with the argument, we note that s = 0, 1 in eq. (3.1), depending on

the absence or presence of discrete torsion. We want to provide a new perspective on this

discrete torsion, from the phase space point of view. We start by recalling that the function

u(x1, x2) is identified with the phase space density u(p, q) of one of the fermions in the sys-

tem of N fermions in a harmonic potential. To go beyond a purely classical description, one

can consider a number of phase space quasi-distributions that replace the phase space den-

sity, as has been discussed in the LLM context in [42, 43]. One particular such distribution

is the Wigner distribution, defined as the Wigner transform of the density matrix,

W(p, q) =
1

π~

∫ ∞

−∞
dy e2ipy/~ 〈q − y|ρ̂|q + y〉

A salient feature of Wigner quasi-distributions is that they are not positive definite func-

tions over phase space. For instance, if we consider a given eigenstate |n〉 of the har-

monic oscillator, the corresponding Wigner distribution is given again by a Laguerre func-

tion [42, 43]8

Wn(p, q) =
(−1)n

π~
Ln

(

2
q2 + p2

~

)

e−
q2+p2

~

In particular, for the eigenstate |n〉, at the origin of phase space we have

Wn(0, 0) = (−1)n
1

π~

so it can have either sign. More generally, the Wigner quasi-distribution is the expectation

value of the parity operator defined in (3.2) [41]

W(p, q) =
1

π~
〈Πp,q〉

and in particular

W(0, 0) =
1

π~
〈Π0,0〉

8At this time, we regard the fact that Laguerre functions appear both in the vevs of circular Wilson

loops and in Wigner distributions as merely fortuitous. In particular, note that the vevs of Wilson loops

have negative argument, while for Wigner distributions the argument is positive.
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so it is clear that the sign of W(0, 0) captures the parity properties of the wavefunction

with respect to the origin of phase space.9 For a generic N fermion state with eigenstates

{j1, . . . , jN}, the Wigner function is [42, 43],

W(p, q) =
1

π~
e−(q2+p2)/~

∑

{ji}
(−1)jiLji

(

2

~
(q2 + p2)

)

For G = SO(N), Sp(N), the sign (−1)ji is the same for all states, to it comes out of the

sum. In particular, for any N fermion state, at the origin of phase space we get

(−1)s = sign W(0, 0)

3.2 Features of the non-orientable terms

In the previous section we have computed the vevs of circular Wilson loops for various gauge

groups and representations. We now want to present some exact relations among these vevs,

as well as their large N expansion, which in principle ought to be reproduced by string

theory computations on AdS5×RP
5. Before we take a detailed look at the results we have

obtained, let’s recall briefly some general expectations. In the large N expansion, Feynman

diagrams rearrange themselves in a topological expansion in terms of two-dimensional

surfaces. Each surface is weighted by Nχ, with χ the Euler characteristic of the surface;

for a surface with h handles, b boundaries and c crosscaps, the Euler characteristic is

χ = −2h+ 2− c− b (3.3)

As a consequence of the classification theorem for closed surfaces, a general non-orientable

surface can be thought of as an orientable surface with a number of crosscaps. Furthermore,

according to Dycks’ theorem, three crosscaps can be traded for a handle and a single

crosscap, so we expect three kinds of contributions, coming from world-sheets with an

arbitrary number of handles and with zero (i.e. orientable), one or two crosscaps.

For a U(N), SU(N) theory with all fields in the adjoint representation, the large N

expansion of any observable is actually a 1/N2 expansion (without odd powers of 1/N)

as it befits an expansion in orientable surfaces. For the vev of a circular Wilson loop

of U(N) in the fundamental representation, this 1/N2 expansion of the exact result was

already carried out in [6].10 On the other hand, when G = SO(N), Sp(N), the adjoint

representation can be thought of as the product of two fundamental representations (rather

than a fundamental times an antifundamental representation as in U(N)), so propagators

can still be represented by a double line notation, but now without any arrows in the

lines [29]. As a result, the large N expansion of observables for SO(N), Sp(N) theories

9Incidentally, negative values of the Wigner function at the origin of phase space have apparently been

measured experimentally for single photon fields [44].
10The surfaces that appear in the 1/N expansion of 〈W 〉SU(N) have a single boundary and an arbitrary

number of handles, so they all have odd Euler characteristic, eq. (3.3). However, in the normalization for

〈W 〉SU(N) followed in [6] and in the present work, there is an additional overall 1/N , so the expansion ends

up being in even powers of N . At any rate, what is relevant is that the expansion parameter is 1/N2 and

not 1/N .
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— even when all fields transform in the adjoint representation — involves both even and

odd powers of 1/N , signaling the appearance of non-orientable surfaces [29]. Furthermore,

gauge invariant quantities for Sp(N) are related to those of SO(2N) by the replacement

N → −N [45, 46]. Finally, we know that SO(2N) and Sp(N) theories can be obtained from

orientifolding U(2N). All in all, these general arguments imply that vevs in the respective

fundamental representations of various groups ought to be related by11

〈W 〉SO(2N)
Sp(N)

= 〈W 〉U(2N) ± unoriented c=1 + unoriented c=2 (3.4)

where unoriented refers to terms that in the large N limit arrange themselves into non-

orientable surfaces with either one or two crosscaps. In the formula above, we have already

imposed the relation Sp(N) = SO(−2N), which implies that world-sheets with a single

cross-cap contribute the same for SO and Sp up to a sign, while world-sheets with two

cross-caps give the same contribution for the two groups.

We are now going to show that indeed our exact results (2.13) and (2.16) follow the

pattern expressed in (3.4). In the process, we will furthermore find a couple of features

that do not follow from these general arguments.

To obtain the 1/N expansion of 〈W 〉SO(2N) and 〈W 〉Sp(N), we can analyze them sep-

arately, following the steps of [6], as we do in the appendix. However, it is much more

efficient to consider their sum and their difference, and expand those. Let’s start consider-

ing the sum. Recalling eq. (2.10), it is immediate that the results we have found, eqs. (2.13)

and (2.16) satisfy

〈W (g)〉SO(2N) + 〈W (g)〉Sp(N) = 2〈W (g)〉U(2N) (3.5)

As for the difference 〈W (g)〉Sp(N) − 〈W (g)〉SO(2N), using properties of the Laguerre poly-

nomials, it is not difficult to prove from the explicit results eqs. (2.13) and (2.16) that the

following exact relation holds

∂

∂λ

(

〈W (g)〉Sp(N) − 〈W (g)〉SO(2N)

)

=
1

4N
〈W (g)〉U(2N) (3.6)

These last two relations, eqs. (3.5) and (3.6), can we rewritten in the following suggestive

form

〈W (g)〉SO(2N)
Sp(N)

= 〈W (g)〉U(2N) ∓
1

2

∫ g

0
dg′ 〈W (g′)〉U(2N) (3.7)

Recall that 〈W (g)〉U(2N) has a expansion in 1/N2. Furthermore, since g = λ/4N , the

integral brings an extra power of 1/N . Therefore, equation (3.7) neatly splits the 1/N

expansions of 〈W (g)〉SO(2N) and 〈W (g)〉Sp(N) into even and odd powers of 1/N . The 1/N2k

terms coincide for both vevs and are given 〈W (g)〉U(2N); they correspond to orientable

surfaces. Note in particular that since all even powers of 1/N come from orientable surfaces,

there are no contributions from world-sheets with two crosscaps, as it can be already

deduced from eqs. (3.4) and (3.5).

11Recall that we are normalizing all vevs such that 〈W 〉 = 1+O(g). In other normalizations of the vevs

of Wilson loops, this equation might involve a different numerical coefficient in front of 〈W 〉U(2N).

– 14 –



J
H
E
P
0
9
(
2
0
1
4
)
1
6
9

Turning now to the 1/N2k+1 terms in the expansion of 〈W (g)〉SO(2N) and 〈W (g)〉Sp(N),

they come from the integral in eq. (3.7), so it is manifest that they differ just by a sign;

this, together with the equality of the even terms in the expansions, proves that indeed

〈W (g)〉Sp(N) can be obtained from 〈W (g)〉SO(2N) by the substitution N → −N , as it had

to happen according to general arguments [45, 46].

To recapitulate, the 1/N expansion of 〈W (g)〉SO(2N) and 〈W (g)〉Sp(N) could in principle

involve contributions from three kinds of surfaces, with zero, one or two crosscaps. By a

mix of generic arguments and exact field theory computations, we have found that for these

quantities, and for any number of handles, contributions from surfaces with one crosscap

are given by an integral of the contribution from surfaces without crosscaps, while there is

no contribution from surfaces with two crosscaps, eq. (3.7).

The two features that we have just uncovered for the 1/N expansion of 〈W (g)〉SO(2N)

and 〈W (g)〉Sp(N) bear certain resemblance with properties encountered in other instances

of 1/N expansion of SO/Sp gauge theories. A first example is the computation of the

effective glueball superpotential of N = 1 SYM theories with a scalar field in the adjoint,

with an arbitrary tree-level polynomial superpotential, W(Φ). Dijkgraaf and Vafa [47]

pointed out that for G = U(N), this computation reduces to an evaluation of the planar

free energy of a one-matrix model with the matrix model potential given by the tree-level

superpotential of the gauge theory. For N = 1 SYM with gauge groups SO(N), Sp(N) the

corresponding matrix models are, like in the present work, valued on the Lie algebras [48–

50]. It was found in [48–50] that the effective superpotential of the N = 1 SYM gauge

theory is fully captured by the contributions from S2 and RP
2, so there is no contribution

from the world-sheet with two crosscaps (Klein bottle); furthermore, the contribution to

the free energy coming from RP
2 is given by a derivative of the contribution from S2,

F1 = ±gs
4

∂F0

∂S0

with S0 (half) the ’t Hooft coupling. Notice however that in this example the properties are

only established for world-sheets without any handles or boundaries, while our arguments

work for world-sheets with a single boundary and an arbitrary number of handles. A

second example comes from the large N expansion of Chern-Simons theory on 3-manifolds.

It was observed in [51] that the 1/N expansion of the free energy of Chern-Simons on S3

with gauge groups SO(N), Sp(N) involves unoriented world-sheets with one cross-cap, but

again world-sheets with two cross-caps are absent in this expansion. Moreover, the large N

expansion of Chern-Simons with G = SO(N), Sp(N), via its connection with knot theory,

displays non-trivial relations for the invariants of U(N) and SO(N), Sp(N) links [52].

While it is interesting that the two features we have uncovered in the 1/N expansion

of 〈W (g)〉SO(2N) and 〈W (g)〉Sp(N) have superficially similar incarnations in other gauge

theories with gauge groups SO(N), Sp(N), we don’t expect these two features to be generic

for other observables of N = 4 SYM with G = SO(N), Sp(N). For instance, in the case we

have studied, the absence of contributions coming from world-sheets with two crosscaps is a

consequence of the exact relation (3.5), but this relation appears to be quite specific of vevs

of Wilson loops in the respective fundamental representations, and we don’t know of similar
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relations for vevs of Wilson loops in other representations. Not surprisingly, in Chern-

Simons theory with G = SO(N), Sp(N), vevs of Wilson loops in higher representations do

get contributions from world-sheets with two crosscaps [53, 54].

Turning now to string theory, reproducing the actual 1/N expansion of 〈W (g)〉SO(2N)

or 〈W (g)〉Sp(N) from world-sheet computations is as out of reach as for 〈W (g)〉U(2N). On

the other hand, granting the AdS/CFT duality for any value of gs and α′/L2, our results

are also exact results in string theory, even beyond the perturbative regime. It is tantalizing

to suspect that the results we have found — e.g. the absence of contributions from world-

sheets with two crosscaps and any number of handles — are in the string theory language

consequences of some symmetry enjoyed by the particular quantities we are considering.

Identifying this symmetry and the stringy argument beyond the relations we have found

appears to be a more promising and illuminating task than attempting to reproduce them

by carrying out the explicit world-sheet computations.

Everything we have said so far follows from the exact results we have computed, and the

exact relations among them. We didn’t even have to carry out the explicit 1/N expansion

of the exact results to arrive at these conclusions. Nevertheless, it is still worth to obtain

this 1/N expansion explicitly, and this task can be accomplished with very little effort, by

combining the exact relation (3.6) with the results in [6]. Drukker and Gross [6] obtained

the following 1/N expansion of 〈W 〉U(N), that we write for U(2N),

〈W 〉U(2N) =
2√
2λ

I1(
√
2λ) +

∞
∑

k=1

1

N2k

k−1
∑

i=0

Xi
k

(

λ

2

)
3k−i−1

2

I3k−i−1(
√
2λ)

where Iα(x) are modified Bessel functions of the first kind, andXi
k are coefficients satisfying

the recursion relation

4(3k − i)Xi
k = Xi

k−1 + (3k − i− 2)Xi−1
k−1 (3.8)

with initial values X0
1 = 1/12 and Xk

k = 0. A trivial integration then yields

〈W 〉SO(2N)
Sp(N)

= 〈W 〉U(2N) ∓
1

4N

[

(

I0(
√
2λ)− 1

)

+
∞
∑

k=1

1

N2k

k−1
∑

i=0

Xi
k

(

λ

2

)
3k−i

2

I3k−i(
√
2λ)

]

This result is valid for any λ. We can then use it to obtain a large λ expansion at every

order in 1/N

〈W 〉SO(2N) − 〈W 〉Sp(N) =
∑

k

1

(2N)2k+1

e
√
2λ(2λ)

6k−1
4

96kk!
√
2π

(

1− 36k2 + 144k − 5

40
√
2λ

+ . . .

)

Perhaps the most important feature of this result is that the exponent (6k− 3)/4 obtained

in [6] is now replaced by (6k − 1)/4.
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A Classical simple Lie algebras

In this appendix we collect some very basic facts about classical simple Lie algebras that

we use in the main text. A Lie algebra of rank r has r simple roots. For each simple

root in the Lie algebra there is a fundamental weight, which is the highest weight of a

fundamental representation. A simple Lie algebra has then r fundamental representations.

In Physics, the name “fundamental representation” if often reserved for the fundamental

representation with highest weight w1.

su(n). The Lie algebra su(n) has rank r = n− 1. We introduce the basis ei, i = 1, . . . , n.

The positive roots and the simple roots are

R+ = {ei − ej , i < j}
Π = {α1 = e1 − e2, . . . , αn−1 = en−1 − en}

The n− 1 fundamental weights of su(n) are

wk = e1 + e2 + · · ·+ ek −
k

n
(e1 + · · ·+ en) , k = 1, . . . , n− 1 (A.1)

Applying the Weyl dimension formula, the dimensions of the associated fundamental rep-

resentations are
(

n
k

)

, so these are the antisymmetric representations.

so(2n + 1). The Lie algebra so(2n+ 1) has rank r = n. We introduce the basis ei, i =

1, . . . , n. The positive roots and the simple roots are

R+ = {ei ± ej (i < j), ei}
Π = {α1 = e1 − e2, . . . , αn−1 = en−1 − en, αn = en}

The fundamental weights are

w1 = e1, . . . , wn−2 = e1 + · · ·+ en−2, wn−1 = e1 + · · ·+ en−1,

wn =
1

2
(e1 + · · ·+ en)

The first n− 1 representations have dimensions
(

2n+1
k

)

. The last one is a spinor represen-

tation of dimension 2n.

sp(n). The Lie algebra sp(n) has rank r = n. We introduce the basis ei, i = 1, . . . , n.

The positive roots and the simple roots are

R+ = {ei ± ej , i < j ; 2ei}Π = {α1 = e1 − e2, . . . , αn−1 = en−1 − en, αn = 2en}

The corresponding fundamental weights are

w1 = e1, w2 = e1 + e2, . . . , wn = e1 + · · ·+ en

There are no spinor representations for sp(n).

– 17 –
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so(2n). The Lie algebra so(2n) has rank r = n. We introduce the basis ei, i = 1, . . . , n.

The positive roots and the simple roots are

R+ = {ei ± ej , i < j }
Π = {α1 = e1 − e2, . . . , αn−1 = en−1 − en, αn = en−1 + en}

The corresponding fundamental weights are

w1 = e1 , w2 = e1 + e2 , . . . , wn−2 = e1 + · · ·+ en−2,

wn−1 =
1

2
(e1 + · · ·+ en−1 − en) , wn =

1

2
(e1 + · · ·+ en−1 + en)

The first n−2 fundamental representations have dimensions
(

2n
k

)

. The last two fundamental

weights correspond to spinor representations, both with dimension 2n−1.

B 1/N expansion of 〈W (g)〉SO(2N) and 〈W (g)〉Sp(N)

In this appendix we will derive the 1/N expansion of 〈W (g)〉SO(2N) and 〈W (g)〉Sp(N) with-

out making use of the exact relations among them found in the main text. We will eventu-

ally find out that the expansions involve certain coefficients that satisfy the same recursion

relation as the ones that appear in 〈W (g)〉U(2N), eq. (3.8).

To expand 〈W (g)〉SO(2N) given in eq. (2.13) in 1/N , we will first rewrite

N−1
∑

k=0

L2k(−g) =
2N−2
∑

k=0

dk
gk

k!

with

dk ≡
N−1
∑

i=0

(

2i

k

)

These coefficients satisfy the recursion relation

dk + 2dk+1 =

(

2N

k + 2

)

and with d0 = N we can now write

〈W (g)〉SO(2N) =
1

N

∞
∑

n=0

(

λ

2

)n 1

n!(n+ 1)!
D(n,N)

with

D(n,N) ≡ 2
n!(n+ 1)!

(2N)n+1

n
∑

k=0

dk
2n−k(n− k)!k!

D(n,N) is a polynomial in 1/N of degree n. Expanding in 1/N ,

D(n,N) = 1− n+ 1

2

1

2N
+

(n+ 1)n(n− 1)

12

1

(2N)2
+ . . .

– 18 –
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So

〈W (g)〉SO(2N) =

√

2

λ
I1(

√
2λ)− 1

4N

(

I0(
√
2λ)− 1

)

+ . . .

To expand 〈W (g)〉Sp(N) given in eq. (2.16) in 1/N , we will first rewrite

N−1
∑

k=0

L2k+1(−g) =
2N−1
∑

k=0

ck
gk

k!

with

ck ≡
N−1
∑

i=0

(

2i+ 1

k

)

These coefficients satisfy the recursion relation

ck + 2ck+1 =

(

2N + 1

k + 2

)

and with c0 = N we can now write

〈W (g)〉Sp(N) =
∞
∑

n=0

(

λ

2

)n 1

n!(n+ 1)!
C(n,N)

with

C(n,N) ≡ 2
n!(n+ 1)!

(2N)n+1

n
∑

k=0

ck
2n−k(n− k)!k!

C(n,N) is a polynomial in 1/N of degree n. Expanding in 1/N ,

C(n,N) = 1 +
n+ 1

2

1

2N
+

(n+ 1)n(n− 1)

12

1

(2N)2
+ . . .

So

〈W (g)〉Sp(N) =

√

2

λ
I1(

√
2λ) +

1

4N

(

I0(
√
2λ)− 1

)

+ . . .

We know from general arguments that the odd powers in 1/N of C(n,N) andD(n,N) differ

by a sign. Now we want to argue that the even powers are the same, so as polynomials in

1/N we have D(n,−N) = C(n,N). Define

∆(n,N) ≡ C(n,N)−D(n,N) = 2
n!(n+ 1)!

(2N)(n+1)

n
∑

k=1

dk−1

2n−k(n− k)!k!

If we prove that ∆(n,N) is a polynomial in 1/N with only odd powers, it will follow that

even powers of C and D coincide. The coefficients ∆ satisfy the recursion relation

∆(n+ 1, N) =
n+ 2

n+ 1
∆(n,N) +

(n− 1)(n+ 2)

16N2
∆(n− 1, N)

Together with ∆(0, N) = 0,∆(1, N) = 1/N this proves that indeed ∆(n,N) are odd in

1/N , and indeed even powers of C and D coincide.
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To carry out the expansion of ∆(n,N) we follow closely appendix B of [6]. We define

∆(n,N) =
∑

k

pk(n)

(2N)2k+1

where pk(n) are polynomials in n of degree 3k+1. We rewrite them as linear combinations

of polynomials (n+ 1)!/(n− 3k + i)! with coefficients Y i
k ,

pk(n) =
k−1
∑

i=0

(n+ 1)!

(n− 3k + i)!
Y i
k

Using the recursion relation for ∆(n,N) we derive the relation

4(3k − i)Y i
k = Y i

k−1 + (3k − i− 2)Y i−1
k−1

which is the same recursion relation found in [6] for the cofficients Xi
k, eq. (3.8). The initial

values can also be seen to coincide, proving that the unoriented term are related to the

oriented ones.

Open Access. This article is distributed under the terms of the Creative Commons
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