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1 Introduction

It is often fruitful to study the behavior of a theory at strong coupling, which may be

related to another theory at weak coupling. Today we have many understandings of the

non-perturbative effects in string theory, due to the studies of D-branes and string dualities

in the middle 1990’s. However, a full non-perturbative formulation of superstring theory is

still lacking. We may try to attack the problem in some simpler settings. Some important

lessons were provided by the studies of non-critical string theory described by matrix

models in early 1990’s. In these simpler models one can have better handle on the string

perturbation series, and the studies of their large order behaviors often reveal the nature

of non-perturbative effects. See e.g. [12, 38] for reviews on the subject.

Topological string theory has been very useful for counting holomorphic curves on

Calabi-Yau spaces, and also has many other applications [26]. Recently, there have been

some research on the refined topological string theory. This is motivated by the Ω back-

ground, proposed for the purpose of calculating partition functions of Seiberg-Witten the-

ories [41], and is also applied for more general theories with quiver gauge groups [43]. The

refined topological string partition function on non-compact toric Calabi-Yau geometries
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can be computed by the A-model method of refined topological vertex [33], generalizing

the earlier work of topological vertex [3]. This has been related to the partition function

of M-branes [17]. On the other hand, it can be also computed by B-model method using

mirror symmetry [30, 36], which generalizes the holomorphic anomaly equation [8] and gap

boundary conditions [29] in the conventional unrefined case. Furthermore, the B-model

approach can also work for certain non-toric del Pezzo Calabi-Yau geometries [31].

There are two small expansion parameters ε1, ε2 in refined topological string theory, the

conventional unrefined case corresponds to ε1+ε2 = 0. The worldsheet formulation with two

expansion parameters is not so clear as the unrefined case where the expansion parameter

counts the worldsheet genus. Some attempts are made in [5, 28, 44] for clarifying the issue.

The mathematical definition in terms of stable pair invariants is provided in [10]. See also [6,

23] for the construction of the Ω background from superstring theory compactifications.

Another interesting limit is to set one of the ε1,2 to zero, known as the Nekrasov-

Shatashvili limit [42], with deep connections to quantum integrable systems. The gauge

theory and topological string partition function in this limit can be computed by deformed

periods [2, 27, 40, 45]. The Calabi-Yau geometry is related to a quantum mechanical Hamil-

tonian, and the deformed period is the phase volume which can be used to compute the

energy spectrum of the Hamiltonian by the Bohr-Sommerfeld (BS) quantization condition.

The main purpose of this paper is to study non-perturbative effects in refined topo-

logical string theory. Some proposals have been made recently in [19, 37]. The non-

perturbative sectors may also have holomorphic anomaly equation similarly as the pertur-

bative sector [46]. Topological string is also an ideal place for the studies since the A-model

amplitudes are exact in string coupling constant, essentially summing up all genus contri-

butions, although at a finite degree of cohomology class. The proposal of [19] is based

on the relation between the local P1 × P1 Calabi-Yau model with the ABJM (Aharony-

Bergman-Jafferis-Maldacena) matrix models [4]. The ABJM theory is a 3d Chern-Simon

theory dual to M-theory on AdS4 × S7/Zk, and its partition function on S3 localizes to

a matrix model [35]. Certain non-perturbative contributions are proposed to cancel the

singularity encountered in the calculations of the partition functions of the ABJM matrix

model [9, 19–22, 25], known as the Hatsuda-Moriyama-Okuyama (HMO) mechanism. The

Wilson loops in the theory have been also studied extensively in the literature, see e.g. the

recent work [24].

Since the quantum Hamiltonian related to the local Calabi-Yau geometry is well de-

fined for any Planck constant and the energy spectrum can be calculated numerically, it is

an ideal testing ground for the non-perturbative contributions in refined topological string

theory [15, 34]. In [34], Kallen and Marino find that the perturbative B-period, i.e the

quantum phase volume, is singular for infinitely many values of Planck constant ~, and

they introduce the novel idea that the singularities would be cured by non-perturbative

instanton contributions, which we shall call the Kallen-Marino (KM) singularity cancella-

tion mechanism. The authors stress that this is not a consequence of the usual story of

non-perturbative/perturbative completion, since the divergence of the perturbative series

is not due to the factorial growth of its coefficients. Their study is based on the P1 × P1

model dual to the ABJM matrix model, but they also propose to consider the quantum
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spectral problems for general local Calabi-Yau spaces such as the local P2 geometry at the

end of the paper.

In this paper, we shall push the idea to some fruitions. We consider some well-known

local Calabi-Yau geometries, namely the local P2, P1×P1 and F1 models. First we study the

perturbative expansion of the spectrum for small ~ and use two methods for the computa-

tions. Then we consider non-perturbative effects, and find that the requirement of Kallen-

Marino singularity cancellation largely fixes the singular part of the non-perturbative con-

tributions to the quantum phase volume. The remaining ambiguity can be fixed by checking

with the numerical calculations of the quantum spectrum.

However, the Kallen-Marino singularity cancellation mechanism is not the whole story.

We further consider some samples of specific values of the Planck constant and test the

proposal for non-perturbative contributions with numerical calculations. We discover that

there are certain higher order non-singular corrections in the non-perturbative contribu-

tions, which do not affect the singularity cancellation with perturbative contributions. For

the case of the local P2 model, their effects first show up at the 3rd sub-leading order in

the large energy expansion, and can only be discovered by some high precision numerical

calculations. With the results of the calculations for the samples of the Planck constant,

we can guess the exact formulas for the first few orders of such corrections.

We should note that our formulation of the quantum Hamiltonian for the P1 × P1

model is quite different from the one dual to the ABJM matrix model in [34]. In the

ABJM formulation, the Hamiltonian comes from an integral equation determining the

spectrum with a Hilbert-Schmid kernel. There are well-known existence theorems in the

elementary theory of integral equations that the quantum spectral problem is well defined.

On the other hand, our formulation of the Hamiltonian is more natural for topological string

theory since it can be applied to general local toric Calabi-Yau geometries. Although we

are not aware of a mathematical proof that the spectral problem for our Hamiltonian is well

defined, we can still calculate the discrete spectrum numerically in an orthonormal basis

of wave functions for any Planck constant. As a result we believe our formulation is also

consistent. At the classical level, the spectral curves of the two formulations are related

by a coordinate transformation [19, 34]. However, at the quantum level, the corresponding

spectra are quite different and we are not aware of a simple transformation that relates

them. As such our Hamiltonian for the P1 × P1 model may not be much relevant for the

studies of the ABJM matrix model. It would be still interesting to see whether the higher

order non-perturbative contributions we find are also present for the ABJM formulation of

the P1 × P1 Hamiltonian.

The organization of the paper is the followings. In section 2, we consider in details

our main example, the local P2 model. Our method can be straightforwardly applied to

other local Calabi-Yau models, such as the ones from anti-canonical bundle over del Pezzo

surfaces, constructed by blowing up points on the P2 geometry. One can also consider

the Hirzebruch surfaces, which are P1 bundles over P1. The differential operators for the

deformed periods are studied in [27, 32]. In sections 3, 4 we study two such examples,

namely the local P1 × P1 and F1 models. Here the local P1 × P1 model can be regarded

as in the class of both del Pezzo surfaces and Hirzebruch surfaces. We present the results
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with less details since the method is similar to the main example. Our main result are the

non-perturbative formulas (2.82), (3.20), (4.28) for the three examples.

2 The local P2 model

Our main example is the local P2 model, well-known in the mirror symmetry literature.

The geometry is described by the classical curve on (x, p) plane

ex + ep + ze−xe−p = 1, (2.1)

where z is the complex structure modulus parameter of the geometry.

The Hamiltonian operator is derived from the curve (2.1) by the following rescaling

and shifts

z → e−3H , x→ x−H, p→ p−H. (2.2)

Furthermore, we promote the x, p to the quantum position and momentum operators,

satisfying the canonical commutation relation [x̂, p̂] = i~. We then find the one-dimensional

quantum mechanical Hamiltonian

Ĥ = log(ex̂ + ep̂ + e−x̂−p̂). (2.3)

We note that the Hermitian condition uniquely determines the ordering of the last term.

For example, the following different orderings are actually the same

e−
x̂
2 e−p̂e−

x̂
2 = e−

p̂
2 e−x̂e−

p̂
2 = e−

i~
2 e−x̂e−p̂ = e−x̂−p̂, (2.4)

due to the Baker-Campbell-Hausdorff formula.

In the scaling (2.2) we can also keep the z parameter by using z → ze−3H instead.

The studies of the resulting Hamiltonian are related to the one in (2.3) by a simple trans-

formation. For simplicity we will not keep this parameter.

Comparing to the local P1×P1 model in [34], the exponentiated Hamiltonian from (2.3)

can not be written as a product of several factors. The quantum Hamiltonian should have

a discrete spectrum bounded below for any real value of Planck constant ~. The quantum

spectral problem is difficult to solve, since the Schrodinger equation involves infinitely

many higher derivatives in the position space. We should use the old Bohr-Sommerfeld

quantization method

vol(E) = 2π~
(
n+

1

2

)
, (2.5)

where the volume in phase space is defined by period integral vol(E) ≡
∮
p(x)dx. This

approach is proposed by Nekrasov and Shatashvili in the context of N = 2 supersymmetric

gauge theory [42]. In the classical limit, the period integral is simply the B-period of the

local Calabi-Yau geometry. In the quantum theory, we shall consider the refined topological

string theory and take the Nekrasov-Shatashvili limit where one of the ε1,2 parameters of

the Ω background is set to zero, and the other is identified with the Planck constant ~.

The volume vol(E) is then computed by the deformed B-period in the Nekrasov-Shatashvili

limit.
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2.1 Classical ground state energy

In the small ~ limit, we can expand the energy spectrum as

E(n) =

∞∑
k=0

E
(n)
k ~k. (2.6)

The classical ground state energy is the minimum of the classical potential, and should be

the same for all quantum levels. We denote the classical ground state energy as E0 = E
(n)
0

for any quantum level n.

It is easy to compute E0 by taking the classical limit ~ → 0. We can work in the

position space and the momentum operator p̂ = −i~∂x → 0 in this limit. We find

Ĥ → log(ex + e−x + 1) ≥ log(3), (2.7)

where the equality is saturated at x = 0. So the classical minimum energy is E0 = log(3).

To illustrate the idea of computing the quantum spectrum by the Bohr-Sommerfeld

quantization method, we first apply it in the simple case of the classical limit. We denote the

classical volume vol0(E), and the Bohr-Sommerfeld quantization condition in the classical

limit ~ = 0 is simply

vol0(E0) = 0. (2.8)

In the followings we should compute the classical volume vol0(E), and reproduce the clas-

sical minimum energy E0 = log(3) from the above equation (2.8).

The topological string on the local P2 model and its modularity were studied in details

in [1, 18]. The periods are determined by the well-known Picard-Fuchs differential equation

[Θ3
z − 3z(3Θz + 2)(3Θz + 1)Θz]w(z) = 0, (2.9)

where the differential operator is defined as Θz := z∂z. There are three linearly independent

solutions to the differential equation, and can be obtained by the following Frobenius

method. Define the infinite series

w(z, s) =

∞∑
n=0

(−1)nzs+n

Γ(−3(n+ s) + 1)Γ3(n+ s+ 1)
, (2.10)

then the solutions to the differential equation (2.9) can be obtained by wk(z)= dk

dks
w(z, s)

∣∣∣
s=0

.

Taking k = 0, 1, 2, we find the three linearly independent series solutions

w0 = 1, w1(z) = log(z) + σ1(z), w2(z) = (log z)2 + 2σ1(log z) + σ2(z), (2.11)

where w1(z) and w2(z) are the logarithmic and double-logarithmic solutions, usually known

as A-period and B-period of the geometry, and the power series are defined by the Digamma

function ψ(x) = Γ′(x)
Γ(x) as

σ1(z) =
∞∑
n=1

3zn
(3n− 1)!

n!3
, σ2(z) =

∞∑
n=1

18zn
(3n− 1)!

n!3
[ψ(3n)− ψ(n+ 1)]. (2.12)
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After substituting the parameter z = e−3E , we see that in large E limit, the logarith-

mic terms in the periods provide finite contributions, while the power series σ1,2(z) give

exponentially small corrections.

We can also solve the equation (2.9) near the conifold point z ∼ 1
27 . Denoting the

small parameter zc = 1/27− z, the three linearly independent solutions are

t0 = 1, t1(z) = zc +
33z2

c

2
+ 327z3

c +
28167z4

c

4
+O(z5

c ),

t2(z) = t1(z) log(zc) +
63z2

c

4
+

877z3
c

2
+

176015z4
c

16
+O(z5

c ). (2.13)

We only need to consider the case of positive Planck constant ~, since the quantum Hamil-

tonian (2.3) is invariant under the exchange of position x̂ and momentum p̂, which changes

the sign of ~. We will see that the quantum energy E ≥ E0 = log(3) for ~ ≥ 0, so

z = e−3E ≤ 1
27 . We have used the coordinate zc = 1/27 − z so that zc ≥ 0 and the

logarithmic cut log(zc) in t2 is real. The three periods t0, t1, t2 are linear combinations of

w0, w1, w2 in (2.11) when one analytically continue from z ∼ 0 to z ∼ 1
27 .

It turns out that the classical volume is not exactly the B-period w2, but also contains

a constant from the first period w0, as shown for the local P1×P1 model in [39]. In order to

determine the correct constant, we shall follow the method similarly as [39], and compute

the classical volume vol0(E) in the large energy E limit, neglecting the exponentially small

corrections.

We can solve for the momentum from the Hamiltonian (2.3) at energy E in the classical

limit

p± = log

[
eE − ex ±

√
(eE − ex)2 − 4e−x

2

]
. (2.14)

These two solutions provide a bounded area in the real (x, p) plane and define the classical

phase volume, or more precisely the phase area

vol0(E) =

∫
ex+ep+e−x−p≤eE

dxdp =

∫ b

a
(p+(x)− p−(x))dx, (2.15)

where the range of the definite integral a, b are the two roots of the equation from the

square root term (eE − ex)2 − 4e−x = 0, so that p+(x) = p−(x) at x = a, b, and satisfying

(eE − ex)2 − 4e−x > 0 for a < x < b.

It is clear that for the classical ground state energy E0 = log(3), the phase space has

only one point (x, p) = (0, 0) and therefore the volume vanishes vol0(E0) = 0. We wish to

compute the classical volume vol0(E) for arbitrary E ≥ E0.

The integral is quite complicated to do exactly, but the computation becomes much

simpler if we can neglect exponentially small corrections in large E. The integration range

is then

a = −2E + log(4) +O(e−E), b = E +O(e−E). (2.16)
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Figure 1. The phase space in the real (x, p) place, parametrized by the equation ex+ep+e−x−p ≤
eE , for the example of E = 4.

We can see that in the large E limit, the phase space asymptotes to roughly the shape of

a triangle, depicted in figure 1.

We compute the phase volume by plugging the formulae for p±, and we find

vol0(E) =

∫ E

−2E+log(4)

{
2E + x+ 2 log

[
1− ex−E +

√
(1− ex−E)2 − 4e−x−2E

2

]}
dx

=
9E2

2
− 2 log2(2) + 2

∫ E

−2E+log(4)
log

[
1− ex−E +

√
(1− ex−E)2 − 4e−x−2E

2

]
dx.

Suppose x0 ∈ (−2E+log 4, E) is a generic value in the integration range, with x0+2E ∼
E−x0 ∼ E in the large E limit. We divide the definite integral into two parts, and neglect

exponentially small corrections

vol0(E)=
9E2

2
−2 log2(2)+2

∫ E

x0

log(1− ex−E)dx+2

∫ x0

−2E+log(4)
log

[
1+
√

1−4e−x−2E

2

]
dx.

The first integral is simple to compute∫ E

x0

log(1− ex−E)dx = −
∞∑
k=1

∫ E

x0

ek(x−E)

k
dx = −

∞∑
k=1

1

k2
= −π

2

6
. (2.17)

For the second integral, we use the following indefinite integral with the polylogarithmic
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function∫ x

log

[
1+
√

1−ec−x
2

]
dx = Li2

(
1−
√

1−ec−x
2

)
+c · arctanh(

√
1−ec−x)− 1

4
(c2+2cx)

−c log

[
1 +
√

1− ec−x
2

]
− 1

2
log2

[
1 +
√

1− ec−x
2

]
. (2.18)

The definite integral can be evaluated by plugging in the integration range, we find that

the result is also independent of the specific value of x0∫ x0

−2E+log(4)
log

[
1 +
√

1− 4e−x−2E

2

]
dx = −Li2

(
1

2

)
+

log2(2)

2
= −π

2

12
+ log2(2).

(2.19)

Summarizing the results of the calculations, we find that

vol0(E) =
9E2 − π2

2
+O(e−E). (2.20)

So we see that the correct combination of periods in (2.11) for the phase volume should be

vol0(E) =
1

2
(w2 − π2). (2.21)

Including the full series in the period w2 and replacing z = e−3E , we recover the full

exponentially small corrections O(e−E) in the classical volume

vol0(E) =
9E2 − π2

2
+ 9

∞∑
n=1

e−3nE (3n− 1)!

n!3
[ψ(3n)− ψ(n+ 1)− E]. (2.22)

We can check numerically that the equation for the classical minimum energy vol0(E0) = 0

is indeed an identity for E0 = log(3). Of course, we can derive the classical minimum

energy without the seemingly complicated computation of the phase volume. The Bohr-

Sommerfeld quantization method would become essential later when we consider quantum

and non-perturbative corrections when the Planck constant ~ is non-zero.

2.2 Quantum perturbative contributions

We consider the corrections to phase volume and energy eigenvalues that are powers of

~ in the small ~ expansion. From previous calculations of the deformed periods in local

Calabi-Yau spaces, in e.g. [2, 27], we expect the expansion of the phase volume has only

even powers of ~. The energy spectrum, on the other hand, has corrections for integer

powers of ~. We denote the expansions as

volp(E) =

∞∑
k=0

volk(E)~2k, E =

∞∑
k=0

Ek~k, (2.23)
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where the subscript p denotes perturbative contributions. We can expand the quantum

volume for small ~, and the first few terms are

volp(E) = vol0(E0) + E1vol′0(E0)~ +

[
vol1(E0) + E2vol′0(E0) +

1

2
E2

1vol′′0(E0)

]
~2

+

[
E1vol′1(E0) + E3vol′0(E0) + E1E2vol′′0(E0) +

1

6
E3

1vol′′′0 (E0)

]
~3 +O(~4).

We can use the Bohr-Sommerfeld equation (2.5) to compute the perturbative corrections

to energy spectrum recursively, if we know the values of the quantum volumes volk(E) and

their derivatives at the classical minimum energy E0 = log(3).

The first order corrections to spectrum E
(n)
1 depend only on the classical phase volume

E
(n)
1 =

(2n+ 1)π

vol′0(E0)
. (2.24)

We can check this formula directly from the Hamiltonian (2.3). The canonical commu-

tation relation [x̂, p̂] = i~ implies that the contributions of the operators x̂, p̂ are of order√
~ in the small ~ limit. In order to calculate the corrections up to order ~, we can expand

the Hamiltonian

eĤ = 3 + x̂2 + p̂2 + x̂p̂− i~
2

+O(~
3
2 ) (2.25)

= 3 +

(
x̂+

p̂

2

)2

+
3

4
p̂2 +O(~

3
2 ).

We can redefine x̂′ = x̂+ p̂
2 , which also satisfy the same commutation relation with p̂. The

quadratic terms in (2.25) can be seen as a simple harmonic oscillator with the mass m = 2
3

and frequency ω =
√

3, which has the energy spectrum of
√

3(2n+1)~
2 at quantum level n.

So we find eE
(n)

= 3 +
√

3(2n+1)~
2 +O(~2), and the formula for the first correction is

E
(n)
1 =

√
3(2n+ 1)

6
. (2.26)

Comparing the two formulas (2.24), (2.26), we see that the derivative of the classical

phase volume at E0 = log(3) is vol′0(E0) = 2
√

3π. Again we can check numerically that

this is indeed an identity using the formula for vol0(E) in equation (2.22).

It turns out that we can not calculate the higher derivatives of classical volume at

minimum energy E0 = log(3) directly with the infinite sum (2.22). The infinite sum (2.22)

does not converge fast enough at E0 = log(3), so that the derivative is not guaranteed to

commute with the infinite sum. In practice, we find that the first derivative vol′0(E) can be

still computed numerically by first taking the derivative and then perform the infinite sum.

However, for the second derivative, the convergence is slow and the numerical calculation

encounters a large error. For the third derivative, the infinite sum becomes divergent at

E0 = log(3).

This is of course not a problem. The n-th term in the infinite sum (2.22) behaves like

e−3nE (3n− 1)!

n!3
[ψ(3n)− ψ(n+ 1)− E] ∼ e−3(E−E0)n E0 − E

2
√

3πn2
, (2.27)
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for large n. We see the sum converges rapidly for any Re(E) > E0 = log(3) and defines the

classical volume vol0(E) in this domain. We can then analytically continue the classical

volume to the entire complex plane. If the analytic continuation has no pole or cut at

E = E0, then all higher derivatives are finite at E = E0.

There are some ways to go about to compute the higher derivatives at E = E0. We

can first compute the derivatives at e.g. E = E0 + 1, where the derivatives commute with

the infinite sum and we can use the formula (2.22) for numerical calculations. Then we

can analytically continue to E = E0 by the Taylor expansion

vol
(k)
0 (E0) =

∞∑
n=0

(−1)nvol
(k+n)
0 (E0 + 1)

n!
. (2.28)

We can achieve sufficient numerical accuracy in this way. We check that the classical

volume is indeed analytic at E = E0 and the higher derivatives vol
(k)
0 (E0) are finite.

We can also calculate the higher derivatives more effectively using the periods (2.13)

near the conifold point. Here the classical ground state energy E = E0 corresponds to the

conifold point z = e−3E = 1
27 . The classical phase volume vol0(E) vanishes and has no

logarithmic cut at E = E0 , which determines it to be proportional to t1(z). The constant

factor can be also determined by the first derivative vol′0(E) = 2
√

3π. We find

vol0(E) = 18
√

3πt1(z). (2.29)

We can now take derivatives ∂E = −3z∂z = 3( 1
27 − zc)∂zc repeatedly, and only a finite

number of terms in the series expansion in t1 are non-zero when we set zc = 0. In this way

we compute the higher derivatives

vol
(2)
0 (E0) =

4
√

3π

3
, vol

(3)
0 (E0) =

4
√

3π

9
, vol

(4)
0 (E0) = −28

√
3π

81
, (2.30)

which have been checked by numerical calculations using (2.28).

The higher order quantum corrections to the phase volume volk(E) are related to the

leading order one by a second order differential operator [27]. We note the convention for

Planck constant in [27] differs by a factor of i from here, while the sign for parameter z

is opposite. Taking into account the conventions, we have the formulas for the first few

orders

vol1(E) = −
∂2
Evol0(E)

72
, (2.31)

vol2(E) =
−2z(999z + 5)∂Evol0(E) + z(2619z + 29)∂2

Evol0(E)

1920∆2
,

where z = e−3E and the discriminant is ∆ = 1 − 27z. For the first correction vol1(E) we

can directly plug in the second derivative of classical volume at E = E0. However, for the

higher order corrections, e.g. vol2(E), we see that there is an apparent pole at E = E0 in

the discriminant ∆ = 1 − 27z. We should expand both the numerator and denominator
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around E ∼ E0. We find the the final result is finite using the exact values of the derivatives

vol
(k)
0 (E0). For the first two corrections we find the results

vol1(E0) = −
√

3π

54
, vol2(E0) =

19
√

3π

209952
. (2.32)

With these results we proceed to the higher order energy corrections, where the Bohr-

Sommerfeld equation are

E
(n)
2 = − 1

vol′0(E0)

[
vol1(E0) +

(E
(n)
1 )2

2
vol′′0(E0)

]

= −6n2 + 6n+ 1

54
, (2.33)

E
(n)
3 = −

E
(n)
1 vol′1(E0) + E

(n)
1 E

(n)
2 vol′′0(E0) + 1

6(E
(n)
1 )3vol′′′0 (E0)

vol′0(E0)

=
10n3 + 15n2 + 7n+ 1

162
√

3
, (2.34)

where we have used the exact values of classical and quantum phase volume at E = E0.

We can check the higher order corrections through perturbation theory. We expand

the Hamiltonian up to order ~2 to calculate the second corrections

eĤ = 3 + x̂2 + p̂2 +
1

2
(x̂p̂+ p̂x̂) +

1

6

[
x̂3 + p̂3 − (x̂+ p̂)3

]
+

1

24

[
x̂4 + p̂4 + (x̂+ p̂)4

]
+O(~

5
2 ).

As before we first redefine x̂′ = x̂+ p̂
2 to convert the quadratic terms to a simple harmonic

oscillator. The creation and annihilation operators can be defined as

x̂′ =
3

1
4

√
~

2

(
â† + â

)
, p̂ =

√
~

3
1
4

(
â† − â

)
, (2.35)

satisfying the well-known commutation relation [â, â†] = 1. By inserting (2.35) into (2.3),

we can express the Hamiltonian as

eĤ = 3 +

√
3~
2

(
2â†â+ 1

)
+

i~
3
2

2 · 3
3
4

(
âââ− â†â†â†

)
+

~2

8

(
2â†ââ†â+ 2â†â+ 1

)
+O(~

5
2 ).

We use time-independent perturbation theory well-known in quantum mechanics to

compute the corrections. See e.g. the textbook [16]. Define a new Hamiltonian as

H = H0 +H′, (2.36)

with

H0 =

√
3~
2

(
2â†â+ 1

)
, (2.37)

H′ = i~
3
2

2 · 3
3
4

(
âââ− â†â†â†

)
+

~2

8

(
2â†ââ†â+ 2â†â+ 1

)
, (2.38)
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where H0 is the Hamiltonian of a sample harmonic oscillator with the mass m = 2
3 and

frequency ω =
√

3, and H′ can be treated as a perturbation. The Schrödinger equation is

H0ψ
(n)
0 = E(n)

0 ψ
(n)
0 , (2.39)

Hψ(n) = E(n)ψ(n), (2.40)

where ψ
(n)
0 is the wave functions of the harmonic oscillator, and E(n)

0 = (n + 1
2)
√

3~ is

the corresponding energy. It is hard to exactly solve equation (2.40). According to the

perturbation theory, we can approximately write the solutions as

ψ(n) = ψ
(n)
0 + ψ

(n)
1 + · · · = ψ

(n)
0 +

∑
m6=n

〈ψ(m)
0 |H′|ψ(n)

0 〉
(n−m)

√
3~

ψ
(m)
0 + · · · , (2.41)

E(n) = E(n)
0 + E(n)

1 + E(n)
2 + · · ·

=

(
n+

1

2

)√
3~ + 〈ψ(n)

0 |H
′|ψ(n)

0 〉+
∑
m6=n

|〈ψ(m)
0 |H′|ψ(n)

0 〉|2

(n−m)
√

3~
+ · · · , (2.42)

where the subscripts denote the different order of the corrections. Using the relations

â|ψ(n)
0 〉 =

√
n|ψ(n−1)

0 〉, â†|ψ(n)
0 〉 =

√
n+ 1|ψ(n+1)

0 〉, (2.43)

it is easy to calculate the energy corrections and give

E(n) =

(
n+

1

2

)√
3~ +

12n2 + 12n+ 5

72
~2 +O(~3). (2.44)

So, up to order ~2, the eigenvalues of eĤ is 3 + (n+ 1
2)
√

3~+ 12n2+12n+5
72 ~2, and eventually

gives the second energy spectrum correction

E
(n)
2 = −6n2 + 6n+ 1

54
, (2.45)

which does agree with the result (2.33) of the Bohr-Sommerfeld quantization method.

We can also use the time-independent perturbation theory to compute this correction

by expanding eĤ to ~3 order and calculating E(n)
1 , E(n)

2 , E(n)
3 , E(n)

4 . The derivation is too

lengthy but similar to lower order calculations, and will not be displayed here. We find the

result totally agrees with (2.34).

2.3 Quantum non-perturbative contributions

In many quantum systems, the perturbative series is a divergent asymptotic series. This

is also the case for our model. Of course, the quantum system is well defined for any

real value of Planck constant ~, and one of the key observation of Kallen and Marino

in [34] is that the divergence of the perturbative series can be cured by including the non-

perturbative contributions. The non-perturbative contributions are usually of the form

e−
S0
~ where S0 is the action of some instanton configurations. It is difficult to directly

calculate the instanton actions. As we mentioned in the introduction, it turns out that in
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this case the requirement of Kallen-Marino singularity cancellation mechanism largely fix

the non-perturbative contributions [19, 34].

The perturbative series for our model has singularities when ~ is a rational number

times π, so the radius of convergence of the perturbative series is actually zero [34]. When

~ is small, we can evaluate the quantum spectrum by a truncation of the perturbative

series at the minimum term. Even though the perturbative series is always divergent, the

minimum truncation scheme still gives a good approximation to the actual quantum phase

volume, with an error of the same order as the minimum term of the series. However, when

~ is of order one, the non-perturbative contributions become important, and truncating the

perturbative series to the first few terms gives not much clue of the actual phase volume.

In order to understand the singularities of the perturbative series, we shall compute

the deformed periods exactly in the Planck constant ~. This is done in the literature [2],

and we review the calculations here. We denote the deformed A-period and B-period as t̃

and t̃D, which reduce to the logarithmic and double-logarithmic solutions w1(z) and w2(z)

in (2.11) when ~ is zero.

We act the curve (2.1) on a wave function ψ(x) to derive a difference equation

(ex − 1)ψ(x) + ψ(x− i~) + ze−x−
i~
2 ψ(x+ i~) = 0. (2.46)

Denoting X = ex, q = ei~, and also V (X) = ψ(x)
ψ(x−i~) , as in the notation of [19], the difference

equation is

zV (Xq)

Xq
1
2

+X − 1 +
1

V (X)
= 0. (2.47)

We can then recursively compute V (X) as a power series of z whose coefficients are exact

functions of ~. The first few terms are

V (X) =
1

1−X
+

z
√
qX(1−X)2(1− qX)

+
(1 + q −X − q3X)z2

q2X2(1−X)3(1− qX)2(1− q2X)
+O(z3).

The power series in the deformed A-period is given by the following residue

t̃ = log(z) + 3

∮
dx

2πi
log(V (X)) = log(z) + 3

∮
dX

2πi

log(V (X))

X

= log(z) +
3(1 + q)z
√
q

+
3(2 + 7q + 12q2 + 7q3 + 2q4)z2

2q2
+ (3 + 9q + 36q2 + 88q3 + 144q4

+144q5 + 88q6 + 36q7 + 9q8 + 3q9)
z3

q9/2
+O(z4), (2.48)

where the residue is taken around X = 0. One can further expand for small ~ and check

the first few order results with formulas (2.11), (2.31).

For the deformed B-period, we need to compute the integral
∫ Λ
δ

log(V (X))
X dX with the

cut-offs δ ∼ 0 and Λ ∼ ∞ in two patches of the local Calabi-Yau geometry [2]. However,

in one of the patches the recursive process for computing V (X) exactly in ~ is not so

convenient. Instead, we shall use the fact that the deformed B-period is the derivative
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of the deformed prepotential, i.e. the Nekrasov-Shatashvili limit of the refined topological

string amplitude, with respect to the deformed A-period.

The world-sheet instanton part of the refined topological string amplitude can be

written as

Finst(t) ∼
∑
jL,jR

∞∑
m,d=1

ndjL,jR
m

(−1)2jL+2jR+mdemdt
sin[mεR(2jR + 1)] sin[mεL(2jL + 1)]

sin
(
mε1

2

)
sin
(
mε2

2

)
sin (mεR) sin(mεL)

.

Some explanations of the notations follow. The small parameters ε1, ε2 parametrize the

gravi-photon field strength in 5-dimension by compactifying M-theory on a Calabi-Yau

three-fold [33], and the left-right combinations are εR/L = 1
2(ε1 ± ε2). The two small

parameters are analogous to the ones in Ω-background [41], which is proposed by Nekrasov

to regularize the partition function of Seiberg-Witten theory. The ndjL,jR are the refined

version of Gopakumar-Vafa (GV) invariants [13], where jL, jR are non-negative half integers

denoting the spin representations of the 5-dimensional little group SO(4) ' SU(2)L ×
SU(2)R. They are non-negative integers counting numbers of the M2-branes wrapping

d times the 2-cycles of Calabi-Yau manifolds. The sum over the integer m denotes the

multi-cover contributions.

The refined Gopakumar-Vafa invariants ndjL,jR for the local P2 model are computed by

the refined topological vertex [33] and also the holomorphic anomaly method in [30]. A

mathematical definition is provided in [10]. We list the invariants up to degree d = 7 in

the tables 7 in the appendix. One salient feature is the “chess board” pattern. We see that

for non-vanishing invariants ndjL,jR , the sum 2jL + 2jR + d is always an odd integer.

We shall take the Nekrasov-Shatashvili limit, which is

ε1 = ~, ε2 → 0, εL = εR =
~
2
. (2.49)

The world-sheet instanton contributions to the deformed B-period can be computed by the

derivative in this limit

ε1ε2
∂Finst(t̃)

∂t̃
∼
∑
jL,jR

∞∑
m,d=1

2~d
m

ndjL,jR(−1)2jL+2jR+mdemdt̃
sin m~(2jR+1)

2 sin m~(2jL+1)
2

sin3
(
m~
2

) .

The classical contribution to the prepotential is a cubic term t3 from triple intersection

of the Calabi-Yau geometry. After fixing the constants, we find the exact ~ perturbative

contribution to the quantum volume of the phase space

volp(E) =
t̃2 − π2

2
− ~2

8
− 3

2

∑
jL,jR

∞∑
m,d=1

~d
m
ndjL,jR(−1)2jL+2jR+mdemdt̃

×
sin m~(2jR+1)

2 sin m~(2jL+1)
2

sin3
(
m~
2

) , (2.50)

where the deformed A-period t̃ is available in equation (2.48), and as before z = e−3E .

Here the constant term −~2
8 is not fixed by the refined GV invariants, it is derived from
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the first equation in (2.31) when we take the derivatives on the leading double-logarithmic

term in the classical phase volume. There is also an extra factor (−1)md comparing to the

convention in [30, 33]. This is because the convention of z parameter here has opposite

sign, as a result the A-period is shifted by a constant of πi, so the exponent scales as

emdt → (−1)mdemdt. We expand for small ~ using the refined GV invariants in table 7, and

check the first few order results with formulas (2.22), (2.31).

We can examine the singularities in the perturbative phase volume (2.50), which comes

from the denominator sin3(m~
2 ). It is clear that the singularity appears at ~ = ±2pπ

q , where

p, q are any two co-prime positive integers. The poles appear when the integer m is an

integer multiple of q. We denote m = m0q, then the pole at ~ = 2pπ
q is

volp(E) = −3
∑
jL,jR

∞∑
m0,d=1

2πpd

m2
0q

3
ndjL,jR(−1)2jL+2jR+m0qdem0qdt̃

×(−1)m0p(2jL+2jR+1) (2jR + 1)(2jL + 1)

~− 2pπ
q

+O

[(
~− 2pπ

q

)0
]
. (2.51)

Certain non-perturbative contributions are proposed in [19, 34] based on the ordinary,

i.e. un-refined, topological string amplitudes, which is the limit

ε1 = −ε2 ≡ ε, εL = ε, εR → 0. (2.52)

The topological string amplitude becomes

Finst(t) ∼
∑
jL,jR

∞∑
m,d=1

ndjL,jR
m

(−1)2jL+2jR+mdemdt
(2jR + 1) sin[mε(2jL + 1)]

sin2
(
mε
2

)
sin(mε)

. (2.53)

In order to cancel the singularities of the perturbative series, we shall take ε = 4π2

~ , and

the exponent emdt is replaced by the non-perturbative form of e
2πmdt

~ . We can include

some more factors depending only on the product md, which do not break the structure

of the ordinary topological string amplitude. After fixing the factors we write the non-

perturbative contribution

volnp(E) = −~
2

∑
jL,jR

∞∑
m,d=1

ndjL,jR
m

(−1)2jL+2jR+md

[
sin

(
6π2md

~

)
e

2πmdt̃
~ + · · ·

]

×
(2jR + 1) sin

[
4π2m(2jL+1)

~

]
sin2

(
2π2m

~

)
sin
(

4π2m
~

) . (2.54)

We note that the convention for Planck constant ~ in [34] is twice of the one here, due to

their coordinate transformation. Furthermore, the argument in the sin
(

6π2md
~

)
factor is

different. In order to cancel the factor of (−1)md in the perturbative contributions (2.50),

we could have used a factor sin
(

2kπ2md
~

)
for any odd integer k. It turns out for the local

P2 model, the correct factor is sin
(

6π2md
~

)
. This is not determined by the singularity
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cancellation requirement, and we shall test its validity with numerical calculations of the

spectrum later.

We also write some · · · in the first line of the above formula (2.54) in anticipation of

some more smooth corrections. For example, we could add a contribution sin2
(

2k1π2md
~

)
·e

2k2πmdt̃
~ in the place of · · · in the formula, where k1, k2 are arbitrary integers. This form of

correction has no pole for any Planck constant, so it does not affect the singularity cancel-

lation with the perturbative contribution. If the integer k2 is large, then these corrections

are quite small, and can only be found by high precision numerical tests. We will see later

that there are indeed such corrections, and we will study them in details in subsection 2.5.

Similar to the perturbative series, the singularities also appear at ~ = ±2pπ
q . Here we

denote m = m0p, and the pole at ~ = 2pπ
q is

volnp(E) = 3
∑
jL,jR

∞∑
m0,d=1

2πpd

m2
0q

3
ndjL,jR(−1)2jL+2jR+m0pd+m0qdem0qdt̃

×(2jR + 1)(2jL + 1)

~− 2pπ
q

+O

[(
~− 2pπ

q

)0
]
. (2.55)

Since for non-vanishing GV invariants ndjL,jR , the sum 2jL+2jR+d is always an odd integer,

we find that the poles from perturbative and non-perturbative contributions cancel each

others.

The total contribution to the quantum phase volume is then

vol(E, ~) = volp(E) + volnp(E). (2.56)

We consider as examples the some special cases ~ = π, 2π, 3π, 5π. Expanding the total

quantum phase volume around these points, we find that indeed the poles cancel out. The

results of the expansion for large energy up to the first few orders are

vol(E, π) =
9E2

2
− 5π2

8
− 3π

2
e−3E − 9

4
(1 + 10E)e−6E − 17π

2
e−9E

− 9

16
(7 + 444E)e−12E − 1143π

10
e−15E +O(e−18E), (2.57)

vol(E, 2π) =
9E2

2
− π2 + 9(1 + 5E)e−3E − 9

4
(7 + 222E)e−6E + (8007E − 188)e−9E

+
3

16
(40363− 797076E)e−12E +O(e−15E), (2.58)

vol(E, 3π) =
9E2

2
− 13π2

8
+

9π

2
e−3E − 9(1 + 10E)

4
e−6E +

51π

2
e−9E

−9(7 + 444E)

16
e−12E +

3429π

10
e−15E +O(e−18E), (2.59)

vol(E, 5π) =
9E2

2
− 29π2

8
− 3π

√
5(5− 2

√
5) e−

6
5
E +

15π

2

√
5− 2

√
5 e−

12
5
E

−15π

2
e−3E +O(e−

18
5
E). (2.60)
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We can solve the energy spectrum in large E expansion. In the leading order we

can neglect exponentially small contributions which are powers of e−E . We denote the

leading order energy E
(n)
0 , which should not be confused with the one in perturbative

expansion (2.6) for small ~. The Bohr-Sommerfeld condition gives

E
(n)
0 =

1

3

[
π2 +

~2

4
+ 2π~(2n+ 1)

] 1
2

. (2.61)

The leading order formula (2.61) is actually a good approximation already. The first

exponential correction in the large E expansion is the form e−3E0 from the perturbative

contribution (2.50) and the form e−
6πE0

~ from the non-perturbative contribution (2.54).

So the perturbative contribution dominates over the non-perturbative contribution for

0 < ~ < 2π, and vice versa for h > 2π. The first dominant correction is proportional to

the greater one of e−3E0 and e−
6πE0

~ , i.e max(e−3E0 , e−
6πE0

~ ). It is easy to see that the

maximum of max(e−3E0 , e−
6πE0

~ ) is achieved at ~ = 0 and ~ = ∞. In both cases, the

first exponential correction is proportional to e−π = 0.043 � 1, so the large E expansion

converges well for large or small ~. On the other hand, for a fixed quantum level n, the best

convergence occurs at ~ = 2π, where max(e−3E0 , e−
6πE0

~ ) is at its minimum of e−π
√

8n+6.

We use the ansatz for the large E expansion of energy spectrum

E(n)(~) = E
(n)
0 +

∞∑
j,k=1

cj,k exp

[
−3

(
j +

2πk

~

)
E

(n)
0

]
, (2.62)

where the exponentials may be the same for different pairs of (j, k) if ~
π is a rational

number, and one should eliminate such redundancies in the sum. We can plug in the large

E expansion of the phase volume vol(E, ~) and solve for the expansion coefficients cj,k with

the Bohr-Sommerfeld quantization condition. We find the results for ~ = π, 2π, 3π, 5π for

the fist few terms

E(n)(π) = E0 +
πe−3E0

6E0
+

180E3
0 + 18E2

0 − 6π2E0 − π2

72E3
0

e−6E0 +O(e−9E0),

E(n)(2π) = E0 −
5E0 + 1

E0
e−3E0 − 78E3

0 + 63E2
0 + 12E0 + 2

4E3
0

e−6E0 +O(e−9E0),

E(n)(3π) = E0 −
π

2E0
e−3E0 +

20E3
0 + 2E2

0 − 6π2E0 − π2

8E3
0

e−6E0 +O(e−9E0),

E(n)(5π) = E0 +

√
5(5− 2

√
5) π

3E0
e−

6
5
E0 +O(e−

12
5
E0), (2.63)

where leading order energy is available in (2.61), and without confusion of notation we hide

the quantum level n by writing E
(n)
0 ≡ E0. We see that the dependence of the quantum

level n only enters through E0.

We compute the numerical values of the energy spectrum for the first two quantum

levels n = 0, 1, for the cases of ~ = π, 2π, 3π, 5π in the three tables 1.
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E(n)(~ = π) n = 0 n = 1

E0 1.887862233190 2.819665699411

e−3E0 1.888824651490 2.819705063956

e−6E0 1.888853325078 2.819705175360

e−9E0 1.888853129661 2.819705175330

e−12E0 1.888853129275 same as above

e−15E0 1.888853129291 same as above

(a)

E(n)(~ = 2π) n = 0 n = 1

E0 2.565099660324 3.918254452846

e−3E0 2.562647489810 3.918213189762

e−6E0 2.562642082069 3.918213188300

e−9E0 2.562642068660 same as above

e−12E0 2.562642068624 same as above

e−15E0 same as above same as above

(b)

E(n)(~ = 3π) n = 0 n = 1

E0 3.184927013119 4.827342189413

e−3E0 3.184892064364 4.827342022324

e−6E0 3.184892073456 same as above

e−9E0 3.184892073458 same as above

(c)

E(n)(~ = 5π) n = 0 n = 1

E0 4.349338083980 6.391337574671

e−
6
5
E0 4.351454881204 6.391461830203

e−
12
5
E0 4.351436181660 6.391461745619

e−3E0 4.351437478436 6.391461747548

e−
18
5
E0 4.351437387521 6.391461747487

e−
21
5
E0 4.351437375361 6.391461747486

e−
24
5
E0 4.351437377729 same as above

e−
27
5
E0 4.351437377918 same as above

e−6E0 4.351437377883 same as above

e−
33
5
E0 same as above same as above

(d)

Table 1. The energy E(n) from the large E expansion (2.63), for the first two quantum levels

n = 0, 1, for the cases of ~ = π, 2π, 3π, 5π. Each row in the tables denotes the result up to a certain

order in the large E expansion. With the knowledge of the Gopakumar-Vafa invariants up to degree

d, we can compute the corrections up to (but not include) order e−min( 6π2

~ ,3)(d+1)E0 . We underline

the digits that are checked correctly by the numerical calculations in table 2.

For the remaining part of this subsection, we consider the limit of large Planck constant

~→∞. In this case the power series in the perturbative contribution (2.50) is exponentially

small and negligible. According to the formula (2.61), the energy eigenvalues scale like

E ∼ ~, so the higher order terms in the deformed A-period (2.48) are also exponentially

small since z = e−3E ∼ e−~, i.e. we have

t̃ = log(z) +O(e−~) = −3E +O(e−~), ~→∞. (2.64)

If we neglected the non-perturbative contribution, the formula (2.61) would have been the

exact result up to exponentially small corrections in large ~ limit. The non-perturbative

contribution (2.54) scales like ~2 and corrects the formula. We can write the first two terms

in the large ~ expansion

E(~) = c0~ + c1(~) +O
(

log(~)2

~

)
, ~→∞. (2.65)
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E(n)(~ = π) n = 0 n = 1

100× 100 1.888853129410 2.819705175780

200× 200 1.888853129291 2.819705175330

300× 300 same as above same as above

(a)

E(n)(~ = 2π) n = 0 n = 1

200× 200 2.562642068746 3.918213188587

300× 300 2.562642068624 3.918213188301

400× 400 same as above 3.918213188300

500× 500 same as above same as above

(b)

E(n)(~ = 3π) n = 0 n = 1

200× 200 3.184892089665 4.827342052551

300× 300 3.184892073588 4.827342022603

400× 400 3.184892073461 4.827342022329

500× 500 3.184892073458 4.827342022324

(c)

E(n)(~ = 5π) n = 0 n = 1

200× 200 4.351448440482 6.391478572375

300× 300 4.351437967258 6.391462474309

400× 400 4.351437530025 6.391461798928

500× 500 4.351437500259 6.391461752377

(d)

Table 2. The energy E(n) from the matrix (2.76), for the first two quantum levels n = 0, 1, for

the cases of ~ = π, 2π, 3π, 5π. Each row in the tables denotes the finite size of the matrix for

the eigenvalue computations. We underline the digits that are checked correctly by the large E

expansion calculations in table 1.

We will see that the leading coefficient c0 is slightly decreased from the naive value of 1
6

in (2.61) by the non-perturbative effects. Also it is not a simple power expansion but there

will be logarithmic dependence at the sub-leading terms. We have kept the ~ dependence

in the second term c1(~) in anticipating of this fact.

Let us determine the first two terms c0, c1(~) in the above expansion. The total quan-

tum phase volume becomes

vol(E, ~) =

9E2

2~2
− 1

8
− 3

4π2

∑
jL,jR

∞∑
m,d=1

d

m2
ndjL,jR(−1)2jL+2jR+md(2jR + 1)(2jL + 1)

× e−
6πmdE

~

 ~2 +O(~0), ~→∞. (2.66)

Here the sum is exactly the B-period with flat coordinate −6πE
~ . We shall look for c0, c1(~)

such that in the above expansion, the coefficient of ~2 vanishes and the coefficient of ~
is (2n + 1)π according to the Bohr-Sommerfeld quantization condition. We introduce a

complex structure parameter x and denote

−6πE(~)

~
= w1(x), (2.67)

where the formula for the A-period w1(x) is available in (2.11). In terms of the parameter

x, the quantum phase volume (2.66) can be further simply written as

vol(E, ~) =

[
w2(x)

8π2
− 1

8

]
~2 +O(~0), ~→∞, (2.68)
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where w2(x) is the B-period available also in (2.11). Now we expand around x ∼ 1
27 and

use the facts w2( 1
27) = π2 and w′2( 1

27) = −36
√

3π from the previous subsections, we find

vol(E, ~) = −9
√

3

2π

(
x− 1

27

)
~2 +O

((
x− 1

27

)2

~2

)
+O(~0), ~→∞. (2.69)

We see that if we identify the parameter

1

27
− x =

2π2(2n+ 1)

9
√

3~
+O

(
1

~2

)
, (2.70)

then the Bohr-Sommerfeld quantization condition is satisfied for the positive ~ power terms

in the quantum phase volume.

When we analytically continue from x ∼ 0 to x ∼ 1
27 , the A-period w1(x) is a linear

combination that contains the logarithmic solution t2 in (2.13). As a result, the c1(~) is

not simply a constant. More precisely, the A-period is actually a hypergeometric function

with logarithmic cut at x ∼ 1
27 , and the expansion is

w1(x)=w1

(
1

27

)
+

√
3(1− 27x)

2π

[
log

(
1

27
− x
)
− 1

]
+O

[
log

(
1

27
− x
)(

x− 1

27

)2
]
,

(2.71)

where w1( 1
27) = −2.90759 is still a finite number. The leading terms determine the full

expression as a linear combination of the conifold periods in (2.13)

w1(x) = w1

(
1

27

)
+

27
√

3

2π
[t2(x)− t1(x)]. (2.72)

We can plug the relation (2.70) into the expansion (2.71) and use the relation (2.67) to

determine c0 and c1(~) as

c0 = −
w1

(
1
27

)
6π

= 0.154253, c1(~) =
2n+ 1

2

{
log

[
9
√

3~
2π2(2n+ 1)

]
+ 1

}
. (2.73)

We shall test the large ~ expansion (2.65) with the above coefficients by numerical calcu-

lations in the next subsection.

2.4 Numerical calculations of the spectrum

We shall test the results of the non-perturbative quantum contributions in the previous

subsection by direct numerical calculations of the quantum spectrum from the Hamilto-

nian (2.3). A simple choice of the basis is the wave eigenfunction of the quantum harmonic

oscillator with mass m and frequency w

ψn(x) =
1√

2nn!

(mw
π~

) 1
4
e−

mwx2

2~ Hn

(√
mw

~
x

)
, (2.74)
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where Hn(x) are the Hermite polynomials. A useful integral in [14] is the following∫ ∞
−∞

e−x
2
Hn1(x+ y)Hn2(x+ z)dx = 2n2

√
πn1!zn2−n1Ln2−n1

n1
(−2yz), n1 ≤ n2,

(2.75)

where Lαn(z) are the Laguerre polynomials.

The action of momentum operator is ep̂ψ(x) = ψ(x− i~). The matrix element can be

calculated for n1 ≤ n2 as

〈ψn1 |eĤ |ψn2〉 = 〈ψn1 |ex̂ + e−
x̂
2

+p̂ + e−
x̂
2
−p̂|ψn2〉

=

(
~

2mw

)n2−n1
2
√
n1!

n2!

{
e

~
4mwLn2−n1

n1

(
− ~

2mw

)
+Ln2−n1

n1

(
−~(4m2w2+1)

8mw

)

×e
~(4m2w2+1)

16mw

[(
−imw − 1

2

)n2−n1

+

(
imw − 1

2

)n2−n1
]}

, (2.76)

and the matrix element for n1 > n2 are related by the symmetry 〈ψn1 |eĤ |ψn2〉=〈ψn2 |eĤ |ψn1〉.
Here we have shifted the momentum p̂→ p̂− x̂

2 in the Hamiltonian (2.3) so that the matrix

element is real and convenient for numerical calculations. This is somewhat different from

the convention in previous subsection 2.2 where we shifted x̂ instead. We choose the mass

and the frequency mω =
√

3
2 from the quadratic term in the small ~ expansion of the above

eĤ , which seems to have the best convergence behavior as we increase the matrix size.

We compute the matrix elements 〈ψn1 |eĤ |ψn2〉 up to some finite level n, and compute

the eigenvalues of the finite matrix numerically. We expect that when the matrix size is

large, the eigenvalues should approach the true quantum energy spectrum asymptotically.

The results of the numerical calculations for the first two quantum levels and for the cases

of ~ = π, 2π, 3π, 5π are summarized in tables 2. We note that for larger values of ~,

the convergence of the direct numerical calculations from increasing matrix size becomes

very slow.

We may also try to improve the convergence by the well known Padé approximation.

To do this, we compute the energy eigenvalues with increasing sizes with a fixed step. For

example, we can use the eigenvalues with matrix sizes 50n × 50n, with n = 1, 2, · · · , up

to some finite n. The Padé approximation can be applied to any finite sequence, and in

principle improves its convergence. For more details, see the book [7].

We can compare the results in the tables 1 and the tables 2. In particular, for the

cases ~ = π, 2π, 3π, the two methods converge to the same spectrum and all 12 decimal

digits completely agree. However for the case ~ = 5π, the results of the two methods are

different starting from the 7th decimal digit. We study the discrepancy in more details

in the next subsection, and discover more terms denoted as · · · in the non-perturbative

formula (2.54).

Now we turn to the numerical test of the large ~ expansion (2.65) with the coeffi-

cients (2.73). To do this, ideally we should compute the spectrum with very large ~.

However, as mentioned, for a fixed matrix size, the numerical precision in the computation
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of the spectrum gets worse for larger ~. It is beyond our computational ability to increase

to the matrix size up to certain level. Instead, we will use the well-known Richardson

extrapolation method to test the results (2.73). After some trials, we find that the range

~ ∼ (10, 20) provide the best trade-off between larger ~ and better numerical precision.

Suppose f(~) has the expansion

f(~) = f0 +
fn
~n

+ · · · , ~ ∼ ∞, (2.77)

Then we can eliminate the ~−n term using the n-th order Richardson transformation

Rn[f ](~) =
~nf(~)− (~− s)nf(~− s)

~n − (~− s)n
, (2.78)

where s could be any constant and for simplicity we choose s = 1.

If there are logarithmic terms in the expansion, e.g. f(~) = f0 + fn log(~)
~n + · · · . We

can still use the Richardson transformation to eliminate the sub-leading contribution. One

can check that doing the transformation twice, i.e. R
(2)
n [f ] ≡ Rn[Rn[f ]], will work. More

generally, repeating (k + 1)-times the n-th Richardson transformation R
(k+1)
n [f ], we can

eliminate a sub-leading contribution of the form log(~)k

~n .

Furthermore, if f(~) has the logarithmic behavior f(~) = f0 log(~) + f1 + · · · , we can

define a 0-th order Richardson transformation

R0[f ](~) =
~[f(~)− f(~− s)]

s
= f0 +O

(
1

~

)
, (2.79)

which can isolate the coefficient of logarithmic term.

We calculate the energy spectrum E(n)(~) numerically for the integer values of 5 ≤ ~ ≤
20 up to matrix size 900×900 with a step of 50, and also perform a Padé approximation to

get the energy spectrum closer to the actual values. The results are displayed in tables 3.

The expected values in the limit ~→∞ can be found from the formula (2.73). We use the

Richardson extrapolations explained above to eliminate some sub-leading corrections, and

the results agree well with the expected values.

2.5 Higher order non-perturbative contributions from precision spectroscopy

In this subsection we fix the terms denoted as · · · in the the non-perturbative formula (2.54).

We see from tables 1, 2, the ground state energies for the case of ~ = 5π disagree at the

7th decimal digit, which corresponds to the order e−
18
5
E0 in tables 1, coming from the

3rd sub-leading order of the large E expansion of the non-perturbative contribution. In

order to account for the discrepancy, we improve the non-perturbative formula (2.54) by

the following ansatz

volnp(E) = −~
2

∑
jL,jR

∞∑
m,d=1

ndjL,jR
m

(−1)2jL+2jR+md

×
[
sin

(
6π2md

~

)
e

2πmdt̃
~ + c3

(
π2md

~

)
e

6πmdt̃
~ + · · ·

]

×
(2jR + 1) sin

[
4π2m(2jL+1)

~

]
sin2

(
2π2m

~

)
sin
(

4π2m
~

) . (2.80)
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~ E(0)(~)
~ R

(3)
2

[
R

(2)
1

[
E(0)(~)

~

]]
R

(3)
1 [R0[f

(0)
1 (~)]] R

(3)
1 [f

(0)
2 (~)]

10 0.32952383266224054983 0.15375 0.49905 0.46847

11 0.3168192283748354037 0.15395 0.49509 0.46783

12 0.306038429600140043 0.15409 0.49257 0.46700

13 0.29675930235587053 0.15418 0.49105 0.46610

14 0.2886768299098925 0.15424 0.49020 0.46520

15 0.2815647828822417 0.15428 0.48981 0.46433

16 0.275251591157762 0.15430 0.48973 0.46351

17 0.269604617679863 0.15431 0.48986 0.46276

18 0.26451959701770 0.15432 0.49012 0.46206

19 0.25991335556279 0.15432 0.49047 0.46143

20 0.2557186778515 0.15433 0.49087 0.46086

(a)

~ E(1)(~)
~ R

(3)
2

[
R

(2)
1

[
E(1)(~)

~

]]
R

(3)
1 [R0[f

(1)
1 (~)]] R

(3)
1 [f

(1)
2 (~)]

10 0.498181382027535340 0.15227 1.5749 -0.47827

11 0.476700618286814275 0.15256 1.5610 -0.47247

12 0.45818227232909232 0.15281 1.5490 -0.46821

13 0.4420182255885214 0.15304 1.5387 -0.46512

14 0.4277607574408575 0.15323 1.5299 -0.46293

15 0.415072099998281 0.15340 1.5225 -0.46142

16 0.403692091900943 0.15355 1.5163 -0.46042

17 0.39341673271950 0.15367 1.5110 -0.45982

18 0.38408355078470 0.15377 1.5067 -0.45951

19 0.3755613681111 0.15386 1.5030 -0.45942

20 0.3677429831319 0.15393 1.5000 -0.45950

(b)

lim
~→∞

E(n)(~)
~ lim

~→∞
R0[f

(n)
1 (~)] lim

~→∞
f

(n)
2 (~)

theoretical value c0 = −w1( 1
27

)

6π
2n+1

2
2n+1

2

{
log
[

9
√

3
2π2(2n+1)

]
+ 1
}

n = 0 0.154253 0.5 0.381962

n = 1 0.154253 1.5 -0.502033

(c)

Table 3. The Richardson transformations of the energy spectrum for n = 0, 1 quantum levels.

Here the functions denote f
(n)
1 (~) = E(n)(~) − c0~ and f

(n)
2 (~) = E(n)(~) − c0~ −

(
n+ 1

2

)
log(~).

The theoretical asymptotic values can be found in the formula (2.73). Here for example the trans-

formation R
(3)
2

[
R

(2)
1

[
E(0)(~)

~

]]
should eliminate the corrections to c0 up to the form of log(~)2

~2 . We

see that the results of the extrapolation agree well with the theoretical values in ~ → ∞ limit for

the first two coefficients, while the errors for the last column are somewhat larger.
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Here we parametrize the correction c3

(
π2md

~

)
as a function of md

~ , by analogy with the

leading term and the exponents. Since the case of m = d = 1 is the dominant contribution,

we can neglect the dependence on the md factor for the first approximation. We should

try to determine the exact formula of c3

(
π2

~

)
.

We compute the energy spectrum for the first few quantum levels with Gopakumar-

Vafa invariants up to degree d = 7 and the improved ansatz (2.80), using the method in

subsection 2.3. The error from the actual value is estimated by the last term in the large

energy expansion, e.g. in (2.63). On the other hand, we also compute the spectrum using

the numerical method in subsection 2.4. The computation is done with increasing matrix

sizes up to 900× 900 and we perform a Padé transformation to the sequence. In this case

the magnitude of the error from the actual value is estimated by the difference of the last

two terms in the converging sequence.

The results for some samples of Planck constants and for the first two quantum levels

n = 0, 1 are listed in table 4. The result from the Bohr-Sommerfeld method depends on

the function c3

(
π2

~

)
and as a good approximation we only keep the linear term. If the size

of the difference of the energies from the two methods at c3 = 0 is much bigger than those

of the two estimated errors, then there must be significant corrections from the c3

(
π2

~

)
term to account for the discrepancy, and we can reliably solve for c3

(
π2

~

)
by equating the

results for energy spectrum. Otherwise, the contribution of the c3

(
π2

~

)
term can not be

distinguished from the computational uncertainties. We can still solve for c3

(
π2

~

)
for some

special values of ~ at which we may suspect c3

(
π2

~

)
to be zero, and if the solution for

c3

(
π2

~

)
is indeed numerically very close to zero, we may infer that it is actually zero since

otherwise its contribution would cause discrepancy unaccounted for by the computational

uncertainties.

In order to determine the formula for c3

(
π2

~

)
, we solve for the values of c3

(
π2

~

)
for

many cases of Planck constants ~ and for the ground state quantum level n = 0. We choose

the values of Planck constant not too small so that the non-perturbative contributions are

significant. On the other hand, the Planck constant should not be too large either, so the

numerical calculations of matrix eigenvalues do not converge too slowly. We find that the

range 5 ≤ ~ ≤ 20 is best for the calculations. After many guesses, we find the correct exact

formula

c3

(
π2

~

)
=

4

3
sin2

(
2π2

~

)
sin

(
18π2

~

)
, (2.81)

which agrees well with the numerical solutions of c3

(
π2

~

)
for all cases of Planck constants.

The comparisons are listed in table 5.

We note that the contribution of the above formula (2.81) to the quantum phase

volume (2.80) indeed has no singularity for any finite value of Planck constant so it does

not spoil the earlier cancellation between non-perturbative and perturbative contributions.

Furthermore this contribution vanishes for cases of Planck constants when 18π
~ are integers.
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E(n)(~), BS and numerical methods estimated error c3

(
π2

~

)
~ = 5, n = 0 2.29568495606757869508− 3.6500× 10−12c3 −3.54× 10−19 −0.5741

2.29568495606967425812 −1.89× 10−26

~ = 5, n = 1 3.50180235547641342869− 2.8819× 10−18c3 −5.99× 10−32 −0.5740

3.50180235547641343034 −4.45× 10−26

~ = 6, n = 0 2.50451082107748482697− 1.0223× 10−9c3 1.41× 10−13 −0.028016

2.50451082110612706523 −2.10× 10−24

~ = 6, n = 1 3.82918378903003033292− 2.5384× 10−15c3 2.21× 10−27 −0.028287

3.82918378903003040473 −7.41× 10−24

~ = 7, n = 0 2.70805504957086115105− 1.3608× 10−9c3 1.36× 10−17 0.033687

2.70805504952501980724 −1.27× 10−22

~ = 7, n = 1 4.13741780601652385134− 8.6029× 10−15c3 3.64× 10−32 0.032519

4.13741780601652357159 −7.84× 10−22

~ = 8, n = 0 2.90724838238745761819− 1.4014× 10−9c3 −1.28× 10−19 −0.11444

2.90724838254782722204 −3.04× 10−22

~ = 8, n = 1 4.43050401170032753981− 1.9355× 10−14c3 4.18× 10−33 −0.11118

4.43050401170032969180 −1.13× 10−20

~ = 9, n = 0 3.10279439624530536542− 2.5019× 10−9c3 −1.10× 10−19 0.6842

3.10279439453352800511 −1.17× 10−20

~ = 9, n = 1 4.71127424813225496046− 6.7214× 10−14c3 −4.99× 10−32 0.6837

4.71127424813220900419 −1.43× 10−19

~ = 10, n = 0 3.29523832180536503746− 4.8255× 10−9c3 −2.31× 10−22 −0.9982

3.29523832662240549825 −4.61× 10−20

~ = 10, n = 1 4.98181382027512372478− 2.3031× 10−13c3 −4.48× 10−33 −0.9973

4.98181382027535340234 −1.37× 10−18

Table 4. We compare the energy spectrum from the two methods, i.e. the Bohr-Sommerfeld and

numerical methods. We compute for many cases of Planck constants, and list some examples

in this table. As a consistency check of the calculations, we can see that the solution of c3(π
2

~ )

is independent of the quantum level n, which only appears on the right hand side of the Bohr-

Sommerfeld equation.

Similarly we can proceed to the next orders. Our numerical data are sufficient to help

us to guess the following exact formulas for the first few coefficients

volnp(E) = −~
2

∑
jL,jR

∞∑
m,d=1

ndjL,jR
m

(−1)2jL+2jR+md
(2jR + 1) sin

[
4π2m(2jL+1)

~

]
sin2

(
2π2m

~

)
sin
(

4π2m
~

)
×

[ ∞∑
k=1

ck

(
π2md

~

)
e

2kπmdt̃
~

]
, with the following coefficients
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~ c3

(
π2

~

)
4
3 sin2

(
2π2

~

)
sin
(

18π2

~

)
~ c3

(
π2

~

)
4
3 sin2

(
2π2

~

)
sin
(

18π2

~

)
5 −0.5741 −0.57405 π −1.9087× 10−4 0

6 −0.028016 −0.028291 2π 1.0425× 10−10 0

7 0.033687 0.032493 3π −1.5743× 10−11 0

8 −0.11444 −0.11109 4π 1.3335 1.3333

9 0.6842 0.68371 4π
3 −1.3333 −1.3333

10 −0.9982 −0.99723 5π −1.1426 −1.1470

11 −0.5398 −0.54261 5π
2 −0.27420 −0.27077

12 1.0509 1.0416 5π
3 0.27150 0.27077

13 1.1761 1.1846 6π −1.0141× 10−7 0

14 0.14676 0.15955 7π
2 −0.5472 −0.54987

15 −0.8268 −0.82597 7π
3 −0.19387 −0.19625

16 −1.1757 −1.1806 8π
3 0.47139 0.47140

17 −0.9564 −0.95905 9π
4 1.8126× 10−3 0

18 −0.45380 −0.45412 10π
3 −1.1488 −1.1470

19 0.07384 0.073840 15π
4 0.7855 0.77515

20 0.47826 0.47892 18π
5 7.060× 10−3 0

Table 5. We solve the numerical values of c3

(
π2

~

)
for the ground state level n = 0 and compare

with the conjectured formula for many cases. The agreements provide a convincing test of the

formula (2.81).

c1(x) = sin(6x), c2(x) = 0,

c3(x) =
4

3
sin2(2x) sin(18x), c4(x) = 4 sin2(6x) sin(24x),

c5(x) = 4 sin(6x) sin(30x)
[
7 sin(18x) + 16 sin(4x) sin(6x) sin(8x)

+4 sin(2x) sin(6x) sin(10x)
]
,

· · · . (2.82)

Again these next order coefficients consist of at least triple product sine functions, so their

contributions are non-singular for any finite value of ~. Although there is no obvious

pattern, it seems that the coefficient of e
2kπmdt̃

~ always contains a factor of sin
(

6kπ2md
~

)
,

so it vanishes when 6kπ
~ is an integer. If this is true, then in particular, all the higher order

contributions vanish when 6π
~ is an integer and the earlier formula (2.54) with only the

leading term is actually correct in these special cases.

In the large ~ limit, the higher order contributions to the quantum phase volume go

at most like a constant O(~0). So it does not affect the first two coefficients in the large ~
expansion of the energy spectrum in equation (2.65), but will contribute the higher order

terms.
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3 The local P1 × P1 model

This case has been studied in previous literature [19, 34] for a different formulation relevant

for the ABJM matrix model. As we mentioned in the introduction, although the two

formulations of Hamiltonian can be related classically by a coordinate transformation, the

relation between the quantum theories is more subtle. As such, although we follow the

same philosophy, our results for the quantum phase volume and spectrum are different

from previous works.

The geometry is described by the classical curve on (x, p) plane

ex + ep + z1e
−x + z2e

−p = 1, (3.1)

where z1, z2 are the complex structure modulus parameters of the geometry.

For simplicity one focuses on the z1 = z2 = z case. The Hamiltonian operator is

derived from the curve (3.1) by the following rescaling and shifts

z → e−2H , x→ x−H, p→ p−H. (3.2)

Promoting the x, p to the quantum position and momentum operators, we find the one-

dimensional quantum mechanical Hamiltonian

Ĥ = log(ex̂ + e−x̂ + ep̂ + e−p̂). (3.3)

As in the previous P2 example, we will compute the perturbative deformed periods using

the differential operators in [27]. Our method is simpler than that of [34, 39] for fixing the

constant term in the phase volume at order ~2.

3.1 Classical and perturbative contributions

We first compute the perturbative spectrum by the Bohr-Sommerfeld method. The phase

space is depicted in figure 2, which asymptotes to the shape of a square for large E. Here

for the z1 = z2 = z special case, the relevant Picard-Fuchs differential equation for the

P1 × P1 model is [
Θ3
z − 16z

(
Θz +

1

2

)2

Θz

]
w(z) = 0, (3.4)

where Θz = z∂z. The classical phase volume can be found [39] by solving the above

equation. The constants are fixed by computing the phase volume in the large energy

limit. Here we simply give the result

vol0(E) = 4E2 − 2π2

3
+

∞∑
n=1

4

n

(
Γ
(
n+ 1

2

)
Γ
(

1
2

)
n!

)2

e−2n(E−E0)

[
ψ

(
n+

1

2

)
− ψ(n+ 1)− 1

2n
+ E0 − E

]
,

where E0 = log(4) is the classical ground state energy. One can check numerically vol0(E0)

vanishes, consistent with the leading order Bohr-Sommerfeld equation.
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Figure 2. The phase space of local P1 × P1 model in the real (x, p) place, parametrized by the

equation ex + e−x + ep + e−p ≤ eE , for the example of E = 4.

We compute the derivatives of the classical phase volume at E = E0 and the results are

vol′0(E0) = 4π, vol′′0(E0) = 2π, vol
(3)
0 (E0) =

π

2
, vol

(4)
0 (E0) = −π

4
. (3.5)

We use the differential operator in [27] to compute the quantum correction to the phase

volume. The first correction and it derivative are

vol1(E0) = −e
−2E0

6
vol′0(E0)− 1− 8e−2E0

48
vol′′0(E0) = − π

16
, (3.6)

vol′1(E0) =
π

64
.

The first few order energy spectrum from the Bohr-Sommerfeld equation is

E
(n)
1 =

(2n+ 1)π

vol′0(E0)
=

(2n+ 1)

4
,

E
(n)
2 = − 1

vol′0(E0)

[
vol1(E0) +

(E
(n)
1 )2

2
vol′′0(E0)

]
= −n

2 + n

16
,

E
(n)
3 =

10n3 + 15n2 + 3n− 1

768
. (3.7)

In [34] the first order quantum phase volume vol1(E) is written in terms of the com-

plete elliptic integrals. There is a constant contribution in the large E limit, which was

calculated in [39] using the Wigner approach of quantization. Here we see that the constant

is naturally taken into account in the differential operator (3.6).
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We can again do the calculations in time-independent perturbation theory by expand-

ing eĤ to ~3 order and calculating the corresponding corrections E(n)
1 , E(n)

2 . Up to order ~3,

eĤ = 4 + x̂2 + p̂2 +
1

12

(
x̂4 + p̂4

)
+

2

6!

(
x̂6 + p̂6

)
+O(~4). (3.8)

Similarly to the previous example, we see the quadratic term as a simple harmonic oscilla-

tor. The usual creation and annihilation operators are defined as

â =
x̂+ ip̂√

2~
, â† =

x̂− ip̂√
2~

. (3.9)

Treating 1
12

(
x̂4 + p̂4

)
+ 2

6!

(
x̂6 + p̂6

)
as perturbation, we can get the corrections to the

energy of the harmonic oscillator. We skip the details which are similar to the P2 model

in the previous section. We find the eigenvalues of eĤ and compute the logarithm

E(n) = log

(
4 + (2n+ 1)~ +

2n2 + 2n+ 1

8
~2 +

2n3 + 3n2 + 3n+ 1

192
~3

)
+O(~4)

= log(4) +
2n+ 1

4
~− n2 + n

16
~2 +

10n3 + 15n2 + 3n− 1

768
~3 +O(~4), (3.10)

which agrees with the energy spectrum (3.7) from Bohr-Sommerfeld method.

We should note that the perturbative energy spectrum of the Hamiltonian related

classically by a coordinate transformation is also presented in [34] up to second order,

quoted as the unpublished work of Hatsuda, Moriyama and Okuyama. Our perturbative

method here should be similar, and we present here for the readers’ convenience.

3.2 Non-perturbative contributions

The exact deformed periods are also calculated in [2, 19]. Here we review the calculations

for the readers’ convenience. The difference equation for the local P1 × P1 model in the

diagonal slice is

(ex + ze−x − 1)ψ(x) + ψ(x− i~) + zψ(x+ i~) = 0. (3.11)

Denoting X = ex, q = ei~, and also V (X) = ψ(x)
ψ(x−i~) as before, the difference equation can

be reformulated as (
X +

z

X
− 1
)

+
1

V (X)
+ zV (Xq) = 0. (3.12)

We still compute V (X) recursively as a power series of z whose coefficients are exact

functions of ~. The result, up to order z2, is

V (X) =
1

1−X
+

(q − 1)X − 1

(X − 1)2X(qX − 1)
z +

z2

q(X − 1)3X2(qX − 1)2(q2X − 1)

×[q − (q3 + 2q2 − 2q − 1)X + (2q4 − q3 − 3q2 + 2q − 1)X2

−(q5 − 2q4 + q3 − q2 + q)X3] +O(z3). (3.13)
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The power series in the deformed A-period is given by the following residue

t̃ = log(z) + 2

∮
dx

2πi
log(V (X)) = log(z) + 2

∮
dX

2πi

log(V (X))

X
(3.14)

= log(z) + 4z + 2

(
q +

1

q
+ 7

)
z2 + 2

(
2q2 +

2

q2
+ 12q +

12

q
+

116

3

)
z3 +O(z4),

where the residue is taken around X = 0. One can check this result for small ~ with the

previous formulas.

After fixing the constants, the exact ~ perturbative contribution to the quantum vol-

ume of the phase space

volp(E) = t̃2 − 2π2

3
− ~2

6
+
∑
jL,jR

∞∑
m,d=1

~d
m
ndjL,jRe

mdt̃ sin
m~(2jL+1)

2 sin m~(2jR+1)
2

sin3 m~
2

, (3.15)

where ndjL,jR =
∑

d1+d2=d n
d1,d2
jL,jR

are the refined Gopakumar-Vafa invariants with d1, d2

denoting the degrees of the two P1’s. We sum over the diagonal slice d = d1 + d2 due to

the specialization z1 = z2. The invariants have been computed in e.g. [30, 33], and listed

here in table 8 in the appendix. Comparing with the formula (2.50) for local P2 model,

there is no factor of (−1)md, since the convention for complex structure parameter z is the

same as the one usually used in topological string theory. Furthermore since for the local

P1× P1 model, the non-vanishing GV invariants nd1,d2jL,jR
always have odd integer 2jL + 2jR,

we can also for simplicity replace the factor (−1)2jL+2jR by −1.

The poles of the perturbative contributions appear at ~ = 2pπ
q for integers p, q. We

denote m = m0q, then it is

volp(E) =
∑
jL,jR

∞∑
m0,d=1

4πpd

m2
0q

3
ndjL,jRe

m0qdt̃ (2jL + 1)(2jR + 1)

~− 2pπ
q

+O

[(
~− 2pπ

q

)0
]
, (3.16)

where we have used (−1)m0p(2jL+2jR+1) = 1.

Similarly we write the non-perturbative contribution as

volnp(E) =
∑
jL,jR

∞∑
m,d=1

~
2m

ndjL,jR

[
sin

(
4π2md

~

)
e

2πmdt̃
~ + · · ·

] (2jR + 1) sin
[

4π2m(2jL+1)
~

]
sin2

(
2π2m

~

)
sin
(

4π2m
~

) .

(3.17)

We denote m = m0p, then the pole at ~ = 2pπ
q is

volnp(E) = −
∑
jL,jR

∞∑
m0,d=1

4πpd

m2
0q

3
ndjL,jRe

m0qdt̃ (2jL + 1)(2jR + 1)

~− 2pπ
q

+O

[(
~− 2pπ

q

)0
]
,

(3.18)

which exactly cancel the poles from perturbative contribution.
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In order to determine the higher order non-perturbative contributions, we calculate

the energy spectrum numerically. Again we use the harmonic oscillator basis. The matrix

element of the Hamiltonian for n1 6 n2 can be expressed as

〈ψn1 |eĤ |ψn2〉 = 〈ψn1 |ex̂ + e−x̂ + ep̂ + e−p̂|ψn2〉

=

(
~

2mω

)n2−n1
2
√
n1!

n2!
[1 + (−1)n2−n1 ]

{
e

~
4mωLn2−n1

n1

(
− ~

2mω

)
+(imω)n2−n1e

mω~
4 Ln2−n1

n1

(
−mω~

2

)}
, (3.19)

where we choose the mass m = 1
2 and the frequency ω = 2 as before.

Similarly as the local P2 model, we compare the energy spectrum from the Bohr-

Sommerfeld method and the direct numerical method. We find the first correction to

the non-perturbative formula (3.17) appears at the 4th order. After some high precision

calculations, we find the first few order formulas

volnp(E) =
~
2

∑
jL,jR

∞∑
m,d=1

ndjL,jR
m

(2jR + 1) sin
[

4π2m(2jL+1)
~

]
sin2

(
2π2m

~

)
sin
(

4π2m
~

)
×

[ ∞∑
k=1

ck

(
π2md

~

)
e

2kπmdt̃
~

]
, with the following coefficients

c1(x) = sin(4x), c2(x) = c3(x) = 0,

c4(x) = sin2(2x) sin(16x), c5(x) = 4 sin2(4x) sin(20x),

c6(x) = 8
[
3 sin2(4x) sin2(6x) + sin2(2x) sin2(8x) + sin2(10x)

]
sin(24x),

· · · . (3.20)

As in the previous P2 example, we can provide analytic expansion formulas for the

some special cases ~ = π, 2π. This have been done in [34] for the ABJM model related

to our convention by a coordinate transformation. The results of the expansion for large

energy up to the first few orders are

vol(E, π) = 4E2 − 5π2

6
− 16Ee−2E + (14− 48E)e−4E +

(
80− 640E

3

)
e−6E

+

(
2749

6
− 1128E

)
e−8E +

(
2760− 32896E

5

)
e−10E +O(e−12E), (3.21)

vol(E, 2π) = 4E2 − 4π2

3
− 8(1 + 4E)e−2E − (2 + 208E)e−4E +

64

9
(19− 276E)e−6E

+
37

6
(377− 3504E)e−8E +

208

75
(12197− 93360E)e−10E +O(e−12E). (3.22)

Note that in these cases, there is no contribution from the higher order corrections in (3.20)

since 4π
~ are integers.

– 31 –



J
H
E
P
0
9
(
2
0
1
4
)
1
5
0

The energy spectrum can also be solved in large E expansion. Neglecting the expo-

nentially small contributions which are powers of e−E , we can get the leading order energy

E
(n)
0 by using Bohr-Sommerfeld condition,

E
(n)
0 =

1

2

[
2π2

3
+

~2

6
+ (2n+ 1)π~

] 1
2

. (3.23)

It is easy to find that the first dominant exponential correction is proportional to the

greater of e−2E0 , e−
4πE0

~ , whose maximum is achieved at ~ = 0 and ~ =∞. In both cases,

the first exponential correction is proportional to e
−
√

2
3
π

= 0.077 � 1, which ensure that

we can reasonably do the large E expansion. Additionally, for a fixed quantum level n,

the best convergence occurs at ~ = 2π, where max(e−2E0 , e−
4πE0

~ ) is at its minimum of

e
−π

√
4n+ 10

3 .

We use the ansatz for the large E expansion of energy spectrum

E(n)(~) = E
(n)
0 +

∞∑
j,k=1

cj,k exp

[
−2

(
j +

2πk

~

)
E

(n)
0

]
, (3.24)

which is similar to P2 model. We give the results for ~ = π, 2π for the fist few terms

E(n)(π) = E0 + 2e−2E0 − 8E0 − 1

4E0
e−4E0 +

8E0 − 3

3E0
e−6E0 +O(e−8E0), (3.25)

E(n)(2π) = E0 +
4E0 + 1

E0
e−2E0 − 24E3

0 + 31E2
0 + 8E0 + 2

4E3
0

e−4E0 +O(e−6E0), (3.26)

where leading order energy is available in (3.23), and without confusion of notation we hide

the quantum level n by writing E
(n)
0 ≡ E0. We see that the dependence of the quantum

level n only enters through E0.

Finally we also consider the energy spectrum in the limit of large Planck constant

~ → ∞ and use Richardson extrapolations to eliminate some sub-leading corrections to

compare with theoretical values. Since the method is also the same as P2 model, we just

give the results without detailed explanation. In the limit of large Planck constant ~→∞,

we have

t̃ = log(z) +O(e−~) = −2E +O(e−~), (3.27)

where the energy can be approximately written as

E(~) = c0~ + c1(~) +O
(

log(~)2

~

)
, (3.28)

with c0, c1(~) will be determined by Bohr-Sommerfeld quantization condition.

The total quantum phase volume becomes

vol(E, ~) =

4E2

~2
− 1

6
+

1

2π2

∑
jL,jR

∞∑
m,d=1

d

m2
ndjL,jR(2jL + 1)(2jR + 1)

e−
4πmdE

~

 ~2 +O(~0), ~→∞. (3.29)
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Here the sum is exactly the B-period with flat coordinate −4πE
~ . Similarly, we introduce a

complex structure parameter x and denote

−4πE

~
= ω1(x), (3.30)

where the formula for the A-period w1(x) is available in (3.14) by taking ~ = 0. In terms

of the parameter x, the quantum phase volume (3.29) can be further written as

vol(E, ~) =

[
ω2(x)

4π2
− 1

6

]
~2 +O(~0), ~→∞. (3.31)

By expanding around x ∼ 1
16 and using the facts ω2

(
1
16

)
= 2π2

3 and ω′2
(

1
16

)
= −32π,

we find

vol(E, ~) = − 8

π

(
x− 1

16

)
~2 +O

((
x− 1

16

)2

~2

)
+O(~0), ~→∞. (3.32)

The Bohr-Sommerfeld quantization condition gives

1

16
− x =

(2n+ 1)π2

8~
+O

(
1

~2

)
. (3.33)

The expansion around x ∼ 1
16 of ω1(x) is

ω1(x) = ω1

(
1

16

)
+

1− 16x

π

[
log

(
1

16
− x
)
− 1

]
+O

[
log

(
1

16
− x
)(

x− 1

16

)2
]
,

(3.34)

where ω1( 1
16) = −2.33249 is a finite number. Now, we plug the relation (3.33) into the

expansion (3.34) and use the relation (3.30) to determine c0 and c1(~) as

c0 = −
ω1

(
1
16

)
4π

, c1(~) =
(2n+ 1)

2

[
log

(
8~

π2(2n+ 1)

)
+ 1

]
. (3.35)

The Richardson extrapolations is displayed in tables 6. Again similarly as in the P2 model,

the results agree well with the expected values.

4 The local F1 model

The local F1 geometry is a Hirzebruch surface described by the classical curve

ex + z1e
−x + ep + z2e

x−p = 1, (4.1)

where z1, z2 are the complex structure moduli parameters, known as the Batyrev coordi-

nates.

According to the studies in [31, 32], we can construct certain combinations of the

Batyrev coordinates, so that only one of the parameters is dynamical and the other pa-

rameters can be treated as mass parameters. The quantum period can be computed by the
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~ E(0)(~)
~ R

(3)
2

[
R

(2)
1

[
E(0)(~)

~

]]
R

(3)
1 [R0[f

(0)
1 (~)]] R

(3)
1 [f

(0)
2 (~)]

10 0.370352599041507561767 0.18473 0.51295 0.47393

11 0.35632351890932286621 0.18508 0.50645 0.47480

12 0.34449075192115692890 0.18530 0.50215 0.47511

13 0.3343608759257762637 0.18544 0.49933 0.47511

14 0.325579702979615019 0.18553 0.49751 0.47492

15 0.317886141191162611 0.18558 0.49636 0.47463

16 0.3110833112019403 0.18561 0.49565 0.47430

17 0.3050198205037168 0.18563 0.49525 0.47395

18 0.299577251911793 0.18565 0.49505 0.47360

19 0.2946615819217 0.18565 0.49499 0.47326

20 0.2901971574383 0.18565 0.49501 0.47294

(a)

~ E(1)(~)
~ R

(3)
2

[
R

(2)
1

[
E(1)(~)

~

]]
R

(3)
1 [R0[f

(1)
1 (~)]] R

(3)
1 [f

(1)
2 (~)]

10 0.5420213334291090387802 0.18503 1.5550 -0.46145

11 0.51912793976135814591 0.18499 1.5516 -0.45710

12 0.49945248956002739125 0.18501 1.5471 -0.45339

13 0.4823252431298052077 0.18505 1.5427 -0.45025

14 0.467255030845679054 0.18510 1.5387 -0.44759

15 0.4538725854033678 0.18515 1.5349 -0.44534

16 0.4418943644298189 0.18520 1.5315 -0.44344

17 0.431098657645001 0.18524 1.5285 -0.44183

18 0.421309341378977 0.18528 1.5257 -0.44046

19 0.412384550474093 0.18531 1.5232 -0.43930

20 0.404208602584861 0.18535 1.5209 -0.43830

(b)

lim
~→∞

E(n)(~)
~ lim

~→∞
R0[f

(n)
1 (~)] lim

~→∞
f

(n)
2 (~)

theoretical value c0 = −w1( 1
16

)

4π
2n+1

2
2n+1

2

{
log
[

8
π2(2n+1)

]
+ 1
}

n = 0 0.185614 0.5 0.394991

n = 1 0.185614 1.5 -0.462946

(c)

Table 6. The Richardson transformations of the energy spectrum for n = 0, 1 quantum levels

for the local P1 × P1 model. Here the functions denote f
(n)
1 (~) = E(n)(~) − c0~ and f

(n)
2 (~) =

E(n)(~)−c0~−(n+ 1
2 ) log(~). The theoretical asymptotic values can be found in the formula (3.35).

We see that the results of the extrapolation agree well with the theoretical values in ~ → ∞ limit

for the first two coefficients, while the errors for the last column are somewhat larger.
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Figure 3. The phase space of local F1 model in the real (x, p) place, parametrized by the equation

ex + e−x + ep + ex−p ≤ eE , for the example of E = 10.

derivatives of only the dynamical parameter. Furthermore, the complex structure moduli

space can be seen as a one-dimensional complex plane of the dynamical modulus parame-

ter, so we can solve the topological string amplitudes effectively as one-parameter models

and the holomorphic anomaly procedure is greatly simplified.

For the local F1 model, the correct combination is parametrized as z1 = mz2, z2 = z
m .

where z is the dynamical parameter and m is the mass parameter. For simplicity we again

choose a trivial mass m = 1. So that the classical curve is

ex + z2e−x + ep + zex−p = 1. (4.2)

This choice of z parameter is compatible with the derivation of Hamiltonian by the

scaling and shifts

z → e−H , x→ x−H, p→ p−H. (4.3)

The quantum Hamiltonian is then

Ĥ = log(ex̂ + e−x̂ + ep̂ + ex̂−p̂). (4.4)

4.1 Classical and perturbative contributions

The classical phase space is depicted in figure 3, which can be seen to asymptote to the

shape of a trapezium for large energy.

The classical minimum of the Hamiltonian is achieved at p = x
2 , x = x0, where x0 is

the only real root of the equation

ex0 − e−x0 + e
x0
2 = 0. (4.5)
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The analytic expression of x0 can be found by solving the above quartic equation for e
x0
2 ,

but it is too lengthy to display. Instead we note the numerical value x0 = −0.3989.

We can check the perturbative spectrum with Bohr-Sommerfeld method. Here Picard-

Fuchs equation is more complicated than the previous example. We can solve for momen-

tum p from the classical geometry (4.2), and find the linear combination of the first three

derivatives of z that is a total derivative of x. In this way we derive the Picard-Fuchs

differential equation

[(8 + 9z)∆(z)Θ3
z − z(1 + 128z + 936z2 + 1000z3 + 297z4)Θ2

z (4.6)

−2z2(32 + 282z + 294z2 + 99z3)Θz]w(z) = 0,

where as before Θz = z∂z and the discriminant is

∆(z) = 1 + z − 8z2 − 36z3 − 11z4. (4.7)

Also as before the discriminant vanishes at the classical minimum, i.e. we have ∆(z0) = 0

for z0 = e−E0 at the classical minimum E0 = log(2ex0 + 3e
x0
2 ) = 1.3349.

The Picard-Fuchs equation (4.6) is more complicated than the previous cases, and we

don’t have an analytic expression for the series solutions. Again there are three solutions

w0 = 1, w1(z) = log(z) + σ1(z), w2(z) = log2(z) + 2σ1 log(z) + σ2(z), (4.8)

where the first few terms of the power series are

σ1(z) = z2 + 2z3 +
3

2
z4 + 12z5 +

55

3
z6 +O(z7),

σ2(z) =
z

4
+

15

16
z2 +

91

36
z3 +

231

64
z4 +

6403

300
z5 +

115

3
z6 +O(z7).

We calculate the classical volume vol0(E) in large E limit to extract the possible

constant contribution from the first period ω0. The two solutions

p±(x) = log

[
(eE − ex − e−x)±

√
(eE − ex − e−x)2 − 4ex

2

]
(4.9)

for the momentum from the Hamiltonian (4.4) at energy E in the classical limit provide a

bounded region in the real (x, p) plane and further give the classical volume

vol0(E) =

∫
ex+e−x+ep+ex−p6eE

dxdp =

∫ b

a
(p+(x)− p−(x)) dx, (4.10)

where the range of the definite integral a, b are the two roots of the equation from the

square root term (eE − ex − e−x)2 − 4ex = 0, so that p+(x) = p−(x) at x = a, b, and

satisfying (eE − ex− e−x)2− 4ex > 0 for a < x < b. This integral is also quite complicated

to do exactly, and we imitate the procedure described in the P2 model. Taking large E

limit and neglecting exponentially small corrections, the integration range is then

a = −E +O(e−E), b = E +O(e−E). (4.11)
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Plugging p± in the phase volume (4.10) and substituting the integral range by (4.11),

we find

vol0(E) = 4E2 + 2

∫ E

−E
log

[
(1− ex−E − e−x−E) +

√
(1− ex−E − e−x−E)2 − 4ex−2E

2

]
dx.

Suppose x0 ∈ (−E,E) is a generic value in the integral range, with x0 +E ∼ E−x0 ∼ E in

the large E limit. We divide the definite integral into two parts, and neglect exponentially

small corrections

vol0(E) = 4E2 + 2

∫ E

x0
log
[
1− ex−E

]
+ 2

∫ x0

−E
log
[
1− e−x−E

]
dx. (4.12)

Using the same techniques as in the P2 model for the two definite integrals in the above

equation, we finally get

vol0(E) = 4E2 − 2π2

3
+O(e−E). (4.13)

From the calculations of the phase volume in large E, we find the formula for the classical

phase volume

vol0(E) = 4w2(e−E)− 2π2

3
, (4.14)

where we replace the variable z = e−E in the B-period. We can check numerically that the

classical phase volume vanishes at the minimum vol0(E0) = 0.

We can compute the derivatives of the classical phase volume at E0 numerically, and

the results are the followings

vol′0(E0) = 11.6326, vol′′0(E0) = 6.59633, vol
(3)
0 (E0) = 1.67216. (4.15)

The formula for the first few quantum phase volumes has been also obtained in [32]. The

first correction is

vol1(E) = −4z2(4 + 9z)vol′0(E) + (4 + 3z − 16z2 − 36z3)vol′′0(E)

24(8 + 9z)
, (4.16)

and the numerical value at classical minimum is vol1(E0) = −0.162671. Basing on this

result, we can easily get the first two orders energy spectrum numerically

E
(n)
1 =

(2n+ 1)π

vol′0(E0)
= 0.54014

(
n+

1

2

)
~, (4.17)

E
(n)
2 = − 1

vol′0(E0)

[
vol1(E0) +

(E
(n)
1 )2

2
vol′′0(E0)

]
= −0.0827179(n2 + n)− 0.00669548. (4.18)

We can also obtain this spectrum from the perturbation theory, similar to the previous

P2 model. We first redefine

X̂ = x̂− x0, P̂ = p̂− x̂

2
, (4.19)
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which are the small parameters around the classical minimum. The expansion is expressed

in X̂, P̂ below

eĤ = ex0 + e−x0 + 2e
x0
2 +

1

2m
P̂ 2 +

1

2
mω2X̂2 +

e
x0
2

3!

(
P̂ 2X̂ + P̂ X̂P̂ + X̂P̂ 2 − 3

4
X̂3

)
+

1

4!

[
e
x0
2

2
(P̂ 2X̂2 + P̂ X̂P̂ X̂ + P̂ X̂2P̂ + X̂P̂ 2X̂ + X̂P̂ X̂P̂ + X̂2P̂ 2 + 4P̂ 4 − 7

4
X̂4)

+ 2e−x0X̂4

]
+O(~

5
2 ), (4.20)

where the mass m = 1
2e
−x0

2 and the frequency ω =

√
2e

3x0
2 + 2e−

x0
2 + ex0 . The linear term

vanishes since we are expanding around the classical minimum.

We repeat the same procedure as in P2 model, and get the eigenvalue of eĤ perturba-

tively up to order ~2 as

eE
(n)

=2ex0 +3e
x0
2 +

(
n+

1

2

)
~ω+

~2

256m2ω2
[e
x0
2 (16m4ω4+8m2ω2−7)+16e−x0 ](2n2+2n+1)

− ex0

512

~2

m2ω4
(−4m2ω2 + 3)2(3n2 + 3n+ 1) + (4m2ω2 + 1)2(3n2 + 3n+ 2) +O(~3),

where the ~2 term in the first row on the right hand side is the correction from the quartic

terms in eĤ and the second row is the correction from cubic terms in eĤ . Taking into

account the numerical value x0 = −0.3989, we finally find the energy spectrum

E(n) = 1.3349 + 0.54014

(
n+

1

2

)
~− [0.0827179(n2 + n) + 0.00669548]~2 +O(~3),

(4.21)

which obviously agrees with the results (4.17), (4.18) of Bohr-Sommerfeld method.

4.2 Non-perturbative contributions

The difference equation is

(ex + z2e−x − 1)ψ(x) + ψ(x− i~) + zex+ i~
2 ψ(x+ i~) = 0. (4.22)

Denoting X = ex, q = ei~, and also V (X) = ψ(x)
ψ(x−i~) as before, the difference equation can

be reformulated as (
X +

z2

X
− 1

)
+

1

V (X)
+ zXq

1
2V (Xq) = 0. (4.23)

We still compute V (X) recursively as a power series of z whose coefficients are exact

functions of ~. The result, up to order z2, is

V (X) =
1

1−X
+

√
qX

(X − 1)2(1− qX)
z

+
q(q2 − q − 1)X3 − q(q2 + q + 1)X2 + (q2 + q + 1)X − 1

(X − 1)3X(qX − 1)(q2X − 1)
z2 +O(z3). (4.24)
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The power series in the deformed A-period is given by the following residue

t̃ = log(z) +

∮
dx

2πi
log(V (X)) = log(z) +

∮
dX

2πi

log(V (X))

X

= log(z) + z2 +
(1 + q)z3

√
q

+
3z4

2
+

(1 + 5q + 5q2 + q3)z5

q
3
2

+
(6 + 21q + 56q2 + 21q3 + 6q4)z6

6q2
+O(z7), (4.25)

where the residue is taken around X = 0. One can check this result for small ~ with the

previous formulas.

The exact ~ formula for the perturbative contribution to the quantum phase volume

is written similarly as previous examples

volp(E) = 4t̃2 − 2π2

3
− ~2

6
− ~

2

∑
jL,jR

∞∑
m,d=1

d

m
ndjL,jR(−1)2jL+2jR+mdemdt̃

×
sin m~(2jR+1)

2 sin m~(2jL+1)
2

sin3
(
m~
2

) , (4.26)

where the refined GV invariants ndjL,jR =
∑

dB+2dF=d n
dB ,dF
jL,jR

with the dB, dF denoting the

degrees of the base P1 and the fiber P1. The combination dB + 2dF = d is due to our

specialization of the complex structure parameters z1 = z2, z2 = z in the geometry (4.1).

We list the numbers in table 9 in the appendix. We check the formula with the perturbative

calculations in the previous subsection.

In the harmonic oscillator picture, the matrix element of the Hamiltonian for n1 6 n2

can be expressed as

〈ψn1 |eĤ |ψn2〉 = 〈ψn1 |ex0ex̂ + e−x0e−x̂ + e
x0
2 e

x̂
2

+p̂ + e
x0
2 e

x̂
2
−p̂|ψn2〉

=

(
~

2mω

)n2−n1
2
√
n1!

n2!

{
e

~
4mωLn2−n1

n1

(
− ~

2mω

)
×[ex0 + (−1)n2−n1e−x0 ] + e

x0
2 e

~(4m2ω2+1)
16mω

×Ln2−n1
n1

(
−~(4m2ω2 + 1)

8mω

)[(
−imω +

1

2

)n2−n1

+

(
imω +

1

2

)n2−n1
]}

,

(4.27)

where we have performed substitutions x̂ → x̂ + x0 and p̂ → p̂ + x̂
2 + x0

2 . Note that the

mass m = 1
2e
−x0

2 and the frequency ω =

√
2e

3x0
2 + 2e−

x0
2 + ex0 as before.

Similar as the previous examples, we compare the results of the Bohr-Sommerfeld

method and direct numerical method. We find the non-perturbative formula with the first
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few higher order corrections

volnp(E) = −~
2

∑
jL,jR

∞∑
m,d=1

(−1)2jL+2jR+md
ndjL,jR
m

(2jR + 1) sin
[

4π2m(2jL+1)
~

]
sin2

(
2π2m

~

)
sin
(

4π2m
~

)
×

[ ∞∑
k=1

ck

(
π2md

~

)
e

2kπmdt̃
~

]
, with the following coefficients

c1(x) = sin(2x), c2(x) = c3(x) = · · · = c7(x) = 0,

c8(x) = 4 sin2(2x) sin(16x),

· · · . (4.28)

Comparing to the previous examples of the local P2 and P1 × P1 models, the first non-

singular correction appears only at the 8th order and would have been hardly noticeable if

we didn’t already know its existence. We see that in all models the first two non-vanishing

coefficients have the form c1(x) = sin(2k1x), ck(x) ∼ sin2(2x) sin(2k1kx).

5 Conclusion

We have considered the spectral problem of a class of quantum Hamiltonians from local

Calabi-Yau geometries. We explicitly checked to the first few orders the equivalence of two

perturbative methods, namely the time-independent perturbation theory and the Bohr-

Sommerfeld method. In the time-independent perturbation theory, sometimes known as the

Rayleigh-Schrödinger perturbation theory, we expand the Hamiltonian around the classical

minimum. The quadratic term is a simple harmonic oscillator, which can be treated as

the zero order term, while the higher order terms are treated as small perturbations. On

the other hand, the Bohr-Sommerfeld quantization condition comes from the consistency

condition required by the uniqueness of the quantum mechanical wave function in the

well known WKB (Wentzel-Kramers-Brillouin) expansion. Some previous works [2, 27, 32]

provide the results of the quantum volume of phase space. It would be interesting to further

understand the relation between these two perturbative methods for this class of models.

In the model considered in [19, 34], which is essentially the local P1 × P1 model, there

is a relation with the ABJM matrix model. It would be interesting to explore whether

the other local Calabi-Yau models considered here also have connections with some nice

matrix models.

In the well-known example of the quantum mechanical system with double well poten-

tial, the non-perturbative effects come from the instanton sector, which is the solution of

the particle going from one minimum to the other one, as reviewed in [11]. Here the non-

perturbative contributions to the quantum volume is proposed by the condition that they

should cancel the singularities appearing in the perturbative contributions. We also dis-

cover more non-singular non-perturbative corrections, in the formulas (2.82), (3.20), (4.28),

by some high precision numerical calculations of the energy spectrum. It would be inter-

esting to understand these non-perturbative contributions directly from instanton config-

urations of the systems.
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A The refined Gopakumar-Vafa invariants

In this appendix we list the refined Gopakumar-Vafa invariants for the local Calabi-Yau

models considered in the paper, in tables 7, 8, 9. These invariants are first computed by

the refined topological vertex method in [33].
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d
∑

jL,jR
⊕ndjL,jR(jL, jR)

1 (0,1)

2 (0,5
2)

3 (0,3)⊕(1
2 ,9

2)

4 (0,5
2)⊕(0,9

2)⊕(0,13
2 )⊕(1

2 ,4)⊕(1
2 ,5)⊕(1

2 ,6)⊕(1,11
2 )⊕(3

2 ,7)

5 (0,1)⊕(0,3)⊕(0,4)⊕2(0,5)⊕2(0,6)⊕2(0,7)⊕(0,8)⊕(1
2 ,5

2)⊕(1
2 ,7

2)⊕2(1
2 ,9

2)

⊕2(1
2 ,11

2 )⊕3(1
2 ,13

2 )⊕2(1
2 ,15

2 )⊕(1
2 ,17

2 )⊕(1,4)⊕(1,5)⊕2(1,6)⊕2(1,7)⊕2(1,8)

⊕(1,9)⊕(3
2 ,11

2 )⊕(3
2 ,13

2 )⊕2(3
2 ,15

2 )⊕(3
2 ,17

2 )⊕(3
2 ,19

2 )⊕(2,7)⊕(2,8)⊕(2,9)

⊕(5
2 ,17

2 )⊕(3,10)

6 (0,1
2)⊕(0,3

2)⊕3(0,5
2)⊕2(0,7

2)⊕6(0,9
2)⊕4(0,11

2 )⊕8(0,13
2 )⊕5(0,15

2 )⊕7(0,17
2 )

⊕2(0,19
2 )⊕2(0,21

2 )⊕(1
2 ,1)⊕2(1

2 ,2)⊕3(1
2 ,3)⊕5(1

2 ,4)⊕6(1
2 ,5)⊕9(1

2 ,6)⊕9(1
2 ,7)

⊕10(1
2 ,8)⊕7(1

2 ,9)⊕5(1
2 ,10)⊕(1

2 ,11)⊕(1
2 ,12)⊕(1,3

2)⊕(1,5
2)⊕3(1,7

2)⊕3(1,9
2)

⊕7(1,11
2 )⊕7(1,13

2 )⊕11(1,15
2 )⊕9(1,17

2 )⊕9(1,19
2 )⊕4(1,21

2 )⊕2(1,23
2 )⊕(3

2 ,3)

⊕(3
2 ,4)⊕3(3

2 ,5)⊕4(3
2 ,6)⊕7(3

2 ,7)⊕7(3
2 ,8)⊕10(3

2 ,9)⊕6(3
2 ,10)⊕4(3

2 ,11)⊕(2,9
2)

⊕(2,11
2 )⊕3(2,13

2 )⊕4(2,15
2 )⊕7(2,17

2 )⊕6(2,19
2 )⊕6(2,21

2 )⊕2(2,23
2 )⊕(2,25

2 )

⊕(5
2 ,6)⊕(5

2 ,7)⊕3(5
2 ,8)⊕3(5

2 ,9)⊕5(5
2 ,10)⊕3(5

2 ,11)⊕2(5
2 ,12)⊕(3,15

2 )⊕(3,17
2 )

⊕3(3,19
2 )⊕3(3,21

2 )⊕3(3,23
2 )⊕(3,25

2 )⊕(7
2 ,9)⊕(7

2 ,10)⊕2(7
2 ,11)⊕(7

2 ,12)⊕(7
2 ,13)

⊕(4,21
2 )⊕(4,23

2 )⊕(4,25
2 )⊕(9

2 ,12)⊕(5,27
2 )

7 6(0,1)⊕6(0,2)⊕12(0,3)⊕13(0,4)⊕19(0,5)⊕21(0,6)⊕26(0,7)⊕26(0,8)

⊕26(0,9)⊕22(0,10)⊕15(0,11)⊕9(0,12)⊕4(0,13)⊕2(0,14)⊕4(1
2 ,1

2)⊕7(1
2 ,3

2)

⊕12(1
2 ,5

2)⊕17(1
2 ,7

2)⊕24(1
2 ,9

2)⊕29(1
2 ,11

2 )⊕37(1
2 ,13

2 )⊕41(1
2 ,15

2 )⊕45(1
2 ,17

2 )

⊕41(1
2 ,19

2 )⊕35(1
2 ,21

2 )⊕23(1
2 ,23

2 )⊕13(1
2 ,25

2 )⊕5(1
2 ,27

2 )⊕(1
2 ,29

2 )⊕2(1,0)⊕3(1,1)

⊕8(1,2)⊕11(1,3)⊕18(1,4)⊕23(1,5)⊕33(1,6)⊕40(1,7)⊕48(1,8)⊕50(1,9)

⊕49(1,10)⊕39(1,11)⊕25(1,12)⊕12(1,13)⊕4(1,14)⊕(1,15)⊕(3
2 ,1

2)⊕3(3
2 ,3

2)

⊕4(3
2 ,5

2)⊕9(3
2 ,7

2)⊕13(3
2 ,9

2)⊕21(3
2 ,11

2 )⊕27(3
2 ,13

2 )⊕38(3
2 ,15

2 )⊕44(3
2 ,17

2 )⊕50(3
2 ,19

2 )

⊕46(3
2 ,21

2 )⊕38(3
2 ,23

2 )⊕22(3
2 ,25

2 )⊕10(3
2 ,27

2 )⊕3(3
2 ,29

2 )⊕(3
2 ,31

2 )⊕(2,1)⊕(2,2)

⊕3(2,3)⊕5(2,4)⊕10(2,5)⊕14(2,6)⊕22(2,7)⊕29(2,8)⊕38(2,9)⊕41(2,10)

⊕41(2,11)⊕31(2,12)⊕19(2,13)⊕7(2,14)⊕2(2,15)⊕(5
2 ,5

2)⊕(5
2 ,7

2)⊕3(5
2 ,9

2)

⊕5(5
2 ,11

2 )⊕10(5
2 ,13

2 )⊕14(5
2 ,15

2 )⊕22(5
2 ,17

2 )⊕27(5
2 ,19

2 )⊕34(5
2 ,21

2 )⊕32(5
2 ,23

2 )

⊕26(5
2 ,25

2 )⊕14(5
2 ,27

2 )⊕6(5
2 ,29

2 )⊕(5
2 ,31

2 )⊕(3,4)⊕(3,5)⊕3(3,6)⊕5(3,7)⊕10(3,8)

⊕14(3,9)⊕21(3,10)⊕24(3,11)⊕26(3,12)⊕19(3,13)⊕11(3,14)⊕3(3,15)

⊕(3,16)⊕(7
2 ,11

2 )⊕(7
2 ,13

2 )⊕3(7
2 ,15

2 )⊕5(7
2 ,17

2 )⊕10(7
2 ,19

2 )⊕13(7
2 ,21

2 )⊕18(7
2 ,23

2 )

⊕18(7
2 ,25

2 )⊕15(7
2 ,27

2 )⊕7(7
2 ,29

2 )⊕2(7
2 ,31

2 )⊕(4,7)⊕(4,8)⊕3(4,9)⊕5(4,10)

⊕9(4,11)⊕11(4,12)⊕13(4,13)⊕9(4,14)⊕5(4,15)⊕(4,16)⊕(9
2 ,17

2 )⊕(9
2 ,19

2 )

⊕3(9
2 ,21

2 )⊕5(9
2 ,23

2 )⊕8(9
2 ,25

2 )⊕8(9
2 ,27

2 )⊕7(9
2 ,29

2 )⊕3(9
2 ,31

2 )⊕(9
2 ,33

2 )⊕(5,10)

⊕(5,11)⊕3(5,12)⊕4(5,13)⊕6(5,14)⊕4(5,15)⊕2(5,16)⊕(11
2 ,23

2 )⊕(11
2 ,25

2 )

⊕3(11
2 ,27

2 )⊕3(11
2 ,29

2 )⊕3(11
2 ,31

2 )⊕(11
2 ,33

2 )⊕(6,13)⊕(6,14)⊕2(6,15)⊕(6,16)

⊕(6,17)⊕(13
2 ,29

2 )⊕(13
2 ,31

2 )⊕(13
2 ,33

2 )⊕(7,16)⊕(15
2 ,35

2 )

Table 7. The GV invariants ndjL,jR for d = 1, 2, · · · , 7 for the local P2 model.
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0
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(
2
0
1
4
)
1
5
0

d
∑

d1+d2=d

∑
jL,jR

⊕nd1,d2jL,jR
(jL, jR)

1 2(0,1
2)

2 (0,3
2)

3 2(0,5
2)

4 (0,5
2)⊕3(0,7

2)⊕(1
2 ,4)

5 2(0,5
2)⊕2(0,7

2)⊕6(0,9
2)⊕2(1

2 ,4)⊕2(1
2 ,5)⊕2(1,11

2 )

6 (0,3
2)⊕3(0,5

2)⊕5(0,7
2)⊕7(0,9

2)⊕10(0,11
2 )⊕(1

2 ,3)⊕4(1
2 ,4)⊕5(1

2 ,5)⊕7(1
2 ,6)

⊕(1
2 ,7)⊕(1,9

2)⊕4(1,11
2 )⊕5(1,13

2 )⊕(3
2 ,6)⊕3(3

2 ,7)⊕(2,15
2 )

7 2(0,1
2)⊕2(0,3

2)⊕8(0,5
2)⊕10(0,7

2)⊕18(0,9
2)⊕16(0,11

2 )⊕22(0,13
2 )⊕2(0,15

2 )

⊕2(0,17
2 )⊕2(1

2 ,2)⊕4(1
2 ,3)⊕10(1

2 ,4)⊕14(1
2 ,5)⊕20(1

2 ,6)⊕18(1
2 ,7)⊕4(1

2 ,8)

⊕2(1,7
2)⊕4(1,9

2)⊕12(1,11
2 )⊕14(1,13

2 )⊕18(1,15
2 )⊕2(1,17

2 )⊕2(3
2 ,5)⊕4(3

2 ,6)

⊕10(3
2 ,7)⊕10(3

2 ,8)⊕2(3
2 ,9)⊕2(2,13

2 )⊕4(2,15
2 )⊕8(2,17

2 )⊕2(5
2 ,8)⊕2(5

2 ,9)

⊕2(3,19
2 )

8 5(0,1
2)⊕11(0,3

2)⊕19(0,5
2)⊕30(0,7

2)⊕40(0,9
2)⊕50(0,11

2 )⊕49(0,13
2 )⊕50(0,15

2 )

⊕14(0,17
2 )⊕8(0,19

2 )⊕4(1
2 ,1)⊕9(1

2 ,2)⊕16(1
2 ,3)⊕31(1

2 ,4)⊕44(1
2 ,5)⊕60(1

2 ,6)

⊕64(1
2 ,7)⊕57(1

2 ,8)⊕20(1
2 ,9)⊕5(1

2 ,10)⊕(1,3
2)⊕4(1,5

2)⊕10(1,7
2)⊕20(1,9

2)

⊕36(1,11
2 )⊕52(1,13

2 )⊕60(1,15
2 )⊕55(1,17

2 )⊕14(1,19
2 )⊕4(1,21

2 )⊕(3
2 ,3)⊕4(3

2 ,4)

⊕10(3
2 ,5)⊕20(3

2 ,6)⊕36(3
2 ,7)⊕44(3

2 ,8)⊕44(3
2 ,9)⊕12(3

2 ,10)⊕(3
2 ,11)⊕(2,9

2)

⊕4(2,11
2 )⊕10(2,13

2 )⊕20(2,15
2 )⊕31(2,17

2 )⊕31(2,19
2 )⊕5(2,21

2 )⊕(5
2 ,6)⊕4(5

2 ,7)

⊕10(5
2 ,8)⊕16(5

2 ,9)⊕19(5
2 ,10)⊕4(5

2 ,11)⊕(3,15
2 )⊕4(3,17

2 )⊕9(3,19
2 )⊕11(3,21

2 )

⊕(3,23
2 )⊕(7

2 ,9)⊕4(7
2 ,10)⊕5(7

2 ,11)⊕(4,21
2 )⊕3(4,23

2 )⊕(9
2 ,12)

Table 8. The GV invariants ndjL,jR =
∑
d1+d2=d

nd1,d2jL,jR
for d = 1, 2, · · · , 8 for the local P1 × P1

model. Here d1, d2 denote the degrees of the base P1 and the fiber P1. There is a symmetry

nd1,d2jL,jR
= nd2,d1jL,jR

since the fibration is trivial.

– 43 –



J
H
E
P
0
9
(
2
0
1
4
)
1
5
0

d
∑

dB+2dF=d

∑
jL,jR

⊕ndB ,dFjL,jR
(jL, jR)

1 (0,0)

2 (0,1
2)

3 (0,1)

4

5 (0,2)

6 (0,5
2)

7 (0,3)

8 (0,5
2)⊕(0,7

2)⊕(1
2 ,4)

9 (0,3)⊕(0,4)⊕(1
2 ,9

2)

10 (0,5
2)⊕(0,7

2)⊕2(0,9
2)⊕(1

2 ,4)⊕(1
2 ,5)⊕(1,11

2 )

Table 9. The GV invariants ndjL,jR =
∑
dB+2dF=d n

dB ,dF
jL,jR

for d = 1, 2, · · · , 10 for the local F1 model.

Here dB , dF denote the degrees of the base P1 and the fiber P1.
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