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1 Introduction and summary

According to standard QFT lore, soliton production is exponentially suppressed at small

coupling and hence unimportant for perturbative physics. For a theory with a dimension-

less effective coupling geff such intuition usually comes from the study of the large-order

behavior of perturbation theory. The basic premise is that the perturbative expansion is

an asymptotic series, which approximates the full answer for a scattering amplitude up to

a remainder term,

A(geff) =

N−1
∑

n=0

Ang
n
eff +RN (geff) . (1.1)

The approximation is good when RN ∼ e−1/geff and this occurs at large orders N ∼
O(1/geff), e.g. see [1]. As such, one would conclude that at small coupling all contributions

which cannot be accounted for by perturbation theory are exponentially small.

These arguments are most commonly discussed in the context of instanton contri-

butions to partition functions and correlators. However, they are also applicable to the

process of virtual soliton-antisoliton pair creation in the following sense [2, 3]. If one views

the soliton-antisoliton pair as being composed of a large number, n ∼ O(1/geff), of pertur-

bative particles clustered together at distances of order one relative to the inverse energy

of the incoming particle, then the contribution of this pair to a perturbative process would

be captured by the remainder function in (1.1) rather than the sum.

There is also a second, different picture for the origin of soliton suppression,1 which

becomes apparent after relating contributions from virtual soliton pairs to the creation of

on-shell soliton-antisoliton asymptotic states via the optical theorem. One can construct

1See [4] for a discussion along these lines.
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a natural parameter, in addition to the coupling, from the ratio of the soliton Compton

wavelength over its size, RC/RS . When RS ≫ RC quantum effects are small and the

soliton can be treated semiclassically. Since this is the regime of perturbative calculations,

it is reasonable to expect that soliton contributions to a given amplitude are suppressed

by factors of e−RS/RC .2

In the main part of this letter we revisit the above discussion by performing a first-

principles investigation of soliton contributions in scalar theories, which support solitons

with generic moduli spaces. Our primary assumption will be that crossing symmetry

applies to processes involving asymptotic soliton states and moreover that it continues to

hold in the semiclassical approximation. This is e.g. true for the kink solution in the sine-

Gordon model [5]. We begin by employing the optical theorem to associate a soliton loop

in a perturbative process with the soliton-antisoliton pair production amplitude. Crossing

symmetry then maps the calculation to a form factor in the soliton background, which to

leading order reduces to a matrix element in the quantum mechanics on soliton moduli

space. This in turn leads to the derivation of a faster-than-any-power suppression factor

in RC/2RS for such amplitudes sufficiently above threshold.3

In line with the soliton literature, we assume that the Compton wavelength, i.e. inverse

mass, scales as g2 relative to a fixed length scale determined from the potential, such as

the inverse mass of a perturbative excitation: RC ∝ g2m−1. Thus, if the soliton size is

also fixed in terms of this mass scale such that RS ∝ m−1, then faster-than-any-power

suppression in RC/2RS means suppression relative to perturbative effects. For shorthand

we will express functions of this type through the typical example e−2RS/RC , although

there are of course other functions with this property. We stress that all such functions

lead to contributions that are suppressed compared to any finite order in perturbation

theory, provided the size RS is tied to a fixed scale.

However, our formalism also allows for solitons with moduli-dependent sizes. Thus the

e−2RS/RC factor, taken at face value, implies finite contributions from configurations with

RS ∝ RC . Of course, when RS ∝ RC one expects that the semiclassical approximation

breaks down. A more conservative stance would therefore be that small solitons simply

invalidate the above arguments for faster-than-any-power suppression. This still leaves

open the possibility of a drastic modification to the perturbative expansion and more

powerful tools are needed to determine the role of soliton contributions.

We close by sketching an application of this effect to (dyonic) instanton-solitons in

5D Yang-Mills-Higgs theory. We show how the extra assumption of finiteness, motivated

for the maximally supersymmetric theory (MSYM) by its conjectural equivalence to the

(2, 0) superconformal tensor theory in 6D [6, 7], provides a self-consistent (and nontrivial)

mechanism in which recently obtained perturbative divergences [8] could be canceled by

soliton contributions.

2In general, RC/RS and geff are different parameters. However, note that for the ‘t Hooft-Polyakov

monopole in Yang-Mills-Higgs theory RC := 1/M ∝ g2YM/MW , while RS ∝ 1/MW , where MW is the

mass of the perturbative W -boson. Hence RC/RS ∝ geff = g2YM. Similar relations hold for the kink in

two-dimensional Φ4 theory.
3There might be additional effects at threshold affecting the behavior of the form factor, which we have

not taken into account.
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2 Soliton pair production as a form factor

Consider the following class of real scalar field theories in Minkowski space with Lagrangian

L =
1

g2

∫

dx

{

1

2
Φ̇ · Φ̇− 1

2
∂xΦ · ∂xΦ− V (Φ)

}

. (2.1)

We denote by x a (D−1)-dimensional position vector, while dx is shorthand for dD−1x. We

take the fields to be Rn-valued, and · denotes the Euclidean dot product.4 Here we assume

that the potential has a dimensionless parameter g controlling the perturbative expansion.

Then, in terms of canonically normalized fields Φ̃ = g−1Φ, we have Ṽ (Φ̃; g) = g−2Ṽ (gΦ̃; 1),

while we have also set V (Φ) = Ṽ (gΦ̃; 1) [9].

We are interested in soliton solutions, classically described by localized, finite-energy

field configurations and denoted by φ. Although Derrick’s theorem [10, 11] precludes the

existence of soliton solutions in linear sigma models for D > 2, we will for the time being

leave D arbitrary. Doing so will facilitate the extension to theories with gauge interactions

where one can have D > 2. It will be clearly indicated in the text when it becomes

necessary to restrict to two dimensions.

For a fixed topological charge sector,5 such classical solutions usually come in a smooth

family parameterized by a collection of moduli UM , where M = i,m. In a translation-

invariant theory, a subset of these moduli always consist of the center-of-mass position,

(U i) = X. Um then parameterize all remaining ‘centered’ moduli. We denote the moduli

space of solutions for a given, fixed topological charge as M; it represents a local minimum

of the energy functional. An example of a simple model in two dimensions with a nontrivial

centered moduli space was studied by Rajaraman and Weinberg [12]. Our class of two-

dimensional models also contains solitons with moduli-dependent sizes; see e.g. [13, 14].

In the presence of a soliton a new sector of the quantum theory opens up. This is

orthogonal to the vacuum sector since solitons carry a conserved topological charge [9].

Nevertheless, the soliton-sector single-particle states form a subspace of the total single-

particle Hilbert space and one can study processes involving both perturbative particles

and solitons as asymptotic states. Soliton states can be chosen to be energy-momentum

eigenstates, |P〉.6 Note that, in addition to the soliton’s momentum, such states can carry

extra labels corresponding to eigenvalues of ancillary operators that commute with the

Hamiltonian. These depend on the particulars of the theory and will be left implicit for

the rest of our discussion.

Let us now study the self-energy of a perturbative particle, or ‘meson’, of momentum

k in the theory (2.1). Through the optical theorem, unitarity of the S-matrix implies that

the imaginary part of any amplitude arises from a sum over a complete set of intermediate

states, viz.

2Im A(k → k) =
∑

f

∫

dΠf |A(k → f)|2 . (2.2)

4We use italic letters for D-dimensional vectors and boldface letters for spatial (D−1)-dimensional ones.
5The sectors are labeled by homotopy equivalence classes of maps of the D − 2-sphere at infinity into

the vacuum manifold, Mvac := {Φ | V (Φ) = 0}.
6We capitalize the momenta of solitons in order to distinguish them from perturbative particle momenta.
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In the above, |f〉 is a generic multi-particle state of the theory, the sum is to be taken over

the full Fock space and Πf is the measure for the multi-particle phase space. In general,

multi-particle states may be constructed from both perturbative and/or solitonic single-

particle states. However, conservation of topological charge dictates that only states |f〉
with zero total topological charge will have nonzero overlap with |k〉.

It will be enough for our purposes to concentrate on the simplest such intermedi-

ate configuration consisting of a single soliton-antisoliton pair of momentum −Pi and Pf

respectively and denoted as |f〉 = |Pf ,−Pi〉. We will therefore focus on the soliton pair-

production amplitude:

A(k → Pf ,−P̄i) . (2.3)

It is unclear how one should proceed with a direct evaluation of such an expression, since

there exists no known associated analytic classical solution and hence no semiclassical

expansion scheme.7 For that reason, we will employ crossing symmetry — one of the main

axioms in the analytic S-matrix approach to quantum field theory [17]—to relate the full

amplitude for pair production to that of a process where the soliton absorbs the meson

A(k → Pf ,−P̄i) = A(Pi, k → Pf ) . (2.4)

The advantage of this rewriting is that we can now employ semiclassical tools to evaluate

the expression on the r.h.s. . Note that (2.4) is an equality between amplitudes in distinct

topological sectors.

The amplitudes (2.4) are nontrivial only when the perturbative particle is off-shell.

Therefore, the r.h.s. is related to the form factor

i(2π)Dδ(D)(k + Pi − Pf )A(Pi, k → Pf ) =

∫

dDx e−ik·x〈Pf |T
{

Φ(x) e−i
∫

dt′HI(t
′)
}

|Pi〉 ,
(2.5)

where HI denotes the interaction Hamiltonian. The Hamiltonian obtained from (2.1)

is trivially

H =

∫

dx

{

g2

2
Π ·Π+

1

g2

(

1

2
∂xΦ · ∂xΦ+ V (Φ)

)}

, (2.6)

and its semiclassical expansion in the soliton sector was obtained in [18]. The original

conjugate pair (Φ,Π) can be related to the new pairs (UM , PN ), (χ, π) through the canon-

ical transformation

Φ(x) = φ(x;U) + g χ(x;U)

Π(x) =
1

2

(

aM∂Mφ(x;U) + ∂Mφ(x;U)āM
)

+
1

g
π(x;U) , (2.7)

and subject to the constraints

F1,M :=

∫

dx χ · ∂Mφ = 0 , F2,M :=

∫

dx π · ∂Mφ = 0 , (2.8)

7See however [15, 16] for an alternative approach to this problem, which would be interesting to compare

with the point of view taken here.
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which ensure that the fluctuations χ, π are orthogonal to the zero modes ∂Mφ. Here we

have inserted factors of g so that the fluctuation fields are canonically normalized. The

functionals aM , āM are given by

aN =
1

g2

(

PM −
∫

π · ∂Mχ

)

CMN , āM =
1

g2
CMN

(

PM −
∫

∂Mχ · π
)

, (2.9)

where C = (G− gΞ)−1 with

ΞMN =
1

g2

∫

χ · ∂M∂Nφ , GMN =
1

g2

∫

∂Mφ · ∂Nφ . (2.10)

GMN is the metric on moduli space, induced from the flat metric on field configuration

space.

In terms of these new variables the Hamiltonian can be written as

H =
g4

2
aMGMNaN + v(Um) +

∫
[

1

2
π · π + g s · χ+

1

2
χ ·∆χ+ VI(χ)

]

+O(g2) , (2.11)

with VI(χ) denoting cubic and higher-order interaction terms in the fluctuations χ coming

from the original potential. In writing the above, we have ignored operator-ordering ambi-

guities, such that aM = āM +O(g2). These corrections correspond to two-loop effects that

will not be important for the rest of our calculation.

We have also defined

s(x;Um) :=
1

g2

(

− ∂2
xφ+

∂V

∂Φ

∣

∣

∣

∣

Φ=φ

)

, ∆ := −δab∂
2
x +

δ2V

δΦδΦ

∣

∣

∣

∣

Φ=φ

,

v(Um) :=
1

g2

∫

dx

(

1

2
∂xφ · ∂xφ+ V (φ)

)

= Mcl + δv(Um) . (2.12)

If φ is an exact solution to the time-independent equations of motion then s(x;Um) = 0

and δv(Um) = 0. However in theories with centered moduli it is sometimes convenient to

expand around a configuration that is only an approximate solution. This will induce a

tadpole for χ and a moduli-dependent potential.

3 Evaluation of the nonrelativistic form factor

We will now use standard techniques to evaluate the form factor (2.5) in the regime of small

soliton velocities. The semiclassical expansion of the Hamiltonian around a slowly-moving

soliton configuration follows from (2.11):

H = H(−2) +H(0) +O(g) , (3.1)

where

H(−2) = Mcl ,

H(0) =
1

2
PMGMNPN + δv(U) +

1

2

∫

(π · π + χ ·∆χ) , (3.2)

– 5 –
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This expansion is valid provided we are in the small-velocity and small-(moduli space)

potential approximation:

PM ∼ O(1/g) , s(x;Um) ∼ O(1) ⇒ Mcl ∼ O(1/g2) and δv(Um) ∼ O(1) . (3.3)

These conditions ensure that φ(x;UM (t)) is an approximate classical solution to the time-

dependent equations of motion, in such a way that the corrections incurred from not

expanding around an exact solution are comparable to the corrections incurred from the

semiclassical saddle-point approximation itself; see [18] for further details. Given (3.3) and

the fact that GMN ∼ O(g2), one can check that the H(n) terms in (3.1) are O(gn).

It is now easy to see that the leading contributions to the form factor are

∫

dDx e−ik·x〈Pf |T
{

Φ(x)e−i
∫ T

−T
dt′HI(t

′)}|Pi〉

=

∫

dDx e−ik·x〈Pf , T |φ(x;U(t))|Pi,−T 〉+O(g)

=

∫

dDx e−ik·x〈Pf |eiH(t−T )φ(x;U)e−iH(t+T )|Pi〉+O(g) . (3.4)

The latter admits further simplification to leading order where the dynamics reduce to

quantum mechanics on the d-dimensional soliton moduli space M [18]. This can be

straightforwardly seen by noting that the last two terms in H(0) simply renormalize Mcl +

δv(U) to yield

Ĥs.c. = M1-loop +
1

2
P̂M ĜMN P̂N + δv̂1-loop . (3.5)

In the above we have used ĜMN = GMN (Û) and placed hats on (UM , PN ) to emphasize the

fact that they are operators, satisfying standard commutation relations [ÛM , P̂N ] = iδMN .

We take a canonical approach to this quantum mechanics where stationary states are

represented by wavefunctions Ψ(U) on moduli space, such that (ÛMΨ)(U) = UMΨ(U)

and (P̂MΨ)(U) = −i∂MΨ(U). In particular the state |P〉 may be expanded as

|P〉 =
∫

ddU
√
GΨP(U)|U〉 . (3.6)

Note that P is the set of eigenvalues of the center-of-mass momentum operators, P̂i. Trans-

lational invariance implies that the full moduli space takes a factorized form,

M = R
D−1
X

× M̃ , (3.7)

with metric

ds2 = Mcl dX · dX+ G̃mn dU
m dUn . (3.8)

The first factor is parameterized by the center-of-mass moduli (U i) = X, while the centered

moduli space M̃ is parameterized by the remaining moduli Um. Additionally, translational

invariance implies that the moduli space potential δv is independent of the U i. It then

follows that the P̂i commute with the Hamiltonian (3.5) and we can choose our wavefunc-

tions to be simultaneous eigenfunctions of energy and center-of-mass momentum. We will

– 6 –
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denote the energy eigenvalues as EP, so that eiĤs.c.tΨP = eiEPtΨP. Given (3.5) and (3.8),

the energy eigenvalues take the form

EP = M1-loop +
1

2Mcl
P2 + Ẽ , (3.9)

where Ẽ represents the contribution to the energy of the state from the dynamics on

the centered moduli space. Note that the kinetic energy term contributes at the same

order, O(1), as the one-loop correction to the rest mass, per (3.3). As mentioned at the

beginning of our analysis, there might be additional labels characterizing the soliton state

corresponding to extra operators that commute with the Hamiltonian, in which case they

also characterize the wavefunction.

We can now explicitly write the matrix element appearing in (3.4) as

〈Pf |eiH(t−T )φ(x;U)e−iH(t+T )|Pi〉

= e−i(Ei+Ef )T e−i(Ei−Ef )t

∫

ddU
√
GΨ∗

fφ(x;U)Ψi +O(g) . (3.10)

The factorization of the moduli space (3.8) together with the X-independence of the po-

tential δv(U), imply that the wavefunctions also factorize accordingly:

ΨP(U
M ) =

1

M
(D−1)/2
cl

eiP·XΨ̃P(U
m) . (3.11)

The Ψ̃ are wavefunctions on the centered moduli space. In general we will denote quantities

associated with the centered part of the moduli space with a tilde.

Translational invariance implies that the soliton solution depends on the center-of-mass

moduli only through the difference x−X, so that φ(x;UM ) = φ(x −X;Um). Using this

fact, along with the factorized form of the wavefunctions, we have

〈Pf |eiH(t−T )φ(x;U)e−iH(t+T )|Pi〉

= e−i(Ei+Ef )T e−i(Ei−Ef )t

∫

dXei(Pi−Pf )·X

∫

M̃
dU

√

G̃Ψ̃∗
fφ(x−X;Um)Ψ̃i +O(g)

= e−i(Ei+Ef )T e−i(Pi−Pf )·x

∫

M̃
dU

√

G̃Ψ̃∗
fF [φ]Ψ̃i +O(g) , (3.12)

where by F [φ] = F [φ](Pf −Pi;U
m) we denote the Fourier transform of φ with respect

to its first, spatial argument, and we have introduced the Lorentz spacetime momenta

Pi,f = (Ei,f ,Pi,f ).

Inserting (3.12) into (3.4) and carrying out the integral over spacetime produces the

energy-momentum conserving delta function, (2π)Dδ(D)(k + Pi − Pf ). Hence, from (2.5),

the leading semiclassical expression for the amplitude of interest is given by a quantum

mechanical matrix element of the Fourier transform F [φ] on the centered moduli space

A(Pi, k → Pf ) = −ie−i(Ei+Ef )T

∫

M̃
dU

√

G̃ Ψ̃∗
fF [φ](k;Um)Ψ̃i +O(g) . (3.13)

– 7 –
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In the special case where there are no centered moduli, (3.13) reduces to the known result

that the form factor is just F [φ], up to an energy-momentum-preserving δ-function [9] with

standard initial and final state normalization factors.

Let us now comment on the validity of our calculation. Note that the result (3.13) was

obtained in the small-velocity approximation (3.3); the form of the energy eigenvalues (3.9)

provides a clear manifestation of the nonrelativistic limit. However, the regime needed to

extract information about the pair-creation process through crossing symmetry requires

large velocity exchange and hence momentum transfer of the order of the soliton mass.

One may be tempted to express the answer in terms of the Lorentz-invariant quantity

k2 = (Pf − Pi)
µ(Pf − Pi)µ , (3.14)

which in the small velocity approximation leads to

√

−k2 = |k|
(

1 +O(P2
i /M

2
cl,P

2
f/M

2
cl)
)

, (3.15)

and assume that making the replacement |k| →
√
−k2 correctly captures all relativistic

corrections to (3.13). If this were true, then one could extend the result (3.13) to large

spacelike k2, corresponding to large values of the argument of the Fourier transform. As-

suming smoothness of the classical soliton profile, the Riemann-Lebesgue lemma would

imply that the Fourier transform falls off faster than any power. Then one could consider

the analytic continuation from spacelike to timelike k2 and attempt to draw a conclusion

about the pair production process, as in [4]. However, as we will see, this procedure does

not properly account for the large-velocity corrections. An indication of this is that it

leads to form factors that fall off faster than any power in momentum transfer. This is

a result that is qualitatively incompatible with expectations from any asymptotically free

theory, where the large momentum behavior of amplitudes is expected to be power-law.

See e.g. [19] for a discussion in the context of skyrmion form factors in QCD.

In the case of the two-dimensional kink in Φ4 theory, seminal work by Gervais, Jevicki

and Sakita [20] showed how velocity corrections can be systematically accounted for to

recover the covariant expression for the soliton energy, Mcl →
√

P2 +M2
cl. This answer is

to be expected, since the starting point is a Lorentz-invariant theory. In the next section

we will show how the same techniques can be applied in the more general class of Lorentz-

invariant theories considered here. We will be interested in evaluating the form factor (2.5)

rather than the soliton energy. Fortunately, the techniques of [20] have been adapted to

this context by [21], the methodology of which we will be following closely.

4 Evaluation of the relativistic form factor

We now proceed to evaluate the form factor for processes involving large velocity exchange.

The path integral formulation is much more appropriate for the purposes of resumming

the relativistic corrections and we will favor it over of the canonical approach implemented

thus far. The two qualitative differences between the general case and the kink in Φ4 theory

as considered by [20] are, first, a lack of an explicit classical soliton solution to work with

– 8 –
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and, second, the possible presence of centered moduli. Both can be taken into account

and their discussion can be appropriately modified, provided we continue to make the

simplifying assumptions of the Manton (small-velocity and small moduli-space-potential)

approximation for the dynamics of the centered moduli. Specifically, we will impose

Pm/m ∼ O(1/g) , s(x;Um) ∼ O(1) and δv(Um) ∼ O(1)

but we take P/m ∼ O(1/g2) such that P ∝ Mcl . (4.1)

At the end of this section we will comment on the possibility of extending our results when

these assumptions are relaxed.

The transition amplitude from an initial state i described by Ψi(U
M (−T );χ) to a final

state f described by Ψf (U
M (T );χ) is

Sfi =

∫

[DUDPDχDπ]δ(F1)δ(F2)e
i
∫ T

−T
dt′LΨ∗

fΨi , with

L = PM U̇M +

∫

dx πχ̇−H . (4.2)

An incoming soliton state of momentum Pi is defined by taking Ψi = eiPi·XiΨ̃i(U
m),

where Xi = X(−T ), and similarly for outgoing soliton states. We remind that the Ψ̃i,f are

wavefunctions on the centered moduli space. We can consider time-ordered correlators of

the meson field between soliton states by inserting appropriate factors of Φ(x1) · · ·Φ(xn)
under the path integral, and using the relation Φ(x) = φ(x−X(t);Um)+gχ(t,x−X(t);Um).

We are interested in the particular case of the 1-point function and hence in

〈Pf , T |Φ(x)|Pi,−T 〉 =
∫

[DXDP]ei(Xi·Pi−Xf ·Pf )

∫

[DUmDPn]Ψ̃
∗
f Ψ̃i×

×
∫

[DχDπ]δ(F1)δ(F2)e
i
∫ T

−T
dt′LΦ[U,P ;χ](x). (4.3)

Let us focus first on the internal path integral over χ and π for which we will proceed to

compute the leading contribution at small g. This was done in [20] for the case of the 0-

point function by evaluating the action on the saddle-point solution for χ, π corresponding

to the moving soliton. We argue in appendix A that the same saddle point solution gives

the leading contribution to the one-point function, even though one should now be solving

the equations of motion with source. This is a special feature of working with the one-

point function and would not be true for higher point functions. A completely analogous

discussion can be found in the papers of Dorey et.al [21, 22]. We denote this saddle point

(χcl, πcl) and expand the fields as χ = χcl + δχ, π = πcl + δπ.

Before continuing with the details, we wish to emphasize one property of the semiclas-

sical limit in which we work. One approach to the computation would be the following.

One could work around a saddle point of the Hamiltonian (2.11), taking g to be small, while

holding P fixed — the soliton momenta enter (2.11) through (2.9). Thus, one would effec-

tively be sending g → 0, carrying out the computation for arbitrary Pi,f , and then at the

end one could consider the limit of the result as the transfer ∆P/m = (Pf −Pi)/m → ∞.

(Here we inserted a factor of the meson mass to get a dimensionless quantity.) However
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this is not the correct limit to consider if one wishes to access the theory in the regime

related to pair creation by crossing symmetry. Rather one should be sending g → 0 and

∆P/m → ∞ simultaneously, while holding the velocity transfer ∆v ∼ ∆P/M ∼ g2∆P/m

fixed and O(1).8 Thus, it is important in the following that the momentum is treated as

an O(g−2) quantity — i.e. the same order as the soliton mass. This is indeed what we do,

and it is also an important, but unstated, assumption in the original analysis of [20].

Now let us return to the computation. Starting with the Hamiltonian (2.11) one can

find a saddle-point solution to the χ, π equations of motion perturbatively in g by making

use of the scaling assumptions for the momenta (4.1). The details of this calculation are

carried out in appendix B. One finds

χcl = g−1φ (Λ(x−X);Um)− g−1φ ((x−X);Um) +O(1) , (4.4)

where

Λi
j = δij +

(
√

1 +
P2

M2
cl

− 1

)

P iPj

P2
(4.5)

is a Lorentz contraction factor. The insertion can then be expressed as

Φ = φ
(

R−1
S Λ(x−X);Um

)

+O(g) ≡ Φcl +O(g) . (4.6)

The quantity RS , inserted in the argument of the classical soliton solution on dimensional

grounds, characterizes the size of the soliton. For example, in Φ4 theory RS = 1/m, with

m the meson mass. As we previously indicated, in the general class of theories considered

here it can in principle be a function of the centered moduli.

With this solution in hand, we want to evaluate (4.3) in the presence of centered

moduli. For this, we also need the Lagrangian evaluated on the solution:

L = P · Ẋ−
√

P2 +M2
cl + L(0)[Um, Pm; δχ, δπ;P] + Lint , (4.7)

where Lint starts at O(g) and

L(0) = PmU̇m − H̃eff [U
m, Pm;P] (4.8)

is an O(1) contribution describing the dynamics of the centered moduli, whose precise form

we will not require. H̃eff includes the 1-loop potential from integrating out the fluctuation

fields (δχ, δπ). The leading contribution to (4.3) then takes the form

〈Pf |Φ(x)|Pi〉 = lim
T→∞

∫

[DXDP]ei(Xi·Pi−Xf ·Pf )ei
∫ T

−T
dt′(P·Ẋ−

√
P2+M2

cl)×

×
∫

M̃
dU

√

G̃ Ψ̃∗
f (U

m;P(T ))×

× Φcl[x−X(t),P(t);Um]Ψ̃i(U
m;P(−T )) (1 +O(g)) .

(4.9)

8We thank E. Witten for communication on this point.
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In the above we have expressed the centered moduli space path integral as a position-basis

matrix element in the quantum mechanics on the centered moduli space with Hamiltonian

H̃eff . Note that the (X,P) path integral is a functional integral representation of the

quantum mechanics for a relativistic particle. From the point of view of the translational

moduli space dynamics, Um are merely parameters, so we can carry out the functional

integration over X and P first and then integrate over the centered moduli space.

Thus the quantity that we would like to study is

lim
T→∞

∫

[DXDP]ei(Xi·Pi−Xf ·Pf )ei
∫ T

−T
dt′(P·Ẋ−

√
P2+M2

cl)O ,

where O = Ψ̃∗
f (U

m;P(T ))Φcl[x−X(t),P(t);Um]Ψ̃i(U
m;P(−T )) . (4.10)

This is a phase-space path integral for a relativistic particle (soliton) of mass Mcl with the

insertion O involving the boosted classical soliton profile (4.6) with (4.5). In this expression

the gauge symmetry of worldline reparameterizations has been fixed by identifying the

coordinate time t′ with the embedding coordinate X0 — i.e. static gauge. As a result

Lorentz invariance is obscured. In fact, this gauge-fixing condition is not admissible as

pointed out in [23] and, indeed, if one proceeds with the naive evaluation of (4.6) one finds

a result that is not Lorentz invariant.

The proper way to evaluate the transition function in a manifestly covariant manner

has been well studied [24–26]. In a forthcoming work [27] we discuss how to extend this

calculation to the case of the one-point function (4.10). The crucial observation is that in

two dimensions the argument of the classical soliton profile is a gauge-fixed form of the

gauge-invariant quantity

1

Mcl
ǫµνP

µ(x−X)ν =
1

Mcl

(

P 0(x−X)−P(t−X0)
)

static gauge−−−−−−−→ 1

Mcl

√

P2 +M2
cl(x−X) = Λ(x−X) . (4.11)

Using the above and employing the techniques of [21, 27], we find that (4.9) takes the

following form to leading order:

〈Pf |Φ(x)|Pi〉 ∝ e−i(Pf−Pi)·x

∫

M̃
dU

√

G̃ Ψ̃∗
fF [φ]

(

2RS(U
m)

RC
ζ(Pf , Pi)

)

Ψ̃i , (4.12)

where F [φ](u) =
∫

dv e−iuvφ(v) is the Fourier transform of the classical soliton profile,

Ψ̃i,f = Ψ̃i,f (U
m;Pi,f ) and

ζ(Pf , Pi) :=
2ǫµνP

µ
f P

ν
i

(Pf + Pi)2
. (4.13)

In (4.12) RC = 1/Mcl is the soliton Compton wavelength and we have neglected mul-

tiplicative prefactors — this simplification will be justified momentarily. One can then

easily relate this matrix element to the amplitude (2.5):

A(Pi, k → Pf ) ∝
∫

M̃
dU

√

G̃ Ψ̃∗
fF [φ]

(

2RS(U
m)

RC
ζ(Pf , Pi)

)

Ψ̃i . (4.14)
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Now, given that the classical soliton profile φ is a smooth (C∞) function of its position

argument, we can draw a rather strong conclusion about the asymptotic behavior of the

Fourier transform in (4.14). For any values of momenta such that ζ is not O(g2) or smaller,

it is the 2RS/RC factor that controls the parametric size of the argument of the Fourier

transform. Given this, and as long as the soliton size is bounded away from zero, Rmin
S > 0,

we will have that (2RS/RC)|ζ| → ∞ in the semiclassical limit. Here we remind that

R−1
C = Mcl is assumed to be O(1/g2) relative to some fixed mass scale determined from

the potential (e.g. the meson mass). The Riemann-Lebesgue lemma then implies that9

F [φ]

(

2RS(U
m)

RC
ζ

)

∼ e
−

2RS(Um)

RC
|ζ|

as (2RS/RC)|ζ| → ∞ . (4.15)

Let us emphasize that the exponential on the r.h.s. is a typical function exhibiting a faster-

than-any-power falloff. It is used for concreteness, but the exact expression will depend

on the details of the theory under consideration. In any case, the important property for

our purposes is the faster-than-any-power falloff. This asymptotic behavior is unaffected

by the prefactors that we neglected starting at (4.12).

This leads to the asymptotic estimate

A(Pi, k → Pf ) ∼
∫

M̃
dU

√

G̃ Ψ̃∗
fe

−
2RS(Um)

RC
|ζ|
Ψ̃i (4.16)

for the leading contribution to the form factor as g → 0. Note that the centered moduli

space represents the internal degrees of freedom of the single-particle state. A field theory

interpretation requires a single-particle state to have a finite number of internal degrees

of freedom. The eigenvalues labeling them should be discrete eigenvalues of the centered-

moduli-space Hamiltonian H̃eff . Hence the wavefunctions on the centered moduli space Ψ̃

should be L2; this is automatically the case if M̃ is compact. Then we have the inequalities

∫

M̃
dU

√

G̃ Ψ̃∗
fe

−
2RS(Um)

RC
|ζ|
Ψ̃i ≤

∫

M̃
dU

√

G̃ |Ψ̃∗
f Ψ̃i|e−

2RS(Um)

RC
|ζ|

≤ e
−

2Rmin
S

RC
|ζ|||Ψ̃∗

f Ψ̃i||L1

≤ e
−

2Rmin
S

RC
|ζ|||Ψ̃f ||L2 ||Ψ̃i||L2

= e
−

2Rmin
S

RC
|ζ|

, (4.17)

where in the second-last step we used Hölder’s inequality. Hence we have reached the result

A(Pi, k → Pf ) . e
−

2Rmin
S

RC
|ζ|

. (4.18)

As we first discussed in the nonrelativistic case, in order to use crossing symmetry to

obtain the answer for the pair production amplitude we need to first express ζ in terms

9As stated by the Riemann-Lebesgue lemma, the Fourier transform F [f ](p) of an L1-function f(x) goes

to zero as |p| → ∞. Accordingly, if f(x) is C∞, F [f (n)](p) = (ip)nF [f ](p) should also go to zero as p → ∞;

i.e. F [f ](p) goes to zero faster than any power.
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of the momentum transfer k2 = (Pf − Pi)
2. Using the fact that Pi,f are on shell, one can

show that

ζ =

√

k2

k2 − 4M2
cl

. (4.19)

The above result is consistent with expectations. First, on physical grounds the form factor

should be a function of the momentum transfer only; ζ = ζ(k2). Second, as k2 → ∞ we

expect ζ(k2) → O(1); otherwise, one would obtain an amplitude with exponential behavior

for large k2, in contradiction with the large-momentum behavior of asymptotically free

theories. Finally, it agrees exactly with the prescription proposed in [19] in the context of

the Skyrme model, where it was also observed that exponential falloff is inconsistent with

asymptotic freedom.

This quantity can now be analytically continued from spacelike to timelike k2. Thus,

via crossing symmetry we finally arrive at

A(k → −Pi, Pf ) . e
−

2Rmin
S

RC
ζ
, (4.20)

where the physical region of interest is for k2 > 4M2
cl. This is our main result, in agreement

with the original expectation from dimensional analysis. Note that if Rmin
S is of order RC

this does not lead to suppression.

Some comments on this result are in order:

• We would like to emphasize that in deriving (4.20) we have worked in a fixed topo-

logical charge sector, labeled by γ ∈ πD−2(Mvac); see footnote 5. Thus quantities

such as M and RS depend on γ. In order to conclude that all soliton contributions

to the perturbative process (2.2) are exponentially suppressed, one must demonstrate

that the r.h.s. of (2.2) is suppressed for all those charges γ such that M̃(γ) supports

single-particle soliton states.

• Furthermore, one would like to show that (4.20) holds for all possible choices of ad-

ditional quantum numbers associated with internal degrees of freedom. We have not

shown this for quantum numbers violating the scaling assumptions (4.1). In terms of

the energy of the soliton state, those assumptions correspond to considering contribu-

tions from translational motion that are O(g−2), while restricting contributions from

‘motion’ in the internal directions to be O(1). On the one hand, this can be relaxed

for flat internal moduli, which are typically associated with a conserved charge. A

saddle point solution analogous to the boosted soliton profile can then be obtained;

see e.g. [21]. On the other hand, when the internal moduli space has curvature,

radiation effects are important and the methods we have employed here, i.e. splitting

the degrees of freedom into collective coordinates and oscillators, are not expected to

be useful.

• As we are working with an asymptotic form of the Fourier transform of the soliton

profile, one might worry that Stokes phenomena will be important for this analytic
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continuation from spacelike to timelike k2. However, this is not the case. The pa-

rameter in which we are making an asymptotic approximation is not k2 but rather

ζ(k2) and to analyze Stokes phenomena we have to ask how the analytic continuation

from spacelike to timelike k2 (again for fixed, small g) is mapped to a path in the

complex ζ plane. One can see that a path in the k2 plane from the negative real axis

to the positive real axis, holding |k2| > (2Mcl)
2 fixed and varying its phase from π

to 0, corresponds to a path in the ζ plane which starts and ends on the positive real

axis without crossing the anti-Stokes ray of ζ, at Re ζ = 0.

• Interestingly, the precise expression for the argument ζ of the Fourier transform of the

soliton profile, (4.19), has appeared in the literature in the context of relativistic form

factors — for the sine-Gordon model in [28] and for the Skyrme model in [19, 29].

In these references, one boosts the nonrelativistic form factor to the Breit frame.

The latter, defined by Pi = −Pf , is the unique frame for which the magnitude

of the spatial momentum is the same as the magnitude of the Lorentz momentum,

|k| =
√
−k2. Although this procedure seemingly produces Lorentz-invariant results,

no justification is given for choosing the Breit frame, or any frame for that matter.

In contrast, our method remains Lorentz covariant at all stages and accounts for all

relativistic corrections at leading order in the semiclassical expansion.

5 Instanton-solitons in 5D MSYM

The derivation of the suppression factor eq. (4.20) has so far been for purely scalar theories.

Extending it to include more general Lagrangians with gauge fields and fermions introduces

technical complications related to gauge invariance (gauge zero modes, ghosts). However,

the simplicity of the answer, as well as the generality of the arguments used and the

agreement with expectations from dimensional analysis point to a universal behavior. As a

result, it is compelling to apply this framework to the interesting case of instanton-solitons

in maximally supersymmetric 5D Yang-Mills (MSYM) theory.

Yang-Mills theory in 5D is normally viewed as an effective field theory, valid at low

energies. However, the connection of 5D MSYM to the (2, 0) SCFT in 6D leaves open the

possibility that this theory is in fact well defined [6, 7], even though it is perturbatively

divergent at six loops [8].10 In line with the rest of this letter, we argue that before

sending the cutoff to infinity and declaring 5D MSYM to be UV-divergent, one has to also

investigate contributions associated with soliton-antisoliton pair production. We stress that

in doing so we are not treating this theory as an effective theory in the Wilsonian sense.

Instanton-solitons in 5D MSYM are finite-energy 1
2 -BPS field configurations. They

solve the selfduality equation for the gauge field strength in the four spatial directions

and as such are described by conventional 4D instanton solutions. For topological charge

c2(F ) = 1 and SU(2) gauge group the classical gauge field is given by

Ai = U(~θ)−1
( ηaij(x−X)j

(x−X)2 + ρ2
T a

)

U(~θ) , A0 = 0 , (5.1)

10Some nontrivial results compatible with this conjecture include [30–43].
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with a = 1, 2, 3, i = 1, . . . , 4 and ηaij the ‘t Hooft symbols. This solution has eight mod-

uli: four center-of-mass collective coordinates X, a size modulus ρ and three Euler angles
~θ parameterizing global gauge transformations. The associated moduli space is a hy-

perkähler manifold

M = R
4 × R+ × S3/Z2 , (5.2)

with metric

ds2 =
4π2

g2YM

[

δij dX
i dXj + 2( dρ2 + ρ2G̃αβ dθ

α dθβ)
]

, (5.3)

where G̃αβ is the metric on SO(3) ∼= S3/Z2, the group of effective global gauge transfor-

mations, and g2YM has dimensions of length.

The presence of a noncompact size modulus translates into instanton-solitons that

can have arbitrarily small or large sizes. Naive application of (4.20) would then imply

that instanton-soliton pair production need not be suppressed relative to perturbative pro-

cesses. However, this non-compact direction in the centered moduli space M̃ also results

in the corresponding Hamiltonian not admitting L2-normalizable eigenfunctions. The cen-

tered Hamiltonian does possess a continuum of plane-wave normalizable wavefunctions, but

this renders the interpretation of instanton-solitons as asymptotic states confusing, since

they would correspond to particles with a continuously infinite number of internal degrees

of freedom.

Moreover, the parameter controlling the semiclassical expansion of the Hamiltonian in

the soliton sector is in fact g2 = g2YM/ρ, which coincides with RC/RS . In particular, note

that g = g(ρ) is now moduli dependent. In the context of the semiclassical expansion (3.1),

or more appropriately the relativistic version in appendix B, we can imagine a fixed ρ

such that g(ρ) is small. However, when evaluating amplitudes, where one must integrate

over all sizes, the semiclassical approximation breaks down. Consequently, the small-sized

instanton-solitons invalidate our argument for exponential suppression.

One can attempt to circumvent this conclusion by turning on a scalar VEV, 〈Φ〉 6= 0,

and going out onto the Coulomb branch.11 It is known that in this case finding instanton-

soliton solutions requires turning on an electric field, which stabilizes the classical size [44–

46]. From the point of view of the quantum theory, turning on an electric field generates

a potential on the centered moduli space,

δv(Um) =
2π2

g2YM

〈Φ〉2ρ2 , (5.4)

and lifts the flat direction associated with the instanton-soliton size. Although ρ is no longer

a true modulus, the VEV provides an additional dimensionless parameter, ǫ := g2YM〈Φ〉,
that can be adjusted so that we remain in the small-potential approximation (4.1), where it

is still appropriate to represent states as L2-wavefunctions on M̃. In order to determine the

11Here Φ is one of the five adjoint scalars of 5D SYM and should not be confused with the scalar fields

for the linear sigma models considered in the previous sections.
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precise form of the resulting L2-wavefunctions, one would need to compute the centered-

moduli-space Hamiltonian H̃eff , appearing in (4.7) and (4.8).12

Our formalism has been general enough to accommodate such potentials on mod-

uli space. Thus, despite the classical stabilization, one must still integrate over all

of moduli space, which includes arbitrarily small sizes. However, as we have already

discussed, this means treating the solitons semiclassically when ρ ∼ O(g2YM), which

is not valid because quantum corrections that have been neglected become important.

Hence, turning on the potential (5.4) does not enable one to salvage an argument for

faster-than-any-power suppression.

While none of these arguments definitively show that instanton-soliton contributions

are not suppressed compared to perturbative processes, they at least allow for that possi-

bility. Non-suppression of the pair-production amplitude would provide a mechanism via

which the contribution of virtual soliton-antisoliton pairs to perturbative processes such

as (2.2) can compete with the contribution from loops of perturbative particles. Such a

mechanism is precisely what is called for in order to avoid contradicting the assumption of

finiteness: one would require that the soliton-antisoliton contribution be divergent, with

exactly the right coefficient to cancel the divergence found in [8]. This is an intriguing

possibility, the investigation of which would, however, require an alternative approach to

the one used here.
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A One-point function and the source-free e.o.m.

Suppose we add sources (J,K) for (χ, π) to the Lagrangian (4.2):

L → L+ ǫ

∫

dx (Jχ+Kπ) . (A.1)

Here we have introduced a small parameter ǫ; we will solve the classical equations of motion

with source perturbatively in ǫ. It should be sufficient to treat the sources in this fashion

12One will actually have a supersymmetric quantum mechanics with 8 supercharges so the wavefunctions

will be forms or bispinors on the moduli space, due to realizing the fermi collective coordinate anticommu-

tator as a Clifford algebra [47].
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since we are only interested in n-point correlators for which one only needs the behavior

of the partition function in a neighborhood of J = 0 = K. We make a series expansion

χcl = χ
(0)
cl + ǫχ

(1)
cl +O(ǫ2) , πcl = π

(0)
cl + ǫπ

(1)
cl +O(ǫ2) , (A.2)

and plug into the classical equations of motion with source. We then have to expand

in fluctuations around the classical solution, χ = χcl + δχ. The contributions from the

fluctuations are suppressed in powers of g.

Demanding that the classical equations hold order by order in ǫ, we find that (χ
(0)
cl , π

(0)
cl )

should solve the source-free equations of motion. The (χ
(1)
cl , π

(1)
cl ) solve an inhomogeneous

linear differential equation, involving the operator that controls the spectrum around the

soliton. Let us denote the restriction of that operator to the space orthogonal to the zero

modes by O (so that O has an inverse). We assume that (J,K) have no overlap with the

zero modes. Then the solution to O(ǫ2) is

(

χcl

πcl

)

=

(

χ
(0)
cl

π
(0)
cl

)

+ ǫO−1

(

J

K

)

+O(ǫ2) . (A.3)

Now we must plug this back into the Lagrangian with source. Notice that, crucially,

because (χ
(0)
cl , π

(0)
cl ) satisfy the source-free equations of motion, the original Lagrangian has

an expansion L[χcl, πcl] = L
(0)
cl + O(ǫ2); there are no linear terms in the source. Similarly,

since we are expanding around a solution (χcl, πcl) to the equations of motion, the first

corrections from the quantum fluctuations come at quadratic order in (δχ, δπ). Hence, the

only linear terms in the source come from (χ
(0)
cl + δχ, π

(0)
cl + δπ) multiplying (J,K) in the

source term itself:

L+

∫

dx (Jχ+Kπ) = L
(0)
cl +

∫

dx
(

J(χ
(0)
cl + δχ) +K(π

(0)
cl + δπ)

)

+O(J2,K2, δχ2, δπ2) , (A.4)

where we have reabsorbed ǫ into the sources.

Hence, the one-point function for e.g. the χ-field is

δ

δJ

(
∫

[DχDπ]δ(F1)δ(F2)e
i
∫

dt′(L+Jχ+Kπ)

) ∣

∣

∣

∣

J=0=K

=

∫

[DχDπ]δ(F1)δ(F2)(χ
(0)
cl + δχ)ei

∫
dt′(L

(0)
cl +O(δχ2,δπ2)) (A.5)

= ei
∫

dt′L
(0)
cl χ

(0)
cl

∫

[DδχDδπ]δ(F1[δχ])δ(F2[δπ])e
O(δχ2,δπ2)

(

1 + δχ/χ
(0)
cl

)

,

where the ratio δχ/χ
(0)
cl is O(g). The Gaussian integral over the fluctuations gives a one-

loop correction to L
(0)
cl , which also only depends on χ

(0)
cl , π

(0)
cl . As a result, the leading

saddle-point contribution to the one-point function is expressed entirely in terms of the

classical solution to the source-free equations of motion.
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B The χ, π saddle point in the presence of centered moduli

In this appendix we would like to find the saddle-point solutions to the χ, π equations of

motion coming from the Hamiltonian13

H =
g4

2
aMGMNaN + v(U) +

∫
[

1

2
π · π + g s · χ+

1

2
χ ·∆χ+ VI(χ)

]

+O(g2) ,

with

s(x;Um) :=
1

g2

(

− ∂2
xφ+

∂V

∂Φ

∣

∣

∣

∣

Φ=φ

)

, ∆ := −δab∂
2
x +

δ2V

δΦδΦ

∣

∣

∣

∣

Φ=φ

,

v(Um) :=
1

g2

∫

dx

(

1

2
∂xφ · ∂xφ+ V (φ)

)

= Mcl + δv(Um) . (B.1)

The equations of motion are given by

χ̇ =
δH

δπ
− νM∂Mφ , π̇ = −δH

δχ
− µM∂Mφ , (B.2)

where the µ, ν are Lagrange multupliers for the second-class constraints

F1,M :=

∫

χ · ∂Mφ = 0 , F2,M :=

∫

π · ∂Mφ = 0 . (B.3)

The equations we want to solve are

0 = χ̇+ νM∂Mφ− π + ∂Mχ(CGC)MN (PN − ∫ π · ∂Nχ) ,

0 = π̇ + µM∂Mφ+
1

g
∂2
x(φ+ gχ)− 1

g
V ′(φ+ gχ)

+ g s− ∂Mπ(CGC)MN (PN − ∫ π · ∂Nχ)

− g−1(∂M∂Nφ)CMP (PP − ∫ π · ∂Pχ)(CGC)NQ(PQ − ∫ π · ∂Qχ) , (B.4)

where CMN = [(G− gΞ)−1]MN and

GMN :=
1

g2

∫

∂Mφ · ∂Nφ , ΞMN :=
1

g2

∫

χ · ∂M∂Nφ . (B.5)

Our strategy will be to work in the following approximation scheme. On the one hand,

after changing variables to the soliton-fixed frame, ρ = x−X, one finds that the equations

do not depend on X and thus it is consistent to treat P as constant. On the other, the

equations do depend on the relative moduli Um (through the dependence of the metric and

the fields on them) so it is inconsistent to treat Pm as constant. However, we will assume

that the motion of the relative moduli is slowly varying, U̇m ∼ O(g), so that altogether

P ∼ O(g−2) , Ṗ = 0 , Pm ∼ O(g−1)

s(x;Um) ∼ O(1) ⇒ Mcl ∼ O(1/g2) and δv(Um) ∼ O(1) . (B.6)

13The saddle-point solutions that we will find here are the classical piece of the χ, π fields, previously

denoted by χcl, πcl. We will drop the subscripts in the following equations for brevity.
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For example, note that in this approximation χ̇ = ∂mχU̇m is suppressed by a factor of g

relative to χ, since U̇m ∼ O(g).

We first solve for νM :

νM = GMN (Ξ)NP (CGC)PQ(PQ − ∫ π · ∂Qχ)−GMN 1

g2

∫

∂Nφ · χ̇ , (B.7)

and then use that to find π:

π = Π⊥χ̇+ ∂MφGMN (Ξ)NP (CGC)PQ(PQ − ∫ π · ∂Qχ)

+ ∂Mχ(CGC)MN (PN − ∫ π · ∂Nχ) , (B.8)

where

Π⊥χ̇ := χ̇− ∂MφGMN 1

g2

∫

∂Nφ · χ̇ (B.9)

is the projection of χ̇ to the space orthogonal to the zero modes. Expressing G−1Ξ =

g−1(1−G−1C), we can rewrite the above equation as

π = Π⊥χ̇+ ∂M (g−1φ+ χ)(CGC)MN (PN − ∫ π · ∂Nχ)

− g−1∂Mφ(G−1C−1)MP (CGC)PN (PN − ∫ π · ∂Nχ) . (B.10)

We will then assume our solution for χ is of the form

χ = χ̃(−1) − g−1φ+ χ̃(0) , (B.11)

where χ̃(−1) and χ̃(0) are O(g−1) and O(1) terms respectively. Then the solution for π can

be expressed to leading order as

π = Π⊥ ˙̃χ(−1) +
(

∂M χ̃(−1) + ∂M χ̃(0) − g−1∂Pφ(G
−1C−1)PM

)

DMN×

×
(

PN − ∫ Π⊥ ˙̃χ(−1) · ∂N χ̃(−1)
)

+O(g) . (B.12)

Here we have defined a ‘relativistic’ moduli space metric

DMN =

∫

∂M (χ̃(−1) + χ̃(0)) · ∂N (χ̃(−1) + χ̃(0)) (B.13)

and in (B.12) it is understood that we only keep DMN , CMN to the appropriate order in

g, denoted e.g. by D(n)MN .

Now let us turn to the χ equation, wich after various manipulations can be written as

Eχ :=
[

∂t(Π
⊥∂iχ̃

(−1)) + ∂i(Π
⊥ ˙̃χ(−1))

]

D(2)ijPj

+ ∂M∂N (χ̃(−1) + χ̃(0))DMPDNQ ×

×
(

PP − ∫ Π⊥ ˙̃χ(−1) · ∂P χ̃(−1)
)(

PQ − ∫ Π⊥ ˙̃χ(−1) · ∂Qχ̃(−1)
)

− ∂2
x(χ̃

(−1) + χ̃(0)) + g−1V ′(g(χ̃(−1) + χ̃(0))) + g s− µM∂Mφ+O(g) . (B.14)
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We can organize and solve this order by order in the coupling. At leading order we recover

the expression

E(−1)
χ = (∂i∂jχ̃

(−1))D(2)ikD(2)jlPkPl − ∂2
xχ̃

(−1) + g−1V (gχ̃(−1))− µ(−1)M∂Mφ . (B.15)

Setting µ(−1)M = 0 leads to theD-dimensional generalization of the similar equation in [20],

the solution to which is given by the boosted soliton profile

χ̃(−1) = g−1φ
(

Λi
j(x

j −Xj);Um
)

, (B.16)

where φ(x−X;Um) is the static soliton solution and

Λi
j = δij +

(
√

1 +
P2

M2
cl

− 1

)

P iPj

P2
. (B.17)

Regarding the equation of motion for the leading-order Lagrange multiplier µ(−1)M , we

assume that χ, (B.11) with (B.16), satisfies the orthogonality constraint
∫

χ · ∂Mφ = 0 to

leading order. The case of the kink in Φ4 theory is consistent with this condition. If the

orthogonality condition on χ does not hold, then one should reinstate a nonzero µ(−1)M

and solve the coupled equations.

By further manipulating the O(1) terms in (B.14) we can write the equation at this

order in terms of a (linearized) differential operator

L[χ̃(0), µ(0)M ] := − (∂i∂jχ̃
(0))D(2)ikD(2)jlPkPl + 2(∂i∂M χ̃(−1))D(2)ijD(3)MkPjPk

− ∂2
xχ̃

(0) + V ′′(gχ̃(−1))χ̃(0) − µ(0)M∂Mφ (B.18)

and the source term

S[χ̃(−1)] := −
[

∂t(Π
⊥∂iχ̃

(−1)) + ∂i(Π
⊥ ˙̃χ(−1))

]

D(2)ijPj − g s

+ 2(∂i∂jχ̃
(−1))D(2)ikD(2)jlPk

∫

Π⊥ ˙̃χ(−1) · ∂lχ̃(−1)

− 2(∂i∂mχ̃(−1))D(2)ijD(2)mnPj

(

Pn − ∫ Π⊥ ˙̃χ(−1) · ∂nχ̃(−1)
)

, (B.19)

such that

E(0)
χ = L[χ̃(0), µ(0)M ]− S[χ̃(−1)] . (B.20)

This can be formally solved by taking

(χ̃(0), µ(0)M ) = L−1S[χ̃(−1)] . (B.21)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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