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1 Introduction and summary

A conifold Y6 is a simplest non-compact Calabi-Yau three-fold [1]. It is a cone over a

homogeneous five dimensional Einstein manifold T 1,1 = (SU(2) × SU(2))/U(1), with the

U(1) being a diagonal subgroup of the maximal torus of SU(2) × SU(2). When a large

number N ≫ 1 of D3-branes are placed at its tip, for large ’t Hooft coupling gsN ≫ 1

their backreaction warps the conifold:

R3,1 × Y6 → AdS5 × T 1,1 . (1.1)

Along with N -units of 5-form flux through T 1,1, the resulting geometry is a consistent

background of type IIB string theory, holographically dual to N = 1 four-dimensional

superconformal SU(N) × SU(N) gauge theory [2]. The warped conifold can be deformed

(without further breaking the supersymmetry) by wrapping M ≫ 1 D5-branes over the

two-cycle of T 1,1. In this case the supergravity background realizes the holographic dual

to non-conformal N = 1 supersymmetric SU(N +M)× SU(N) cascading gauge theory [3]

(KS). One the geometry side, the SU(2)×SU(2)×U(1) global symmetry of T 1,1 is broken to

SU(2)×SU(2)×Z2. The conifold deformation parameter breaking U(1) → Z2 represents the

spontaneous chiral symmetry breaking in the confining vacuum of cascading gauge theory.

The vacuum structure of N = 1 cascading gauge theories was studied in [4]. Precisely

when N is an integer multiple of M , there is a baryonic branch of confining vacua. In

fact, the KS vacuum (without mobile D3-branes) corresponds to a special Z2 symmetric

point on this branch. A generic point on the baryonic branch breaks Z2. The supergravity

dual to the baryonic branch of cascading gauge theory was constructed in [5] (BGMPZ):
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moving away from the Z2 symmetric solution corresponds to a resolution of the KS warped

deformed conifold.

The type IIB supergravity backgrounds constructed in [3] and [5] are supersymmet-

ric, and thus are not suitable to address nonsupersymmetric questions in cascading gauge

theory. Likewise, given the prominent role the KS warped throat geometries play in con-

structing de-Sitter vacua in string theory [6], one needs to understand generic nonsuper-

symmetric deformations of BGMPZ resolved warped deformed conifolds. The first step

in this direction was taken in [7], where a five dimensional effective action describing the

SU(2)×SU(2)×U(1) invariant sector of the warped conifold was constructed. This action

includes five dimensional metric coupled to four bulk scalar fields. It was used to prove

the renomalizability of cascading gauge theory [7], and detailed studies of thermodynamics

and hydrodynamics of chirally symmetric phase of cascading gauge theory plasma [8–10].

In [9] it was shown that cascading gauge theory undergoes the first order confinement-

deconfinement phase transition at a certain critical temperature Tc. Furthermore, there is

a critical point at Tu = 0.8749(0)Tc where the chirally symmetric phase becomes perturba-

tively unstable towards condensation of hydrodynamic (sound) modes [10]. To understand

chiral symmetry breaking in cascading gauge theory plasma, in [11] we derived effective ac-

tion corresponding to SU(2)×SU(2)×Z2 invariant sector of the warped deformed conifold

— here, three additional scalar fields are included compare to [7]. This effective action1

was used to establish that chiral symmetry breaking fluctuations in cascading gauge the-

ory plasma become tachyonic at TχSB = 0.882503(0)Tc; as a result, both confinement and

the chiral symmetry breaking in cascading plasma occur simultaneously via the first-order

phase transition at Tc.

Comparing to the warped deformed conifold consistent truncation [11], the BGMPZ su-

persymmetric holographic renormalization group (RG) flow contains two additional scalar

fields (a mode dual to a dimension two operator and a mode mode dual to a dimension

four operator of the boundary cascading gauge theory). It is straightforward to perform

Kaluza-Klein reduction of this enlarged gravity-scalar sector and produce a five-dimensional

truncation of the resolved warped deformed conifold [15].2 Unfortunately, this action is

not a consistent truncation away from the origin of the baryonic branch [15];3 at the origin

of the baryonic branch the truncation is consistent and is identical to [11].

The fully consistent SU(2) × SU(2) truncation of type IIB supergravity on resolved

warped deformed conifold was constructed in [17]4 (CF). In this paper we reproduce the

derivation of the effective action [17], and point further consistent truncation to effec-

tive action [11]. We further discuss linearized fluctuations of CF effective action about

SU(2)× SU(2)×U(1) symmetric warped conifold with fluxes consistent truncations of [7].

We recover consistent truncation of chiral symmetry breaking sector in cascading gauge

1Additional applications were considered in [12, 13].
2See also [16].
3I would like to thank Davide Cassani and Anton Faedo for bringing reference [15] to my attention, and

pointing out the inconsistency of the truncation [16].
4Related discussion appeared in [18]. We will not attempt to verify [18] and relate it to earlier work,

partly because the authors did not present the Chern-Simons part of the action in full generality.
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theory plasma [11]. Lastly, we present linearized effective action describing baryonic branch

deformation about SU(2)×SU(2)×U(1) symmetric states of cascading gauge theory plasma.

We show that unlike Z2-invariant chiral symmetry breaking fluctuations, Z2-non-invariant

baryonic branch fluctuations remain massive up to Tu in cascading gauge theory plasma,

i.e., the baryonic branch is lifted by the finite temperature effects.

2 Effective action

In this section, following [17] and [19], we reproduce the derivation of CF effective action

of the resolved warped deformed conifold with fluxes. The offshoot is that the effective

action derived in [17] is correct; moreover, we did not find any typos in the presentation.

We will work in the gravitational approximation to type IIB string theory, using the

type IIB supergravity action. This action takes the form (in the Einstein frame)

S10 =
1

2κ210

∫

M10

(

R10 ∧ ⋆101−
1

2
dφ ∧ ⋆10dφ− 1

2
e−φH3 ∧ ⋆10H3 −

1

2
eφF3 ∧ ⋆10F3

− 1

2
e2φF1 ∧ ⋆10F1 −

1

4
F5 ∧ ⋆10F5

)

− 1

8κ210

∫

M10

(B2 ∧ d(C2)− C2 ∧ d(B2)) ∧ d(C4),

(2.1)

where M10 is the ten dimensional bulk space-time, κ10 is the ten dimensional gravitational

constant. The form-field strengths, determined from the potentials {C0 , B2 , C2 , C4},
satisfy the Bianchi identities:

d(F1) = 0 , d(H3) = 0 , d(F3) = H3 ∧ F1 , d(F5) = H3 ∧ F3 . (2.2)

The equations of motion following from the action (2.1) have to be supplemented by the

self-duality condition

⋆10 F5 = F5 . (2.3)

It is important to remember that the self-duality condition (2.3) can not be imposed at

the level of the action, as this would lead to wrong equations of motion.

Appendix A contains our conventions regarding differential forms.

2.1 Left-invariant forms on the T 1,1 coset

We use explicit parametrization of the coset T 1,1 = (SU(2) × SU(2))/U(1) in terms of

angular coordinates {θ1, φ1, θ2, φ2, ψ} with ranges 0 ≤ θ1,2 < π, 0 ≤ φ1,2 < 2π, and

0 ≤ ψ < 4π. As in [17] we choose the coframe 1-forms as

e1 = − sin θ1 d(φ1) , e2 = d(θ1) ,

e3 = cosψ sin θ2 d(φ2)− sinψ d(θ2) ,

e4 = sinψ sin θ2 d(φ2) + cosψ d(θ2) ,

e5 = d(ψ) + cos θ1 d(φ1) + cos θ2d(φ2) .

(2.4)

– 3 –
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All left-invariant 1- and 2-forms on the coset are given by [17]:

η = −1

3
e5 , Ω =

1

6
(e1 + ie2) ∧ (e3 − ie4) ,

J =
1

6
(e1 ∧ e2 − e3∧4) , Φ =

1

6
(e1 ∧ e2 + e3 ∧ e4) . (2.5)

2.2 Metric ansatz and its dimensional reduction

We take the ten-dimensional spacetime M10 to be a direct warped product M5 × T 1,1.

The most general SU(2)× SU(2) invariant metric on M10 is parameterized by five 0-forms

{u, v, τ, ω, θ}, and a single 1-form A on M5, [17]:

ds2M10
=
∑

I

EIEI , ds2M5
=
∑

i

EiEi ,

EI = e−
4
3u−

1
3vEi , for I = i = 1, · · · 5 ,

E6 =
1√

6 cosh τ
eu+w e1 , E7 =

1√
6 cosh τ

eu+w e2 ,

E8 =

√

cosh τ

6
eu−w

(

e3 + tanh τ e2ω Re
(

eiθ(e1 + ie2)
))

,

E9 =

√

cosh τ

6
eu−w

(

e4 + tanh τ e2ω Im
(

eiθ(e1 + ie2)
))

,

E10 = ev(η +A) .

(2.6)

Given (2.6), it is straightforward (albeit tedious) to reduce ten-dimensional Einstein-Hilbert

term in (2.1). We find

1

2κ210

∫

M10

(R ⋆10 1) =
1

2κ25

∫

M5

[

R− 1

2
e
8
3u+

8
3v (dA)2 + e−

8
3u−

2
3v RT 1,1 − 28

3
du2 (2.7)

− 4

3
dv2− 8

3
dudv − dτ2− 4 cosh2 τ dω2− sinh2 τ (dθ − 3A)2

]

⋆ 1,

where

RT 1,1 =4e−4u+2v
[

sinh2 τ − cosh2 τ cosh(4ω)
]

+ 24e−2u cosh τ cosh(2ω)− 9e−2v sinh2 τ ,
(2.8)

and

κ25 =
κ210
VY

, VY = −1

2

∫

T 1,1

J ∧ J ∧ η , (2.9)

with VY being the volume of unit size T 1,1.

SU(2)×SU(2) symmetry requires that both the dilaton φ and the axion C0 are 0-forms

on M5. Their reduction on T 1,1 is trivial:

1

2κ210

∫

M10

(

−1

2
(dφ)2 − 1

2
e2φF 2

1

)

⋆10 1 = − 1

2κ25

∫

M5

[

1

2
dφ2 +

1

2
e2φdC2

0

]

⋆ 1 . (2.10)
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2.3 3-forms ansatz and their dimensional reduction

Most general SU(2)× SU(2) symmetric ansatz of NSNS 3-form field strength H3 (solving

the Bianchi identity (2.2)) is parameterized by a 2-form b2, a one form b1, two real 0-forms

bJ and bΦ, a complex 0-form bΩ on M5 and a constant p, [17]:

H3 = pΦ ∧ η + d(B2) ,

B2 = b2 + b1 ∧ (η +A) + bJJ +Re(bΩΩ) + bΦΦ .
(2.11)

The field strength H3 can be decomposed in a basis of left-invariant forms on T 1,1 (2.5):

H3 =h3 + h2 ∧ (η +A) + hJ1 ∧ J +Re
[

hΩ1 ∧ Ω+ hΩ0 Ω ∧ (η +A)
]

+ hΦ1 ∧ Φ+ pΦ ∧ (η +A) ,
(2.12)

where we defined

h3 = db2 − b1 ∧ d(A) , hΩ1 = dbΩ − 3i A bΩ ≡ DbΩ ,

h2 = db1 , hΩ0 = 3i bΩ , (2.13)

hJ1 = dbJ − 2b1 ≡ DbJ , hΦ1 = dbΦ − pA ≡ DbΦ .

Reducing NSNS 3-form contribution in (2.1) on T 1,1 results in

1

2κ210

∫

M10

(

−1

2
e−φH2

3

)

⋆10 1 = − 1

2κ25

∫

M5

{

e−4u−φ
[

(cosh2 τ cosh(4ω)− sinh2 τ)(hJ1 )
2

+ (cosh2 τ cosh(4ω) + sinh2 τ)(hΦ1 )
2 + cosh2 τ |hΩ1 |2 − sinh2Re(e−2iθ(hΩ1 )

2)

− 2 cosh2 τ sinh(4ω)hJ1h
Φ
1 − 2 sinh(2τ)

(

sinh(2ω)hJ1 − cosh(2ω)hΦ1
)

Re(ie−iθhΩ1 )
]

+
1

2
e
8
3u−

4
3v−φ h22 +

1

2
e
16
3 u+

4
3v−φ h23 + e−

20
3 u−

8
3v−φ

[

Re(−e−2iθ sinh2 τ(hΩ0 )
2 (2.14)

+ 2ipe−iθ sinh(2τ) cosh(2ω)hΩ0 ) + cosh2 τ |hΩ0 |2 + p2(cosh2 τ cosh(4ω) + sinh2 τ)
]

}

⋆ 1 .

Similarly, most general SU(2) × SU(2) symmetric ansatz of RR 3-form field strength

F3 (solving the Bianchi identity (2.2)) is parameterized by a 2-form c2, a one form c1, two

real 0-forms cJ and cΦ, a complex 0-form cΩ on M5 and a constant q, [17]:

F3 = qΦ ∧ η + d(C2)− C0H3 ,

C2 = c2 + c1 ∧ (η +A) + cJJ +Re(cΩΩ) + cΦΦ .
(2.15)

The field strength F3 can be decomposed in a basis of left-invariant forms on T 1,1 (2.5):

F3 = g3 + g2 ∧ (η +A) + gJ1 ∧ J +Re
[

gΩ1 ∧ Ω+ gΩ0 Ω ∧ (η +A)
]

+ gΦ1 ∧ Φ+ (q − C0p) Φ ∧ (η +A) ,
(2.16)

where we defined

g3 = dc2 − c1 ∧ d(A)− C0h3 , gΩ1 = dcΩ − 3i A cΩ − C0Db
Ω ≡ DcΩ − C0Db

Ω ,

g2 = dc1 − C0db1 , gΩ0 = 3i (cΩ − C0b
Ω) ,

gJ1 = dcJ − 2c1 − C0Db
J ≡ DcJ − C0Db

J ,

gΦ1 = dcΦ − q A− C0Db
Φ ≡ DcΦ − C0Db

Φ .

(2.17)

– 5 –
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Reducing RR 3-form contribution in (2.1) on T 1,1 results in expression equivalent to

the r.h.s. of (2.14) with the obvious substitutions:

1

2κ210

∫

M10

(

−1

2
eφF 2

3

)

⋆10 1 = − 1

2κ25

∫

M5

{

φ→ −φ , h→ g , p→ (q − C0p)
}

. (2.18)

2.4 5-form ansatz and its reduction reduction

Because of the self-duality condition (2.3), special care should be taken in dealing with the

reduction of the 5-form; furthermore, to reproduce correct type IIB supergravity equations

of motion the 5-form topological term (the second line in (2.1)) must be replaced with [17]

SIIB,top = − 1

8κ210

∫

M5

[

(

B2 ∧ (d(C2) + 2F fl
3 )− C2 ∧ (d(B2) + 2Hfl

3 )
)

∧ (d(C4) + F fl
5 )

+
1

2

(

B2 ∧B2 ∧ d(C2) ∧ F fl
3 + C2 ∧ C2 ∧ d(B2) ∧Hfl

3

)

]

≡− 1

8κ210

∫

M5

[

L5 ∧ (d(C4) + F fl
5 ) + L10

]

, (2.19)

where the third line is used to define L5 and L10, and

F fl
3 = qΦ ∧ η , Hfl

3 = pΦ ∧ η , F fl
5 = k J ∧ J ∧ (η +A) , (2.20)

for a constant k. Note that neither L5 nor L10 contain 5-form degrees of freedom. The

proper strategy in dealing with the 5-form self-duality condition was developed in [19],

which we apply here.

Let’s focus first on 5-from degrees of freedom. 5-form Bianchi identity (2.2) is

solved with

F5 = d(C4) + F fl
5 +

1

2
L5 , (2.21)

and the 5-form part of the action (2.1) can be written as

SF5
= − 1

8κ210

∫

M10

[

F5 ∧ ⋆10F5 + L5 ∧ F5

]

. (2.22)

As with 3-forms, we can decompose 5-from into the basis of left invariant forms on T 1,1:

F5 = f5 + f4 ∧ (η +A) + fJ3 ∧ J + fJ2 ∧ J ∧ (η +A) + Re
[

fΩ3 ∧ Ω+ fΩ2 ∧ Ω ∧ (η +A)
]

+ fΦ3 ∧ Φ+ fΦ2 ∧ Φ ∧ (η +A) + f1 ∧ J ∧ J + f0 J ∧ J ∧ (η +A) , (2.23)

– 6 –
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with

f0 = k + pcΦ − qbΦ + 3Im
[

bΩcΩ
]

≡ k +
1

2
ℓ0 , (2.24)

f1 = Da+
1

2
(qbΦ − pcΦ)A+

1

2

[

bJDcJ − bΦDcΦ +Re
[

bΩDcΩ
]

− b↔ c
]

≡ Da+
1

2
ℓ1 , (2.25)

fJ2 = d(aJ1 ) +
1

2

[

bJd(c1)− b1 ∧DcJ − b↔ c
]

≡ d(aJ1 ) +
1

2
ℓJ2 , (2.26)

fΩ2 = DaΩ1 + 3iaΩ2 +
1

2

[

bΩd(c1)− b1 ∧DcΩ + 3icΩb2 − b↔ c
]

≡ DaΩ1 + 3iaΩ2 +
1

2
ℓΩ2 ,

(2.27)

fΦ2 = d(aΦ1 ) +
1

2
(qb1 − pc1)A+ qb2 − pc2 +

1

2

[

bΦd(c1)− b1 ∧DcΦ − b↔ c
]

≡ d(aΦ1 ) +
1

2
ℓΦ2 , (2.28)

fΩ3 = DaΩ2 − aΩ1 ∧ d(A) + 1

2

[

b2 ∧DcΩ + bΩ(d(c2)− c1 ∧ d(A))− b↔ c
]

≡ DaΩ2 − aΩ1 ∧ d(A) + 1

2
ℓΩ3 , (2.29)

fΦ3 = d(aΦ2 )− aΦ1 ∧ d(A) + 1

2

[

pc2 ∧A− qb2 ∧A
]

(2.30)

+
1

2

[

b2 ∧DcΦ+ bΦ(d(c2)−c1 ∧ d(A))− b↔ c
]

≡ d(aΦ2 )− aΦ1 ∧ d(A) + 1

2
ℓΦ3 ,

fJ3 = d(aJ2 )− 2a3 − aJ1 ∧ d(A) + 1

2

[

b2 ∧DcJ + bJ(d(c2)− c1 ∧ d(A))− b↔ c
]

≡ d(aJ2 )− 2a3 − aJ1 ∧ d(A) + 1

2
ℓJ3 , (2.31)

f4 = d(a3) +
1

2

[

b2 ∧ d(c1)− b1 ∧ (d(c2)− c1 ∧ d(A))− b↔ c
]

≡ d(a3) +
1

2
ℓ4 , (2.32)

f5 = fflux5 + d(a4)− a3 ∧ d(A) +
1

2

[

b2 ∧ (d(c2)− c1 ∧ d(A))− b↔ c
]

≡ fflux5 + d(a4)− a3 ∧ d(A) +
1

2
ℓ5 , (2.33)

where we defined

Da = d(a)− 2aJ1 − kA ,

DaΩ1 = d(aΩ1 )− 3iA ∧ aΩ1 ,
DaΩ2 = d(aΩ2 )− 3iA ∧ aΩ2 .

(2.34)

The last identities in (2.24)–(2.33) are used to define {ℓ0, ℓ1, ℓJ2 , ℓΩ2 , ℓΦ2 , ℓΩ3 , ℓJ3 , ℓΦ3 , ℓ4, ℓ5}.
The form fields {a, aJ1 , aΦ1 , aΩ1 , aJ2 , aΦ2 , aΩ2 , a3, a4} are degrees of freedom of C4:

d(C4)= d(a4)− a3 ∧ d(A) + d(a3) ∧ (η +A) + (d(aJ2 )− 2a3 − aJ1 ∧ d(A)) ∧ J (2.35)

+ d(aJ1 ) ∧ J∧ (η+A) + Re
[

(DaΩ2 − aΩ1 ∧ d(A)) ∧ Ω+ (DaΩ1 + 3iaΩ2 )∧ Ω∧ (η+A)
]

+ (d(aΦ2 )− aΦ1 ∧ d(A)) ∧ Φ+ d(aΦ1 ) ∧ Φ ∧ (η +A) + (d(a)− 2aJ1 ) ∧ J ∧ J .

– 7 –
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Note that given (2.35), d2(C4) = 0. The self-duality of the 5-form (2.3) relates

{f5, f4, fJ3 , fΦ3 , fΩ3 } to the remaining 5-form components in (2.23) as follows:

f5 =2e−
32
3 u−

8
3v ⋆ f0 , (2.36)

f4 = − 2e−8u ⋆ f1 , (2.37)

fJ3 = e−
4
3u−

4
3v ⋆

[

(cosh2 τ cosh(4ω)− sinh2 τ)fJ2 − cosh2 τ sinh(4ω)fΦ2

− sinh(2τ) sinh(2ω)Re
(

ie−iθfΩ2

) ]

, (2.38)

fΦ3 = e−
4
3u−

4
3v ⋆

[

cosh2 τ sinh(4ω)fJ2 − (cosh2 τ cosh(4ω) + sinh2 τ)fΦ2

− sinh(2τ) cosh(2ω)Re
(

ie−iθfΩ2

) ]

, (2.39)

fΩ3 = e−
4
3u−

4
3v ⋆

[

ieiθ sinh(2τ) sinh(2ω)fJ2 − ieiθ sinh(2τ) cosh(2ω)fΦ2 + cosh2 τfΩ2

− sinh2 τe2iθfΩ2

]

. (2.40)

We can not substitute (2.36)–(2.40) directly into (2.22); rather, we supplement it with the

following term:5

S′
F5

=
1

2κ210

∫

M5

{

(

f5 −
1

2
ℓ5

)

k −
(

f4 −
1

2
ℓ4

)

∧Da

+

(

fJ3 + aJ1 ∧ d(A)− 1

2
ℓJ3

)

∧ d(aJ1 )

+ Re

[(

fΩ3 −DaΩ2 + d(A) ∧ aΩ1 − 1

2
ℓΩ3

)

∧DaΩ1 + 3iaΩ2

]

−
(

fΦ3 + aΦ1 ∧ d(A)− 1

2
ℓΦ3

)

∧ d(aΦ1 )
}

∧
{

1

2
J ∧ J ∧ η

}

.

(2.41)

In the modified action SF5
+S′

F5
, the self-duality constraints (2.36)–(2.40) arise as equations

of motion:

δ

δf5

(

SF5
+ S′

F5

)

= 0 ,
δ

δf4

(

SF5
+ S′

F5

)

= 0 ,
δ

δfJ3

(

SF5
+ S′

F5

)

= 0 ,

δ

δfΦ3

(

SF5
+ S′

F5

)

= 0 ,
δ

δRe[fΩ3 ]

(

SF5
+ S′

F5

)

= 0 ,
δ

δIm[fΩ3 ]

(

SF5
+ S′

F5

)

= 0 . (2.42)

The reduced 5-form action is then obtained from imposing the self-duality con-

straints (2.36)–(2.40) in

Sreduced
F5

=

{

− 1

8κ210

∫

M10
L5 ∧ F5 + S′

F5

}
∣

∣

∣

∣

F5=⋆10F5

= Skinetic
F5

+ Stopological
F5

, (2.43)

5This term is a total derivative on-shell.
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where (up to total derivatives)

Skinetic
F5

=− 1

2κ25

∫

M5

{

2e−8uf21 + e−
4
3u−

4
3v
[

(

cosh2 τ cosh(4ω)− sinh2 τ
)

(fJ2 )
2

+
(

cosh2 τ cosh(4ω) + sinh2 τ
)

(fΦ2 )
2 − sinh2 τRe

(

e−2iθ(fΩ2 )
2
)

+ cosh2 τ |fΩ2 |2

− 2 cosh2 τ sinh(4ω)fJ2 f
Φ
2 −2 sinh(2τ)

(

sinh(2ω)fJ2 −cosh(2ω)fΦ2
)

Re
(

ie−iθfΩ2

)]

+ 2e−
32
3 u−

8
3vf20

}

⋆ 1 , (2.44)

Stopological
F5

=
1

2κ25

∫

M5

{

i

3

(

DaΩ1 + 3iaΩ2
)

∧D
(

DaΩ1 + 3iaΩ2
)

+A ∧ d(aJ1 ) ∧ d(aJ1 )

−A ∧ d(aΦ1 ) ∧ d(aΦ1 )−
1

2
Re
[

(

DaΩ1 + 3iaΩ2 + fΩ2
)

∧ ℓΩ3
]

− 1

2
(d(aJ1 ) + fJ2 ) ∧ ℓJ3

+
1

2
(d(aΦ1 ) + fΦ2 ) ∧ ℓΦ3 +

1

2
(Da+ f1) ∧ ℓ4 −

1

2
(k + f0) ∧ ℓ5

}

, (2.45)

where we defined

D
(

DaΩ1 + 3iaΩ2
)

= d
(

DaΩ1 + 3iaΩ2
)

− 3iA ∧ (DaΩ1 + 3iaΩ2 ) . (2.46)

Additional contribution to five-dimensional topological couplings comes from L10 term

in (2.19), which, up to total derivatives, takes form:

Stopological,extra
F5

=
1

2κ25

∫

M5

1

2

[

p(c2 + c1 ∧A)− q(b2 + b1 ∧A)
]

∧
[

cΦd(b2 + b1 ∧A)

− bΦd(c2 + c1 ∧A)
]

.

(2.47)

2.5 CF effective action

Collecting (2.7), (2.10), (2.14), (2.18), (2.44), (2.45) and (2.47) we obtain the CF effective

action [17]:

Seff =
1

2κ22

∫

M5

R ⋆ 1 + Skin,scal + Skin,vect + Skin,forms + Stop + Spot , (2.48)

with

Skin,scal =− 1

2κ25

∫

M5

{

28

3
du2 +

4

3
dv2 +

8

3
dudv + dτ2 + 4 cosh2 τ dω2 (2.49)

+ sinh2 τ (dθ − 3A)2 + e−4u−φ
[

(cosh2 τ cosh(4ω)− sinh2 τ)(hJ1 )
2

+ (cosh2 τ cosh(4ω) + sinh2 τ)(hΦ1 )
2 + cosh2 τ |hΩ1 |2 − sinh2Re(e−2iθ(hΩ1 )

2)

− 2 cosh2 τ sinh(4ω)hJ1h
Φ
1 − 2 sinh(2τ)

(

sinh(2ω)hJ1− cosh(2ω)hΦ1
)

Re(ie−iθhΩ1 )
]

+ e−4u+φ
[

h→ g
]

+
1

2
dφ2 +

1

2
e2φdC2

0 + 2e−8uf21

}

⋆ 1 ,
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Skin,vect=− 1

2κ25

∫

M5

{

1

2
e
8
3u+

8
3v (dA)2 +

1

2
e
8
3u−

4
3v−φ h22 +

1

2
e
8
3u−

4
3v+φ g22 (2.50)

+ e−
4
3u−

4
3v
[

(

cosh2 τ cosh(4ω)−sinh2 τ
)

(fJ2 )
2+
(

cosh2 τ cosh(4ω)+sinh2 τ
)

(fΦ2 )
2

− sinh2 τRe
(

e−2iθ(fΩ2 )
2
)

+ cosh2 τ |fΩ2 |2 − 2 cosh2 τ sinh(4ω)fJ2 f
Φ
2

− 2 sinh(2τ)
(

sinh(2ω)fJ2 − cosh(2ω)fΦ2
)

Re
(

ie−iθfΩ2

) ]

}

⋆ 1 ,

Skin,forms = − 1

4κ25

∫

M5

e
16
3 u+

4
3v
(

e−φh23 + eφg23

)

⋆ 1 , (2.51)

Stop =
1

2κ25

∫

M5

{

i

3

(

DaΩ1 + 3iaΩ2
)

∧D
(

DaΩ1 + 3iaΩ2
)

+A ∧ d(aJ1 ) ∧ d(aJ1 ) (2.52)

−A ∧ d(aΦ1 ) ∧ d(aΦ1 )−
1

2
Re
[

(

DaΩ1 + 3iaΩ2 + fΩ2
)

∧ ℓΩ3
]

− 1

2
(d(aJ1 ) + fJ2 ) ∧ ℓJ3

+
1

2
(d(aΦ1 ) + fΦ2 ) ∧ ℓΦ3 +

1

2
(Da+ f1) ∧ ℓ4 −

1

2
(k + f0) ∧ ℓ5 +

1

2

[

p(c2 + c1 ∧A)

− q(b2 + b1 ∧A)
]

∧
[

cΦd(b2 + b1 ∧A)− bΦd(c2 + c1 ∧A)
]

}

,

Spot =
1

2κ25

∫

M5

{

e−
8
3u−

2
3v RT 1,1 − 2e−

32
3 u−

8
3vf20 − e−

20
3 u−

8
3v−φ

[

Re(−e−2iθ sinh2 τ(hΩ0 )
2

+ 2ipe−iθ sinh(2τ) cosh(2ω)hΩ0 ) + cosh2 τ |hΩ0 |2 + p2(cosh2 τ cosh(4ω) + sinh2 τ)
]

− e−
20
3 u−

8
3v+φ

[

h→ g , p→ (q − pC0)
]

}

⋆ 1 . (2.53)

The equations of motion obtained from (2.48) are equivalent to type IIB supergrav-

ity equations of motion [20]. Thus, SU(2) × SU(2) symmetric effective action (2.48) pro-

vides consistent truncation of type IIB supergravity on resolved warped deformed conifolds

with fluxes.

2.6 Consistent truncations to KS/KT effective actions

There is a consistent truncation of the SU(2) × SU(2) symmetric CF action to SU(2) ×
SU(2)×Z2 sector describing warped deformed conifold with fluxes obtained in [11, 12, 15]

with the non-vanishing CF fields identified as

e−
8
3u−

2
3vgµνdx

µdxν = gKS
µν dx

µdxν , k = 216ΩKS
0 , q = PKS , φ = φKS ,

1

3
ev = ΩKS

1 ,
1√
6
eu−τ/2 = ΩKS

2 ,
1√
6
eu+τ/2 = ΩKS

3 , bΦ = −3
(

hKS
1 + hKS

3

)

,

Im[bΩ] = 3
(

hKS
3 − hKS

1

)

, Re[cΩ] = 6

(

hKS
2 − PKS

18

)

, (2.54)

where the superscript KS corresponds to the parametrization of fields in [11].
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Further (consistent) restriction to a SU(2)× SU(2)×U(1) symmetric sector of (2.54)

with

τ = 0 , Im[bΩ] = 0 , Re[cΩ] = 0 ,

(

bΦ − k

q

)

= − K

2P
,

ev = Ω1 = f
1/2
2 h1/4 , eu = Ω2 = f

1/2
3 h1/4 , q = P , (2.55)

leads to the warped conifold with fluxes effective action of [7].

2.7 Decoupling of linearized fluctuations of CF action around KT action

Here we characterize decoupled linearized fluctuation sectors about SU(2)× SU(2)×U(1)

truncation of CF effective action:

SKT =
1

2κ25

∫

M5

{

R− 28

3
du2 − 4

3
dv2 − 8

3
dudv − e−4u−φ(dbΦ)2 − 1

2
dφ2

− 2e−
32
3 u−

8
3v(bΦq − k)2 − e−

20
3 u−

8
3v+φq2 + 24e−

14
3 u−

2
3v − 4e−

20
3 u+

4
3v

}

⋆ 1 .

(2.56)

Analyzing bilinears of the remaining CF modes about (2.56) we find that there are six

decoupled sectors involving:

• {δC0, δA, δc
Φ, δa, δaJ1};

• {δb2, δc2, δaΦ1 , δc1, δcJ};

• {δaΩ1 , δaΩ2 };

• {Re[δbΩ], Im[δcΩ]};

• {δτ, Im[δbΩ] ≡ δbΩ2 ,Re[δc
Ω] ≡ δcΩ1 };

• {δω, δbJ , δb1}.

Notice that δθ does not couple to quadratic order in KT truncation of CF effective action.

In what follows we focus on the last two fluctuation sets: the chiral symmetry breaking

sector,

Sχcb
[

δτ, δbΩ2 , δc
Ω
1

]

=
1

κ25

∫

M5

{

− 1

2
(dδτ)2 − 1

2
e−4u+φ(dδcΩ1 )

2 − 1

2
e−4u−φ(dδbΩ2 )

2

+ 2e−4u−φδτdbΦdδbΩ2 + 6e−
32
3 u−

8
3v(bΦq − k)δbΩ2 δc

Ω
1 + 6e−

20
3 u−

8
3v+φqδτδcΩ1

− 9

2
e−

20
3 u−

8
3v
(

e−φ(δbΩ2 )
2 + eφ(δcΩ1 )

2
)

− 1

2

(

2e−
20
3 u−

8
3v+φq2 + 9e−

8
3u−

8
3v − 12e−

14
3 u−

2
3v

+ 2e−4u−φ(dbΦ)2
)

(δτ)2
}

⋆ 1 , (2.57)
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and the baryonic branch deformation sector,

Sbaryonic
[

δω, δbJ , δb1
]

=
1

κ25

∫

M5

{

− 1

4
e
8
3u−

4
3v−φ(dδb1)

2 − e−4u−φ

(

1

2
(dδbJ)2 + 2(δb1)

2

− 2dδbJδb1 − 4δω(dδbJ − 2δb1)db
Φ

)

− 2(dδω)2 +
(

− 4e−
20
3 u−

8
3v+φq2 − 16e−

20
3 u+

4
3v

+ 24e−
14
3 u−

2
3v − 4e−4u−φ(dbΦ)2

)

(δω)2
}

⋆ 1 . (2.58)

We explicitly verified that with the identifications

δbΩ2 = − 1

2P
δk1 , cΩ1 =

P

3
δk2 , δτ = −δf

f3
, (2.59)

the effective action Sχcb is equivalent to the effective action obtained in [11].

Effective action Sbaryonic is a new result. Remarkably, consistent truncation of the

baryonic branch deformations around generic SU(2) × SU(2) × U(1) states of cascading

gauge theory requires inclusion of a vector field δb1, in addition to the supersymmetric

scalar modes δw and δbJ identified in [5]. We also verified that effective action (2.58),

reduced6 with δb1 = 0, is equivalent to the one discussed in [16]. Notice that Sbaryonic is

invariant under the λ-gauge symmetry:

δbJ → δbJ + 2λ , δω → δω , δb1 → δb1 + dλ , (2.60)

for an arbitrary 0-form λ on M5. This gauge symmetry is simply a restriction of

general λ-gauge transformations discussed in [17] to linearized (decoupled) fluctuations

{δω, δbJ , δb1} about SU(2)× SU(2)× U(1) states of cascading gauge theory. Gauge sym-

metry (2.60) can be used to completely eliminate δbJ fluctuations.

3 Baryonic branch in cascading gauge theory plasma

As an application of the effective action (2.58), we study stability of the baryonic branch

fluctuations in cascading gauge theory plasma [9]. We focus on geometries dual to thermal

states of cascading plasma, and study the spectrum of the baryonic branch quasinormal

modes of Klebanov-Tseytlin black hole [9, 10]. We show that these modes remain massive

for all accessible temperatures, i.e., for T ≥ Tu.

First, we rewrite effective action (2.58) using the KS background metric (see (2.54)):

gµν → gµνΩ
−2 , Ω = e−

4
3u−

1
3v . (3.1)

As a result of a Weyl rescaling (3.1),

⋆ 1 → Ω−5 ⋆ 1 , A(p)B(p) → Ω2pA(p)B(p) , (3.2)

6As we emphasized earlier, such a reduction is not a consistent truncation.
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for any p-forms A(p) and B(p) on M5. Thus, (2.58) is modified to

Ŝbaryonic
[

δω, δbJ , δb1
]

=
1

κ25

∫

M5

{

− 1

4
e4u−v−φ(dδb1)

2 − 2e4u+v(d δω)2

+ ev−φ

(

− 2(δb1)
2 − 8δωδb1db

Φ − 4(δω)2(dbΦ)2 + 2dδbJδb1 + 4δωdδbJdbΦ − 1

2
(d δbJ)2

)

+
(

− 4e−v+φq2 + 24e2u+v − 16e3v
)

(δω)2
}

⋆ 1 . (3.3)

The background geometry dual to the deconfined homogeneous and isotropic phase of

the cascading plasma is given by

ds25 = h−1/2(1− f21 )
−1/2

(

−f21 dt2 + dx21 + dx22 + dx23
)

+
1

9
h1/2f2

dr2

f̃22
,

u = ln
(

f
1/2
3 h1/4

)

, v = ln
(

f
1/2
2 h1/4

)

, dbΦ = − 1

2P
dK , q = P ,

(3.4)

with {f1, f̃2,K, h, f2, f3, gs ≡ eφ} being functions of r only. We focus on modes at the

threshold of instability, thus, without loss of generality we assume7

δbJ = 0 , δw = −1

2
eikx1 Z ,

δb1,x1
= ikeikx1Bx1

, δb1,r = eikx1Br , δb1,t = δb1,x2
= δb1,x3

= 0 ,
(3.5)

where {Z,Bx1
,Br} are functions of the radial coordinate only, satisfying the following

equations of motion (obtained from (3.3))

0 = k2f21 Z − 9f̃22 f
2
1

hf2(1− f21 )
1/2

Z ′′ − 9f̃2f1

f2f3h(1− f21 )
3/2

(

f̃2f3f
′
1f

2
1 − 2f̃2f

′
3f

3
1

− f3f̃
′
2f

3
1 + f̃2f3f

′
1 + 2f̃2f

′
3f1 + f3f̃

′
2f1

)

Z ′ − f21
2h2f23 gsP

2f2(1− f21 )
1/2

(3.6)

(

24hf3gsP
2f2 − 16hgsP

2f22 − 4g2sP
4 − 9f̃22 (K

′)2
)

Z +
18f̃22 f

2
1K

′

gsf2f23 (1− f21 )
1/2Ph2

Br ,

0 =B′′
x1

− 1

f̃2f3f1f2gs(1− f21 )

(

2f̃2f2gsf
3
1 f

′
3 + f3f2gsf

3
1 f̃

′
2 − 2f̃2f2gsf1f

′
3 − f3f̃2f

′
1f2gs

− f3f2gsf1f̃
′
2 − f3f̃2g

′
sf2f

3
1 + f3f̃2f

′
2gsf1 + f3f̃2g

′
sf2f1 − f3f̃2f

′
2gsf

3
1

)

B′
x1

− 8f22
9f23 f̃

2
2

Bx1
− B′

r +
1

f3f̃2f1f2gs(1− f21 )

(

2f̃2f2gsf
3
1 f

′
3 + f3f2gsf

3
1 f̃

′
2 − 2f̃2f2gsf1f

′
3

− f3f̃2f
′
1f2gs − f3f2gsf1f̃

′
2 − f3f̃2g

′
sf2f

3
1 + f3f̃2f

′
2gsf1 + f3f̃2g

′
sf2f1

− f3f̃2f
′
2gsf

3
1

)

Br , (3.7)

0 =
hf23k

2(1− f21 )
1/2

f2
B′
x1

− hf23 f
2
1k

2(1− f21 )
1/2 + 8f21 f2

f21 f2
Br −

4K ′

P
Z . (3.8)

7Here, we use the gauge symmetry (2.60) to eliminate δbJ and assume propagation of quasinormal modes

along x1 direction.
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Notice that equation (3.8) can be used to algebraically eliminate Br from equations (3.6)

and (3.7).

To make use of the results in [9, 10] we use a radial coordinate x as

x ≡ 1− f1(r) . (3.9)

The physical fluctuations described by (3.6)–(3.8) must be regular at the horizon of the

KT BH, and be normalizable at the asymptotic x→ 0+ boundary. Introducing

q =
k

2πT
, (3.10)

and using the asymptotic expansion for the KT BH developed in [9],8 the normalizability

condition for {Z ,Bx1
} at the x → 0+ boundary translates into the following asymptotic

solution

Z = z1x
1/2 +

π2T 2
q
2z1

4
√
2

(2ks + 9− lnx)x+O(x3/2 ln2 x) , (3.11)

Bx1
= x

(

b2,0 +
π2T 2

q
2z1

√
2 lnx

1152
(12ks + 94− 3 lnx)

)

+O(x3/2 ln3 x) , (3.12)

where we presented the expansions only to leading order in the normalizable UV coefficients
{

z1 , b2,0

}

. (3.13)

The independent UV normalizable coefficients (3.13) imply that the baryonic branch defor-

mation in cascading plasma is associated with the development of the expectation values

of operators of dimension-2 and dimension-4.

Since the equations of motion (3.6)–(3.8) are homogeneous, without the loss of gener-

ality we can set Z(1) = 1. The IR, i.e., as y ≡ (1 − x) → 0+, asymptotic expansion then

takes form

Z = 1 +O(y2) , Bx1
= bh0 +O(y2) , (3.14)

where we presented the expansions only to leading order in the normalizable IR coefficient
{

bh0

}

. (3.15)

The results of the analysis of the dispersion relation of the baryonic branch quasinormal

modes are presented in figure 1. In principle, we expect discrete branches of the quasinormal

modes distinguished by the number of nodes in radial profiles {Z ,Bx1
}. In what follows

we consider only the lowest quasinormal mode, which has monotonic radial profiles. We

find that over all range of temperatures, the fluctuations (solid blue line) have q
2 < 0 —

as a result, they are massive. The red dashed line

q
2

∣

∣

∣

∣

red,dashed

= −0.47(1) + 0.02(2) ln−1 T

Λ
+O

(

ln−2 T

Λ

)

, (3.16)

represents the best fit to (the high-temperature tail of) the data. Notice that in the

limit T ≫ Λ the cascading theory approaches a conformal theory with temperature being

the only relevant scale, thus, in agreement with (3.16), q2 must approach a constant in

this limit.
8As explained in [9] we can set in numerical analysis a0 = 1.
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q
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-0.30

T
Λ

q
2

Figure 1. (Colour online) Left panel: dispersion relation of the baryonic branch quasinormal modes

of the Klebanov-Tseytlin black hole as a function of ln T
Λ

at high temperature. The solid blue line

represents the dispersion relation of the baryonic branch fluctuations. The red dashed line is a

fit (3.16) to the data. Right panel: dispersion relation at low temperatures. The vertical dashed

green and red lines indicate T = Tc (the confinement/deconfinement temperature) and T = Tu (the

hydrodynamic instability temperature) correspondingly.

Acknowledgments

I would like to thank Ofer Aharony for useful discussion. I am particularly grateful to

Davide Cassani and Anton Faedo for comments on the first draft of this paper. I would like

to thank Weizmann Institute of Science and APCTP for hospitality during the completion

of this work. Research at Perimeter Institute is supported by the Government of Canada

through Industry Canada and by the Province of Ontario through the Ministry of Research

& Innovation. I gratefully acknowledge support from NSERC Discovery grant.

A Conventions

A differential p-form A(p) in ten dimensions is defined as

A(p) =
1

p!
A(p) I1···Ip E

I1 ∧ · · · ∧ EIp , (A.1)

where A(p) I1···Ip are form components in orthonormal ten-dimensional vielbein {EI} basis.

A Hodge dual is defined according to

⋆10 E
I1 ∧ · · · ∧ EIp =

1

(10− p)!
ǫ
I1···Ip

Ip+1···I10
EIp+1 ∧ · · · ∧ EI10 , (A.2)

with

ǫ1···10 = +1 , ǫ1···10 = −1 . (A.3)

Similarly, a differential p-form A(p) in five dimensions is defined as

A(p) =
1

p!
A(p) i1···ip E

i1 ∧ · · · ∧ Eip , (A.4)
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where A(p) i1···ip are form components in orthonormal five-dimensional vielbein {Ei} basis.

A Hodge dual is defined according to

⋆ Ei1 ∧ · · · ∧ Eip =
1

(5− p)!
ǫ
i1···ip

ip+1···i5
Eip+1 ∧ · · · ∧ Ei10 , (A.5)

with

ǫ1···5 = +1 , ǫ1···5 = −1 . (A.6)

Given two p-forms A(p) and B(p) we have

A(p) ∧ ⋆10B(p) =

[

1

p!
A(p)I1···IpB

I1···Ip
(p)

]

⋆10 1 ≡
[

A(p)B(p)

]

⋆10 1 ,

A(p) ∧ ⋆B(p) =

[

1

p!
A(p)i1···ipB

i1···ip
(p)

]

⋆ 1 ≡
[

A(p)B(p)

]

⋆ 1 ,

(A.7)

in ten and five dimensions correspondingly.
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