PUBLISHED FOR SISSA BY €} SPRINGER

RECEIVED: July 21, 2014
ACCEPTED: September 5, 201/
PUBLISHED: September 22, 201/

Effective action of the baryonic branch in string
theory flux throats

Alex Buchel
Department of Applied Mathematics, University of Western Ontario,
London, Ontario N6A 5B7, Canada

Perimeter Institute for Theoretical Physics,
Waterloo, Ontario N2J 2W9, Canada

E-mail: abuchel®@uwo.ca

ABSTRACT: We discuss consistent truncations of type IIB supergravity on resolved warped
deformed conifolds with fluxes. These actions represent the gravitational duals to the
baryonic branch deformation of the Klebanov-Strassler cascading gauge theory. As an
application, we demonstrate that the baryonic branch is lifted in cascading gauge theory
plasma.

KEYWORDS: Gauge-gravity correspondence, Black Holes in String Theory, Holography and
quark-gluon plasmas

ARX1v EPRINT: 1405.1518

OPEN AcCESs, (© The Authors.

Article funded by SCOAP®. doi:10.1007/JHEP09(2014)117


mailto:abuchel@uwo.ca
http://arxiv.org/abs/1405.1518
http://dx.doi.org/10.1007/JHEP09(2014)117

Contents

1 Introduction and summary 1
2 Effective action 3
2.1 Left-invariant forms on the 74! coset 3
2.2  Metric ansatz and its dimensional reduction 4
2.3 3-forms ansatz and their dimensional reduction 5
2.4 b5-form ansatz and its reduction reduction 6
2.5 CF effective action 9
2.6 Consistent truncations to KS/KT effective actions 10
2.7 Decoupling of linearized fluctuations of CF action around KT action 11
3 Baryonic branch in cascading gauge theory plasma 12
A Conventions 15

1 Introduction and summary

A conifold Yg is a simplest non-compact Calabi-Yau three-fold [1]. It is a cone over a
homogeneous five dimensional Einstein manifold 71! = (SU(2) x SU(2))/U(1), with the
U(1) being a diagonal subgroup of the maximal torus of SU(2) x SU(2). When a large
number N > 1 of D3-branes are placed at its tip, for large 't Hooft coupling gsN > 1
their backreaction warps the conifold:

R xYs — AdSsxThH. (1.1)

Along with N-units of 5-form flux through 75!, the resulting geometry is a consistent
background of type IIB string theory, holographically dual to N' = 1 four-dimensional
superconformal SU(N) x SU(N) gauge theory [2]. The warped conifold can be deformed
(without further breaking the supersymmetry) by wrapping M > 1 D5-branes over the
two-cycle of 1!, In this case the supergravity background realizes the holographic dual
to non-conformal A = 1 supersymmetric SU(N 4+ M) x SU(N) cascading gauge theory [3]
(KS). One the geometry side, the SU(2) x SU(2) x U(1) global symmetry of T! is broken to
SU(2) xSU(2) xZy. The conifold deformation parameter breaking U(1) — Zs represents the
spontaneous chiral symmetry breaking in the confining vacuum of cascading gauge theory.
The vacuum structure of N/ = 1 cascading gauge theories was studied in [4]. Precisely
when N is an integer multiple of M, there is a baryonic branch of confining vacua. In
fact, the KS vacuum (without mobile D3-branes) corresponds to a special Zy symmetric
point on this branch. A generic point on the baryonic branch breaks Z,. The supergravity
dual to the baryonic branch of cascading gauge theory was constructed in [5] (BGMPZ):



moving away from the Zs symmetric solution corresponds to a resolution of the KS warped
deformed conifold.

The type IIB supergravity backgrounds constructed in [3] and [5] are supersymmet-
ric, and thus are not suitable to address nonsupersymmetric questions in cascading gauge
theory. Likewise, given the prominent role the KS warped throat geometries play in con-
structing de-Sitter vacua in string theory [6], one needs to understand generic nonsuper-
symmetric deformations of BGMPZ resolved warped deformed conifolds. The first step
in this direction was taken in [7], where a five dimensional effective action describing the
SU(2) x SU(2) x U(1) invariant sector of the warped conifold was constructed. This action
includes five dimensional metric coupled to four bulk scalar fields. It was used to prove
the renomalizability of cascading gauge theory [7], and detailed studies of thermodynamics
and hydrodynamics of chirally symmetric phase of cascading gauge theory plasma [8-10].
In [9] it was shown that cascading gauge theory undergoes the first order confinement-
deconfinement phase transition at a certain critical temperature 7T,.. Furthermore, there is
a critical point at T, = 0.8749(0)7, where the chirally symmetric phase becomes perturba-
tively unstable towards condensation of hydrodynamic (sound) modes [10]. To understand
chiral symmetry breaking in cascading gauge theory plasma, in [11] we derived effective ac-
tion corresponding to SU(2) x SU(2) x Zg invariant sector of the warped deformed conifold
— here, three additional scalar fields are included compare to [7]. This effective action!
was used to establish that chiral symmetry breaking fluctuations in cascading gauge the-
ory plasma become tachyonic at Tygp = 0.882503(0)7,; as a result, both confinement and
the chiral symmetry breaking in cascading plasma occur simultaneously via the first-order
phase transition at T..

Comparing to the warped deformed conifold consistent truncation [11], the BGMPZ su-
persymmetric holographic renormalization group (RG) flow contains two additional scalar
fields (a mode dual to a dimension two operator and a mode mode dual to a dimension
four operator of the boundary cascading gauge theory). It is straightforward to perform
Kaluza-Klein reduction of this enlarged gravity-scalar sector and produce a five-dimensional
truncation of the resolved warped deformed conifold [15].2 Unfortunately, this action is
not a consistent truncation away from the origin of the baryonic branch [15];% at the origin
of the baryonic branch the truncation is consistent and is identical to [11].

The fully consistent SU(2) x SU(2) truncation of type IIB supergravity on resolved
warped deformed conifold was constructed in [17]* (CF). In this paper we reproduce the
derivation of the effective action [17], and point further consistent truncation to effec-
tive action [11]. We further discuss linearized fluctuations of CF effective action about
SU(2) x SU(2) x U(1) symmetric warped conifold with fluxes consistent truncations of [7].
We recover consistent truncation of chiral symmetry breaking sector in cascading gauge

! Additional applications were considered in [12, 13].

2See also [16].

3T would like to thank Davide Cassani and Anton Faedo for bringing reference [15] to my attention, and
pointing out the inconsistency of the truncation [16].

“Related discussion appeared in [18]. We will not attempt to verify [18] and relate it to earlier work,
partly because the authors did not present the Chern-Simons part of the action in full generality.



theory plasma [11]. Lastly, we present linearized effective action describing baryonic branch
deformation about SU(2) xSU(2) xU(1) symmetric states of cascading gauge theory plasma.
We show that unlike Zso-invariant chiral symmetry breaking fluctuations, Zo-non-invariant
baryonic branch fluctuations remain massive up to 7}, in cascading gauge theory plasma,
i.e., the baryonic branch is lifted by the finite temperature effects.

2 Effective action

In this section, following [17] and [19], we reproduce the derivation of CF effective action
of the resolved warped deformed conifold with fluxes. The offshoot is that the effective
action derived in [17] is correct; moreover, we did not find any typos in the presentation.

We will work in the gravitational approximation to type IIB string theory, using the
type IIB supergravity action. This action takes the form (in the Einstein frame)

1 1 1 1
S1o :2/ (R10 A *10l — *dgf) A\ *10d¢ — *e_d)Hg N*10H3 — *€¢F3 N *10F3
2K 2 2 2
10 < Mo
1 1
— §€2¢F1 A *10F — 1F5 A *10F5> (21)
1
g [ (Band(Co) — Cand(B) nd(Co)
8’%10 Mo

where Mg is the ten dimensional bulk space-time, k1 is the ten dimensional gravitational
constant. The form-field strengths, determined from the potentials {Cy ,Ba ,Cy ,Cy},
satisfy the Bianchi identities:

d(Fl)ZO, d(Hg) =0, d(Fg) = H3 NI, d(F5) = H3 N\ F3. (22)

The equations of motion following from the action (2.1) have to be supplemented by the
self-duality condition
*10 F5 = F5. (2.3)

It is important to remember that the self-duality condition (2.3) can not be imposed at
the level of the action, as this would lead to wrong equations of motion.
Appendix A contains our conventions regarding differential forms.

2.1 Left-invariant forms on the 71! coset

We use explicit parametrization of the coset T™! = (SU(2) x SU(2))/U(1) in terms of
angular coordinates {61, ¢1, 602, 2,9} with ranges 0 < 012 < 7w, 0 < ¢12 < 27, and
0 <1 < 4m. As in [17] we choose the coframe 1-forms as

el = —sinby d(¢1), e* =d(6y),

e = costp sinby d(¢po) — siney d(6y),
et =siny sinby d(pe) + costh d(fs),
e’ = d(1p) + cos Oy d(¢py1) + cosbad(ps) .

(2.4)



All left-invariant 1- and 2-forms on the coset are given by [17]:

1 1
77:_5657 Q= 6(61+’i62)/\(63—i64),
1 1
J: 6(61/\82—63/\4), (I): g(el/\e2+63/\64)' (25)

2.2 Metric ansatz and its dimensional reduction

We take the ten-dimensional spacetime Mg to be a direct warped product My x TH1,
The most general SU(2) x SU(2) invariant metric on Mg is parameterized by five 0-forms
{u,v, 7,w, 0}, and a single 1-form A on Ms, [17]:

i, = SJE'ET, dsh,, = Y B,
1 i

T
E = e 3“ BUE’L’ fOI‘ I:/L:]_’E)’
7 1

1
EG _ eu-i—w 61 , E7 — eu-‘rw 62 ’
V6 cosht ~ V6coshT (2.6)
h :
E® = COSG T euw <e3 + tanh 7 ¢* Re (eza(e1 + ieQ))) ,
h .
E° = COZ T gu—w <e4 + tanh 7 e* Im ((3“9(61 + i62)>> ,

ElO _ ev(77+A)-

Given (2.6), it is straightforward (albeit tedious) to reduce ten-dimensional Einstein-Hilbert
term in (2.1). We find

1 1 1 8,.8 8., 2 2
— (R*101) = 2/ {R — —e3"T3Y (dA)? + e 3"73Y Ry — —8du2 (2.7)
2650 J Myo 2K J M, 2 3
4
-gdvl—gdudu-d%%—4amh27dw2—snﬁﬁr(d9—4;4? * 1,
where
Rp1a =4e tut2v [sinh2 7 — cosh? 7 cosh(4w)] (2.8)
+ 24e™ % cosh 7 cosh(2w) — 9™ sinh? 7, '
and
2 _ K 1
Ky = —, Vy——/ JNJT A, (2.9)
Vy 2 T1.1

with V4 being the volume of unit size Th1.
SU(2) x SU(2) symmetry requires that both the dilaton ¢ and the axion Cj are 0-forms
on Mj. Their reduction on Th! is trivial:

1 1 1 1 1 1
—Z(dd)? — =20 F2 *1:_/ —de? + ~e*?dC2 | x1.  (2.10
2K3, M10< 2( ?) 26 1) 232 Ms L2 o+ 26 of* ( )



2.3 3-forms ansatz and their dimensional reduction

Most general SU(2) x SU(2) symmetric ansatz of NSNS 3-form field strength Hs3 (solving
the Bianchi identity (2.2)) is parameterized by a 2-form be, a one form by, two real 0-forms
b7 and b®, a complex 0-form b on M5 and a constant p, [17]:

By =by+ by A (n+ A) +b7J + Re(b7Q) + b%0. '
The field strength Hj3 can be decomposed in a basis of left-invariant forms on TH! (2.5):

Hy=hg+ha A(n+ A)+h{ AT +Re [ AQ+h2QA (n+ A)]

o (2.12)
+APAD+pD A (n+ A),
where we defined
hs = dby — by A d(A), h = db®? — 3i AbSt = Db,
hy = dby , At = 30 b, (2.13)
h{ = db’ — 2b; = Db, ht = db® —p A= Db?.

Reducing NSNS 3-form contribution in (2.1) on 71! results in

1 1 1
2/ <—e‘¢H§> *x101 = —2/ {6_4“_¢ [(cosh2 7 cosh(4w) — sinh? 7)(h{)?
2K 2 2K

10 Y Mo 5 J Ms
+ (cosh? 7 cosh(4w) + sinh? 7) (h$)? 4 cosh? 7|h$[? — sinh? Re (e =2 (h$})?)
— 2cosh? 7 sinh(4w)h{ hE — 2sinh(27) (sinh(2w)h‘1] - cosh(Qw)hib) Re (ie_wh?)}

18 4 116 .4 20 8 4

+ 5e:s“*?»”*‘f’ h3 + 53 w3V R pem B3T3 ? [Re(—e—m sinh? 7(h{})? (2.14)
+ 2ipe " sinh(27) cosh(2w)h}) + cosh? 7|k 4 p*(cosh? T cosh(4w) + sinh? 7')] } *x1.

Similarly, most general SU(2) x SU(2) symmetric ansatz of RR 3-form field strength
F3 (solving the Bianchi identity (2.2)) is parameterized by a 2-form ¢z, a one form ¢;, two
real O-forms ¢/ and ¢®, a complex 0-form ¢ on M5 and a constant g, [17]:

F3s=q® An+d(Cy) — CyHs,

2.15
Cy=co+cr A+ A+l J+Re(Q) +c*. (2:15)

The field strength F3 can be decomposed in a basis of left-invariant forms on T4 (2.5):

Fy=gs+@An+A) +g/ AJ+Re [gPAQ+ gl QA (n+ A)]

o (2.16)
+ 97 NP+ (¢ —Cop) @ A (n+ A),
where we defined
g3 = dey — ¢y Ad(A) — Cohs, @B =de? —3i A — CuDV = D! — Co Db,
= dcy — Codby &= 3i (¢ = Cpb®Y),
g2 1 0a01 90 ( 0 ) (2.17)

gi] =dc’ — 2c1 — C’onJ = D¢’ — CODbJ,
gf’ =dc® — g A — CyDb® = Dc® — CyDb® .



Reducing RR 3-form contribution in (2.1) on 7! results in expression equivalent to
the r.h.s. of (2.14) with the obvious substitutions:

1 1 1
2 _
——e®F5 | %101 = — {¢—>—¢,h—>g,p—>(q—()’op)}. (2.18)
2630 J My < 2 3) 263 Jms

2.4 5-form ansatz and its reduction reduction

Because of the self-duality condition (2.3), special care should be taken in dealing with the
reduction of the 5-form; furthermore, to reproduce correct type IIB supergravity equations
of motion the 5-form topological term (the second line in (2.1)) must be replaced with [17]

1

StBtop = — 53~
top 2
8K1

/M {(B2 A(C:) +2B") — Cy A (d(B2) + 21} A (d(C) + B

1
+ 5(B2 A By Ad(Cy) A FS' 4+ Cy A Cy A d(By) AH:{Z)}

1
8r

| [z ntacn + 5 + L) (2.19)
Ms
where the third line is used to define Ls and Lqp, and
o fl_ fl_
Fy"=q®An, H; =p®An, F'=kJNJAN(n+A), (2.20)

for a constant k. Note that neither Ls nor Liy contain 5-form degrees of freedom. The
proper strategy in dealing with the 5-form self-duality condition was developed in [19],
which we apply here.

Let’s focus first on 5-from degrees of freedom. 5-form Bianchi identity (2.2) is
solved with

1
Fs=d(Cy) + F' + L5 (2.21)
and the 5-form part of the action (2.1) can be written as

1

Spy = — =5
’ 8rt

/ |:F5 A x10F5 + Ls N\ F5] . (222)
Mo

As with 3-forms, we can decompose 5-from into the basis of left invariant forms on 7!

Fs=fs+fin(n+A) +ff AT+ f ANTA(+A)+Re [f$AQ+ SEAQA (n+ A)]
AP HfEAPANM+ A+ HLATANT+ foJANTA(n+ A), (2.23)



with

fo =k + pc® — gb® + 3Im [bﬂciﬂ} =k+ %éo , (2.24)
fi=Da+ %(qb‘p —pc®)A + % {b‘]Dc‘] —b®Dc® + Re [bﬂm} —b+ c}

= Da + %zl , (2.25)
fi =dai) + % [de(cl) —byADe! —b c] =d(ai) + %eg, (2.26)
£ = Daf + 3ia$ + % [bﬂd(q) ~ by A DA+ 3%y — b < c] = Da + 3ia$ + %zg ,

(2.27)

L =da®) + %(qbl —pc1)A + gby — pea + %[b@d(cl) — by AD® — b c}

=d(a}) + %eg’ , (2.28)
£2 = Daf — a? A d(A) + % [bs A D 6% d(e2) — ex Ad(4)) b

= Daf! — af Nd(A) + %W : (2.29)
£ d(a) — a® Ad(A) + % [pes A A — by 1 4] (2.30)

- %[bg A Dc® 4+ 0% (d(cg)—c1 Ad(A)) — b < c} =d(ad) —af Nd(A) + %zg? ,

fi =d(aj) — 2a3 —af Ad(A) + % [b2 A De? + b7 (d(ez) — e1 Ad(A)) — b c}

=d(aj) — 2a3 —af N d(A) + %Eg, (2.31)

fi = d(as) + %[bg Ader) — by A (d(ez) — e1 Ad(A)) b e ] = d(ag) + %&1 (232
fs= g’“x + d(as) —az ANd(A) + % [bg A(d(ea) —c1 ANd(A)) — b+ c]
= 5fluoc + d(a4) —as N\ d(A) + %&3 , (233)

where we defined
)
Daf =d(a’?) — 3iA N af, (2.34)
Q
2

The last identities in (2.24)(2.33) are used to define {fq, 1, 0q, 65 €2 03, 0] 02 04,05}

The form fields {a, a‘lj, a‘lp, a?, ag, a%’, ag, as,aq} are degrees of freedom of Cly:

d(Cy)=d(as) — az A d(A) + d(az) A (n+ A) + (d(ag) — 2a3 — a] Ad(A)) A J (2.35)

+d(af) A JIA (n+A) + Re [(Daf — af Ad(A)) AQ+ (Daf + 3iad) A QA (n+A)]
+ (d(a9) — af Nd(A) A D +d(af) AP A (n+ A) + (d(a) —2a{)NT AT .



Note that given (2.35), d?(Cy;) = 0. The self-duality of the 5-form (2.3) relates
{fs, fa 1, 13, f:?} to the remaining 5-form components in (2.23) as follows:

32 8
f5=2e"3""3" x fy, (2.36)
f4 = — 26_8u * f1 N (237)
4 4
J =e 3"V (cosh2 7 cosh(4w) — sinh? 7) f5 — cosh? 7 sinh(4w) fy
— sinh(27) sinh(2w)Re (ie‘w f?)} : (2.38)
4 4 r
f¥ =e73"73" % | cosh? 7sinh(4w) f§ — (cosh? T cosh(4w) + sinh? 1) f

— sinh(27) cosh(2w)Re (ie_i9f29> } , (2.39)

4 4 1 ,
f =e73"73Y & |ie" sinh(27) sinh(2w) f5 — ie” sinh(27) cosh(2w) f5 4 cosh? 7 f5

~ sinh? TeQieﬁ} . (2.40)

We can not substitute (2.36)—(2.40) directly into (2.22); rather, we supplement it with the

following term:®

,_1/ VAT
5F5_25%0 M5{ Js =3t ) k= (fa— 5t ) A Da

1
+ <f3;] +af Ad(A) — 265{) Ad(af)
. - (2.41)
+ Re [(fg? — Da§ + d(A) Aaf — 2e§}> A Da$! + 3iag]
d, @ 1 o P 1
— (£ +ab nd(a) - 54 /\d(al)}/\ STAT A

In the modified action Sg; +5S7. , the self-duality constraints (2.36)-(2.40) arise as equations

of motion:
s § ) 5
(5f5 (SF5+SF5)—O, E(SFS—FSI%):O’ 5f3 (SF5+SF5) 0,
§ 5 ) 5 )
—_— = _— =0. (242
5f3 (SF5 + SF5) B (5Re[f§)] (SF5 + SFS) 0, 6Im[f3ﬂ] (SF5 + SFs) 0 ( )

The reduced 5-form action is then obtained from imposing the self-duality con-
straints (2.36)—(2.40) in

1
Sreduced { _ 87%0 /M . Ls N\ Fs + S}%}
1

5This term is a total derivative on-shell.

_ klnetlc+8topologlcal (243)
Fs=x10F5




where (up to total derivatives)
1 4 _4
Skmem =— / {26_8“f12 +e 3"73Y [ (cosh2 7 cosh(4w) — sinh? 7) (f5)?
265 J M
+ (cosh2 7 cosh(4w) + sinh® 7) (f£)? — sinh® 7Re (e_2i9(f§)2> + cosh? 7| f5}]?
— 2cosh? 7 sinh(4w) f3 f3 —2sinh(27) (sinh(2w) f§ —cosh(2w) f3’ ) Re (ze ’efﬂﬂ

7Qu7§v 2
+2e73 3f0}*1, (2.44)

opological 1 [ty .
Spreesieal — — /M5 {3 (Daf + 3ia$) A D (Daf + 3iaf) + A A d(a]) Ad(af)

2/<c§
~ AN d(a®) Ad(a®) — 1Re [(Daf + 3iaf + f8) A E] - %(d(al) + 1A
+;(d(a1)+f2) (Da+f1)/\€4—f k+ fo) /\E5} (2.45)

where we defined
D (Daf + 3iay) = d (Dafl + 3iay) — 3iA A (Daf! + 3ia) . (2.46)

Additional contribution to five-dimensional topological couplings comes from Ljg term
n (2.19), which, up to total derivatives, takes form:

opological,extra 1 1
giopologicalextra _ _— f[p(@ e AA) = qlby + by AA)} A [c%(bg by A A)
’ 25 Jas 2 (2.47)

—b%d(cy +c1 A A)} .

2.5 CF effective action

Collecting (2.7), (2.10), (2.14), (2.18), (2.44), (2.45) and (2.47) we obtain the CF effective
action [17]:

1
Seﬁ =52 / Rx1+ Skz'n,scal + Skin,vect + Skz'n,forms + Stop =+ Spot ) (248)
2/432 M
with
1 28 4 8
Skin,scal = — 5.2 / {du2 + —dv? + —dudv + dr? 4 4 cosh? 7 dw? (2.49)
k2 S, L3 3 3

+sinh? 7 (df — 3A)% 4 e~ Hu¢ [(cosh2 7 cosh(4w) — sinh? 7)(h!)?
+ (cosh? 7 cosh(4w) 4 sinh? 7)(h?)? 4 cosh? 7|h|? — sinh? Re (e %7 (h$})?)
— 2cosh? 7 sinh(4w)h h® — 2sinh(27) (sinh(2w)h1j— cosh(2w)h‘1i’) Re(ie_whsf)]

1 1
4 e~ dute [h N g] + §d¢2 + 562‘1’ng + 26_8uf12} *1,



5

18,.8 18, 4 18, 4
Sumveer=— g [ {2ebesSr @ Telvdreng g Lbudoie g (2.50)
’ 262 Jars 12 2 2
4 4
+e 343" [(cosh2 7 cosh(4w) —sinh® 7) (fs)2+ (cosh? T cosh(4w) +sinh? 7) (f£)?
— sinh? 7Re (e_Qie(f§)2> + cosh? T\f§|2 —2cosh? 7 sinh(4w)f2‘7f2q)

— 2sinh(27) (sinh(2w)f2‘] - cosh(Zw)fQ(b) Re (ie—i9f29> } } *1,

1 16,4,/ _
Skin,forms = _42/ €3 T3 (6 ¢h§ + ed)gi%) *1, (251)
K5 J Ms
1 e Ee iy
Stop = 2r2 / {;(Dag2 + 3ia$}) A D (Dag2 + 32’@?) + And(ai) Ad(a]) (2.52)
5 J Ms
1 . - 1
— And(a?) Ad(af) - SRe [(Daf +3iaf + /) A ] - S(d(a]) + ) A 63
1 1 1 1
+ §(d(a<1b) + [ ) NS+ g(Da+ fi) Ny — 5 (k+ fo) A5 + 5[1)(02 +ec1 N A)

—q(ba + by A A)} A [cq’d(bg + b AA) = b%d(ca+c1 A A)} } ,

1
2/{%

+ 2ipe~ " sinh(27) cosh(2w)hY) + cosh? 7|k 4 p*(cosh? 7 cosh(4w) + sinh? 7)

8,2 _32,.8 _20,.8 _ —2i0 .
Spot = / {e_3u 3" Rpna — 2~ 3973V f2 —e 34737 ¢[Re(—e 20 sinh? 7(h{})?
Ms

20 8
— e 3uT3UTe [h —g,p— (¢ — pCo)] } *x1. (2.53)

The equations of motion obtained from (2.48) are equivalent to type IIB supergrav-
ity equations of motion [20]. Thus, SU(2) x SU(2) symmetric effective action (2.48) pro-
vides consistent truncation of type IIB supergravity on resolved warped deformed conifolds
with fluxes.

2.6 Consistent truncations to KS/KT effective actions

There is a consistent truncation of the SU(2) x SU(2) symmetric CF action to SU(2) x
SU(2) x Zg sector describing warped deformed conifold with fluxes obtained in [11, 12, 15]
with the non-vanishing CF fields identified as

8 2
e 3" 3%, detdx” = gﬁ(ysd:n“dx”, k= 216(26(5, g=PKS,  ¢=¢F5,
1 1 1
7€U:QKS’ —eu_T/Q:QKS’ —eu+7/2:QKS’ b<I>: -3 hKS—I—hKS ’
3 1 \/6 2 \/6 3 ( 1 3 )
PKS
Im 5] = 3 (5 — R{5) | Re[cY] =6 (hé“ — 18) , (2.54)

tKS

where the superscrip corresponds to the parametrization of fields in [11].

,10,



Further (consistent) restriction to a SU(2) x SU(2) x U(1) symmetric sector of (2.54)
with

k K
=0, Im[6%] =0, Re[c"] =0, (bq’_q>:_2p,
e’ =y = fi PRV, et =y = £ 2RY4 qg=P, (2.55)

leads to the warped conifold with fluxes effective action of [7].

2.7 Decoupling of linearized fluctuations of CF action around KT action

Here we characterize decoupled linearized fluctuation sectors about SU(2) x SU(2) x U(1)
truncation of CF effective action:
1 28

4 8
SKT == R— "—du® — ~dv® — Zdudv — e " (db*)? —
KT 2H§/M5{ g du” — gdv” — gdudv —e (db®)

1
,d¢2

2 2.56
32 8 20 8 1“2 20 4 (2.56)
26‘3“‘3”(b‘1’qk;)26‘3“‘3”+¢q2+24e‘3“‘3“46‘37‘*3”}*1.

Analyzing bilinears of the remaining CF modes about (2.56) we find that there are six
decoupled sectors involving:

o {5Cy,04,5¢%, 5a,6al};

o {8by,bcy, 6a®, bcy, 67}

e {0a$,das};

o {Re[60%], Im[6c)};

o {07, Im[6b%] = 5bS, Re[6c%Y] = 6c};
o {0w,db”,6by}.

Notice that 0 does not couple to quadratic order in KT truncation of CF effective action.
In what follows we focus on the last two fluctuation sets: the chiral symmetry breaking
sector,
1 1 1

Syeb [67,8b%,6¢}] = — / { — Z(déT)? — 5e*‘*"w(d(sc?)? — %e%“fd’(d(sbgl)?
M

2
K5 2

32 8 20 8
+ 2e74 057 db®dobS 4 6~ 3 T3V (0%q — k)ObYICSE + 6 3 VT3P qrocY

20 8 20 8 8 8 2
— ge*?“ﬁ“ (e—¢(5b§2)2 + e¢(6c§2)2> — %(26*?“*5“%2 1 9¢73%73Y —12¢ 34 3Y

+ 2e—4u—¢(db‘1’)2> (57)2} *1, (2.57)
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and the baryonic branch deformation sector,

8 4
Sbaryonic [dw, 867 ,6b1] = = / { - ieﬁ“‘?”‘d’(débl)z s @(dabJ )2 4 2(6b1)?
M5

K5

20 8 20 4
— 2d6b7 6by — 46w (dob” — 25b1)db¢) — 2(déw)? + ( —4e” U3V _ 1673 UTEY
14 2
+24e” 343V — 46—4u—¢(db¢)2) (5w)2} *1. (2.58)

We explicitly verified that with the identifications

of
I3’

the effective action S, is equivalent to the effective action obtained in [11].

1 P
ob = —ﬁakl , A= —0ks, or = —

; (2.59)

Effective action Sparyonic is a new result. Remarkably, consistent truncation of the
baryonic branch deformations around generic SU(2) x SU(2) x U(1) states of cascading
gauge theory requires inclusion of a vector field dby, in addition to the supersymmetric
scalar modes dw and §b7 identified in [5]. We also verified that effective action (2.58),
reduced® with db; = 0, is equivalent to the one discussed in [16]. Notice that Sharyonic 18
invariant under the A-gauge symmetry:

ob7 — ob7 + 2, dw — dw, 8by — 0by + d\, (2.60)

for an arbitrary O-form A on Msj. This gauge symmetry is simply a restriction of
general A-gauge transformations discussed in [17] to linearized (decoupled) fluctuations
{6w, 6b7 , 6b1} about SU(2) x SU(2) x U(1) states of cascading gauge theory. Gauge sym-
metry (2.60) can be used to completely eliminate §b7 fluctuations.

3 Baryonic branch in cascading gauge theory plasma

As an application of the effective action (2.58), we study stability of the baryonic branch
fluctuations in cascading gauge theory plasma [9]. We focus on geometries dual to thermal
states of cascading plasma, and study the spectrum of the baryonic branch quasinormal
modes of Klebanov-Tseytlin black hole [9, 10]. We show that these modes remain massive
for all accessible temperatures, i.e., for 7' > T,,.

First, we rewrite effective action (2.58) using the KS background metric (see (2.54)):

) 41
G — G2, Q=e 373", (3.1)
As a result of a Weyl rescaling (3.1),

*1 — Q_5 *x 1 R A(p)B(p) — QZp A(p)B(p) s (32)

5As we emphasized earlier, such a reduction is not a consistent truncation.
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for any p-forms A,y and B, on M;. Thus, (2.58) is modified to

A 1 1
Sbaryonic [0w, b7 ,db1] = — / { — etV (doby)? — 21 (d fw)?
K,5 M 4

1
+ v <— 2(6b1)? — 86wdbydb® — 4(6w)?(db®)? + 2d6b” 5by + 40wdsb? db® — 5 (5bJ)2>

+ (f 4e7VT0q% + 24700 — 1663”> (5w)2} *1. (3.3)

The background geometry dual to the deconfined homogeneous and isotropic phase of
the cascading plasma is given by

1 dr?
dsg = 21— 7))V (<7 d? + dad + da + daf) + 5 fo =,
. 2 (3.4)
u=m(£20) v=m(RPR) @ = —dK, q=P,
with {fl,fg,K, h, fa, f3,9s = €®} being functions of r only. We focus on modes at the
threshold of instability, thus, without loss of generality we assume’
1 .
o’ =0, dw = ——¢kr1 z
2 (3.5)

by 2y = ke B, by = ek B, b1y = 6b1 sy = b1 uy =0,

where {Z,B,,,B,} are functions of the radial coordinate only, satisfying the following
equations of motion (obtained from (3.3))

9f22f12 z 9f2f1

1202 & _ 3 122 o f gl 3
Ry e fafsh(1— f2)3/2 (Fatsfist = 2utif
B N ~ B 2
~ BRI RS 2R SBR) Z - gt (36)

SRR .
gsfof3(1— f2)12Pn2"""
<2f2f29sff’f§ + f3fogs [i fo — 2fafogs fifs — fafoflfogs

(24029, P2f2 = 16h9.P* 3 — 492 P = O3 (K')?) Z +
/ 1
" Rafsfifgs(1- f7)
— fsfagsfifs — fafadifofi + fafafogsfr + fafoglifofi — f3f2f§gsff’)3él
9%222 By, — B, + f3f2f1f2915(1 = (2f2f2gsff’f§ + fsfagsf1 fo — 2f2fogsf1 1
— fsfofi f20s — fsfogsf1fs — fsfadifolfi + fafofigshfi + fafogifofi

~ fafaf39513)B: (3.7)
_hBERA DY RERRPA - ) 8 e, AR
0= B B, h B ——Z. (3.8)

"Here, we use the gauge symmetry (2.60) to eliminate §b7 and assume propagation of quasinormal modes
along z; direction.
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Notice that equation (3.8) can be used to algebraically eliminate B, from equations (3.6)
and (3.7).
To make use of the results in [9, 10] we use a radial coordinate = as

x=1- fi(r). (3.9)
The physical fluctuations described by (3.6)—(3.8) must be regular at the horizon of the
KT BH, and be normalizable at the asymptotic x — 04 boundary. Introducing
k
T
and using the asymptotic expansion for the KT BH developed in [9],® the normalizability

q= (3.10)

condition for {Z,B,,} at the z — 04 boundary translates into the following asymptotic

solution
272425, )
Z:le/z—l—ﬁi2k8+9—1nx:c+(’)x5/21n2x , 3.11
1 el o+ 02 o) (3.11)
2T2 2 21
B, —u (bz,o LT qnzé;f BT 12k, + 94 — 3lnx)) + 0 z) (3.12)

where we presented the expansions only to leading order in the normalizable UV coefficients

{21 752,0}- (3.13)

The independent UV normalizable coefficients (3.13) imply that the baryonic branch defor-
mation in cascading plasma is associated with the development of the expectation values
of operators of dimension-2 and dimension-4.

Since the equations of motion (3.6)—(3.8) are homogeneous, without the loss of gener-
ality we can set Z(1) = 1. The IR, i.e., as y = (1 — ) — 04, asymptotic expansion then
takes form

Z=1+0@u%, B, =b+0?), (3.14)

where we presented the expansions only to leading order in the normalizable IR coefficient

{bg} . (3.15)

The results of the analysis of the dispersion relation of the baryonic branch quasinormal
modes are presented in figure 1. In principle, we expect discrete branches of the quasinormal
modes distinguished by the number of nodes in radial profiles {Z,B,, }. In what follows
we consider only the lowest quasinormal mode, which has monotonic radial profiles. We
find that over all range of temperatures, the fluctuations (solid blue line) have g% < 0 —
as a result, they are massive. The red dashed line

T T
q = —0.47(1) +0.02(2) In"' — + O (m-2 ) , (3.16)
red,dashed A A

represents the best fit to (the high-temperature tail of) the data. Notice that in the
limit T > A the cascading theory approaches a conformal theory with temperature being
the only relevant scale, thus, in agreement with (3.16), g2 must approach a constant in
this limit.

8As explained in [9] we can set in numerical analysis ag = 1.
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Figure 1. (Colour online) Left panel: dispersion relation of the baryonic branch quasinormal modes
of the Klebanov-Tseytlin black hole as a function of In % at high temperature. The solid blue line
represents the dispersion relation of the baryonic branch fluctuations. The red dashed line is a
fit (3.16) to the data. Right panel: dispersion relation at low temperatures. The vertical dashed
green and red lines indicate T' = T, (the confinement/deconfinement temperature) and T = T, (the
hydrodynamic instability temperature) correspondingly.
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A Conventions

A differential p-form A, in ten dimensions is defined as

1

= A(p) I--Ip Eh AREREA Elp > (Al)

Aw) =

where Ay g,...1, are form components in orthonormal ten-dimensional vielbein {El } basis.
A Hodge dual is defined according to

1 Iy-Ip Elp+1 A /\Eho ’ (A2)

LSRN L — -
*10 71 A ANE? = (10—]))!6 Ipi1-Tio &

with
€1..10 = +1, el 10— _1. (A3)

Similarly, a differential p-form A, in five dimensions is defined as

1 7 i
A(p) = E A(p)i1~~~ip EYN---NE"? (A.4)
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where A(,);,..;, are form components in orthonormal five-dimensional vielbein {E"} basis.

A Hodge dual is defined according to

x EN Ao\ B = ;eil”'%, _EU AL A RO
(5 —p)! e

with
€1..5 = +1, el =1,

Given two p-forms A,y and B, we have
A By = |~ 4 Bl w01 =[A,B 1
) A*10B) = | Apiner, By | 20 1= [Agy Bl ko 1

1 i1 .
Aw) A By = L,! Ayis-ip By ] *x1=[4

in ten and five dimensions correspondingly.

(A.5)
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