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1 Introduction

F-theory is defined on an elliptically fibered Calabi-Yau four-fold over a threefold base [1].

In the elliptic fibration the singularities of the internal manifold are associated to the

gauge symmetry. The basic objects in these constructions are the D7-branes which are

located at the “points” where the fibre degenerates, while matter fields appear at their

intersections. The interesting fact in this picture is that the topological properties of the

internal space are converted to constraints on the effective field theory model in a direct

manner. Moreover, in these constructions it is possible to implement a flux mechanism

which breaks the symmetry and generates chirality in the spectrum.

F-theory Grand Unified Theories (F-GUTs) [2–8] represent a promising framework for

addressing the flavour problem of quarks and leptons (for reviews see [9–14]). F-GUTs

are associated with D7-branes wrapping a complex surface S in an elliptically fibered

eight dimensional internal space. The precise gauge group is determined by the specific

structure of the singular fibres over the compact surface S, which is strongly constrained

by the Kodaira conditions. The so-called “semi-local” approach imposes constraints from

requiring that S is embedded into a local Calabi-Yau four-fold, which in practice leads

to the presence of a local E8 singularity [15], which is the highest non-Abelian symmetry

allowed by the elliptic fibration.

In the convenient Higgs bundle picture and in particular the spectral cover approach,

one may work locally by picking up a subgroup of E8 as the gauge group of the four-

dimensional effective model while the commutant of it with respect to E8 is associated to

the geometrical properities in the vicinity. Monodromy actions, which are always present

in F-theory constructions, may reduce the rank of the latter, leaving intact only a subgroup

of it. The remaining symmetries could be U(1) factors in the Cartan subalgebra or some

discrete symmetry. Therefore, in these constructions GUTs are always accompanied by

additional symmetries which play important role in low energy pheomenology through the

restrictions they impose on superpotential couplings.

In the above approach, all Yukawa couplings originate from this single point of E8

enhancement. As such, we can learn about the matter and couplings of the semi-local the-

ory by decomposing the adjoint of E8 in terms of representations of the GUT group and

the perpendicular gauge group. In terms of the local picture considered so far, matter is

localised on curves where the GUT brane intersects other 7-branes with extra U(1) symme-

tries associated to them, with this matter transforming in bi-fundamental representations

of the GUT group and the U(1). Yukawa couplings are then induced at points where three

matter curves intersect, corresponding to a further enhancement of the gauge group.

– 1 –
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Since E8 is the highest symmetry of the elliptic fibration, the gauge symmetry of the

effective model can in principle be any of the E8 subgroups. The gauge symmetry can

be broken by turning on appropriate fluxes [16] which at the same time generate chirality

for matter fields. The minimal scenario of SU(5) GUT has been extensively studied [17–

19]. Indeed only the simplest SU(5) GUTs can in principle avoid exotic matter in the

spectrum [4]. However, by considering different fluxes, other models have been constructed

with different GUT groups, such as SO(10) and E6 [20–24]. In particular, it is possible to

achieve gauge coupling unification from E6 in the presence of TeV scale exotics originating

from both the matter curves and the bulk [25].

All of the approaches mentioned so far exploit the extra U(1) symmetries as family

symmetries, in order to address the quark and lepton mass hierarchies. While it is gratify-

ing that such symmetries can arise from a string derived model, where the parameter space

is subject to constraints from the first principles of the theory, the possibility of having

only continuous Abelian family symmetry in F-theory represents a very restrictive choice.

By contrast, other string theories have a rich group structure embodying both continuous

as well as discrete symmetries at the same time [26]–[31]. It may be regarded as some-

thing of a drawback of the F-theory approach that the family symmetry is constrained

to be a product of U(1) symmetries. Indeed the results of the neutrino oscillation exper-

iments are in agreement with an almost maximal atmospheric mixing angle θ23, a large

solar mixing θ12, and a non-vanishing but smaller reactor angle θ13, all of which could be

explained by an underlying non-Abelian discrete family symmetry (for recent reviews see

for example [32–34]).

Recently, discrete symmetries in F-theory have been considered [35] on an elliptically

fibered space with an SU(5) GUT singularity, where the effective theory is invariant under

a more general non-Abelian finite group. They considered all possible monodromies which

induce an additional discrete (family-type) symmetry on the model. For the SU(5) GUT

minimal unification scenario in particular, the accompanying discrete family group could

be any subgroup of the S5 permutation symmetry, and the spectral cover geometries with

monodromies associated to the finite symmetries S4, A4 and their transitive subgroups,

including the dihedral group D4 and Z2 ×Z2, were discussed. However a detailed analysis

was only presented for the Z2 × Z2 case, while other cases such as A4 were not fully

developed into a realistic model.

In this paper we extend the analysis in [35] in order to construct realistic models based

on the cases A4 and S3, combined with SU(5) GUT, comparing our results to existing field

theory models based on these groups. We provide an explicit calculation to support the

emergence of the family symmetry as from the discrete monodromies. In section 2 we start

with a short description of the basic ingredients of F-theory model building and present

the splitting of the spectral cover in the components associated to the S4 and S3 discrete

group factors. In section 3 we discuss the conditions for the transition of S4 to A4 discrete

family symmetry “escorting” the SU(5) GUT and propose a discrete version of the doublet-

triplet splitting mechanism for A4, before constructing a realistic model which is analysed

in detail. In section 4 we then analyse in detail an S3 model which was not considered at

all in [35] and in section 5 we present our conclusions. Additional computational details

are left for the appendices.

– 2 –



J
H
E
P
0
9
(
2
0
1
4
)
1
0
7

2 General principles

F-theory is a non-perturbative formulation of type IIB superstring theory, emerging from

compactifications on a Calabi-Yau fourfold which is an elliptically fibered space over a base

B3 of three complex dimensions. Our GUT symmetry in the present work is SU(5) which is

associated to a holomorphic divisor residing inside the threefold base, B3. If we designate

with z the ‘normal’ direction to this GUT surface, the divisor can be thought of as the

zero limit of the holomorphic section z in B3, i.e. at z → 0. The fibration is described by

the Weierstrass equation

y2 = x3 + f(z)x+ g(z) ,

where f(z), g(z) are eighth and twelveth degree polynomials respectively. The singularities

of the fiber are determined by the zeroes of the discriminant ∆ = 4f3 + 27g2 and are

associated to non-Abelian gauge groups. For a smooth Weierstrass model they have been

classified by Kodaira and in the case of F-theory these have been used to describe the

non-Abelian gauge group.1 Under these conditions, the highest symmetry in the elliptic

fibration is E8 and since the GUT symmetry in the present work is chosen to be SU(5), its

commutant is SU(5)⊥. The physics of the latter is nicely captured by the spectral cover,

described by a five-degree polynomial

C5 :

5∑
k=0

bks
5−k = 0 , (2.1)

where bk are holomorphic sections and s is an affine parameter. Under the action of

certain fluxes and possible monodromies, the polynomial could in principle be factorised

to a number of irreducible components

C5 → Ca1 × · · · × Can , 1 + · · ·+ n < 5

provided that new coefficients preserve the holomorphicity. Given the rank of the associated

group (SU(5)⊥), the simplest possibility is the decomposition into four U(1) factors, but

this is one among many possibilities. As a matter of fact, in an F-theory context, the roots

of the spectral cover equation are related by non-trivial monodromies. For the SU(5)⊥
case at hand, under specific circumstances (related mainly to the properties of the internal

manifold and flux data) these monodromies can be described by any possible subgroup of

the Weyl group S5. This has tremendous implications in the effective field theory model,

particularly in the superpotential couplings. The spectral cover equation (2.1) has roots

ti, which correspond to the weights of SU(5)⊥, i.e. b0
∏5
i=1(s − ti) = 0. The equation

describes the matter curves of a particular theory, with roots being related by monodromies

depending on the factorisation of this equation. Thus, we may choose to assume that the

spectral cover can be factorised, with new coefficients aj that lie within the same field F
as bi. Depending on how we factorise, we will see different monodromy groups. Motivated

by the peculiar properties of the neutrino sector, here we will attempt to explore the low

1For mathematical background see for example ref [43]
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Figure 1. S4 and its subgroups relevant to the present analysis.

energy implications of the following factorisations of the spectral cover equation

i) C4 × C1, ii) C3 × C2, iii) C3 × C1 × C1 . (2.2)

Case i) involves the transitive group S4 and its subgroups A4 and D4 while cases ii) and

iii) incorporate the S3, which is isomorphic to D3. For later convenience these cases are

depicted in figure 1.

In case i) for example, the polynomial in equation (2.1) should be separable in the

following two factors

C4 × C1 :
(
a1 + a2s+ a3s

2 + a4s
3 + a5s

4
)

(a6 + a7s) = 0 (2.3)

which implies the ‘breaking’ of the SU(5)⊥ to the monodromy group S4, (or one of its

subgroups such as A4), described by the fourth degree polynomial

C4 :

5∑
k=1

aks
k−1 = 0 (2.4)

and a U(1) associated with the linear part. New and old polynomial coefficients satisfy

simple relations bk = bk(ai) which can be easily extracted comparing same powers of (2.1)

and (2.3) with respect to the parameter s. Table 1 summarizes the relations between the

coefficients of the unfactorised spectral cover and the aj coefficients for the cases under

consideration in the present work.

The homologies of the coefficients bi are given in terms of the first Chern class of the

tangent bundle (c1) and of the normal bundle (−t),

[bk] = η − kc1 ,

where η = 6c1 − t .
(2.5)

We may use these to calculate the homologies [aj ] of our aj coefficients, since if bi = ajak . . .

then [bi] = [aj ] + [ak] + . . ., allowing us to rearrange for the required homologies. Note that

– 4 –
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bi aj coefficients for 4+1 aj coefficients for 3+2 aj coefficients for 3+1+1

b0 a5a7 a4a7 a4a6a8

b1 a5a6 + a4a7 a4a6 + a3a7 a4a6a7 + a4a5a8 + a3a6a8

b2 a4a6 + a3a7 a4a5 + a3a6 + a2a7 a4a5a7 + a3a5a8 + a3a6a7 + a2a6a8

b3 a3a6 + a2a7 a3a5 + a2a6 + a1a7 a3a5a7 + a2a5a8 + a2a6a7 + a1a6a8

b4 a2a6 + a1a7 a2a5 + a1a6 a2a5a7 + a1a6a7 + a1a5a8

b5 a1a6 a1a5 a1a5a7

Table 1. table showing the relations bi = bi(aj) between coefficients of the spectral cover equation

under various decompositions from the unfactorised equation.

since we have in general more aj coefficients than our fully determined bi coefficients, the

homologies of the new coefficients cannot be fully determined. For example, if we factorise

in a 3 + 1 + 1 arrangement, we must have 3 unknown parameters, which we call χk=1,2,3.

In the following sections we will examine in detail the predictions of the A4 and S3 models.

3 A4 models in F-theory

We assume that the spectral cover equation factorises to a quartic polynomial and a linear

part, as shown in (2.3). The homologies of the new coefficients may be derived from

the original bi coefficients. Referring to table 1, we can see that the homologies for this

factorisation are easily calculable, up to some arbitrariness of one of the coefficients — we

have seven aj and only six bi. We choose [a6] = χ in order to make this tractable. It can

then be shown that the homologies obey:

[ai] = η − (6− i)c1 − χ ,
Where i ∈ {1, . . . , 5}

[a7] = c1 + χ

[a6] = χ .

(3.1)

This amounts to asserting that the five of SU(5)⊥ ‘breaks’ to a discrete symmetry between

four of its weights (S4 or one of its subgroups) and a U(1)⊥.

The roots of the spectral cover equation must obey:

b0

5∏
i=1

(s− ti) = 0 , (3.2)

where ti are the weights of the five representation of SU(5)⊥. When s = 0, this defines the

tenplet matter curves of the SU(5)GUT [36], with the number of curves being determined

by how the result factorises. In the case under consideration, when s = 0, b5 = 0. After

referring to table 1, we see that this implies that P10 = a1a6 = 0. Therefore there are

two tenplet matter curves, whose homologies are given by those of a1 and a6. We shall

assume at this point that these are the only two distinct curves, though a1 appears to be

associated with S4 (or a subgroup) and hence should be reducible to a triplet and singlet.

– 5 –
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Curve Equation Homology Hyperflux — N Multiplicity

10a a1 η − 5c1 − χ −N M10a

10b a6 χ +N M10b

5c a2
2a7 + a2a3a6 ∓ a0a1a

2
6 2η − 7c1 − χ −N M5c

5d a3a
2
6 + (a2a6 + a1a7)a7 η − 3c1 + χ +N M5d

Table 2. table of matter curves, their homologies, charges and multiplicities.

Similarly, for the fiveplets, we have

b0

5∏
i=1

(s− ti − tj) = 0 for i 6= j, (3.3)

which can be shown2 to give the defining condition for the fiveplets: P5 = b4b
2
3 − b2b5b3 +

b0b
2
5 = 0. Again consulting the table 1, we can write this in terms of the aj coefficients:

P5 = (a3a6 + a2a7)2 (a2a6a1a7)− (a4a6 + a3a7) (a3a6 + a2a7) (a1a6) + a2
1a5a

2
6a7 . (3.4)

Using the condition that SU(5) must be traceless, and hence b1 = 0, we have that a4a7 +

a5a6 = 0. An Ansatz solution of this condition is a4 = ±a0a6 and a5 = ∓a0a7, where a0

is some appropriate scaling with homology [a0] = η − 2(c1 + χ), which is trivially derived

from the homologies of a4 and a6 (or indeed a5 and a7) [35]. If we introduce this, then P5

splits into two matter curves:

P5 =
(
a2

2a7 + a2a3a6 ∓ a0a1a
2
6

) (
a3a

2
6 + (a2a6 + a1a7)a7

)
= 0 . (3.5)

The homologies of these curves are calculated from those of the bi coefficients and are

presented in table 2. We may also impose flux restrictions if we define:

FY · χ = N ,

FY · c1 = FY · η = 0 ,
(3.6)

where N ∈ Z and FY is the hypercharge flux.

Considering equation (3.2), we see that b5/b0 = t1t2t3t4t5, so there are at most five ten-

curves, one for each of the weights. Under S4 and its subgroups, four of these are identified,

which corroborates with the two matter curves seen in table 1. As such we identify ti=1,2,3,4

with this monodromy group and the coefficient a1 and leave t5 to be associated to a6.

Similarly, equation (3.3) shows that we have at most ten five-curves when s = 0, given

in the form ti + tj with i 6= j. Examining the equations for the two five curves that are

manifest in this model after application of our monodromy, the quadruplet involving ti+ t5
forms the curve labeled 5d, while the remaining sextet — ti + tj with i, j 6= 5 — sits on the

5c curve.

2See for example [36].
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3.1 The discriminant

The above considerations apply equally to both the S4 as well as A4 discrete groups. From

the effective model point of view, all the useful information is encoded in the properties

of the polynomial coefficients ak and if we wish to distinguish these two models further

assumptions for the latter coefficients have to be made. Indeed, if we assume that in the

above polynomial, the coefficients belong to a certain field ak ∈ F , without imposing any

additional specific restrictions on ak, the roots exhibit an S4 symmetry. If, as desired, the

symmetry acting on roots is the subgroup A4 the coefficients ak must respect certain con-

ditions. Such constraints emerge from the study of partially symmetric functions of roots.

In the present case in particular, we recall that the A4 discrete symmetry is associated

only to even permutations of the four roots ti. Further, we note now that the partially

symmetic function

δ = (t1 − t2)(t1 − t3)(t1 − t4)(t2 − t3)(t2 − t4)(t3 − t4)

is invariant only under the even permutations of roots. The quantity δ is the square root

of the discriminant,

∆ = δ2 (3.7)

and as such δ should be written as a function of the polynomial coefficients ak ∈ F so that

δ ∈ F too. The discriminant is computed by standard formulae and is found to be

∆(ak) = 256a3
1a

3
5 −

(
27a4

2 − 144a1a3a
2
2 + 192a2

1a4a2 + 128a2
1a

2
3

)
a2

5

− 2
(
2
(
a2

2 − 4a1a3

)
a3

3 −
(
9a2

2 − 40a1a3

)
a2a4a3 + 3

(
a2

2 − 24a1a3

)
a1a

2
4

)
a5

− a2
4

(
4a4a

3
2 + a2

3a
2
2 − 18a1a3a4a2 +

(
4a3

3 + 27a1a
2
4

)
a1

) (3.8)

In order to examine the implications of (3.7) we write the discriminant as a polynomial of

the coefficient a3 [35]

∆ ≡ g(a3) =

4∑
n=0

cna
n
3 (3.9)

where the cn are functions of the remaining coefficients ak, k 6= 3 and can be easily

computed by comparison with (3.8). We may equivalently demand that g(a3) is a square

of a second degree polynomial

g(a3) = (κa2
3 + λa3 + µ)2

A necessary condition that the polynomial g(a3) is a square, is its own discriminant ∆g to

be zero. One finds

∆g ∝ D2
1D

3
2

where

D1 = a2
2a5 − a1a

2
4

D2 =
(
27a2

1a4 − a3
2

)
a3

4 − 6a1a
2
2a5a

2
4 + 3a2

(
9a3

2 − 256a2
1a4

)
a2

5 + 4096a3
1a

3
5

(3.10)

– 7 –
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We observe that there are two ways to eliminate the discriminant of the polynomial, either

putting D1 = 0 or by demanding D2 = 0 [35].

In the first case, we can achieve ∆ = δ2 if we solve the constraint D1 = 0 as follows

a2
2 = 2a1a3

a2
4 = 2a3a5

(3.11)

Substituting the solutions (3.11) in the discriminant we find

∆ = δ2 =
[
a2a4

(
a2

3 − 2 a2a4

) (
a2

3 − a2a4

)
/a3

3

]2
(3.12)

The above constitute the necessary conditions to obtain the reduction of the symmetry [35]

down to the Klein group V ∼ Z2 × Z2. On the other hand, the second condition D2 = 0,

implies a non-trivial relation among the coefficients

(a2
2a5 − a2

4a1)2 =

(
a2a4 − 16a1a5

3

)3

(3.13)

Plugging in the b1 = 0 solution, the constraint (3.13) take the form

(a2
2a7 + a0a1a

2
6)2 = a0

(
a2a6 + 16a1a7

3

)3

(3.14)

which is just the condition on the polynomial coefficients to obtain the transition S4 → A4.

3.2 Towards an SU(5)×A4 model

Using the previous analysis, in this section we will present a specific example based on the

SU(5) × A4 × U(1) symmetry. We will make specific choices of the flux parameters and

derive the spectrum and its superpotential, focusing in particular on the neutrino sector.

It can be shown that if we assume an A4 monodromy any quadruplet is reducible to

a triplet and singlet representation, while the sextet of the fives reduces to two triplets

(details can be found in the appendix).

3.2.1 Singlet-triplet splitting mechanism

It is known from group theory and a physical understanding of the group that the four

roots forming the basis under A4 may be reduced to a singlet and triplet. As such we might

suppose intuitively that the quartic curve of A4 decomposes into two curves — a singlet

and a triplet of A4.

As a mechanism for this we consider an analogy to the breaking of the SU(5)GUT group

by U(1)Y . We then postulate a mechanism to facilitate Singlet-Triplet splitting in a similar

vein. Switching on a flux in some direction of the perpendicular group, we propose that

the singlet and triplet of A4 will split to form two curves. This flux should be proportional

to one of the generators of A4, so that the broken group commutes with it. If we choose to

switch on U(1)s flux in the direction of the singlet of A4, then the discrete symmetry will

remain unbroken by this choice.

– 8 –
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Continuing our previous analogy, this would split the curve as follows:

(10, 4) =

 (10, 1) = M +Ns

(10, 3) = M
. (3.15)

The homologies of the new curves are not immediately known. However, they can be

constrained by the previously known homologies given in table 2. The coefficient describing

the curve should be expressed as the product of two coefficients, one describing each of the

new curves — ai = c1c2. As such, the homologies of the new curves will be determined

by [ai] = [c1] + [c2].

If we assign the U(1) flux parameters by hand, we can set the constraints on the

homologies of our new curves. For example, for the curve given in table 2 as 10a would

decompose into two curves — 101 and 102, say. Assigning the flux parameter, N , to the

102 curve, we constrain the homologies of the two new curves as follows:

[101] = aη + bc1

[102] = cη + dc1 − χ
Where: a+ c = 1 and b+ d = −5 .

Similar constraints may also be placed on the five-curves after decomposition.

Using our procedure, we can postulate that the charge N will be associated to the

singlet curve by the mechanism of a flux in the singlet direction. This protects the overall

charge of N in the theory. With the fiveplet curves it is not immediately clear how to apply

this since the sextet of A4 can be shown to factorise into two triplets. Closer examination

points to the necessity to cancel anomalies. As such the curves carrying Hu and Hd must

both have the same charge under N . This will insure that they cancel anomalies correctly.

These motivating ideas have been applied in table 3.

3.2.2 GUT-group doublet-triplet splitting

Initially massless states residing on the matter curves comprise complete vector multiplets.

Chirality is generated by switching on appropriate fluxes. At the SU(5) level, we assume

the existence of M5 fiveplets and M10 tenplets. The multiplicities are not entirely inde-

pendent, since we require anomaly cancellation,3 which amounts to the requirement that∑
iM5i +

∑
jM10j = 0. Next, turning on the hypercharge flux, under the SU(5) symmetry

breaking the 10 and 5, 5̄ representations split into different numbers of Standard Model

multiplets [55]. Assuming N units of hyperflux piercing a given matter curve, the fiveplets

split according to:

n(3, 1)−1/3 − n(3̄, 1)+1/3 = M5 ,

n(1, 2)+1/2 − n(1, 2)−1/2 = M5 +N ,
(3.16)

3For a discussion in relaxing some of the anomaly cancellation conditions and related issues see [41].
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Curve SU(5)×A4 ×U(1)⊥ NY M Matter content R

101 (10, 3)0 0 MT1 3 [MT1QL + ucL(MT1 −NY ) + ecL(MT1 +NY )] 1

102 (10, 1)0 −N MT2 MT2QL + ucL(MT2 −NY ) + ecL(MT2 +NY ) 1

103 (10, 1)t5 +N MT3 MT3QL + ucL(MT3 −NY ) + ecL(MT3 +NY ) 1

51 (5, 3)0 0 MF1 3
[
MF1d̄

c
L + (MF1 +NY )L̄

]
1

52 (5, 3)0 −N MF2 3
[
MF2

¯̄D + (MF2 +NY )H̄d)
]

0

53 (5, 3)t5 +N MF3 3 [MF3D + (MF3 +NY )Hu] 0

54 (5, 1)t5 0 MF4 MF4d̄
c
L + (MF4 +NY )L̄ 1

Table 3. Table showing the possible matter content for an SU(5)GUT × A4 × U(1)⊥, where it is

assumed the reducible representation of the monodromy group may split the matter curves. The

curves are also assumed to have an R-symmetry

Similarly, the M10 tenplets decompose under the influence of N hyperflux units to the

following SM-representations:

n(3, 2)+1/6 − n(3̄, 2)−1/6 = M10 ,

n(3̄, 1)−2/3 − n(3, 1)+2/3 = M10 −N ,

n(1, 1)+1 − n(1, 1)−1 = M10 +N .

(3.17)

Using the relations for the multiplicities of our matter states, we can construct a model

with the spectrum parametrised in terms of a few integers in a manner presented in table 3.

In order to curtail the number of possible couplings and suppress operators surplus

to requirement, we also call on the services of an R-symmetry. This is commonly found

in supersymmetric models, and requires that all couplings have a total R-symmetry of 2.

Curves carrying SM-like fermions are taken to have R = 1, with all other curves R = 0.

3.3 A simple model: N = 0

Any realistic model based on this table must contain at least 3 generations of quark mat-

ter (10Mi), 3 generations of leptonic matter (5̄Mi), and one each of 5Hu and 5Hd
. We

shall attempt to construct a model with these properties using simple choices for our free

variables.

In order to build a simple model, let us first choose the simple case where N=0, then

we make the following assignments:

MT1 = MF4 = 0

MT2 = 1

MT3 = 2

MF1 = MF2 = −MF3 = −1

(3.18)

Note that it does not immediately appear possible to select a matter arrangement that

provides a renormalisable top-coupling, since we will be required to use our GUT-singlets

to cancel residual t5 charges in our couplings, at the cost of renormalisability.
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Curve SU(5)×A4 ×U(1) M Matter content R-Symmetry

101 (10, 3)0 0 — 1

102 = T3 (10, 1)0 1 QL + ucL + ecL 1

103 = T (10, 1)t5 2 2QL + 2ucL + 2ecL 1

5̄1 = F (5̄, 3)0 1 3L+ 3dcL 1

5̄2 = Hd (5̄, 3)0 1 3D̄ + 3Hd 0

53 = Hu (5, 3)t5 1 3D + 3Hu 0

54 (5, 1)t5 0 — 1

θa (1, 3)−t5 — Flavons 0

θb (1, 1)−t5 — Flavon 0

θc (1, 3)0 — νR 1

θd (1, 3)0 — Flavons 0

θa′ (1, 3)t5 — — 0

θb′ (1, 1)t5 — — 0

Table 4. Table of Matter content in N = 0 model

3.4 Basis

The bases of the triplets are such that triplet products, 3a × 3b = 1 + 1′ + 1′′ + 31 + 32,

behave as:
1 = a1b2 + a2b2 + a3b3

1′ = a1b2 + ωa2b2 + ω2a3b3

1′′ = a1b2 + ω2a2b2 + ωa3b3

31 = (a2b3, a3b1, a1b2)T

32 = (a3b2, a1b3, a2b1)T

where 3a = (a1, a2, a3)T and 3b = (b1, b2, b3)T. This has been demonstrated in the

appendix A, where we show that the quadruplet of weights decomposes to a singlet and

triplet in this basis. Note that all couplings must of course produce singlets of A4 by use

of these triplet products where appropriate.

3.5 Top-type quarks

The Top-type quarks admit a total of six mass terms, as shown in table 5. The third

generation has only one valid Yukawa coupling — T3 ·T3 ·Hu · θa. Using the above algebra,

we find that this coupling is:

(1× 1)× (3× 3)→ 1× 1

→ 1

(T3 × T3)×Hu × θa → (T3 × T3)viai

i = 1, 2, 3
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Coupling type Generations Full coupling

Top-type Third generation T3 · T3 ·Hu · θa
Third-First/Second generation T · T3 ·Hu · θa · θb

T · T3 ·Hu · (θa)2

First/Second generation T · T ·Hu · θa · (θb)2

T · T ·Hu · (θa)2 · θb
T · T ·Hu · (θa)3

Bottom-type/Charged Leptons Third generation F ·Hd · T3

F ·Hd · T3 · θd
First/Second generation F ·Hd · T · θb

F ·Hd · T · θa
F ·Hd · T · θa · θd
F ·Hd · T · θb · θd

Neutrinos Dirac-type mass θc · F ·Hu · θa
θc · F ·Hu · θa · θd
θc · F ·Hu · θb

θc · F ·Hu · θb · θd
Right-handed neutrinos Mθc · θc

(θd)
n · θc · θc

Table 5. Table of all mass operators for N = 0 model.

With the choice of vacuum expectation values (VEVs):

〈Hu〉 = (v, 0, 0)T

〈θa〉 = (a, 0, 0)T

〈θb〉 = b

(3.19)

this will give the Top quark its mass, mt = yva. The choice is partly motivated by A4

algebra, as the VEV will preserve the S-generators. This choice of VEVs will also kill off

the the operators T · T3 ·Hu · (θa)2 and T · T ·Hu · (θa)2 · θb, which can be seen by applying

the algebra above.

The full algebra of the contributions from the remaining operators is included in ap-

pendix B. Under the already assigned VEVs, the remaining operators contribute to give

the overall mass matrix for the Top-type quarks:

mu,c,t = va

 y3b
2 + y4a

2 y3b
2 + y4a

2 y2b

y3b
2 + y4a

2 y3b
2 + y4a

2 y2b

y2b y2b y1

 (3.20)
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This matrix is clearly hierarchical with the third generation dominating the hierarchy, since

the couplings should be suppressed by the higher order nature of the operators involved.

Due to the rank theorem [37], the two lighter generations can only have one massive

eigenvalue. However, corrections due to instantons and non-commutative fluxes are known

as mechanisms to recover a light mass for the first generation [37, 38].

3.6 Charged leptons

The Charged Lepton and Bottom-type quark masses come from the same GUT operators.

Unlike the Top-type quarks, these masses will involve SM-fermionic matter that lives on

curves that are triplets under A4. It will be possible to avoid unwanted relations between

these generations using the ten-curves, which are strictly singlets of the monodromy group.

The operators, as per table 5, are computed in full in appendix B.

Since we wish to have a reasonably hierarchical structure, we shall require that the

dominating terms be in the third generation. This is best served by selecting the VEV

〈Hd〉 = (0, 0, v)T. Taking the lowest order of operator to dominate each element, since we

have non-renormalisable operators, we see that we have then:

me,µ,τ = v

 y7d2b+ y11d3a y7d2b+ y11d3a y3d2

y5a y5a y2d1

y4b y4b y1

 . (3.21)

We should again be able to use the Rank Theorem to argue that while the first gen-

eration should not get a mass by this mechanism, the mass may be generated by other

effects [37, 38]. We also expect there might be small corrections due to the higher order

contributions, though we shall not consider these here.

The bottom-type quarks in SU(5) have the same masses as the charged leptons, with

the exact relation between the Yukawa matrices being due to a transpose. However this

fact is known to be inconsistent with experiment. In general, when renormalization group

running effects are taken into account, the problem can be evaded only for the third gen-

eration. Indeed, the mass relation mb = mτ at MGUT can be made consistent with the

low energy measured ratio mb/mτ for suitable values of tanβ. In field theory SU(5) GUTs

the successful Georgi-Jarlskog GUT relation ms/mµ = 1/3 can be obtained from a term

involving the representations 5̄·10·45 but in the F-theory context this is not possible due to

the absence of the 45 representation. Nevertheless, the order one Yukawa coefficients may

be different because the intersection points need not be at the same enhanced symmetry

point. The final structure of the mass matrices is revealed when flux and other threshold

effects are taken into account. These issues will not be discussed further here and a more

detailed exposition may be found in [49], with other useful discussion to be found in [58].

3.7 Neutrino sector

Neutrinos are unique in the realms of currently known matter in that they may have both

Dirac and Majorana mass terms. The couplings for these must involve an SU(5) singlet to

account for the required right-handed neutrinos, which we might suppose is θc = (1, 3)0.

– 13 –



J
H
E
P
0
9
(
2
0
1
4
)
1
0
7

It is evident from table 5 that the Dirac mass is the formed of a handful of couplings

at different orders in operators. We also have a Majorana operator for the right-handed

neutrinos, which will be subject to corrections due to the θd singlet, which we assign the

most general VEV, 〈θd〉 = (d1, d2, d3)T.

If we now analyze the operators for the neutrino sector in brief, the two leading order

contribution are from the θc ·F ·Hu ·θa and θc ·F ·Hu ·θb operators. With the VEV alignments

〈θa〉 = (a, 0, 0)T and 〈Hu〉 = (v, 0, 0)T, we have a total matrix for these contributions that

displays strong mixing between the second and third generations:

m =

 y0va 0 0

0 y1va y9bv

0 y8bv y1va

 , (3.22)

where y0 = y1 +y2 +y3. The higher order operators, θc ·F ·Hu ·θa ·θd and θc ·F ·Hu ·θb ·θd,
will serve to add corrections to this matrix, which may be necessary to generate mixing

outside the already evident large 2-3 mixing from the lowest order operators. If we consider

the θc · F ·Hu · θb · θd operator,

θc · F ·Hu · θd · θb →

 0 z3vd2b z2vd3b

z1vd2b 0 0

z4vd3b 0 0

 (3.23)

We use zi coefficients to denote the suppression expected to affect these couplings due

to renormalisability requirements. We need only concern ourselves with the combinations

that add contributions to the off-diagonal elements where the lower order operators have

not given a contribution, as these lower orders should dominate the corrections. Hence,

the remaining allowed combinations will not be considered for the sake of simplicity. If we

do this we are left a matrix of the form:

MD =

 y0va z3vd2b z2vd3b

z1vd2b y1va y9bv

z4vd3b y8bv y1va

 (3.24)

The right-handed neutrinos admit Majorana operators of the type θc · θc · (θd)n, with

n ∈ {0, 1, . . . }. The n = 0 operator will fill out the diagonal of the mass matrix, while

the n = 1 operator fills the off-diagonal. Higher order operators can again be taken as

dominated by these first two, lower order operators. The Majorana mass matrix can then

be used along with the Dirac mass matrix in order to generate light effective neutrino

masses via a see-saw mechanism.

MR = M

 1 0 0

0 1 0

0 0 1

+ y

 0 d3 d2

d3 0 d1

d2 d1 0

 (3.25)

The Dirac mass matrix can be summarised as in equation (3.24). This matrix is rank

3, with a clear large mixing between two generations that we expect to generate a large θ23.
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Central value Min → Max

θ12/
◦ 33.57 32.82→34.34

θ23/
◦ 41.9 41.5→42.4

θ13/
◦ 8.73 8.37→9.08

∆m2
21/10−5eV 7.45 7.29→ 7.64

∆m2
31/10−3eV 2.417 2.403→ 2.431

R =
∆m2

31

∆m2
21

32.0 31.1→ 33.0

Table 6. Summary of neutrino parameters, using best fit values as found at nu-fit.org, the work

of which relies upon [45] .

In order to reduce the parameters involved in the effective mass matrix, we will simplify

the problem by searching only for solutions where z1 = z3 and z2 = z4, which significantly

narrows the parameter space. We will then define some dimensionless parameters that will

simplify the matrix:

Y1 =
y1

y0
≤ 1 (3.26)

Y2,3 =
y8,9b

y0a
(3.27)

Z1 =
z1d2b

y0a
(3.28)

Z2 =
z2d3b

y0a
(3.29)

If we implement these definitions, we find the Dirac mass matrix becomes:

MD = y0va

 1 Z1 Z2

Z1 Y1 Y3

Z2 Y2 Y1

 (3.30)

The Right-handed neutrino Majorana mass matrix can be approximated if we take only

the θc · θc operator, since this should give a large mass scale to the right-handed neutrinos

and dominate the matrix. This will leave the Weinberg operator for effective neutrino

mass, Meff = MDM
−1
R MT

D, as:

Meff = m0

 1 + Z2
1 + Z2

2 Y1Z1 + Y3Z2 + Z1 Y2Z1 + Y1Z2 + Z2

Y1Z1 + Y3Z2 + Z1 Y 2
1 + Y 2

3 + Z2
1 Y1(Y2 + Y3) + Z1Z2

Y2Z1 + Y1Z2 + Z2 Y1(Y2 + Y3) + Z1Z2 Y 2
1 + Y 2

2 + Z2
2

 , (3.31)

Where we have also defined a mass parameter:

m0 =
y2

0v
2a2

M
, (3.32)

We then proceed to diagonalise this matrix computationally in terms of three mixing

angles as is the standard procedure [42], before attempting to fit the result to experimen-

tal inputs.
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Figure 2. Plots of lines with the best fit value of R = 32 in the parameter space of (Y1, Y2). Left:

the full range of the space examined. Right: a close plot of a small portion of the parameter space

taken from the full plot. The curves have (Y3, Z1, Z2) values set as follows: A = (1.08, 0.05, 0.02),

B = (1.08, 0.0, 0.08), C = (1.07, 0.002, 0.77), and D = (1.06, 0.01, 0.065).

3.8 Analysis

We shall focus on the ratio of the mass squared differences:

R =

∣∣∣∣m2
3 −m2

2

m2
2 −m2

1

∣∣∣∣ , (3.33)

which is known due to the well measured mass differences, ∆m2
32 and ∆m2

21 [45]. These give

us a value of R ≈ 32, which we may solve for numerically in our model using Mathematica

or another suitable maths package. If we then fit the optimised values to the mass scales

measured by experiment, we may predict absolute neutrino masses and further compare

them with cosmological constraints.

The fit depends on a total of six coefficients, as can be seen from examining the un-

diagonalised effective mass matrix. Optimising R, we should also attempt to find mixing

angles in line with those known to parameterize the neutrino sector — i.e. large θ23 and

θ12, with a comparatively small (but non-zero) θ13. This is necessary to obtain results com-

patible with neutrino oscillation experiments. Table 6 summarises the neutrino parameters

the model must be in keeping with in order to be acceptable. We should note that the

parameter m0 will be trivially matched up with the mass differences shown in table 6.

If we take some choice values of three of our five free parameters, we can construct

a contour plot for curves with constant R using the other two. Figure 2 shows this for a

series of fixed parameters. Each of the lines is for R = 32, so we can see that there is a

deal of flexibility in the parameter space for finding allowed values of the ratio.

In order to further determine which parts of the broad parameter space are most

suitable for returning phenomenologically acceptable neutrino parameters, we can plot the

value of sin2(θ12) or sin2(θ23) in the same parameter space as figure 2 — (Y1, Y2). The first
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Figure 3. The figures show plots of two large neutrino mixing angles at their current best fit values.

Left: plot of sin2(θ12) = 0.306, Right: plot of sin2(θ23) = 0.446. The curves have (Y3, Z1, Z2)

values set as follows: A = (1.08, 0.05, 0.02), B = (1.08, 0.0, 0.08), C = (1.07, 0.002, 0.77), and

D = (1.06, 0.01, 0.065).

plot in figure 3 shows that the angle θ12 constraints are best satisfied at lower values of Y1,

while there are the each line spans a large part of the Y2 space. The second plot of figure 3

suggests a preference for comparatively small values of Y2 based on the constraints on θ23.

As such, we might expect that for this corner of the parameter space there will be some

solutions that satisfy all the constraints.

Figure 4 also shows a plot for contours of best fitting values of R, with the free variables

chosen as Y3 and Z1. As before, this shows that for a range of the other parameters, we

can usually find suitable values of (Y3, Z1) that satisfy the constraints on R. This being

the case, we expect that it should be possible to find benchmark points that will allow for

the other constraints to also be satisfied.

This flexibility in the parameter space translates to the other experimental parameters,

such that the points that allow experimentally allowed solutions are abundant enough that

we can fit all the parameters quite well. Table 7 shows a collection of so-called benchmark

points, which are points in the parameter space where all constraints are satisfied within

current experimental errors — see table 6. The table only shows values where θ23 is in

the first octant. We might expect that the model should also admit solutions for second

octant θ23, however attempts as numerical solution indicate this possibility is strongly

disfavoured. We also note that current Planck data [57] puts the sum of neutrino masses

to be Σmν ≤ 0.23eV, which the bench mark points are also consistent with.

3.9 Proton decay

Proton decay is a recurring problem in many SU(5) GUT models, with the “dangerous”

dimension six operators, with the effective operator form:

QQQL

Λ2
,
dcucucec

Λ2
,
ēcūcQQ

Λ2
,
d̄cūcQL

Λ2
. (3.34)
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Figure 4. Plots of lines with the best fit value of R = 32 in the parameter space of (Y3, Z1).

The curves have (Y1, Y2, Z2) values set as follows: A = ( 1
5 , 1.4, 0.02), B = (0.05, 1.5, 0.01), C =

( 1
2 , 1.6, 0.01), and D = ( 2

3 , 1.8, 0.5).

Inputs

Y1 0.08 0.09 0.09 0.10

Y2 1.09 1.10 1.10 1.11

Y3 1.07 1.08 1.08 1.09

Z1 0.01 0.01 0.00 0.01

Z2 0.07 0.08 0.08 0.08

m0 54.0meV 51.6meV 50.3meV 47.8meV

Outputs

θ12 33.5 33.2 33.1 32.8

θ13 8.70 8.82 9.05 9.05

θ23 41.9 41.7 41.7 41.5

m1 53.4meV 51.1meV 49.8meV 47.3meV

m2 54.1meV 51.8meV 50.5meV 48.1meV

m3 73.2meV 71.5meV 70.8meV 69.1meV

Table 7. Table of Benchmark values in the Parameter space, where all experimental constraints

are satisfied within errors. These point are samples of the space of all possible points, where we

assume θ23 is in the first octant. All inputs are given to two decimal places, while the outputs are

given to 3s.f.

Since there are strong bounds on the proton lifetime (τp ≥ 1033yr) then these operators

should be highly suppressed or not allowed in any GUT model.

Within the context of the SU(5) × A4 × U(1) in F-theory, these operators arise from

effective operators of the type:

10 · 10 · 10 · 5̄ , (3.35)

where the 5̄ contains the SU(2) Lepton doublet and the dc, and the quark doublet, uc and

ec arise from 10 of SU(5). The interaction will be mediated by the Hu and Hd doublets.
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In the model under consideration, two matter curves are in the 10 representation of

the GUT group: T3 containing the third generation, and T containing the lighter two

generations. In general these can be expressed as:

T i · T j3 · F
i+ j = 3 and i, j ∈ {0, 1, 2, 3}

(3.36)

Here, the role of R-symmetry in the model becomes important, since due to the assignment

of this symmetry, these operators are all disallowed. Furthermore, the operators which

have i 6= 0 will have net charge due to the U(1)⊥, requiring them to have flavons to

balance the charge. This would offer further suppression in the event that R-symmetry

were not enforced.

There are also proton decay operators mediated by D-Higgs triplets and their anti-

particles, which arise from the same operators, but in a similar way, these will be disallowed

by R-symmetry thus preventing proton decay via dimension six operators.

The dimension four operators, which are mediated by superpartners of the Standard

Model, will also be prevented by R-symmetry. However, even in the absence of this sym-

metry, the need to balance the charge of the U(1)⊥ would lead to the presence of additional

GUT group singlets in the operators, leading to further, strong suppression of the operator.

3.10 Unification

The spectrum in table 4 is equivalent to three families of quarks and leptons plus three

families of 5+5 representations which include the two Higgs doublets that get VEVs. Such

a spectrum does not by itself lead to gauge coupling unification at the field theory level,

and the splittings which may be present in F-theory cannot be sufficiently large to allow

for unification, as discussed in [25]. However, as discussed in [25], where the low energy

spectrum is identical to this model (although achieved in a different way) there may be

additional bulk exotics which are capable of restoring gauge coupling unification and so

unification is certainly possible in this mode. We refer the reader to the literature for a

full discussion.

4 S3 models

Motivated by phenomenological explorations of the neutrino properties under S3, in this

section we are interested for SU(5) with S3 discrete symmetry and its subgroup Z3. More

specifically, we analyse monodromies which induce the breaking of SU(5)⊥ to group fac-

tors containing the aforementioned non-abelian discrete group. Indeed, in this section we

encountered two such symmetry breaking chains, namely cases ii) and iii) of (2.2). With

respect to the present point of view, novel features are found for case iii). In the subsequent

we present in brief case ii) and next we analyse in detail case iii).

4.1 The C3 × C2 spectral cover split

As in the A4 case, because these discrete groups originate form the SU(5)⊥ we need to

work out the conditions on the associated coefficients ai. For C3 × C2 split the spectral
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cover equation is

P5 =
∑
k

bks
5−k = PaPb = (a0 + a1s+ a2s

2 + a3s
3) (a4 + a5s+ a6s

2) (4.1)

The equations connecting bk’s with ai’s are of the form bk ∼
∑

n ana9−n−k, the sum referring

to appropriate values of n which can be read off from (4.1) or from table 1. We recall that

the bk coefficients are characterised by homologies [bk] = η−k c1. Using this fact as well as

the corresponding equations bk(ai) given in the last column of table 1, we can determine

the corresponding homologies of the ai’s in terms of only one arbitrary parameter which we

may take to be the homology [a6] = χ. Furthermore the constraint b1 = a2a6 + a3a5 = 0

is solved by introducing a suitable section λ such that a3 = −λ a6 and a2 = λ a5.

Apart from the constraint b1 = 0, there are no other restrictions on the coefficients ai
in the case of the S3 symmetry. If, however, we wish to reduce the S3 symmetry to A3

(which from the point of view of low energy phenomenology is essentially Z3), additional

conditions should be imposed. In this case the model has an SU(5)×Z3×U(1) symmetry.

As in the case of A4 discussed previously, in order to derive the constraints on ak’s for the

symmetry reduction S3 → Z3 we compute the discriminant, which turns out to be

∆ =
(
a2

1 − 4a0a2

)
a2

2 − 27a2
0a

2
3 + 2a1

(
9a0a2 − 2a2

1

)
a3 , (4.2)

and demand ∆ = δ2. In analogy with the method followed in A4 we re-organise the terms

in powers of the x ≡ a1:

∆→ f(x) = −4a3x
3 + a2

2x
2 + 18a0a2a3x− a0

(
4a3

2 + 27a0a
2
3

)
. (4.3)

First, we observe that in order to write the above expression as a square, the product

a1a3 must be positive definite sign(a1a3) = +. Provided this condition is fulfilled, then we

require the vanishing of the discriminant ∆f of the cubic polynomial f(x), namely:

∆f = −64a0a3

(
27a0a

2
3 − a3

2

)
3 = 0 .

This can occur if the non-trivial relation a3
2 = 27a0a

2
3 holds. Substituting back to (4.2) we

find that the condition is fulfilled for a2
2 ∝ a1a3. The two constraints can be combined to

give the simpler ones

a0a3 + a1a2 = 0, a2
2 + 27a1a3 = 0

The details concerning the spectrum, homologies and flux restrictions of this model

can be found in [19, 22]. Identifying t1,2,3 = ta and t4,5 = tb ( due to monodromies) we

distribute the matter and Higgs fields over the curves as follows

10M ≡ 10tb , 5̄hd ≡ 5̄ta+tb , 5hu ≡ 5−2tb , 5̄2ta = 5̄M ,

and the allowed tree-level couplings with non-trivial SU(5) representations are

W = yu 10M 10M 5̄hu + yd 10M 5̄M 5̄hd (4.4)

– 20 –



J
H
E
P
0
9
(
2
0
1
4
)
1
0
7

We have already pointed out that the monodromies organise the SU(5)GUT singlets

θij obtained from the 24 ∈ SU(5)⊥ into two categories. One class carries U(1)i-charges

and they denoted with θab, θba while the second class θaa, θbb has no ti-‘charges’. The KK

excitations of the latter could be identified with the right-handed neutrinos. Notice that

in the present model the left handed states of the three families reside on the same matter

curve. To generate flavour and in particular neutrino mixing in this model, one may appeal

for example to the mechanism discussed in [44]. Detailed phenomenological implications

for Z3 models have been discussed elsewhere and will not be presented here. Within the

present point of view, novel interesting features are found in 3 + 1 + 1 splitting which will

be discussed in the next sections.

4.2 SU(5) spectrum for the (3,1,1) factorisation

In this case the relevant spectral cover polynomial splits into three factors according to

5∑
k=0

bks
5−k =

(
a4s

3 + a3s
2 + a2s+ a1

)
(a5 + sa6) (a7 + sa8)

We can easily extract the equations determining the coefficients bk(ai), while the corre-

sponding one for the homologies reads

[bk] = η − kc1 = [al] + [am] + [an], k = 0, 1, . . . , 5, k + l +m+ n = 18, l,m, n ≤ 8 (4.5)

As in the previous case, in order to embed the symmetry in SU(5)⊥, the condition b1 = 0

has to be implemented.

The non-trivial representations are found as follows: the tenplets are determined by

b5 = a1a5a7 = 0

As before, the equation for fiveplets is given by R = b23b4− b2b3b5 + b0b
2
5 = 0. Substitution

of the relevant equations bk = bk(ai) given in table 1 and the condition b1 = 0 result in the

factorisation

R = (a1a6a8 + a2 (a6a7 + a5a8))× (a1a6 + a5 (a2 − ca5a7))

× (a7 (a2 − ca5a7) + a1a8)× (a6a7 + a5a8)
(4.6)

The four factors determine the homologies of the fiveplets dubbed 5a, 5b, 5c, 5d correspond-

ingly. These, together with the tenplets, are given in table 8.

4.3 S3 and Z3 models for (3,1,1) factorisation

In the following we present one characteristic example of F-theory derived effective models

when we quotient the theory with a S3 monodromy. As already stated, if no other condi-

tions are imposed on ak this model is considered as an S3 variant of the 3 + 1 + 1 example

given in [19, 22]. In this case the 10ti , i = 1, 2, 3 residing on a curve — characterised by

a common defining equation a1 = 0 — are organised in two irreducible S3 representations

2 + 1. The same reasoning applies to the remaining representations. In table 9 we present
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Curve equation homology U(1)Y U(1)X

10ti = 10a a1 η − 3c1 − χ− ψ −Nχ −Nψ M10a

10t4 = 10b a5 −c1 + χ Nχ M10b

5−ti−tj = 5a a1a6a8 + a2 (a6a7 + a5a8) η − 3c1 0 M5a

5−ti−t4 = 5b a1a6 + a5 (a2 − ca5a7) η − 3c1 − ψ −Nψ M5b

5−ti−t5 = 5c a7 (a2 − ca5a7) + a1a8 η − 3c1 − χ −Nχ M5c

5−t4−t5 = 5d a6a7 + a5a8 −c1 + χ+ ψ Nχ +Nψ M5d

10t5 = 10c a7 −c1 + ψ Nψ M10c

Table 8. Matter curves with their defining equations, homologies, and multiplicities in the case of

(3,1,1) factorisation.

SU(5)× S3 NY -flux MX Matter

10
(1)
a = (10, 1)M +1 1 Q+ 2ec

10
(2)
a = (10, 2)M 0 1 2(Q+ uc + ec)

10b = (10, 1) −1 0 uc + ēc

5
(1)
a = (5, 1) 0 1 hu +D

5
(2)
a = (5, 2) 0 1 2(h′u +D′)

5
(1)
b = (5, 1)M 0 −1 `+ dc

5
(2)
b = (5, 2)M 0 −1 2(`+ dc)

5
(1)
c = (5, 1) 1 −1 D̄

5
(2)
c = (5, 2) 0 −1 2(h′d + D̄′)

5̄d = (5, 1) −1 0 hd

10c 0 0 empty

Table 9. Matter content for an SU(5)GUT × S3 ×U(1). S3 monodromy organises 10a,5a,5b and 5c
representations in doublets and singlets.

the spectrum of a model with Nχ = −1 and Nψ = 0. Because singlets play a vital role,

here, in addition we include the singlet field spectrum. Notice that the multiplicities of

θi4, θ4i are not determined by the U(1) fluxes assumed here, hence they are treated as

free parameters.

4.4 The Yukawa matrices in S3 models

To construct the mass matrices in the case of S3 models we first recall a few useful prop-

erties. There are six elements of the group in three classes, and their irreducible represen-

tations are 1, 1′ and 2. The tensor product of two doublets, in the real representation,
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contains two singlets and a doublet:

2⊗ 2 = 1⊕ 1′ ⊕ 2 (4.7)

Thus, if (x1, x2) and (y1, y2) represent the components of the doublets, the above prod-

uct gives

1 : (x1y1 + x2y2), 1′ : (x1y2 − x2y1), 2 :

(
x1y2 + x2y1

x1y1 − x2y2

)
. (4.8)

The singlets are muliplied according to the rules: 1⊗1′ = 1′ and 1′⊗1′ = 1. Note that 1′

is not an S3 invariant. With these simple rules in mind, we proceed with the construction

of the fermion mass matrices, starting from the quark sector.

4.5 Quark sector

We start our analysis of the Top-type quarks. We see from table 9 that we have two types

of operators contribute to the Top-type quark matrix.

1) A tree level coupling: g10
(2)
a · 10

(2)
a · 5(1)

a

2) Dimension 4 operators: λ110
(1)
a · 10

(1)
b · 5

(1)
a · θ(1)

a and λ210
(2)
a · 10

(1)
b · 5

(1)
a · θ(2)

a

In order to generate a hierarchical mass spectrum we accommodate the charm and top

quarks in the 10
(2)
a curve and the first generation on the 10

(1)
a curve. In this case, only the

first (tree level) coupling contributes to the Top quark terms. Using the S3 algebra above

while choosing 〈51
a〉 = 〈Hu〉 = υu and 〈θ1

a〉 = θ0, 〈θ2
a〉 = (θ1, 0)T we obtain the following

mass matrix for the Top-quarks

mu =

 λ1θ0 λ2θ1 0

0 εg 0

0 0 g

 υu (4.9)

Because two generations live on the same matter curve (10
(2)
a curve) we implement the

Rank theorem. For this reason we have suppressed the element-22 in the matrix above

with a small scale parameter ε. The quark eigenmasses are obtained from V L†
u mum

†
uV L

u =

(mdiag
u )2 where the transformation matrix V L

u is required for CKM-matrix along with the

transformation of Bottom-type quark masses V L
d such that VCKM = V L†

u V L
d . By setting

x = λ1θ0, y = λ2θ1 and g = z we have

mum
†
u =

 x2 + y2 εyz 0

εyz ε2z2 0

0 0 z2

 υ2
u (4.10)

For reasonable values of the parameters this matrix leads to mass eigenvalues with the

required mass hierarchy and a Cabbibo mixing angle. The smaller mixing angles are

expected to be generated from the down quark mass matrix. Indeed, the following Yukawa

couplings emerge for the Bottom-type quarks:
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1) First generation: g110
(1)
a · 5̄(1)

b · 5̄d · θ
(1)
a .

2) Second and third generation: g210
(2)
a · 5̄(2)

b · 5̄d · θ
(1)
a .

3) First-second, third generation: g310
(2)
a · 5̄(1)

b · 5̄d · θ
(2)
a and g410

(1)
a · 5̄(2)

b · 5̄d · θ
(2)
a .

4) Second-third generation: g510
(2)
a · 5̄(2)

b · 5̄d · θ
(2)
a .

We assume that the doublet Hd ∈ 5̄
(1)
b and the singlet θ2

a (being a doublet under

S3) develop VEVs designated as 〈Hd〉 = υd and 〈θ2
a〉 = (θ1, θ2)T. Then, applying the S3

algebra, the Yukawa couplings above induce the following mass matrix for the Bottom-type

quarks:

md =

 g1θ0 g3θ1 g3θ2

g4θ1 g2θ0 + g5θ2 g5θ1

g4θ2 g5θ1 g2θ0 − g5θ2

 υd. (4.11)

For appropriate Singlet VEVs the structure of the Bottom quark mass matrix is capable

to reproduce the hierarchical mass spectrum and the required CKM mixing.

4.6 Leptons

The charged leptons will have the same couplings as the Bottom-type quarks. To simplify

the analysis, let us start with a simple case where the Singlet VEVs exhibit the hierarchy

θ2 < θ1 < θ0. Furthermore, taking the limit θ2 → 0 and switching-off the Yukawas

coefficients g3, g4 in (4.11) we achieve a block diagonal form of the charged lepton matrix

m` =

 g1θ0 0 0

0 g2θ0 g5θ1

0 g5θ1 g2θ0

 υd. (4.12)

with eigenvalues

me = g1θ0, mµ = g2θ0 − g5θ1, mτ = g2θ0 + g5θ1 (4.13)

and maximal mixing between the second and third generations.

We turn now our attention to the couplings of the neutrinos. We identify the right-

handed neutrinos with the SU(5)-singlet θc = 1ij . Under the S3 symmetry, θc splits into

a singlet, named θ
(1)
c and a doublet, θ

(2)
c . As in the case of the quarks and the charged

leptons we distribute the right handed neutrino species as follows

θ(1)
c → νc1 and θ(2)

c → (νc2 νc3)T

The Dirac neutrino mass matrix arises from the following couplings

1) y15
(1)
a · 5̄(1)

b · θ
(1)
c · θ(1)

a

2) y25
(1)
a · 5̄(2)

b · θ
(2)
c · θ(1)

a
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3) y35
(1)
a · 5̄(2)

b · θ
(1)
c · θ(2)

a

4) y45
(1)
a · 5̄(1)

b · θ
(2)
c · θ(2)

a

5) y55
(1)
a · 5̄(2)

b · θ
(2)
c · θ(2)

a

and has the following form (for θ2 → 0)

MD =

 y1θ0 y3θ1 0

y4θ1 y2θ0 y5θ1

0 y5θ1 y2θ0

 υu (4.14)

Although the Dirac mass matrix has the same form with the charged lepton ma-

trix (4.11) in general they have different Yukawas coefficients. Thus, substantial mixing

effects may also occur even in the case of a diagonal heavy Majorana mass matrix.

In the following we construct effective neutrino mass matrices compatible with the

well known neutrino data in two different ways. In the first approach we take the simplest

scenario for a diagonal heavy Majorana mass matrix and generate the TB-mixing combining

charged lepton and neutrino block-diagonal textures. In the second case we consider the

most general form of the Majorana matrix and we try to generate TB-mixing only from

the Neutrino sector.

4.6.1 Block diagonal case

We start with the attempt to generate the TB-mixing combining charged lepton and neu-

trino block-diagonal textures. The Majorana matrix will simply be the identity matrix

scaled by a RH-neutrino mass M . The effective neutrino mass matrix Meff = MDM
−1
M MT

D

now reads:

Meff
ν =

 y2
1θ

2
0 + y2

3θ
2
1 (y2y3 + y1y4)θ0θ1 y3y5θ

2
1

(y2y3 + y1y4)θ0θ1 y
2
2θ

2
0 + (y2

4 + y2
5)θ2

1 2y2y5θ0θ1

y3y5θ
2
1 2y2y5θ0θ1 y2

2θ
2
0

 υ2
u

M
(4.15)

where we used the Dirac mass matrix as given in (4.14). First of all we observe that we

can reduce the number of the parameters by defining

θ0 = εθ1, x = y2ε, y = y1ε, a = y3, b = y4, c = y5.

Then Meff
ν is written

Meff
ν =

 y2 + a2 xa+ yb ac

xa+ yb x2 + b2 + c2 2xc

ac 2xc x2

 υ2
uθ

2
1

M
(4.16)

In the limit of a small y5 Yukawa (or c→ 0) we achieve a block diagonal form given by

Meff
ν =

 y2 + a2 xa+ yb 0

xa+ yb x2 + b2 0

0 0 x2

 υ2
uθ

2
1

M
(4.17)
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Figure 5. Curves for the relation tan (2θ12) = 2.828 in the parameter space of (α, x) . The curves

have (b,y) values set as follows: A = ( 2
5 ,

4
7 ), B = ( 1

3 ,
1
2 ), C = ( 4

13 ,
1
2 ) and D = ( 2

7 ,
1
2 ).

This can be diagonalised by a unitary matrix

Vν =

 cos(θ12) sin(θ12) 0

− sin(θ12) cos(θ12) 0

0 0 1

 (4.18)

Now, we may appeal to the block diagonal form of the charged lepton matrix (4.12) which

introduces a maximal θ23 angle so that the final mixing is

Ueff =

 cos(θ12) sin(θ12) 0

− cos(θ23) sin(θ12) cos(θ12) cos(θ23) sin(θ23)

sin(θ12) sin(θ23) − cos(θ12) sin(θ23) cos(θ23)


Indeed, a quick calculation in the 2-3 block of charged lepton matrix (4.12) gives:

cos (2θ23) = 0→ θ23 =
π

4

Moreover, diagonalisation of the neutrino mass matrix yields

tan(2θ12) =
2(xα+ yb)

y2 + α2 − x2 − b2
(4.19)

The TB-mixing matrix now arises for tan (2θ12) ≈ 2.828. In figure (5) we plot contours

for the above relation in the plane (α, x) for various values of the pairs (b, y).As can be

observed, tan (2θ12) takes the desired value for reasonable range of the parameters α, b, x, y.

For example

tan (2θ12) ≈ 2.804 for (α, b, x, y) =

(
2

7
,
2

9
,
1

4
,
3

8

)
(4.20)
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Figure 6. Contour plot for the ratio R = ∆m2
32/∆m

2
21 = 32 in the parameter space (α, b). The

curves correspond to the following (x, y) values: A = ( 1
4 ,

3
8 ), B = ( 2

7 ,
1
2 ), and C = ( 2

7 ,
3
7 ) .

We conclude that the simplified (block-diagonal) forms of the charged lepton and neutrino

mass matrices are compatible with the TB-mixing. It is easy now to obtain the known de-

viations of the TB-mixing allowing small values for the parameters c, θ2 in (4.12) and (4.17)

respectively. However, we also need to reconcile the ratio of the mass square differences

R = ∆m2
32/∆m

2
21 with the experimental data R ≈ 32. To this end, we first compute the

mass eigenvalues of the effective neutrino mass matrix

m1 = x2

m2 =
1

2
(a2 + b2 + x2 + y2 −∆)

m3 =
1

2
(a2 + b2 + x2 + y2 + ∆)

where ∆ =
√

[(α+ b)2 + (x− y)2][(α− b)2 + (x+ y)2]. Notice that ∆ is a positive quantity

and as a result m3 > m2.

We can find easily solutions for a wide range of the parameters consistent with the

experimental data. Note that for the same values as in (4.20) we achieve a reasonable value

of R ≈ 28.16. In figure (6) we plot contours of the ratio in the plane (α, b) for various

values of the pair (x, y).

We have stressed above that we could generate the θ13 angle by assuming small values

of the Yukawas y5. However, this case turns out to be too restrictive since the structure

of (4.17) results to maximal (1−2) mixing in contradiction with the experiment. The issue

could be remedied by a fine-tuning of the charged lepton mixing, however we would like to

look up for a natural solution. Therefore, we proceed with other options.
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4.6.2 TB mixing from neutrino sector

In the previous analysis we considered the simplest scenario for the Majorana matrix. The

general form of the Majorana mass matrix arises by taking into account all the possible

flavon terms contributions and has the following form

Mmaj =

M f1 f2

f1 m f3

f2 f3 m

 (4.21)

with M > m > fi.

To reduce the number of parameters we consider that fi = f for i = 1, 2, 3 and

y3, y4 → 0 in the Dirac matrix. In this case the elements of the effective neutrino mass

matrix are

M11 = (a2 − b2)y2

M12 = M13 = M21 = M31 = bx(b− a)(y + c)

M22 = M33 = (a− b2)x2 + (a+ b2)c2 − 2(b− 1)bxc

M23 = M32 = b(b− 1)(x2 + c2)− 2(b2 − a)xc

(4.22)

with an overall factor ∼ υ2uθ
2
1M

2

(2f3−2f2m−f2M+m2M)
and the parameters are defined as a = m/M ,

b = f/M , c = y5, x = εy2, y = εy1 and θ0 = εθ1. The matrix assumes the general structure:

Mν =

 p q q

q r s

q s r

 (4.23)

Maximal atmospheric neutrino mixing and θ13 = 0 immediately follow from this structure.

The solar mixing angle θ12 is not predicted, but it is expected to be large.

Next we try to generate TB -mixing only from the neutrino sector (assuming that the

charged lepton mixing is negligible so that it can be used to lift θ13 6= 0). Then, it is

enough to compare the entries of the effective mass matrix with the most general mass

matrix form which complies with TB-mixing

mν =

 u v v

v u+ w v − w
v v − w u+ w

 (4.24)

A quick comparison results to the following simple relations

u = M11

v = M12

w = M22 − u = M22 −M11

(4.25)

while the (23) element is subject to the constraint:

v = M23 + w (4.26)
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Figure 7. Contour plots for the ratio R = ∆m2

32/∆m
2
21 = 32 in the parameter spaces (x, y)-left

and (a, c)-right. In the first plot (left) c = 0.5 and aRblue = 1
6 , ared = 1

7 , agreen = 1
8 and ayellow = 1

9 .

In the (a, c) plot x = 0.33 and ablue = 0.5, ared = 0.4, agreen = 0.3 and ayellow = 0.2.

which results to a quadratic equation of b with solutions being functions of the remaining

parameters b = B±(a, c, x, y). We choose one of the roots, b = B−, and substitute it back

to the equations (4.25) to express the parameters u, v and w as functions of (a, c, x, y).

The requirement that all the large mixing effects emerge from the neutrino sector

imposes severe restrictions on the parameter space. Hence we need to check their compat-

ibility with the mass square differences ratio R. We can express the latter as a function of

the parameters R = R(a, c, x, y) by noting that the mass eigenvalues are given by

m1 = u− v, m2 = u+ 2v, m3 = u− v + 2w

Direct substitution gives the desired expression R(a, c, x, y) which is plotted in figure 7.

It is straightforward to notice that there is a wide range of parameters consistent with the

experimental data. In the first graph of the figure we plot contours for the ratio in the

plane (x, y) for various values of a and constant value c = 0.5. In the second graph we plot

the ratio in the (a, c) plane with constant x = 0.33. Note that in both cases, the a, c, x, y

parameters take values < 1.

Having checked that the parameters a, c, x, y are in the perturbative range, while con-

sistent with the TB-mixing and the mass data, we also should require that b = f/M

remains in the perturbative regime, i.e. b < 1. In figure 8 we plot the bounds put by this

constraint. In particular we plot the mass square ratio in the (x, y) plane for R = 30 and

R = 34 and we notice that there exists an overlapping region for values of b between 0.5

and 0.6. In this region x ∼ 0.4 and y ∼ 0.1. More precisely a typical set of such values gives

(a, c, x, y) =

(
3

7
,
1

2
,
2

5
,

1

10

)
→ b ≈ 0.5 and R ≈ 31.5.
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Figure 8. Bounds in the parameter space (x, y) from the experimental data and the

requirement b < 1.

5 Conclusions

In this work we considered the phenomenological implications of F-theory SU(5) models

with non-abelian discrete family symmetries. We discussed the physics of these construc-

tions in the context of the spectral cover, which, in the elliptical fibration and under the

specific choice of SU(5) GUT, implies that the discrete family symmetry must be a subgroup

of the permutation symmetry S5. Furthermore, we exploited the topological properties of

the associated 5-degree polynomial coefficients (inherited from the internal manifold) to

derive constraints on the effective field theory models. Since we dealt with discrete gauge

groups, we also proposed a discrete version of the flux mechanism for the splitting of rep-

resentations. We started our analysis splitting appropriately with the spectral cover in

order to implement the A4 discrete symmetry as a subgroup of S4. Hence, using Galois

Theory techniques, we studied the necessary conditions on the discriminant in order to

reduce the symmetry from S4 to A4. Moreover, we derived the properties of the matter

curves accommodating the massless spectrum and the constraints on the Yukawa sector of

the effective models. Then, we first made a choice of our flux parameters and picked up

a suitable combination of trivial and non-trivial A4 representations to accommodate the

three generations so that a hierarchical mass spectrum for the charged fermion sector is

guaranteed. Next, we focused on the implications of the neutrino sector. Because of the

rich structure of the effective theory emerging from the covering E8 group, we found a con-

siderable number of Yukawa operators contributing to the neutrino mass matrices. Despite
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their complexity, it is remarkable that the F-theory constraints and the induced discrete

symmetry organise them in a systematic manner so that they accommodate naturally the

observed large mixing effects and the smaller θ13 angle of the neutrino mixing matrix.

In the second part of the present article, using the appropriate factorisation of the

spectral cover we derive the S3 group as a family symmetry which accompanies the SU(5)

GUT. Because now the family symmetry is smaller than before, the resulting fermion mass

structures turn out to be less constrained. In this respect, the A4 symmetry appears to be

more predictive. Nevertheless, to start with, we choose to focus on a particular region of

the parameter space assuming some of the Yukawa matrix elements are zero and imposing

a diagonal heavy Majorana mass matrix. In such cases, we can easily derive block diagonal

lepton mass matrices which incorporate large neutrino mixing effects as required by the

experimental data. Next, in a more involved example, we allow for a general Majorana mass

matrix and initially determine stable regions of the parameter space which are consistent

with TB-mixing. The tiny θ13 angle can easily arise from small deviations of these values

or by charged lepton mixing effects. Both models derived here satisfy the neutrino mass

squared difference ratio predicted by neutrino oscillation experiments.

In conclusion, F-theory SU(5) models with non-abelian discrete family symmetries

provide a promising theoretical framework within which the flavour problem may be ad-

dressed. The present paper presents the first such realistic examples based on A4 and S3,

which are amongst the most popular discrete symmetries used in the field theory literature

in order to account for neutrino masses and mixing angles. By formulating such models

in the framework of F-theory SU(5), a deeper understanding of the origin of these dis-

crete symmetries is obtained, and theoretical issues such as doublet-triplet splitting may

be elegantly addressed.
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A Block diagonalisation of A4

A.1 Four dimensional case

From considering the symmetry properties of a regular tetrahedron, we can see quite easily

that it can be parameterised by four coordinates and its transformations can be decomposed

into a mere two generators. If we write these coordinates as a basis for A4, which is the

symmetry group of the tetrahedron, it would be of the form (t1, t2, t3, t4)T. The two
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generators can then be written in matrix form explicitly as:

S =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 and T =


1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

 . (A.1)

However, it is well known that A4 has an irreducible representation in the form of a singlet

and triplet under these generators. If we consider the tetrahedron again, this can be

physically interpreted by observing that under any rotation through one of the vertices of

the tetrahedron the vertex chosen remains unmoved under the transformation.4 In order to

find the irreducible representation, we must note some conditions that this decomposition

will satisfy.

In order to obtain the correct basis, we must find a unitary transformation V that

block diagonalises the generators of the group. As such, we have the following conditions:

V SV T = S′ =


1 0 0 0

0 − − −
0 − − −
0 − − −

 ,

V TV T = T ′ =


1 0 0 0

0 − − −
0 − − −
0 − − −

 ,

V V T = I4x4 ,

(A.2)

as well as the usual conditions that must be satisfied by the generators: S2 = T 3 = (ST )3 =

I. It will also be useful to observe three extra conditions, which will expedite finding the

solution. Namely that the block diagonal of one of the two generators must have zeros on

the diagonal to insure the triplet changes within itself.

If we write an explicit form for V,

V =


v11 v12 v13 v14

v21 v22 v23 v24

v31 v32 v33 v34

v41 v42 v43 v44

 , (A.3)

we can extract a set of quadratic equations and attempt to solve for the elements of the

matrix. Note that we have assumed as a starting point that vij ∈ R∀i, j. The complete

list is included in the appendix. The problem is quite simple, but at the same time would

be awkward to solve numerically, so we shall attempt to simplify the problem analytically

first. If we start be using:
v2

11 + v2
12 + v2

13 + v2
14 = 1 ,

& 2v12v13 + 2v11v14 = 1 ,
(A.4)

4This is a trivial notion for the T generator, but slightly more difficult for the S generator. In the latter

case, consider fixing one vertex in place and performing the transformation about it.
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we can trivially see two quadratics,

(v11 − v14)2 + (v12 − v13)2 = 0 . (A.5)

Since we assume that all our elements or V are real numbers, it must be true then that:

v11 = v14 and v12 = v13 . (A.6)

We may now substitute this result into a number of equations. However, we chose to focus

on the following two:

v11v21 + v12v23 + v13v24 + v14v22 → v11(v21 + v22) + v12(v23 + v24) and

v11v21 + v12v24 + v13v22 + v14v23 → v11(v21 + v23) + v12(v22 + v24) .
(A.7)

Taking the difference of these two equations, we can easily see there is a solution where

v11 = v12, and as such by the previous result:

v11 = v12 = v13 = v14 = ±1

2
. (A.8)

We are free to choose whichever sign for these four elements we please, provided they all

have the same sign. This outcome reduces the number of useful equations to twelve, as

nine of them can be summarised as∑
i

v2i =
∑
i

v3i =
∑
i

v4i = 0 . (A.9)

Let us consider the first of these three derived conditions, along with the conditions:

v2
21 + v2

22 + v2
23 + v2

24 = 1 ,

v2
21 + v22v23 + v22v24 + v23v24 = 0 .

(A.10)

Squaring the condition
∑

i v2i = 0 and using these relations, we can derive easily that

v21 = ±1
2 . Likewise we can derive the same for v31 and v41. As before, we might chose

either sign for each of these elements, with each possibility yielding a different outcome for

the basis, though our choices will constrain the signs of the remaining elements in V.

Let us make a choice for the signs of our known coefficients in the matrix and choose

them all to be positive for simplicity. We are now left with a much smaller set of conditions:

4∑
i=2

vji = −1

2
,

4∑
i=2

v2
ji =

3

4
and

4∑
i=2

vjivki =
1

4
,

j, k ∈ {2, 3, 4} and k 6= j .

(A.11)
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After a few choice rearrangements, these coefficients can be calculated numerically in Math-

ematica. This yields a unitary matrix,

V =
1

2


1 1 1 1

1 −1 −1 1

1 −1 1 −1

1 1 −1 −1

 , (A.12)

up to exchanges of the bottom three rows, which arises due to the fact the triplet arising

in this representation may be ordered arbitrarily. There is also a degree of choice involved

regarding the sign of the rows. However, this is again largely unimportant as the result

would be equivalent.

If we apply this transformation to our original basis ti, we find that we have a singlet

and a triplet in the new basis,

tsinglet = t1 + t2 + t3 + t4

ttriplet = (t1 − t2 − t3 + t4, t1 − t2 + t3 − t4 , t1 + t2 − t3 − t4) ,
(A.13)

and that our generators become block-diagonal:

S′ =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1



T ′ =


1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

 .

(A.14)

A.1.1 List of conditions

0) vij ∈ R∀i, j

1-4)

4∑
j=1

v2
ij = 1 i ∈ {1, 2, 3, 4}

5) v11v21 + v12v22 + v13v23 + v14v24 = 0

6) v11v31 + v12v32 + v13v33 + v14v34 =

7) v11v41 + v12v42 + v13v43 + v14v44 = 0

8) v21v31 + v22v32 + v23v33 + v24v34 = 0

9) v21v41 + v22v42 + v23v43 + v24v44 = 0

10) v31v41 + v32v42 + v33v43 + v34v44 = 0
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11) 2v12v13 + 2v11v14 = 1

12) v11v24 + v12v23 + v13v22 + v14v21 = 0

13) v11v34 + v12v33 + v13v32 + v14v31 = 0

14) v11v44 + v12v43 + v13v42 + v14v41 = 0

15) v2
11 + v12v13 + v12v14 + v13v14 = 1

16) v11v21 + v12v24 + v13v22 + v14v23 = 0

17) v11v31 + v12v34 + v13v32 + v14v33 = 0

18) v11v41 + v12v44 + v13v42 + v14v43 = 0

19) v11v21 + v12v23 + v13v24 + v14v22 = 0

20) v11v31 + v12v33 + v13v34 + v14v32 = 0

21) v11v41 + v12v43 + v13v44 + v14v42 = 0

22) v2
21 + v22v23 + v22v24 + v23v24 = 0

23) v2
31 + v32v33 + v32v34 + v33v34 = 0

24) v2
41 + v42v43 + v42v44 + v43v44 = 0 (A.15)

B Yukawa coupling algebra

Table 5 specifies all the allowed operators for the N = 0 SU(5)×A4×U(1) model discussed

in the main text. Here we include the full algebra for calculation of the Yukawa matrices

given in the text. All couplings must have zero t5 charge, respect R-symmetry and be A4

singlets. In the basis derived in appendix A, we have the triplet product:

3a × 3b = 1 + 1′ + 1′′ + 31 + 32

1 = a1b2 + a2b2 + a3b3

1′ = a1b2 + ωa2b2 + ω2a3b3

1′′ = a1b2 + ω2a2b2 + ωa3b3

31 = (a2b3, a3b1, a1b2)T

32 = (a3b2, a1b3, a2b1)T

where 3a = (a1, a2, a3)T and 3b = (b1, b2, b3)T.

B.1 Top-type quarks

The Top-type quarks have four non-vanishing couplings, while the T · T3 · Hu · θa · θa
and T · T · Hu · θa · θa · θb couplings vanishings due to the chosen vacuum expectations:

〈Hu〉 = (v, 0, 0)T and 〈θa〉 = (a, 0, 0)T.
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The contribution to the heaviest generation self-interaction is due to the T3 ·T3 ·Hu ·θa
operator:

(1× 1)× (3× 3)→ 1× 1

→ 1

(T3 × T3)×Hu × θa → (T3 × T3)va

We note that this is the lowest order operator in the Top-type quarks, so should dominate

the hierarchy.

The interaction between the third generation and the lighter two generations is deter-

mined by the T · T3 ·Hu · θa · θb operator:

(1× 1)× (3× 3)× 1→ 1× 1× 1

→ 1

T × T3 ×Hu × θa × θb → vab

The remaining, first-second generation operators give contributions, in brief:

T × T ×Hu × θa × (θb)
2 → vab2

T × T ×Hu × (θa)
3 → va3

These will be subject to Rank Theorem arguments, so that only one of the generations

directly gets a mass from the Yukawa interaction. However the remaining generation will

gain a mass due to instantons and non-commutative fluxes, as in [37, 38].

B.2 Charged leptons

The charged Leptons and Bottom-type quarks come from the same operators in the GUT

group, though in this exposition we shall work in terms of the Charged Leptons. The

complication for Charged leptons is that the Left-handed doublet is an A4 triplet, while

the right-handed singlets of the weak interaction are singlets of the monodromy group.

There are a total of six contributions to the Yukawa matrix, with the third generation

right-handed types being generated by two operators.

The operators giving mass to the interactions of the right-handed third generation are

dominated by the tree level operator F ·Hd · T3, which gives a contribution as:

3× 3× 1→ 1× 1→ 1

F ×Hd × T3 → y1

 0 0 v1

0 0 v2

0 0 v3
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Clearly this should dominated the next order operator, however when we choose a vacuum

expectation for the Hd field, we will have contributions from F ·Hd · T3 · θd:

3× 3× 3× 1→ 3× 3× 1→ 1

F ×Hd × θd × T3 →

 0 0 y2v2d3 + y3v3d2

0 0 y2v3d1 + y3v1d3

0 0 y2v1d2 + y3v2d1


The generation of Yukawas for the lighter two generations comes, at leading order, from

the operators F ·Hd · T · θb and F ·Hd · T · θa:

F ×Hd × T × θb → y4b

 v1 v1 0

v2 v2 0

v3 v3 0


F ×Hd × T × θa → y5a

 0 0 0

v3 v3 0

v2 v2 0

 ,

where the vacuum expectations for θa and θb are as before. The next order of operator

take the same form, but with corrections due to the flavon triplet, θd.

F ×Hd × T × θb × θd →

 y6v2d3 + y7v3d2 y6v2d3 + y7v3d2 0

y6v3d1 + y7v1d3 y6v3d1 + y7v1d3 0

y6v1d2 + y7v2d1 y6v1d2 + y7v2d1 0


F ×Hd × T × θa × θd → a

 y8v1d1 + y10v2d2 + y11v3d3 y8v1d1 + y10v2d2 + y11v3d3 0

y12v1d2 y12v1d2 0

y9v1d3 y9v1d3 0


B.3 Neutrinos

The neutrino sector admits masses of both Dirac and Majorana types. In the A4 model,

the right-handed neutrino is assigned to a matter curve constituting a singlet of the GUT

group. However it is a triplet of the A4 family symmetry, which along with the SU(2)

doublet will generate complicated structures under the group algebra.

B.3.1 Dirac mass terms

The Dirac mass terms coupling left and right-handed neutrinos comes from a maximum of

four operators. The leading order operators are θc ·F ·Hu · θb and θc ·F ·Hu · θa, where as

we have already seen the GUT singlet flavons θa and θb are used to cancel t5 charges. The

right-handed neutrino is presumed to live on the GUT singlet θd .

The first of the operators, θc · F ·Hu · θb, contributes via two channels:

3× 3× 3× 1→ 3× 3a × 1→ 1× 1

→

 c1

c2

c3

×
F2v3

F3v1

F1v2

× b→ y8b

 0 0 v2

v3 0 0

0 v1 0
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3× 3× 3× 1→ 3× 3b × 1→ 1× 1

→

 c1

c2

c3

×
F3v2

F1v3

F2v1

× b→ y9b

 0 v3 0

0 0 v1

v2 0 0


With the VEV alignments 〈θa〉 = (a, 0, 0)T and 〈Hu〉 = (v, 0, 0)T, we have a total matrix

for the operator:

→

 0 0 0

0 0 y9bv

0 y8bv 0


The second leading order operator, θc ·F ·Hu · θa, is more cimplicated due to the presence

of four A4 triplet fields. The simpelst contribution to the operator is:

(3× 3)× (3× 3)→ 1× 1

→

 y1(v1a1 + v2a2 + v3a3) 0 0

0 y1(v1a1 + v2a2 + v3a3) 0

0 0 y1(v1a1 + v2a2 + v3a3)

 ,

which only contributes to the diagonal. This is accompanied by two similar operators in

the way of:

(3× 3)× (3× 3)→ 1′ × 1′′

→ (c1F1 + ωc2F2 + ω2c3F3)× (v1a1 + ω2v2a2 + ωv3a3)

→ y2

 v1a1 0 0

0 v2a2 0

0 0 v3a3


(3× 3)× (3× 3)→ 1′′ × 1′

→ (c1F1 + ω2c2F2 + ωc3F3)× (v1a1 + ωv2a2 + ω2v3a3)

→ y3

 v1a1 0 0

0 v2a2 0

0 0 v3a3

 .

The remaining contribtuions are the complicated four-triplet products. However, upon

retaining to our previous vacuum expectation values, these will all vanish, leaving an overall

matrix of:

→

 y0va 0 0

0 y1va 0

0 0 y1va
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Where y0 = y1 + y2 + y3 as before. These contributions will produce a large mixing

between the second and third generations, however they do not allow for mixing with the

first generation.

Corrections from the next order operators will give a weaker mixing with the first

generation. These correcting terms are θc ·F ·Hu · θd · θb and θc ·F ·Hu · θd · θa, though we

choose to only consider the first of these two operators, since the flavon θa will generate a

very complicated structure, hindering computations with little obvious benefit in terms of

model building. The θc · F ·Hu · θd · θb operator has of diagonal contributions as:

(3× 3)× (3× 3)× 1→ 3a × 3x × 1→ 1

θc × F ×Hu × θd × θb →

 c2F3

c3F1

c1F2

×
 0

0

vd2

× b
→

 0 0 0

z1vd2b 0 0

0 0 0

 .

This is mirrored by similar combinations from the other 3 triplet-triplet combinations

allowed by the algebra. Overall, this gives:

→

 0 z3vd2b z2vd3b

z1vd2b 0 0

z4vd3b 0 0

 .

Due to the choice of Higgs vacuum expectation, the diagonal contributions will only correct

the first generation mass, giving a contribution to it ∼ vd1b.

B.3.2 Majorana operators

The right-handed neutrinos are also given a mass by Majorana terms. These are as it

transpires relatively simple. The leading order term θc · θc, gives a diagonal contribtuion:

3× 3→ 1

θc · θc →M I3×3

There may also be corrections to the off diagonal, due to operators such as θc · θc · θd.
These yield:

3× 3× 3→ 3× 3→ 1

θc × θc × θd →

 0 d3 d2

d3 0 d1

d2 d1 0

 ,

Higher orders of the flavon θd are also permitted, but should be suppressed by the coupling.
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C Flux mechanism

For completeness, we discribe here in a simple manner the flux mechanism introduced to

break symmetries and generate chirality.

• We start with the U(1)Y -flux inside of SU(5)GUT.

The 5’s and 10’s reside on matter curves Σ5i ,Σ10j while are characterised by their

defining equations. From the latter, we can deduce the corresponding homologies χi
following the standard procedure. If we turn on a U(1)Y -flux FY , we can determine

the flux restrictions on them which are expressed in terms of integers through the

“dot product”

NYi = FY · χi

The flux is responsible for the SU(5) breaking down to the Standard Model and this

can happen in such a way that the U(1)Y gauge boson remains massless [2, 3]. On the

other hand, flux affects the multiplicities of the SM-representations carrying non-zero

U(1)Y -charge.

Thus, on a certain Σ5i matter curve for example, we have

5 ∈ SU(5)⇒


n(3,1)− 1

3

− n(3̄,1) 1
3

= M5

n(1,2) 1
2

− n(1,2)− 1
2

= M5 +NYi

(C.1)

where NYi = FY ·χi as above. We can arrange for example M5 +NYi = 0 to eliminate

the doublets or M5 = 0 to eliminate the triplet.

• Let’s turn now to the SU(5)×S3. The S3 factor is associated to the three roots t1,2,3
which can split to a singlet and a doublet

1S3 = ts = t1 + t2 + t3, 2S3 = {t1 − t2, t1 + t2 − 2t3}T

It is convenient to introduce the two new linear combinations

ta = t1 − t3, tb = t2 − t3

and rewrite the doublet as follows

2S3 =

(
ta − tb
ta + tb

)
→

(
−tb
+tb

)
ta

(C.2)

Under the whole symmetry the SU(5)GUT 10ti , i = 1, 2, 3 representations transform

(10,1S3) + (10,2S3)

Our intention is to turn on fluxes along certain directions. We can think of the

following two different choices:
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1) We can turn on a flux Na along ta.
5 The singlet (10,1S3) does not transform

under ta, hence this flux will split the multiplicities as follows

10ti ⇒

{
(10,1S3) = M

(10,2S3) = M +Na
(C.3)

This choice will also break the S3 symmetry to Z3.

2) Turning on a flux along the singlet direction ts will preserve S3 symmetry. The

multiplicities now read

10ti ⇒

{
(10,1S3) = M +Ns

(10,2S3) = M
(C.4)

To get rid of the doublets we choose M = 0 while because flux restricts non-

trivially on the matter curve, the number of singlets can differ by just choos-

ing Ns 6= 0.

D The b1 = 0 constraint

To solve the b1 = 0 constraint we have repeatidly introduced a new section a0 and assumed

factorisation of the involved ai coefficients. To check the validity of this assumption, we

take as an example the S3 × Z2 case, where b1 = a2a6 + a3a5 = 0. We note first that

the coefficients bk are holomorphic functions of z, and as such they can be expressed as

power series of the form bk = bk,0 + bk,1z + · · · where bk,m do not depend on z. Hence, the

coefficients ak have a z-independent part

ak =
∑
m=0

ak,mz
m

while the product of two of them can be cast to the form

al ak =
∑
p=0

βp z
p, with βp =

p∑
n=0

alnak,p−n

Clearly the condition b1 = a2a6 + a3a5 = 0 has to be satisfied term-by-term. To this

end, at the next to zeroth order we define

λ =
a3,1a5,0 + a2,1a6,0

a5,1a6,0 − a5,0a6,1
(D.1)

The requirement a5,1a6,0 6= a5,0a6,1 ensures finiteness of λ, while at the same time excludes

a relation of the form a5 ∝ κa6 where κ would be a new section.

We can write the expansions for a2, a3 as follows

a2 = λa5,0 + a2,1z +O(z2)

a3 = −λa6,0 + a3,1z +O(z2)
(D.2)

5In the old basis we would require Nt1 = 2
3
Na and Nt2 = Nt3 = − 1

3
Na.
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The b1 = 0 condition is now

b1 = 0 + 0 z +O(z2)

i.e., satified up to second order in z. Hence, locally we can set z = 0 and simply write

a2 = λ a5, a3 = −λ a6
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[17] J. Marsano, N. Saulina and S. Schäfer-Nameki, Monodromies, fluxes and compact

three-generation F-theory GUTs, JHEP 08 (2009) 046 [arXiv:0906.4672] [INSPIRE].

[18] H. Hayashi, T. Kawano, Y. Tsuchiya and T. Watari, Flavor structure in F-theory

compactifications, JHEP 08 (2010) 036 [arXiv:0910.2762] [INSPIRE].

[19] E. Dudas and E. Palti, On hypercharge flux and exotics in F-theory GUTs, JHEP 09 (2010)

013 [arXiv:1007.1297] [INSPIRE].

[20] S.F. King, G.K. Leontaris and G.G. Ross, Family symmetries in F-theory GUTs, Nucl. Phys.

B 838 (2010) 119 [arXiv:1005.1025] [INSPIRE].

[21] J.C. Callaghan, S.F. King, G.K. Leontaris and G.G. Ross, Towards a realistic F-theory GUT,

JHEP 04 (2012) 094 [arXiv:1109.1399] [INSPIRE].

[22] I. Antoniadis and G.K. Leontaris, Building SO(10) models from F-theory, JHEP 08 (2012)

001 [arXiv:1205.6930] [INSPIRE].

[23] J.C. Callaghan and S.F. King, E6 models from F-theory, JHEP 04 (2013) 034

[arXiv:1210.6913] [INSPIRE].

[24] R. Tatar and W. Walters, GUT theories from Calabi-Yau 4-folds with SO(10) singularities,

JHEP 12 (2012) 092 [arXiv:1206.5090] [INSPIRE].

[25] J.C. Callaghan, S.F. King and G.K. Leontaris, Gauge coupling unification in E6 F-theory

GUTs with matter and bulk exotics from flux breaking, JHEP 12 (2013) 037

[arXiv:1307.4593] [INSPIRE].
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