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Av. Rovisco Pais, 1049-001 Lisboa, Portugal
bNikhef, Science Park 105, 1098 XG Amsterdam, The Netherlands
cInstitute for Theoretical Physics, Utrecht University,

Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
dPhysics Department, Utkal University,

Bhubaneswar 751 004, India

E-mail: gcardoso@math.ist.utl.pt, B.deWit@uu.nl, swapna@iopb.res.in

Abstract: The topological string captures certain superstring amplitudes which are also

encoded in the underlying string effective action. However, unlike the topological string

free energy, the effective action that comprises higher-order derivative couplings is not

defined in terms of duality covariant variables. This puzzle is resolved in the context of

real special geometry by introducing the so-called Hesse potential, which is defined in terms

of duality covariant variables and is related by a Legendre transformation to the function

that encodes the effective action. It is demonstrated that the Hesse potential contains

a unique subsector that possesses all the characteristic properties of a topological string

free energy. Genus g ≤ 3 contributions are constructed explicitly for a general class of

effective actions associated with a special-Kähler target space and are shown to satisfy

the holomorphic anomaly equation of perturbative type-II topological string theory. This

identification of a topological string free energy from an effective action is primarily based

on conceptual arguments and does not involve any of its more specific properties. It is

fully consistent with known results. A general theorem is presented that captures some

characteristic features of the equivalence, which demonstrates at the same time that non-

holomorphic deformations of special geometry can be dealt with consistently.

Keywords: Supersymmetry and Duality, Extended Supersymmetry, Topological Strings,

Supersymmetric Effective Theories

ArXiv ePrint: 1406.5478

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP09(2014)096

mailto:gcardoso@math.ist.utl.pt
mailto:B.deWit@uu.nl
mailto:swapna@iopb.res.in
http://arxiv.org/abs/1406.5478
http://dx.doi.org/10.1007/JHEP09(2014)096


J
H
E
P
0
9
(
2
0
1
4
)
0
9
6

Contents

1 Introduction 1

2 Real and deformed special geometry 8

3 The generic structure of the Hesse potential 12

4 Non-holomorphic deformations and the anomaly equation 20

5 Evaluating the third-order contributions 27

6 Summary and conclusions 31

A Non-holomorphic deformation of special geometry 33

A.1 Theorem 33

A.2 Proof 34

A.3 Corollary 35

B The symplectic functions H(a)
i for a ≥ 2 and some other functions that

do not initially appear in H 36

C Transformation rules of ωI and ωIJ to order α2 38

D Topological free energies for genus g ≤ 3 that satisfy the holomorphic

anomaly equation 39

E An application: the FHSV model 41

1 Introduction

As is well known, Lagrangians for N = 2 supersymmetric vector multiplets are encoded

in a holomorphic function F (X) whose arguments correspond to the complex scalar fields

XI of the vector multiplets. These Lagrangians often play a role as Wilsonian effective

field theories that describe the physics below a certain mass scale. Homogeneity of the

holomorphic function is required whenever the vector multiplets are coupled to supergrav-

ity [1]. The physical vector multiplet scalars are then projectively defined in terms of these

variables as a result of the local scale and U(1) invariance of the description used in [1].

It is possible that the function depends, in addition, on one or more holomorphic fields,

possibly associated with some other chiral multiplets. An example of this is the so-called

Weyl multiplet that describes the pure supergravity degrees of freedom [2]. When the func-

tion F depends on the Weyl multiplet, then it will also encode a class of higher-derivative
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couplings.1 In case these higher-order derivative couplings are absent, we will denote the

function by F (0), which is always holomorphic and homogeneous and encodes an action

that is at most quadratic in space-time derivatives. This action will henceforth be re-

ferred to as the ‘classical action’, and its associated non-linear sigma model parametrizes

a special-Kähler space.

The abelian vector fields in these actions are subject to electric/magnetic duality under

which the electric field strengths and their duals transform under symplectic rotations. It

is then possible to convert to a different duality frame, by regarding half of the rotated

field strengths as the new electric field strengths and the remaining ones as their duals.

The latter are then derivable from a new action. To ensure that the characterization of

the new action in terms of a holomorphic function remains preserved, the scalars of the

vector multiplets are transformed correspondingly. This amounts to rotating the complex

fields XI and the holomorphic derivatives of the underlying function F (X) by the same

symplectic rotation as the field strengths and their dual partners [1, 5]. For reasons that

will be described shortly, we shall refer to the array (XI , FJ) as the period vector, where

FJ(X) = ∂JF (X). The indices I, J label the vector multiplets, and cover the range I, J =

0, 1, . . . , n, so that the period vector has (complex) dimension 2(n+ 1). Electric/magnetic

duality thus constitutes a group of equivalence transformations that relate two different

Lagrangians (based on two different functions) giving rise to an equivalent set of equations

of motion and Bianchi identities. A subgroup of these equivalence transformations may

constitute an invariance group, meaning that the Lagrangian and its underlying function

F (X) remain unchanged. We stress that the latter two quantities do not transform as a

function under these equivalence transformations.

As it turns out one encounters a similar situation when studying Calabi-Yau three-

folds. The moduli space of these three-folds is a local product of two submanifolds, describ-

ing the metric deformations of the complex structure and of the Kähler class, respectively.

The complex structure moduli determine the shape, and the Kähler moduli the size of

the Calabi-Yau three-folds. Usually, when referring to the Calabi-Yau moduli space, one

refers to either one of these two submanifolds. As it turns out, the corresponding metric

deformations are related to the odd and even harmonic forms, respectively, and the number

of moduli is thus determined by the topology of the Calabi-Yau three-folds (see e.g. [6]).

The latter is specified by the Hodge numbers hp,p̄ which specify the number of independent

(p, p̄) harmonic forms. The odd harmonic forms consist of a (3, 0) holomorphic form Ω, and

h2,1 (2, 1)-forms, as well as their conjugate (0, 3)- and (1, 2)-forms. Under an infinitesimal

change of the complex structure the (3, 0)-form Ω changes into Ω and the (2, 1)-forms,

which leads to its periods, in the following way,

XI =

∮
AI

Ω , F (0)
I =

∮
BI

Ω . (1.1)

Here AI and BI are an integral basis of homology 3-cycles (in a symplectic basis) dual to

the three-forms. The index I takes the values I = 0, 1, . . . , h2,1, corresponding to the (3, 0)-

1These actions are all based on a chiral superspace density, but other N = 2 supersymmetric higher-

derivative couplings are known to exist (see e.g. [3, 4]). The latter will not be considered in this paper.
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and the (2, 1)-forms and their conjugates. The XI (or alternatively the F (0)
I) projectively

parametrize the complex-structure deformations, so that the complex dimension of the

corresponding moduli space equals h2,1.2

For the periods one can also show (at least in a suitable homology basis) that there

exists a holomorphic, homogeneous, function F (0)(X), such that F (0)
I = ∂IF

(0)(X).3 The

duality transformations on the periods simply arise from symplectic redefinitions of the ho-

mology basis of the 3-cycles. It is worth pointing out that in this case one is dealing with

discrete symplectic transformations, while in the supergravity case the transformations

are continuous (unless one has to account for an integral lattice of electric and magnetic

charges). This particular geometry with its associated period vectors and symplectic trans-

formations is known as special geometry [7] (for a review, see [8]).

The Calabi-Yau moduli space and the supergravity action describing a Calabi-Yau

string compactification are related, because the target space metric associated with the

non-linear sigma model contained in the corresponding Wilsonian effective action of vector

multiplets coupled to supergravity, must be equal to the metric of the Calabi-Yau moduli

space [9]. This target space is a so-called special-Kähler space, whose Kähler potential is

proportional to [1],

K(t, t̄) ∝ log

[
i
(
XI F̄ (0)

I − X̄I F (0)
I

)
|X0|2

]
, (1.2)

and F (0)(X) is the holomorphic function that determines the supergravity action quadratic

in space-time derivatives. Because F (0)(X) is homogeneous of second degree, this Kähler

potential depends only on the ‘special’ coordinates ti = Xi/X0 and their complex conju-

gates, where i = 1, . . . , n, so that we are dealing with a special-Kähler space of complex

dimension n. In view of the homogeneity, the symplectic rotations acting on the period

vector (XI , F (0)
I) induce corresponding (non-linear) transformations on the special coor-

dinates ti. Up to a Kähler transformations, the Kähler potential transforms as a function

under duality.

Yet another quantity that reflects the geometrical features of the Calabi-Yau moduli

space is the topological string. Perturbative string theory is defined in terms of maps

from Riemann surfaces Σg to a target space. When the worldsheet theory has (2, 2) su-

persymmetry and the target space is Ricci flat, one may construct a topological version of

perturbative string theory by a procedure called twisting [10]. The resulting theory is a

cohomological theory, and correlation functions of observables are independent of the word-

sheet metric on Σg. When the target-space is a Calabi-Yau three-fold, the twisted theory

is called topological string theory [11]. There exist two versions of topological string theory,

called the A- and the B-models. In the A-model, the correlation functions depend only

2For completeness we mention that there exists an analogous construction for the Kähler moduli. While

the complex structure moduli are associated with the odd cohomology class, H(3,0)⊕H(2,1)⊕H(1,2)⊕H(0,3),

the Kähler moduli are associated with the even class, H(0,0) ⊕ H(1,1) ⊕ H(2,2) ⊕ H(3,3). The corresponding

2 + 2h1,1 coordinates projectively describe the h1,1 complex Kähler moduli [6].
3The functions F (0) encoding the moduli space geometry of Calabi-Yau three-folds correspond to a

restricted class. This paper pertains to functions belonging to a more general class.
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on the Kähler moduli, while in the B-model they only depend on the complex structure

moduli.

The topological string is defined in terms of topological free energies F (g), which are

computed from suitable correlators on orientable Riemann surfaces Σg of genus g. These

free energies may be formally combined into one single object F (X,λ), the free energy of

topological string theory, which has the asymptotic expansion,

F (X,λ) =

∞∑
g=0

λg−1 F (g)(X) , (1.3)

with λ playing the role of a formal (complex) expansion parameter. This expression, being

a perturbative series in λ, is expected to receive non-perturbative corrections in λ [12–

14]. Note that we have (tentatively) included F (0)(X) in (1.3), which is the function that

encodes the Calabi-Yau moduli space metric. The functions F (g)(X) are homogeneous

functions of the XI of degree −2(g − 1), so that the X0-dependence can be scaled out

and subsequently be absorbed into the expansion parameter λ. In this way F (t, λ′) =

(X0)−2 F (X,λ) with λ′ = λ/(X0)2, and F (g)(t) = (X0)2g−2 F (g)(X). This suggests a role

of λ′ as a loop-counting parameter with (λ′)−1 F (0)(t) equal to the classical free energy.

It may seem tempting to identify the expansion (1.3) in this way with the similar

expansion of the effective action in terms of W 2, the square of the lowest component of

the Weyl multiplet, thus generating higher-derivative couplings in the action. However,

this interpretation is inconsistent with the behaviour one expects for the free energy of

the topological string. The reason is that the genus-g free energies should be consistent

with dualities induced by symplectic rotations of the periods (XI , F (0)
I) of the underlying

Calabi-Yau moduli space. In particular, the F (g)(X) (with g > 0) should transform as

functions under these dualities, and the F (g)(t) as sections. Note that this does not apply

to F (0), which does not transform as a function under electric/magnetic duality. At this

point one concludes that it was premature to include F (0) into the free energy of the

topological string, as the genus-g contributions with g > 0 behave as functions under

duality, while F (0) does not.

On the other hand, the Wilsonian action encoded by the similar expansion,

F (X,W 2) =
∞∑
g=0

(W 2)g F (g)(X) , (1.4)

is subject to different duality transformations, namely those induced by rotations of the full

period vector (XI , FI) rather than of the ‘classical’ period vector (XI , F (0)
I). Consequently

the corresponding coordinates XI will transform differently under duality, so that one must

conclude that the XI appearing in the topological string free energy and the XI appearing

in the Wilsonian action cannot be identical variables. Hence the coefficient functions

F (g) for the Wilsonian action appearing in (1.4) that multiply even powers of the Weyl

multiplet are not transforming as functions under duality, unlike those of the topological

string. This aspect is most striking when considering duality symmetries such as S- and

T-duality. Under these dualities the functions F (g) of the topological string are invariant
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(possibly up to a scale factor), whereas the analogous coefficient functions of the Wilsonian

action (1.4) transform non-linearly and are not invariant. Hence, in spite of the similarity

of the expansions, there is no ground for assuming that the coefficient functions F (g) of the

topological string will coincide with the corresponding coefficient functions appearing in

the expression (1.4) that encodes the effective action. This observation was already made in

e.g. [15, 16], where its consequences were investigated for dualities that define symmetries

of the model. Nevertheless, we should stress that there must exist a relation between the

effective action and the topological string in view of the fact that the topological string

does capture certain contributions to string amplitudes, which must in turn be reflected in

the effective action [11, 17].

We thus conclude that one seems to be dealing with two different series expansions of

the form (1.3) and (1.4), one pertaining to the topological string free energy and another

one to the effective Wilsonian action with a class of higher-derivative coupings. In spite of

their qualitatively different behaviour with respect to duality they should somehow describe

the same physics. To make matters more subtle, it is known that both the topological

string and the effective supergravity action are subject to non-holomorphic modifications.

Hence it is reasonable to expect that these modifications are therefore related as well.

However, so far non-holomorphic deformations have not been incorporated in the standard

treatment of special geometry. The non-holomorphic modification in the effective action

is due to the integration over massless modes [18], whereas those in the topological string

free energy originate from the pinching of cycles of the Riemann surfaces [19]. The need

for non-holomorphic corrections can often be deduced from the lack of invariance under

integer-valued duality symmetries, which requires modular functions that are not fully

holomorphic. This was also observed when calculating the entropy for BPS black holes

with S-duality invariance [20].

In this paper we will systematically study the connection between the effective action

and the topological string.4 Here we should stress that we are just referring to functions

that can potentially define the topological string free energy in relation to an underlying

effective action. Whether these functions will actually have a topological string realization

is a priori not known. But the connection that is proposed in this paper seems to be

universal so that it will apply also to those cases where a topological string realization does

exist. We will start from the holomorphic function that encodes the Wilsonian action, and

construct another quantity that transforms in the same way under duality as the topological

string free energy. Here we are inspired by previous work on BPS black holes [15, 16, 22],

where the so-called Hesse potential emerged as the relevant quantity, defined in the context

of real special geometry [23–25]. The Hesse potential transforms as a (real) function under

duality. It is related to the function F (X) that encodes the effective action via a Legendre

transform and it is expressed in terms of duality covariant variables, so that its behaviour

under duality is comparable to what one observes for the topological string. In hindsight

it is not so difficult to understand this relation by reflecting on the more familiar case of

four-dimensional abelian gauge fields, where the Lagrangian is a function of the abelian

4A preliminary account of our results was published in the proceedings of the Frascati School 2011 on

Black Objects in Supergravity [21].
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field strengths Fµν and possibly other fields (that we assume to be electrically neutral).

The expressions for the dual field strengths, which are related to the derivative of the full

Lagrangian with respect to the original field strength, do depend on the specific interaction

terms contained in the Lagrangian. Therefore the electric/magnetic duality transformation

rules for the original field strengths will depend on the details of the underlying Lagrangian.

On the other hand the Hamilonian depends on different quantities, namely the spatial part

of the gauge potential A and the electric displacement field D, where the latter follows

from taking the derivative of the Lagrangian with respect to E. The precise definition of

D will thus implicitly depend on the details of the Lagrangian. Under electric/magnetic

duality B ∝∇×A and D transform as a dual pair and the Hamiltonian is a function of

these duality covariant variables: they transform into each other under symplectic rotations

in a way that is independent of the details of the Hamiltonian. In fact, for a theory without

higher derivatives, A and D are the canonical variables.

Electric/magnetic duality transformations thus act as canonical transformations and

the Hamiltonian will usually decompose into a number of different functions that transform

consistently under them. When the canonical transformations constitute an invariance of

the system then these functions will be invariant. As it turns out, the Hesse potential of

real special geometry is the direct analogue of the Hamiltonian. Rather than depending

on the fields XI , it depends on canonical variables φI and χI . As we shall see, these can

again be combined into complex variables in a way that involves the classical period vector

associated with the function F (0)(X). The duality covariant variables (φI , χJ) transform

under the same duality transformations as the classical period vector.

The Hesse potential is related to the function F (X,W 2) via a Legendre transform,

and thus contains the same information as the effective action. In principle, other rele-

vant quantities that are related to the underlying Calabi-Yau moduli space, such as the

topological string free energy, can be characterized by functions of (φI , χJ). Precisely as

the Hamiltonian discussed above, the Hesse potential decomposes into different functions

that all transform consistently under duality. The central conjecture of this paper is that

the topological string should coincide with (part of) the Hesse potential, as this is the

only way to explain why it can reproduce (part of) the effective action. To identify this

particular function we will first consider what happens when the effective action is purely

Wilsonian. As it turns out there is just one function belonging to the Hesse potential that

is ‘almost harmonic’, where the meaning and implication of the term ‘almost harmonic’

will be explained in due course. The Hesse potential is nevertheless harmonic in terms of

the (holomorphic) function that encodes the Wilsonian action. Subsequently it is demon-

strated that, upon relaxing the harmonicity constraint on the function that encodes the

effective action, the resulting ‘almost harmonic’ contribution to the Hesse potential satisfies

the same holomorphic anomaly equation that is known from the topological string.

The paper is organized as follows. In section 2 we characterize possible non-holo-

morphic deformations of special geometry in the context of the effective action based on

a theorem that is presented in appendix A. Subsequently we introduce the formulation of

real special geometry in terms of the Hesse potential, which transforms as a function under

symplectic rotations of its real variables, and derive a number of results that are important
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for what follows in subsequent sections. Section 3 is devoted to evaluating the Hesse poten-

tial in terms of complex duality covariant variables by carrying out the Legendre transform

by iteration to fourth order, which is sufficient to appreciate its general structure. At

this stage the non-holomorphic contributions can be understood in the context of a dia-

grammatic representation of the Hesse potential as a sum over connected tree graphs. The

Hesse potential decomposes into an infinite number of terms, which arrange themselves into

an infinite set of functions, all transforming consistently under electric/magnetic duality.

Some of the expressions for these terms are collected in appendix B up to the corresponding

order in the iteration. When the corresponding effective action is characterized in terms of

a holomorphic function, precisely one of the functions contributing to the Hesse potential

becomes ‘almost harmonic’ in the moduli. This function is thus the only possible candidate

for a topological string free energy, and in section 4 we demonstrate that it indeed satisfies

a holomorphic anomaly equation which partially coincides with the holomorphic anomaly

equation known for the topological string [11].

Subsequently we relax the harmonicity restriction on the effective action by allowing

a specific non-holomorphic term that transforms as a symplectic function up to a term

that is harmonic. Introducing such a term induces quite a large variety of additional

contributions to the Hesse potential that leave its characteristic properties intact, but the

candidate function for the topological string free energy now satisfies the full holomorphic

anomaly equation. Hence this function has now all the prerequisites for representing the

generating function of the genus-g free energies of the topological string and we explicitly

demonstrate this up to g ≤ 3. The calculation for g = 3 is rather involved and it is described

in section 5. We should stress here that the logic of our calculations is rather different

from the one that is often followed for the topological string, where the non-holomorphic

corrections are found by integrating the anomaly equation [11, 26, 27], with the holomorphic

contributions playing the role of generalized integration ‘constants’. In this paper we

construct the Hesse potential starting from holomorphic functions, which, in order to ensure

that they transform consistently under duality transformations, will necessarily contain

non-holomorphic contributions. These non-holomorphic contributions then turn out to

satisfy the holomorphic anomaly equation. In this way it is obvious that the holomorphic

anomaly arises due to an incompatibility between duality covariance and holomorphicity.

On the other hand we demonstrate that the function that encodes the effective action, which

is holomorphic in the Wilsonian limit, must also contain corresponding non-holomorphic

corrections of a specific form, which we evaluate order-by-order by iteration. All these

results are established in the context of a generic special-Kähler space, but we do not wish

to imply that in all these cases an actual topological string realization will exist.

A summary and a discussion of the results is presented in section 6. Here we also

present a comparison of our present results with previous work [15, 16] on the FHSV

model [28]. Furthermore we briefly discuss some of the consequences of the results of this

paper for BPS black hole entropy, especially in connection with its conjectured relation to

the topological string [29].

There are five appendices. The first appendix A establishes the consistency of special

geometry under non-holomorphic deformations. The second appendix B lists a number of
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symplectic functions that emerge when evaluating the Hesse potential by iteration. Ap-

pendix C lists some intermediate results that are relevant for the third-order calculation

described in section 5. The explicit expressions for the twisted string free energies F (g)

of genus g ≤ 3 are presented in appendix D based on the construction presented in this

paper. Finally in appendix E we give further details about the comparison of the present

results to earlier results obtained for the FHSV model.

2 Real and deformed special geometry

In the previous section we introduced holomorphic functions that encode either the Wilso-

nian action or the topological string free energy, as well as a real function known as the

Hesse potential. While the first two are initially holomorphic, they eventually acquire non-

holomorphic terms caused by the underlying physics. In the Hesse potential there seems no

immediate obstacle to include such modifications as it is initially defined in terms of real

variables. Let us now reiterate some of the distinctive features of these three structures

and clarify the relevant issues.

The topological string free energy is a function of the Calabi-Yau moduli which are

subject to dualities related to the homology group of the underlying holomorphic three-

form. As explained in section 1, these moduli are associated with a holomorphic function

F (0)(X), which also encodes a corresponding vector multiplet Lagrangian with at most two

space-time derivatives coupled to supergravity. The dualities of this Lagrangian are gener-

ated by certain electric/magnetic dualities and they are related to the (discrete) homology

group associated with the Calabi-Yau periods. When deforming the supergravity, for in-

stance by introducing couplings to the square of the Weyl multiplet as specified in (1.4),

the duality transformations of the moduli XI will change their form, whereas the variables

XI in the topological string will still be associated with F (0)(X). Therefore, as explained

in the previous section, the supergravity definition and the topological string definition of

the variables XI will no longer be the same, and correspondingly the genus-g free energies

cannot be identical to the higher-derivative supergravity couplings.

The topological string free energy contains non-holomorphic corrections related to the

pinchings of cycles in the underlying Riemann surfaces. These corrections should presum-

ably be related to the non-holomorphic contributions to the function F (X,W 2) which are

induced by the integration over massless modes, in view of the fact that the two quan-

tities are known to describe the same (on-shell) string amplitudes [11, 17]. Irrespective

of this relationship the situation regarding the non-holomorphic corrections to the func-

tion F (X,W 2) is subtle. Integrating out the massless modes leads to interactions that

are non-local in generic space-times and it is not known what the precise dictionary is be-

tween non-holomorphic terms in the function F and the non-local terms in the Lagrangian.

In the supergravity context, non-holomorphic corrections are most likely related to chiral

anomalies associated with the U(1) local symmetry that is an essential part of the su-

perconformal multiplet calculus. These anomalies are cancelled by the non-holomorphic

terms that emerge in the effective action. Such a phenomenon has been clarified in [30] for

– 8 –



J
H
E
P
0
9
(
2
0
1
4
)
0
9
6

a number of situations. Another relevant observation is that non-holomorphic corrections

are often required in order to have an exact duality invariance.

The variables XI and W 2 are only projectively defined, so that physically relevant

results should not depend on uniform rescalings by a complex number. Hence we can

replace the XI by uniformly rescaled variables Y I that differ by a uniform multiplicative

complex factor or field according to a prescription that may depend on the application that

is being considered. Likewise one must also rescale the expression for W 2 by the square of

the same factor as for the XI . The resulting expression is usually denoted by Υ. However,

in what follows we will regard Υ as one of the generalized coupling constants that may play

a role. As it turns out it is not necessary to refer explicitly to such coupling constants, so

that we will suppress them henceforth.

The information encoded in F (X,W 2) can also be encoded in the context of real special

geometry where the relevant quantity is the Hesse potential. As was already argued in the

introductory section the Hesse potential represents the Hamiltonian form of the Wilsonian

action and depends on real duality-covariant variables denoted by φI and χI . They can be

defined by

φI = Y I + Ȳ Ī , χI = FI + F̄I . (2.1)

Note that the replacement of the original variables XI by Y I is now relevant, as it would not

make sense to consider linear combinations of the original variables XI and their complex

conjugates in view of the fact that they are projectively defined.5 As it turns out, non-

holomorphic corrections can be encoded in a real function Ω(Y, Ȳ ), which is incorporated

into the function F in the following way [32],

F (Y, Ȳ ) = F (0)(Y ) + 2i Ω(Y, Ȳ ) , (2.2)

where F (0)(Y ) is holomorphic and homogeneous of second degree. Note that the decom-

position (2.2) is subject to the equivalence transformation,

F (0)(Y )→ F (0)(Y ) + g(Y ) , Ω(Y, Ȳ )→ Ω(Y, Ȳ )− Im g(Y ) , (2.3)

which amounts to a shift of F (Y, Ȳ ) by an anti-holomorphic function: F (Y, Ȳ )→ F (Y, Ȳ )+

ḡ(Ȳ ). This change does not affect the period vector (Y I , FI), which only involves holomor-

phic derivatives, which is the underlying reason for this equivalence. When the function

Ω is harmonic, i.e., when it can be written as the sum of a holomorphic and an anti-

holomorphic function, then one may simply absorb the holomorphic part into the first

term according to (2.3). We usually refer to F (0)(Y ) as the classical contribution, because

it refers to the part of the Lagrangian that is quadratic in space-time derivatives. In that

case only the function Ω will depend on possible deformation parameters such as Υ and

Ῡ and it may contain harmonic and non-harmonic contributions. The ansatz (2.2) may

seem somewhat ad hoc, but in fact it can be derived in a much more general context as

5The same strategy was followed previously in the study of BPS black holes (see, e.g. [31]). The same

comment applies to the holomorphic derivatives FI . Note that F̄I equals the derivative of F̄ with respect

to Ȳ I . At this point we refrain from distinguishing holomorphic and anti-holomorphic derivatives, ∂/∂Y I

and ∂/∂Ȳ I , by the use of different types of indices.
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proven in the theorem presented in appendix A, which makes use of the analogue of the

Hesse potential. The first indication for these results came from the study of BPS black

hole entropy [15, 16, 22, 32, 33].

The new variables (2.1) have the virtue of transforming linearly under duality by real

symplectic rotations. At this point it is convenient to define a quantity H of φI and χI ,

which contains the same information as the F (Y, Ȳ ) but transforms as a function under

the duality transformations. This quantity is the Hesse potential. It is a generalization of

the Hesse potential that was defined in the context of real special geometry [23–25] and

follows from the Legendre transform of 4(ImF (0) + Ω) with respect to the imaginary part

of Y I ,

H(φ, χ) = 4
[
ImF (0)(Y ) + Ω(Y, Ȳ )

]
+ iχI (Y I − Ȳ I) . (2.4)

Its generic variation satisfies

δH = −i(FI − F̄I) δφI + i(Y I − Ȳ I) δχI , (2.5)

where FI refers to the holomorphic derivative of (2.2), which confirms that H is indeed a

function of the duality-covariant variables (φI , χI). The theorem of appendix A demon-

strates that many of the special geometry properties remain valid under non-holomorphic

deformations. This result had already been indicated by earlier work on this subject in [15].

The classical function F (0) is assumed to be holomorphic and homogeneous of second

degree in Y I . In the remainder of the section we summarize some results for such a function

with respect to its behaviour under electric/magnetic duality that are needed in the next

section. The electric/magnetic dualities are defined by Sp(2n+2,R) rotations of the period

vector (Y I , FI), defined in the usual way,

Y I → Ỹ I = U IJY
J + ZIJFJ ,

FI → F̃I = VI
JFJ +WIJY

J , (2.6)

where U , V , Z and W are the (n+ 1)× (n+ 1) real submatrices that constitute an element

of Sp(2n + 2,R). Applying these transformations to the case where F = F (0), so that

we are dealing with a homogeneous and holomorphic function, it follows that F̃ 0)
I can be

expressed as the holomorphic derivative of a new holomorphic function, F̃ (0)(Ỹ ), with the

latter equal to

F̃ (0)(Ỹ ) = F (0)(Y )− 1

2
Y IF (0)

I(Y ) +
1

2
(UTW )IJ Y

IY J

+
1

2
(UTV +WTZ)I

J Y I F (0)
J(Y ) +

1

2
(ZTV )IJ F (0)

I(Y )F (0)
J(Y ) , (2.7)

which, in general, is difficult to solve explicitly. Note that, when the function is not

homogeneous, there are integration constants corresponding to either a constant or terms

proportional to the Ỹ I . In the presence of non-holomorphic terms the proof of existence of

a new function is much more complicated, but the arguments, presented in a more generic

context in appendix A, indicate that this is indeed the case, although no explicit expression

has been given in the general case in analogy to (2.7).
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Finally we present the transformation rules of the first multiple derivatives of the

function F (0) under the dualities (2.6),

F̃ (0)
IJ = (VI

LF (0)
LK +WIK) [S−1

0 ]KJ ,

F̃ (0)
IJK = [S−1

0 ]LI [S−1
0 ]MJ [S−1

0 ]NK F
(0)
LMN ,

F̃ (0)
IJKL = [S−1

0 ](MI [S−1
0 ]NJ [S−1

0 ]PK [S−1
0 ]Q)

L

×
[
F (0)

MNPQ − 3F (0)
•MN Z0

•• F (0)
PQ•

]
,

F̃ (0)
IJKLM = [S−1

0 ](NI [S−1
0 ]P J [S−1

0 ]QK [S−1
0 ]RL [S−1

0 ]S)
M

×
[
F (0)

NPQRS − 10F (0)
•NPQZ0

•• F (0)
RS•

+ 15F (0)
•NP Z0

•• F (0)
••QZ0

•• F (0)
RS•
]
,

F̃ (0)
IJKLMN = [S−1

0 ](P I [S−1
0 ]QJ [S−1

0 ]RK [S−1
0 ]SL [S−1

0 ]TM [S−1
0 ]U)

N

×
[
F (0)

PQRSTU − 15F (0)
•PQRS Z0

•• F (0)
TU•

− 10F (0)
•PQRZ0

•• F (0)
STU•

+ 60F (0)
•PQRZ0

•• F (0)
••S Z0

•• F (0)
TU•

+ 45F (0)
•PQZ0

•• F (0)
••RS Z0

•• F (0)
TU•

− 90F (0)
•PQZ0

•• F (0)
••RZ0

•• F (0)
••S Z0

•• F (0)
TU•

− 15F (0)
XY Z

×
[
Z0

X• F (0)
PQ•

] [
Z0

Y • F (0)
RS•
] [
Z0

Z• F (0)
TU•

]]
, (2.8)

which can be obtained by repeated differentiation of the basic equation (2.6) or (2.7). Note

that for clarity we have occasionally replaced indices by bullets in cases where the index

contractions are unambiguous. In the above formulae the bullets are indices that are simply

contracted with the nearest neighbour bullet as a string. Furthermore we have made use

of the following definitions,

S0
I
J(Y ) =

∂Ỹ I

∂Y J
= U IJ + ZIKF

(0)
KJ(Y ) ,

ZIJ0 (Y ) = [S−1
0 ]IK Z

KJ . (2.9)

Because the matrices U and Z are submatrices of a (2n+2)-dimensional symplectic matrix,

it follows that ZIJ0 is symmetric in (I, J). It also follows that

δ[S−1
0 ]IJ =−Z0

IK δF (0)
KL [S−1

0 ]LJ ,

δZ0
IJ =−Z0

IK δF (0)
KLZ0

LJ . (2.10)

Defining

N (0)
IJ(Y, Ȳ ) = 2 Im [F (0)

IJ(Y )], (2.11)

we derive the following expression for the behaviour of its inverse N (0)IJ under duality

transformations,

Ñ (0)IJ = S0
I
K S̄0

J
LN

(0)KL . (2.12)
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Using the identity [S−1
0 ]IK [S̄0]KJ = δIJ − iZIK0 N (0)

KJ , it follows that (2.12) can also be

written as,

Ñ (0)IJ = S0
I
K S0

J
L

[
N (0)KL − iZKL0

]
= S̄0

I
K S̄0

J
L

[
N (0)KL + iZ̄KL0

]
. (2.13)

These identities will be relevant later on. Incidentally, from the results presented above

one can straightforwardly construct tensors that transform covariantly under the symplectic

transformations, such as

CIJKL = F (0)
IJKL + 3iN (0)MN F (0)

M(IJ F
(0)
KL)N . (2.14)

However, these tensors are not purely holomorphic in view of the appearance of the matrix

N (0)IJ . We will encounter such ‘almost holomorphic’ covariant functions throughout this

paper.

Note that in the next section we will introduce different complex variables denoted by

YI . Since we will treat Ω as a perturbation of the classical function F (0), the full func-

tion F will no longer play a role in the various formulae. Therefore, in due course, we

will simply suppress all sub- and superscripts ‘0’ referring to the lowest-order quantities

F (0), S0
I
J , ZIJ0 , and N (0)IJ . Note also that we are only distinguishing holomorphic and

anti-holomorphic derivatives, I, J, . . . and Ī , J̄ , . . . with a bar when we are dealing with a

real quantity. For instance, S̄0
J
K is anti-holomorphic, so we will just keep generic indices

J,K (rather than J̄ , K̄), while ΩI and ΩĪ need a holomorphic or anti-holomorphic index to

distinguish between the derivative with respect to Y I and Ȳ I . The reason for this conven-

tion is that we will often not have the situation where holomorphic and anti-holomorphic

indices are contracted consistently.

3 The generic structure of the Hesse potential

In this section we study the generic structure of the Hesse potential, which requires to

carry out a Legendre transform. In practice this can only be done by iteration. The results

will then take the form of an infinite power series in terms of Ω and its derivatives. We

will explicitly evaluate the first terms in this expansion up to order Ω5, which we expect

to suffice for uncovering the general structure of the full expression. The homogeneous

and holomorphic function F (0)(Y ) will not be subject to further restrictions and will thus

encode a generic special-Kähler space, while Ω will be an arbitrary function of Y and Ȳ .

The actual calculations are rather laborious although in principle straightforward; we have

relegated some relevant material to several appendices. Similar calculations have been

performed for more specific cases some time ago [15, 16]. For instance, the first two terms

to quadratic order in Υ, Ῡ have been determined for the FHSV model [28]. As it turned

out some of these terms were consistent with known results obtained from the topological

string by integration of the holomorphic anomaly equation [27], but the Hesse potential

contained additional terms at this order that were separately S- and T-duality invariant

but did not have an interpretation in the topological string context. In this paper we will

investigate the generic structure of the Hesse potential and clarify these partial results. We

will return to a discussion of the results for the FHSV model in section 6.
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To carry out the Legendre transform by iteration we first choose convenient variables.

Originally the Hesse potential was defined in terms of the variables (φI , χI) of real special

geometry, whose definition involves the full effective action. It is, however, more convenient

to convert them again to complex variables, subsequently denoted by YI , which coincide

precisely with the fields Y I that one would obtain from (φI , χI) upon using just the lowest-

order holomorphic function F (0). The identification proceeds as follows [16],

2 ReY I = φI = 2 ReYI ,

2 ReFI(Y, Ȳ ) = χI = 2 ReF (0)
I(Y) . (3.1)

Since the relation between the variables YI and the real variables (φI , χI) involves only

F (0), their duality transformations will be directly related. Consequently we will refer to

the variables YI as duality covariant variables. Under duality the variables YI transform

according to,

ỸI = U IJ YJ + ZIJ F (0)
J(Y) = SIJ(Y) YJ , (3.2)

where we used the homogeneity of F (0)(Y) as well as the definition of SIJ given in (2.9),

except that the expression is now written in terms of the new variables YI . Furthermore

we have dropped the subscript by the replacement S0 → S, as we had already indicated at

the end of section 2.

At the classical level, where Ω = 0, we obviously have YI = Y I , but in higher orders

the relation between these moduli is complicated and will involve Ω. Let us therefore write

YI = Y I + ∆Y I , where ∆Y I is purely imaginary, and F = F (0) + 2i Ω, so that we can

express (3.1) in terms of F (0), Ω, YI and ∆Y I . Because the equations will no longer involve

F , we will henceforth drop the index ‘0’ on F (0), as mentioned earlier. Consequently all

the derivatives of F will be holomorphic. The equations (3.1) can then be written as,

FI(Y −∆Y ) + F̄I(Ȳ + ∆Y )− FI(Y)− F̄I(Ȳ)

=− 2i
[
ΩI(Y −∆Y, Ȳ + ∆Y )− ΩĪ(Y −∆Y, Ȳ + ∆Y )

]
, (3.3)

where we made use of (2.2). Upon Taylor expanding, this equation will lead to an infinite

power series in ∆Y I , which we can solve by iteration. Retaining only the term of first order

in ∆Y I shows that it is proportional to first derivatives of Ω. Proceeding to higher orders

will then lead to an expression for ∆Y I involving increasing powers of Ω and F and their

derivatives taken at Y I = YI . Up to fourth order in Ω this iteration gives the following

expression for ∆Y I ,

∆Y I ≈ 2 (ΩI − ΩĪ)

− 2i(F + F̄ )IJK(ΩJ − ΩJ̄)(ΩK − ΩK̄)− 8 Re(ΩIJ − ΩIJ̄) (ΩJ − ΩJ̄)

+
4

3
i
[
(F − F̄ )IJKL + 3i(F + F̄ )IJM (F + F̄ )M

KL
]

× (ΩJ − ΩJ̄)(ΩK − ΩK̄)(ΩL − ΩL̄)

+ 8i
[
2 (F + F̄ )IJKRe(ΩKL − ΩKL̄) + Re(ΩIK − ΩIK̄)(F + F̄ )K

JL
]

× (ΩJ − ΩJ̄)(ΩL − ΩL̄)
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+ 32 Re(ΩIJ − ΩIJ̄) Re(ΩJK − ΩJK̄) (ΩK − ΩK̄)

+ 8i Im(ΩIJK − 2 ΩIJK̄ + ΩIJ̄K̄)(ΩJ − ΩJ̄) (ΩK − ΩK̄) +O(Ω4) . (3.4)

Here indices have been raised by making use of N (0)IJ , which was already defined in (2.11),

where, for consistency, we will henceforth change notation and refer to N (0)IJ by N IJ . Here

we stress once more that all the derivatives of F and Ω are taken at Y I = YI and Ȳ I = ȲI .
Using the same notation we obtain the following expression for the Hesse poten-

tial (2.4),

H(Y, Ȳ) =− i
[
ȲIFI(Y)− YI F̄I(Ȳ)

]
+ 4 Ω(Y, Ȳ)

− i
[
YI
(
FI(Y )− FI(Y)

)
+ ∆Y IFI(Y )− h.c.

]
+ 4
[
Ω(Y, Ȳ )− Ω(Y, Ȳ) + ∆Y I

(
ΩI(Y, Ȳ )− ΩĪ(Y, Ȳ )

)]
. (3.5)

Here we made use of the homogeneity of F (Y ) and of (3.3). Again this result must be

Taylor expanded upon writing Y I = YI −∆Y I and Ȳ I = ȲI + ∆Y I . The last two lines

of (3.5) then lead to a power series in ∆Y , starting at second order in the ∆Y ,

H(Y, Ȳ) ≈− i[ȲIFI(Y)− YI F̄I(Ȳ)] + 4 Ω(Y, Ȳ)

−NIJ∆Y I∆Y J − 2

3
i(F + F̄ )IJK∆Y I∆Y J∆Y K

− 4 Re(ΩIJ − ΩIJ̄)∆Y I∆Y J +
1

4
i(F − F̄ )IJKL∆Y I∆Y J∆Y K∆Y L

+
8

3
i Im(ΩIJK − 3ΩIJK̄)∆Y I∆Y J∆Y K + · · · . (3.6)

Inserting the result of the iteration (3.4) into the expression above leads to the following

expression for the Hesse potential, up to terms of order Ω5,

H(Y, Ȳ) ≈− i[ȲIFI(Y)− YI F̄I(Ȳ)] + 4 Ω(Y, Ȳ)

− 4 N̂ IJzI zJ +
8

3
i(F + F̄ )IJKN̂

ILN̂JM N̂KNzL zM zN

− 4

3
i[(F − F̄ )IJKL + 3i(F + F̄ )IJRN̂

RS(F + F̄ )SKL]

× N̂ IM N̂JN N̂KP N̂LQzM zN zP zQ

− 32

3
i Im(ΩIJK − 3 ΩIJK̄)N̂ ILN̂JM N̂KN zL zM zN +O(Ω5) , (3.7)

where zI = ΩI − ΩĪ , and where N̂ IJ is the inverse of the real, symmetric matrix N̂IJ ,

defined by

N̂IJ = NIJ + 4 Re(ΩIJ − ΩIJ̄) . (3.8)

Upon expanding N̂ IJ we straightforwardly determine the contributions to the Hesse po-
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tential up to fifth order in Ω,

H = H|Ω=0 + 4 Ω− 4N IJ(ΩIΩJ + ΩĪΩJ̄) + 8N IJΩIΩJ̄

+ 16 Re(ΩIJ − ΩIJ̄)N IKNJL
(
ΩKΩL + ΩK̄ΩL̄ − 2 ΩKΩL̄

)
− 16

3
(F + F̄ )IJKN

ILNJMNKN Im(ΩLΩMΩN − 3 ΩLΩMΩN̄ )

− 64N IPRe
(
ΩPQ − ΩPQ̄

)
NQRRe (ΩRK − ΩRK̄)NKJ (ΩIΩJ + ΩĪΩJ̄ − 2ΩIΩJ̄)

+ 64(F + F̄ )IJKN
ILNJMNKP Re

(
ΩPQ − ΩPQ̄

)
NQN Im(ΩLΩMΩN − 3 ΩLΩMΩN̄ )

− 8

3
i[(F − F̄ )IJKL + 3i(F + F̄ )R(IJN

RS(F + F̄ )KL)S ]N IMNJNNKPNLQ

× Re
(
ΩMΩNΩPΩQ − 4ΩMΩNΩPΩQ̄ + 3ΩMΩNΩP̄ΩQ̄

)
+

64

3
Im(ΩIJK − 3ΩIJK̄)N ILNJMNKN Im(ΩLΩMΩN − 3 ΩLΩMΩN̄ ) +O(Ω5) .

(3.9)

We stress once more that all the quantities in (3.9) are taken at Y I = YI .
It is clear that the Hesse potential takes a complicated form, but we note two sys-

tematic features. First of all it turns out that the expression (3.9) can be understood

diagrammatically. To appreciate this, let us return to the definition (2.4) of the Hesse

potential and rewrite it in a different form,

H(φ, χ) = 4
[
ImF (Y ) + Ω(Y, Ȳ )

]
+ iχI (Y I − Ȳ I)

=− 2iF (Y −∆Y ) + 2i F̄ (Ȳ + ∆Y ) + 4 Ω(Y −∆Y, Ȳ + ∆Y )

+ iχI
(
YI − ȲI

)
− 2iχI ∆Y I , (3.10)

where the purely imaginary quantities ∆Y I were introduced in the beginning of section 3

when defining the iteration procedure. We remind the reader that φI = 2 ReY I = 2 ReYI

and χI = 2 ReFI(Y). Substituting these results we derive

H(Y, Ȳ) = H(Y, Ȳ)
∣∣
Ω=0

+NIJ(Y, Ȳ) ∆Y I∆Y J

+ 2i
∞∑
n=3

1

n!

[
(−)n+1 FI1···In(Y) + F̄I1···In(Ȳ)

]
∆Y1 · · ·∆Yn

+ 4 Ω(Y −∆Y, Ȳ + ∆Y ) . (3.11)

It thus follows that H(Y, Ȳ) −H(Y, Ȳ)|Ω=0 − 4 Ω(Y, Ȳ) can be written as a series expan-

sion in positive powers of ∆Y I . Integrating the exponential of this expression over the

(purely imaginary) fluctuations ∆Y I , the result can be expressed as an infinite sum over

Feynman diagrams in the standard way with propagators given by N IJ and vertices by the

derivatives of F and F̄ as well as of the holomorphic and anti-holomorphic derivatives of

Ω. Because the Legendre transformation performed above should correspond to the tree

diagrams, it follows that H(Y, Ȳ)−H(Y, Ȳ)|Ω=0−4 Ω(Y, Ȳ) will comprise all the connected

tree diagrams. In this way one can account for all the terms in (3.9), including their com-

binatorial factors. Note that the diagrams are not 1PI: by removing the propagator N IJ
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each term in the expression will factorize into two terms! Here we should mention that

diagrammatic techniques have repeatedly played a role in the analysis of the holomorphic

anomaly equation and of the topological string (see e.g. [11, 26, 27]).

Another feature is based on the fact that (3.9) transforms as a function under duality

transformations of the fields YI , and so does the first term H|Ω=0. This observation enables

one to determine how Ω will transform under dualities. Obviously the transformation

behaviour of Ω must be non-trivial in view of the non-linear dependence on Ω of the Hesse

potential. The evaluation of this transformation proceeds again by iteration.

To demonstrate the procedure, let us review the first few steps. In lowest order, Ω

must transform as a function, which implies that

Ω̃(Ỹ, ¯̃Y) = Ω(Y, Ȳ) +O(Ω2) ,

Ω̃I(Ỹ, ¯̃Y) = [S−1]J I(Y) ΩJ(Y, Ȳ) +O(Ω2) , (3.12)

where the matrix S was already defined previously (note that we have suppressed the

subscript ‘0’). Applying this result to the first few terms of (3.9) and making use of the

fact that H−H|Ω=0 transforms as a function, one deduces the next-order result,

Ω̃− Ñ IJ(Ω̃IΩ̃J + Ω̃ĪΩ̃J̄) + 2 Ñ IJ Ω̃IΩ̃J̄ +O(Ω̃3)

= Ω−N IJ(ΩIΩJ + ΩĪΩJ̄) + 2N IJΩIΩJ̄ +O(Ω3) , (3.13)

where on the left-hand side the functions depend on the transformed fields ỸI , while on

the right-hand side they depend on the original fields YI .
Using the exact relations (2.9)–(2.13), suppressing also the subscript ‘0’ in the sym-

metric matrix ZIJ0 , one discovers that the first equation in (3.12) receives the following

correction in second order in Ω,

Ω̃(Ỹ, ¯̃Y) = Ω− i
(
ZIJ ΩIΩJ − Z̄IJ ΩĪΩJ̄

)
+O(Ω3) , (3.14)

which in turn gives rise to the following result for derivatives of Ω,

Ω̃I(Ỹ, ¯̃Y) = [S−1]J I

[
ΩJ + iFJKLZKMΩM ZLNΩN − 2iΩJKZKLΩL + 2iΩJK̄Z̄KLΩL̄

]
+O(Ω3) ,

Ω̃IJ(Ỹ, ¯̃Y) = [S−1]KI [S−1]LJ

[
ΩKL − FKLM ZMNΩN

]
+O(Ω2) ,

Ω̃IJ̄(Ỹ, ¯̃Y) = [S−1]KI [S̄−1]L̄J̄ ΩKL̄ +O(Ω2) . (3.15)

Here and henceforth we make frequent use of (2.10).

The iteration can be continued by including the terms of order Ω3, making use of (3.15)

for derivatives of Ω, to obtain the expression for Ω̃ up to terms of order Ω4. In the next

iterative step one then derives the effect of a duality transformation on Ω up to terms of

order Ω5. Before presenting this result, we wish to observe that terms transforming as a

proper function under duality, will not contribute to this result. This is precisely what

happens to the term proportional to N IJΩIΩJ̄ that appears in (3.9), which transforms as
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a function under symplectic transformations in this order of the iteration. Consequently

this term does not contribute to (3.14). As it turns out an infinite set of contributions to

the Hesse potential will be generated that transform separately as functions under duality.

By separating those from (3.9), we do not change the transformation behaviour of Ω but

we can extract certain functions from the Hesse potential in order to simplify its structure.

However, these functions must be constructed also by iteration, order by order in Ω.

We have evaluated this decomposition in terms of separate functions in detail, which

leads to

H = H(0) +H(1) +H(2) +
(
H(3)

1 +H(3)
2 + h.c.

)
+H(3)

3 +H(4)
1 +H(4)

2 +H(4)
3

+
(
H(4)

4 +H(4)
5 +H(4)

6 +H(4)
7 +H(4)

8 +H(4)
9 + h.c.

)
. . . , (3.16)

where the H(a)
i are certain expressions to be defined below, whose leading term is of order

Ωa. For higher values of a it turns out that there exists more than one function with the

same value of a, and those will be labeled by i = 1, 2, . . .. Of all the combinations H(a)
i

appearing in (3.16), H(1) is the only one that contains Ω, while all the other combinations

contain derivatives of Ω. Obviously, H(0) equals,

H(0) = −i[ȲIFI(Y)− YI F̄I(Ȳ)] , (3.17)

whereas H(1) at this level of iteration is given by,

H(1) = 4 Ω− 4N IJ(ΩIΩJ + ΩĪΩJ̄)

+ 16 Re
[
ΩIJ(NΩ)I(NΩ)J

]
+ 16 ΩIJ̄ (NΩ)I(N Ω̄)J

− 16

3
Im
[
FIJK(NΩ)I(NΩ)J(NΩ)K

]
− 4

3
i
[ (
FIJKL + 3iFR(IJN

RSFKL)S

)
(NΩ)I(NΩ)J(NΩ)K(NΩ)L − h.c.

]
− 16

3

[
ΩIJK(NΩ)I(NΩ)J(NΩ)K + h.c.

]
− 16

[
ΩIJK̄(NΩ)I(NΩ)J(N Ω̄)K + h.c.

]
− 16i

[
FIJKN

KP ΩPQ(NΩ)I(NΩ)J(NΩ)Q − h.c.
]

− 16
[
(NΩ)P ΩPQN

QRΩRK (NΩ)K + h.c.
]

− 16
[
(NΩ)P ΩPQN

QRΩRK̄ (N Ω̄)K

+N IP ΩPQ̄N
QR
(
ΩR̄K (NΩ)K + ΩR̄K̄ (N Ω̄)K

)
ΩI + h.c.

]
− 16i

[
FIJKN

KP ΩPQ̄(NΩ)I(NΩ)J(N Ω̄)Q − h.c.
]

+O(Ω5) . (3.18)

Here we have used the notation (NΩ)I = N IJΩJ , (N Ω̄)I = N IJΩJ̄ . Index symmetriza-

tions, such as in FR(IJN
RSFKL)S , are always of strength one. For instance, in this example,

where there are three independent combinations, one includes a factor 1/3. The expres-

sions for the higher-order functions H(a)
i with a = 2, 3, 4 are given in appendix B. These

– 17 –



J
H
E
P
0
9
(
2
0
1
4
)
0
9
6

expressions have been obtained by requiring that they constitute functions under symplec-

tic transformations, order by order in Ω. There exist other expressions that do transform

as functions under duality in this approximation, but which do not appear in H. We

have included two examples of such functions in appendix B, one of which will be relevant

later on.

BecauseH(1) transforms as a function under symplectic transformations, we can deduce

the transformation behavior of Ω up to order Ω5 by generalizing (3.12) to higher orders.

In this way one derives,

Ω̃(Ỹ, ¯̃Y) = Ω− i
(
ZIJ ΩIΩJ − Z̄IJ ΩĪΩJ̄

)
+

2

3

(
FIJK ZILΩLZJMΩM ZKNΩN + h.c.

)
− 2
(
ΩIJ ZIKΩKZJLΩL + h.c.

)
+ 4 ΩIJ̄ ZIKΩK Z̄JLΩL̄

+

[
− 1

3
iFIJKL(ZΩ)I(ZΩ)J(ZΩ)K(ZΩ)L

+
4

3
iΩIJK(ZΩ)I(ZΩ)J(ZΩ)K

+ iFIJRZRS FSKL (ZΩ)I(ZΩ)J(ZΩ)K(ZΩ)L

− 4i ΩIJK̄ (ZΩ)I (ZΩ)J(Z̄Ω̄)K̄

− 4iFIJKZKP ΩPQ (ZΩ)I(ZΩ)J (ZΩ)Q

+ 4iFIJKZKP ΩPQ̄(ZΩ)I(ZΩ)J(Z̄Ω̄)Q̄

+ 4i (ZΩ)P ΩPQZQR
(

ΩRK (ZΩ)K − 2ΩRK̄ (Z̄Ω̄)K̄
)

− 4i (ZΩ)P ΩPQ̄ Z̄Q̄R̄ΩR̄K (ZΩ)K + h.c.

]
+O(Ω5) , (3.19)

where the functions on the right-hand side depend on the fields YI and ȲI . We used

the obvious notation
(
ZΩ
)I

= ZIJΩJ and
(
Z̄Ω̄
)I

= Z̄ ĪJ̄ Ω̄J̄ . It is remarkable that the

matrix N IJ no longer appears in this relation. This is due to a subtle interplay of the

various contributions to this result, which involves the ones coming from (3.15). On closer

inspection, the result (3.19) turns out to be identical (modulo an overall factor 4) to

H(1) given in (3.18) upon making the replacement N IJ → iZIJ and/or N IJ → −iZ̄ ĪJ̄ ,

where the precise form depends on the type of index contractions (i.e holomorphic or anti-

holomorphic) to N IJ . The fact that none of the other functions H(a) contribute is perhaps

not surprising because those are manifestly symplectic functions where no Z dependent

variations are generated, whereas in H(1) such terms are generated and have to be absorbed

into the transformation rule of Ω. Clearly this is an intriguing result for which we have not

found a general proof within our approach, although we are aware of the fact that similar

properties have been encountered in [26].

With the above result (3.19) one can continue with the iterations by extending (3.15)

to the next order, finding

Ω̃I(Ỹ, ¯̃Y) = [S−1]J I

[
ΩJ + iFJKL (ZΩ)K (ZΩ)L − 2i ΩJK(ZΩ)K + 2iΩJK̄(Z̄Ω̄)K̄
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+
2

3
FJKLP (ZΩ)K(ZΩ)L(ZΩ)P + 2FKLP (ZΩ)KJ(ZΩ)L(ZΩ)P

+ 4FJKL(ZΩ)K(ZΩ)LP (ZΩ)P − 4FJKL(ZΩ)K(ZΩ)LP̄ (Z̄Ω̄)P̄

− 2FJKLZLPFPQS(ZΩ)K(ZΩ)Q(ZΩ)S + 2 F̄K̄L̄P̄ (Z̄Ω̄)K̄J(Z̄Ω̄)L̄(Z̄Ω̄)P̄

− 2 ΩJKL(ZΩ)K(ZΩ)L − 4 ΩKL(ZΩ)KJ(ZΩ)L − 2 ΩJK̄L̄(Z̄Ω̄)K̄(Z̄Ω̄)L̄

− 4 ΩK̄L̄(Z̄Ω̄)K̄J(Z̄Ω̄)L̄ + 4 ΩJKL̄(ZΩ)K(Z̄Ω̄)L̄ + 4 ΩKL̄(ZΩ)KJ(Z̄Ω̄)L̄

+ 4 ΩKL̄(ZΩ)K(Z̄Ω̄)L̄J

]
+O(Ω4) ,

Ω̃IJ = [S−1]KI [S−1]LJ

[
ΩKL − FKLM ZMNΩN + iFKLMN (ZΩ)M (ZΩ)N

+ 2iFKMN (ZΩ)ML(ZΩ)N − 2iFKMNZMPFPQL(ZΩ)Q(ZΩ)N

− 2i ΩKLP (ZΩ)P − 2i ΩKP (ZΩ)P L + 2i ΩKPZPQFQLS(ZΩ)S

+ 2i ΩKLP̄ (Z̄Ω̄)P̄ + 2i ΩKP̄ (Z̄Ω̄)P̄ L

]
+O(Ω3) ,

Ω̃IJ̄ = [S−1]KI [S̄−1]L̄J̄

[
ΩKL̄ + 2 iFKMN (ZΩ)ML̄(ZΩ)N − 2i F̄L̄P̄ N̄ (Z̄Ω̄)N̄K(Z̄Ω̄)P̄

− 2i ΩKML̄(ZΩ)M − 2i ΩKM (ZΩ)ML̄ + 2i ΩKL̄M̄ (Z̄Ω̄)M̄ + 2i ΩKM̄ (Z̄Ω̄)M̄ L̄

]
+O(Ω3) , (3.20)

where (ZΩ)ML = ZMNΩNL, (Z̄Ω̄)P̄ L = Z̄ P̄ N̄ΩN̄L, (ZΩ)LP̄ = ZLKΩKP̄ , etc. These

results will then contribute to the determination of the next order contribution to (3.19).

The fact that Ω transforms non-linearly under dualities, while we are at the same time

considering an expansion in terms of Ω and its derivatives, suggests to introduce a formal

expansion parameter α and expand Ω =
∑∞

n=1 α
n−1 Ω(n), so that we are obtaining relations

between products of different coefficient functions Ω(n) order-in-order in α. At this stage

there is no direct need for this, but we will follow this strategy in the next section where

matters become somewhat more involved.

Rather than proceeding with this iteration procedure, we will simply assume that all

characteristic features noted in the results above, will continue to hold in higher orders as

well. An obvious conclusion is then that the quantity Ω does not transform as a function

under symplectic transformations in view of the result (3.19). This is in agreement with

our earlier claims, for instance in [15, 16]. On the other hand we expect that Ω must belong

to a restricted class and, in particular, it should have a well-defined harmonic limit that

will define the Wilsonian action. To understand how this may come about, let us first start

from an Ω that is harmonic in the variables YI and their complex conjugates ȲI . It is

then reasonable to expect that also Ω̃ will be harmonic in the new variables, so that both

Ω and Ω̃ can be written as a sum of a holomorphic and an anti-holomorphic function in

their respective variables. Indeed this property is confirmed by (3.19), or alternatively by

the last equation in (3.20). Hence we conclude that the condition

ΩIJ̄ = 0 , (3.21)

is preserved under symplectic transformations. In the next section we first discuss the

consequences of this harmonicity constraint, before considering modifications thereof.
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4 Non-holomorphic deformations and the anomaly equation

At the end of the previous section we mentioned the possibility that Ω is an harmonic

function of the variables YI and ȲI , a property that is consistent with respect to symplectic

transformations. However, the function of interest is H(1)(Y, Ȳ), which is not harmonic

in this case but which can still be decomposed in a way that is rather similar to the

decomposition of a harmonic function. Namely one can write,

Ω(Y, Ȳ) = ω(Y) + ω̄(Ȳ) ,

H(1)(Y, Ȳ) = h(Y, Ȳ) + h̄(Ȳ,Y) , (4.1)

where the function h(Y, Ȳ) depends holomorphically on ω and equals,

h(Y, Ȳ) = 4ω − 4N IJ ωIωJ

+ 8ωIJ(Nω)I(Nω)J +
8

3
iFIJK(Nω)I(Nω)J(Nω)K

− 4

3
i
(
FIJKL + 3iFR(IJN

RSFKL)S

)
(Nω)I(Nω)J(Nω)K(Nω)L

− 16

3
ωIJK(Nω)I(Nω)J(Nω)K − 16iFIJKN

KP ωPQ(Nω)I(Nω)J(Nω)Q

− 16 (Nω)P ωPQN
QRωRK (Nω)K +O(ω5) . (4.2)

Because both H(1) and Ω̃, given in (3.18) and (3.19), are now harmonic in the ω, it fol-

lows that ω must transform under symplectic transformations in direct correspondence

with (3.19),

ω̃(Ỹ) = ω − iZIJωI ωJ +
2

3
FIJK (Zω)I (Zω)J (Zω)K

− 2ωIJ (Zω)I (Zω)J

− 1

3
iFIJKL(Zω)I(Zω)J(Zω)K(Zω)L

+
4

3
iωIJK(Zω)I(Zω)J(Zω)K

+ iFIJK ZKL FLMN (Zω)I(Zω)J(Zω)M (Zω)N

− 4iFIJKZKP ωPQ (Zω)I(Zω)J (Zω)Q

+ 4i(Zω)IωIJZJKωKL(Zω)L +O(ω5) , (4.3)

so that ω transforms holomorphically. Obviously h(Y, Ȳ) must be a symplectic function.

However, its dependence on Ȳ resides exclusively in the complex matrix N IJ . Therefore

we first study the dependence of h(Y, Ȳ) on N IJ , and derive the following equation

∂h

∂N IJ
= −1

4
∂Ih ∂Jh , (4.4)

which we have verified up to terms of order ω5. This result can easily be understood on the

basis of the diagrammatic interpretation that we have presented in the previous section.

From it one straightforwardly determines the non-holomorphic derivative of h(Y, Ȳ),

∂Īh(Y, Ȳ) =
1

4
iF̄IKLN

KMNLN ∂Mh(Y, Ȳ) ∂Nh(Y, Ȳ) . (4.5)
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The equation (4.5) partially coincides with what is known as the holomorphic anomaly

equation for the topological string and represents the terms that are induced by the pinch-

ing of a cycle of the underlying Riemann surface resulting in two disconnected Riemann

surfaces [11]. This restricted anomaly equation is also obtained when considering the N = 2

chiral superspace action for abelian vector multiplets in the presence of a chiral background

field [34]. When expanding this action in terms of the background, the holomorphic ex-

pansion coefficient functions do not transform as functions under duality. This can be

resolved by covariantizing the Taylor expansion with a suitable connection, but in that

case the expansion coefficient functions are no longer holomorphic. As it turns out these

modified coefficient functions then satisfy the same anomaly equation (4.5). Note that this

equation is integrable, so that no additional constraints are implied. Clearly the holomor-

phic anomaly is due to the fact that there is a conflict between symplectic covariance and

holomorphicity.

The above result would justify the identification of H(1) with the topological string,

except that the holomorphic anomaly equation is still incomplete. This implies that we

have to somehow relax the assumption that Ω is harmonic in Y, while still expressing it

in terms of a holomorphic function ω(Y) in such a way that H(1) will remain harmonic

(possibly up to a separate non-harmonic function, as we shall see in section 5) in terms of

ω. However, modifying the ansatz (4.1) must be consistent with duality, in the sense that

the modification will hold for the whole class of functions Ω that are related by duality.

Our task is therefore to demonstrate that the present framework can be extended so as to

induce the remaining term in the anomaly equation that is related to pinchings of cycles

of the Riemann surface that reduce the genus by one unit.

As it turns out, a consistent extension can be constructed by introducing non-harmonic

terms whose variation under symplectic transformations is still harmonic. Such a modifi-

cation does preserve the present framework in a way that is consistent with duality. For

instance we could choose the following ansatz for Ω,

Ω(Y, Ȳ) = ω(Y) + ω̄(Ȳ) + α ln det[NIJ ] + βΨ(Y, Ȳ) , (4.6)

where α and β are arbitrary real parameters and Ψ a non-holomorphic function of Y and

Ȳ. Note that we assume that the two deformations do not depend on the holomorphic

function ω or its complex conjugate, because we insist on harmonicity with respect to ω.

The deformation proportional to β is the easiest to deal with, so let us consider this

one first. Since Ψ is a given function one cannot simply substitute the ansatz (4.6) with

α = 0 into the expression for the function H(1), because this would require Ψ to change

non-trivially in order to satisfy (3.19). Hence we must introduce additional terms into Ω

to ensure that the modified Ω will still transform according to (3.19) without modifying

the holomorphicity of ω and leaving Ψ as a function. As its turns out, this can be done in

the next order by including the following additional terms,

Ω(Y, Ȳ) = ω + ω̄ + βΨ(Y, Ȳ) +N IJ
[
2β ∂Iω ∂JΨ + β2 ∂IΨ ∂JΨ + h.c.

]
. (4.7)

So far we have been performing an interation in powers of Ω. It is formally consistent to

treat β and ω as being of the same order, but then we must assume that ω can obtain
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terms of even higher order in β in view of the non-linear transformation rules, Hence we

assume ω can be expanded in terms of the parameter β,

ω(Y) −→ ω(Y, β) =
∞∑
n=1

ωn(Y)βn−1 , (4.8)

although we will keep this expansion implicit in what follows. It is now straightforward to

see that ω transforms as follows under symplectic transformations

ω̃ = ω − iZIJωI ωJ +O(ω3) , (4.9)

which agrees with (4.3). Subsequently we consider the function H(1) in this order of

iteration,

H(1) = h+ h̄+ 4βΨ +O(ω3) , (4.10)

where h coincides with (4.2) in this order of iteration. Consequently the addition of such

a deformation leaves the holomorphic anomaly equation (4.5) unaltered.

In view of this result we continue with the first modification in (4.6) proportional to α.

In principle the analysis proceeds in a similar way as in the previous case, but here one has

to also investigate the consistency in first order. However, it is easy to see how consistency

can be achieved because we have

ln det[ÑIJ ] = ln det[NIJ ]− ln det
[
S
]
− ln det

[
S̄
]
, (4.11)

where S was defined in (2.9). Because S is holomorphic, the effect of the non-harmonic

modification α ln det[NIJ ] under duality can simply be absorbed by assigning the following

transformation to ω,

ω̃(Ỹ) = ω(Y) + α ln det
[
S
]
, (4.12)

up to terms of higher order in Ω (or ω) and α. Hence in lowest order Ω(Y, Ȳ) transforms

as a function, so that our previous analysis remains unaffected as Ω̃ = Ω + O(Ω2). This

is confirmed by the following. First of all, derivatives of the holomorphic function ω(Y)

remain holomorphic but they do acquire extra terms in their transformation rules, as is

shown in

ω̃I = [S−1]J I
(
ωJ + αFJKLZKL

)
+O(α2) ,

ω̃IJ = [S−1]KI [S−1]LJ

[
ωKL − FKLMZMN (ωN + αFNPQZPQ)

+ α
(
FKLMN − FKMP FLNQZPQ

)
ZMN

]
+O(α2) . (4.13)

Furthermore the first few derivatives of Ω are now equal to

ΩI = ωI − iαFIJK N
JK +O(α2) ,

ΩIJ = ωIJ + αFIKL FJMN N
KMNLN − iαFIJKLN

KL +O(α2) ,

ΩIJ̄ =− αFIKL F̄JMN N
KMNLN +O(α2) , (4.14)
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which, in leading order, transform consistently under duality transformations (i.e. according

to (3.20)). To show this one makes use of (4.13) and (2.8). Hence we conclude that to

lowest order in Ω, the non-holomorphic deformation (4.6) is consistent. Observe that the

last equation (4.14) constitutes a deviation from the harmonicity condition (3.21).

In due course we will also need the result for the transformation of the third- and

fourth-derivatives of ω, implied by (4.12),

ω̃IJK = [S−1]M(I [S−1]NJ [S−1]PK)

×
[
ωMNP − 3FMN•Z••

(
ωP• + αFPQR•ZQR

)
−
(
FMNP• − 3FMN•Z••FP••

)
Z••

(
ω• + αFQR•ZQR

)
+ α

(
FMNPQR − 3FMNQ•Z•• FPR• + 3FMN•Z•• FQ••Z•• F•PR

)
ZQR

+ 2αFMQ•Z•• F••N Z•• FPR•ZQR
]

+O(α2) ,

ω̃IJKL = [S−1]M(I [S−1]NJ [S−1]PK [S−1]QL)

×
[
ωMNPQ − 6FMN•Z••

(
ωPQ• + αFPQUV •ZUV

)
− 4

(
FMNP• − 3FMN•Z••FP••

)
Z••

(
ωQ• + αFQ•UV ZUV

)
+ 3FMN• Z••

(
ω•• + αF••UV ZUV

)
Z•• F•PQ

−
(
FMNPQ• − 4FMNP•Z••FQ•• − 6FMN•Z••FPQ••

)
Z••

(
ω• + αFUV •ZUV

)
− 12FMN•Z•• FP••Z•• FQ••Z••

(
ω• + αFUV •ZUV

)
− 3

(
ZR• FMN•

) (
ZS• FPQ•

)
FRST ZT•

(
ω• + αFUV •ZUV

)
+ α

[
FMNPQUV ZUV − 4FMNPUV ZU•FQ••Z•V − 3FMNXU FPQY V ZXY ZUV

]
+ 4α

[
3
(
FMN••Z••FP••Z••FQ••Z••

)
+ FMNP•Z•X

(
FX••Z••FQ••Z••

)]
+ 6α

[
2FMN•Z•X

(
FXP••Z••FQ••Z••

)
+ FMN•Z•X

(
FX••Z••FPQ••Z••

)]
− 6α

(
FM••Z•• FN••Z•• FP••Z•• FQ••Z••

)
− 12αFMN•Z•• FP••Z•X

(
FX••Z••FQ••Z••

)
− 12αFMN•Z•X

(
FX••Z••FP••Z••FQ••Z••

)
− 3αFMN•Z•X (FX••Z••FY ••Z••)ZY • F•PQ +O(α2) . (4.15)

To continue this scheme to higher orders in Ω is not an easy task. So far we have been

working order-by-order in powers of Ω, but now we are dealing also with additional terms

that are proportional to the parameter α. Within the iterative procedure that we have

been following it is consistent to formally treat ω and α as being of the same order as Ω.

Counting in this way shows that the corrections in (4.15) are of first order in α. Because

the equations that we are dealing with are non-linear it is therefore imperative that the ω

itself can in principle contain contributions of arbitrary order in α, a possibility that we

have already been alluding to below equation (3.20). Therefore we will in addition assume

that ω can be expanded in terms of α,

ω(Y) −→ ω(Y, α) =

∞∑
n=1

ωn(Y)αn−1 , (4.16)

although we will keep this expansion implicit in what follows. Assuming that ω incorporates

the higher-order terms in α we can proceed to higher orders by iteration to obtain the
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extension of the original almost-harmonic ansatz (4.6), possibly up to terms that separately

constitute proper functions under symplectic transformations.

We thus continue to derive the terms of order α2, which can be found from (3.19),

Ω̃− Ω =− i
(
ZIJΩIΩJ − Z̄IJΩĪΩJ̄

)
+O(Ω3)

=− iZIJ
[
ωI ωJ − 2iαωI FJKLN

KL − α2 FIKL FJMN N
KLNMN

]
+ h.c.

+O(α3) , (4.17)

where we note that the right-hand side is of order α2, as both α and ω are counted as

being of the same order as Ω. Our task is now to include further modifications into Ω,

just as we did earlier in (4.6), so that the change of Ω under a symplectic transformation

becomes consistent with the right-hand side of (4.17), up to a term that is harmonic,

which can then be absorbed into the variation of ω. The problem here is, however, that

the expression (4.17) is linear in ZIJ but involves also terms that are linear or quadratic in

N IJ . It is clear that one cannot construct a suitable addition to Ω depending exclusively

on ωI , N
IJ and FIJK . There exists, however, an alternative, namely to include higher

derivatives of ω. According to (4.13) the second derivative ωIJ leads to similar variations,

suggesting another possible modification. Indeed, it follows that N IJωIJ , FIJKLN
IJNKL

and FIJK FLMN N
ILNJMNKN (and complex conjugates where appropriate) are the terms

that one may add to Ω so that only a holomorphic variation will remain in (4.17). And

indeed, one can verify by explicit calculation that Ω should be written as (up to a symplectic

function of Y and Ȳ),

Ω(Y, Ȳ) = α lnN

+
[
ω + 2αN IJωIJ − α2

[
iFIJKL −

2

3
FIKMFJLNN

MN

]
N IJNKL + h.c.

]
+O(α3) , (4.18)

where here and henceforth we use the definition N ≡ det[NIJ ]. Hence the holomorphic

function ω is now accompanied by a variety of specific non-holomorphic modifications

which will contribute to the effective action. Indeed, with this result for Ω(Y, Ȳ), ex-

plicit evaluation shows that (4.17) is satisfied up to order α3 provided that ω transforms

(holomorphically) according to

ω̃ = ω + α ln det
[
S
]

+ iZIJ
[
2αωIJ −

(
ωI + αFIKLZKL

)(
ωJ + αFJMNZMN

)]
+ iα2

[
FIJKL −

2

3
FIKMFJLNZMN

]
ZIJZKL +O(α3) . (4.19)

To see this one makes use of the transformations of multiple derivatives of the holomor-

phic function F (Y), listed in (2.8), the transformation of N IJ as given in (2.13), and the

transformation rule for ωIJ specified in the second equation of (4.13). Incidentally, the

result (4.18) is in line with the ansatz (4.16) according to which the function ω is expanded

in powers of α. Furthermore it turns out that the result (4.18) takes the form of a sum

over connected 1PI diagrams, unlike the corresponding result for H(1).

– 24 –



J
H
E
P
0
9
(
2
0
1
4
)
0
9
6

Let us now return to the almost harmonic function H(1)(Y, Ȳ;N), which now decom-

poses according to

H(1)(Y, Ȳ;N) = 4α lnN + h(Y, Ȳ) + h̄(Ȳ,Y) , (4.20)

which turns out to be a harmonic function of ω. Indeed, making use of (4.18) one finds

that h(Y, Ȳ) now takes the form,

h(Y, Ȳ) = 4ω − 4
(
ωI − iαFIKLN

KL
)
N IJ

(
ωJ − iαFJMNN

MN
)

+ 8αωIJN
IJ − 4α2

[
iFIJKL −

2

3
FIKMFJLNN

MN

]
N IJNKL +O(α3) . (4.21)

We stress that, by construction, H(1) remains a symplectic function in the presence of the

term 4α lnN in (4.20). Furthermore h will separately transform as a function beyond linear

order in α and derivatives of h+ 4α lnN will still transform as proper tensors. This must

be the case because the transformations of h beyond the linear order depend only on S
through the tensor ZIJ , and likewise h̄ depends only on S̄ through the tensor Z̄IJ . As

we shall see, the non-holomorphic derivative of h will transform as a vector as it is not of

first order in α. We also observe that the transformation of ω as specified in (4.19) follows

precisely from the expression for 1
4h(Y, Ȳ) upon replacing N IJ by iZIJ , with the exception

of the term α ln det
[
S
]

that is related to the explicitly non-harmonic term in (4.18). This

is in line with the phenomenon noted below equation (3.19).

Now we return to the holomorphic anomaly equation. Following the discussion at the

beginning of this section we first determine,

∂h

∂N IJ
=− 1

4
∂I
(
h+ 4α lnN

)
∂J
(
h+ 4α lnN

)
+ 2αDI∂J

(
h+ 4α lnN

)
+O(α3) . (4.22)

Here we have introduced a covariant derivative which ensures covariance under the sym-

plectic transformations. On a holomorphic vector, VI , this covariant derivative takes the

form,

DIVJ = ∂IVJ − ΓIJ
K VK , (4.23)

where ΓIJ
K is Christoffel connection associated with the Kähler metric gIJ̄ = ∂I∂J̄K(Y, Ȳ)

= NIJ , with K the Kähler potential6

K(Y, Ȳ) = −i
[
Ȳ ĪFI(Y)− YI F̄Ī(Ȳ)

]
. (4.24)

Observe that, for a Kähler space the non-vanishing connection components are ΓIJ
K and

its complex conjugate ΓĪJ̄
K̄ . The non-vanishing (up to complex conjugation) connection

and curvature components are then equal to

ΓIJ
K = gKL̄∂IgJL̄ = −iFIJLN

LK ,

RĪJK
L = ∂Ī ΓJK

L = −NLM F̄ĪM̄N̄ N
NP FPJK . (4.25)

6Note that there is no uniformity in the literature regarding the overall sign of K. See, e.g. [15].
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We remind the reader that combinations of higher derivatives of the holomorphic func-

tion F (Y) that involve also the matrix N IJ can transform covariantly under symplectic

transformations, as was pointed out at the end of section 2 (see e.g. (2.14)).

We should also stress that the above discussion pertains to the underlying Kähler ge-

ometry. Obviously the special diffeomorphism related to the symplectic transformations

form a subgroup of the group of holomorphic diffeomorphisms. This is confirmed by eval-

uating the transformation of the connection under a symplectic transformation, using the

results presented in section 2,

ΓIJ
K −→ [S−1]LI [S−1]MJ

[
ΓLM

NSKN − ∂LSKM
]
. (4.26)

After these comments and clarifications we return to equation (4.22). Noting the lack of

holomorphicity in h resides in N IJ , we can now determine the anti-holomorphic derivative

of h,

∂Īh = i F̄IKLN
KMNLN

[
1

4
∂M
(
h+ 4α lnN

)
∂N
(
h+ 4α lnN

)
− 2αDM∂N

(
h+ 4α lnN

)]
+O(α3) , (4.27)

where the right-hand side contains no terms linear in α. However, one could consider the

mixed derivative of h+ 4α lnN , which does contain terms linear in α given by

∂Ī∂J
(
h+ 4α lnN

)
= −4αNKLNMNFJKM F̄ILN . (4.28)

The expression on the right-hand side is precisely equal to 4αRĪJ , where RĪJ = RĪKJ
K

equals the Ricci tensor of the special Kähler manifold whose value follows from the second

equation in (4.25). The equations (4.27) and (4.28) are the familiar holomorphic anomaly

equations of the topological string.

In this section we introduced a deformation of Ω proportional to the parameter α

which induced further corrections to Ω of higher orders in α. This deformation was not

itself a proper function, but its variation under a symplectic transformation was harmonic.

Obviously this deformation was not unique because the effect of the symplectic transforma-

tion would remain the same upon adding a proper symplectic function to the deformation.

Therefore we also considered adding a separate non-harmonic function to Ω (cf. (4.6)).

We concluded that this modification must lead to new terms in Ω, as shown in (4.7), but

they contribute only to the Hesse potential by an additive contribution of the original

non-harmonic function. However, when defining H(1) we agreed that such additions should

be included as a separate symplectic functions in the expansion of the Hesse potential

in terms of independent functions. Hence this additive term will not affect H(1). This

aspect is essential for deriving the holomorphic anomaly equation. However, when the

non-harmonic function is of first order in the deformation parameter, it will not contribute

to the holomorphic anomaly equation, because it does not generate higher-order terms

under the iteration, while (4.27) only receives contributions beyond the first order. The

first-order contributions are instead governed by the separate equation (4.28).
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We will not analyze this issue in further detail here, but there is one type of deformation

of the anomaly equation that is worth recalling. Suppose that on the right-hand side

of (4.27) we change h + 4α lnN by adding a function of the Kähler potential defined

in (4.24) (which equals the Hesse potential with Ω = 0). This Kähler potential satisfies

the following identities,

∂IK = NIJ ȲJ , ∂I∂J̄K = NIJ , DI∂JK = 0 , (4.29)

which all have a geometrical meaning. Adding a function of K to h+4α lnN will introduce

terms proportional to NMP ȲP or NNP ȲP on the right-hand side of (4.27) that cancel when

contracted with the overall factor F̄IKLN
KMNLN .

Finally, as is shown in (4.19), the transformation rule of ω has now acquired new

terms of order α2. The derivatives of ω will thus receive corresponding contributions. In

particular (4.13) and (4.15) will change. For the calculations in section 5 it is relevant to

present the full expressions for the variations of ωI and ωIJ up to order α3. In view of

their length we have listed these equations in appendix C.

5 Evaluating the third-order contributions

There are good reasons for evaluating also the contributions of order α3. One of them is

that Ω and H(1) are no longer obviously ‘partially harmonic’ in higher orders. Another one

is that the contributions of third order have never been fully worked out explicitly for the

topological string.

Let us again start with (3.19), but now approximated to terms of order Ω3,

Ω̃(Ỹ, ¯̃Y) = Ω− i
(
ZIJ ΩIΩJ − Z̄IJ ΩĪΩJ̄

)
+

2

3

(
FIJK ZILΩLZJMΩM ZKNΩN + h.c.

)
− 2
(
ΩIJ ZIKΩKZJLΩL + h.c.

)
+ 4 ΩIJ̄ ZIKΩK Z̄JLΩL̄ +O(Ω4) , (5.1)

which must hold irrespective of the precise form of Ω. To evaluate the right-hand side we

must first determine ΩI to order α2, which follows from (4.18),

ΩI = ωI − iαFIJK N
JK

+ 2α
[
ωIJK N

JK + i
(
ωJK + ω̄JK

)
NJLFILMN

MK
]

− α2

[
iFIJKLM −

4

3
FIJLNN

NPFKMP

]
NJKNLM

+ 2α2
(
FJKLM − F̄JKLM

)
NJKNLNNMP FINP

+ 2iα2
(
FJKLFMNP + F̄JKLF̄MNP

)
NJMNKNNLQNPRFIQR +O(α3)

= ωI − iαFIJK N
JK + 2αωIJK N

JK

+ 2iαFIJK N
JMNKN

[
ωMN + αFMPR FNQSN

PQNRS − iαFMNPQN
PQ
]

− α2

[
iFIJKLM −

4

3
FIJLNN

NPFKMP

]
NJKNLM
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+ 2iαFIJK N
JMNKN

[
ω̄MN + α F̄MPR F̄NQSN

PQNRS + iα F̄MNPQN
PQ
]

+O(α3) . (5.2)

We now observe that the above expression is no longer ‘almost holomorphic’ and thus

deviates from the results obtained before. The troublesome terms are contained in the last

line of (5.2), which turns out to be equal to

2iαFIJK N
JMNKN ΩM̄N̄ +O(α3) , (5.3)

where we made use of the second equation in (4.14). It will be convenient to keep writing

these non-holomorphic contributions in terms of non-holomorphic derivatives of Ω. The

crucial point to note is, however, that we have extracted an explicit factor of α, whereas

so far α appeared only implicitly in Ω. As we will demonstrate shortly, one consequence

of our analysis is that the Hesse potential will involve additional symplectic functions, but

now multiplied by explicit powers of α.

Substituting the above result (5.2) and the last two equations of (4.14) into (5.1), we

obtain,

Ω̃(Ỹ, ¯̃Y)− Ω(Y, Ȳ)

=

{
− i
(
ωI − iαFI••N

••)ZIJ(ωJ − iαFJ••N
••)

+
2

3
FIJK ZIL

(
ωL − iαFL••N

••)ZJM(ωM − iαFM••N
••)

×ZKN
(
ωN − iαFN••N

••)
− 4iα

(
ωI − iαFI••N

••)ZIJ[ωJ••N•• + iωK•N
••FJ••N

•K]
+ 2iα2

(
ωI − iαFI••N

••)ZIJ [iFJKLMN −
4

3
FJKMPN

PQFLNQ

]
NKLNMN

− 4iα2
(
ωI − iαFI••N

••)ZIJFJPQNMPNNQNKL FKLMN

+ 4α2
(
ωI − iαFI••N

••)ZIJFJRSNMRNQSNKNNLP FKLMFNPQ

− 2
(
ωI − iαFI••N

••)ZIJ(ωJK + αFJMNFKPQN
MPNNQ − iαFJK••N

••)
×ZKL

(
ωL − iαFL••N

••)+ h.c.

}
+ 4α

{
ΩI ZIJ FJKLNKMNLN ΩM̄N̄ + h.c.

}
− 4αΩI ZIJ FJKLNKMNLN F̄PMN Z̄PQ ΩQ̄ +O(α4) . (5.4)

The last two lines are not ‘almost harmonic’. The first of these two lines arises as a result of

the non-holomorphic terms noted in (5.3), and the last line originates from the manifestly

non-harmonic term present at the end of the expression (5.1) (which has been included

above upon replacing ΩIJ̄ by the corresponding expression given in (4.14)).

It is now straightforward to verify with the help of (3.20) that these two lines are

precisely generated upon assuming that Ω will contain a term −4αΩIJ N
IKNJL ΩK̄L̄ at

this order of iteration. This is quite a non-trivial result, because we are not just rewriting

the expression (5.1) that was originally expressed in terms of Ω and its derivatives, into a
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similar expression! Rather, as already mentioned, we have now extracted an explicit power

of α, whereas so far the parameter α only appeared implicitly in Ω. This signals a new

pattern that will become more manifest shortly.

Using the previous results of the transformation rules of the function ω and its deriva-

tives, exhibited in (4.15) and (C.1), as well as the transformation rules (2.8) for multiple

derivatives of the holomorphic function F , one can, after a fair amount of non-trivial ma-

nipulations, determine the expression for Ω(Y, Ȳ), up to a symplectic function of Y and Ȳ,

Ω(Y, Ȳ) = α lnN

+

{
ω + 2αN IJωIJ − 2αN IJNKL

[
ωIK ωJL − αωIJKL

]
+

8

3
iα2 FIJKN

ILNJMNKN ωLMN

− α2

[
iFIJKL −

2

3
FIKMFJLNN

MN

]
N IJNKL

+ 4iα2NPQ
(
FPQIJ + iFPIMN

MNFQJN
)
N IKNJL ωKL

− 2

3
α3N IJ

[
iFIJKLMNN

KLNMN − 4FIJKLM NKNNLPNMQ FNPO
]

+ 2α3

[
N IJFIJKLN

KPNLQFPQRS N
RS

+
1

3
FIJKLN

IMNJNNKPNLQ FMNPQ

]
+ 4iα3FIJKL

[
N IJNKMNLNFMPQN

PRNQSFRSN

+N IMNJNNKPNLQFMNRN
RSFPQS

]
− 2α3FIJKFLPQFRSTFUVWN

ILNJPNKRNQUNSVNTW

− 4

3
α3FIJKFLPQFRSTFUVWN

ILNJRNKUNPSNQVNTW + h.c.

}
− 4αΩIJN

IKNJLΩK̄L̄ +O(α4) . (5.5)

It is clear that the terms that are independent of the holomorphic function ω(Y) are

becoming more and more numerous in higher orders. Note that the above result is ‘almost

harmonic’, with the exception of the last term. Furthermore the ‘almost harmonic’ terms

take again the form of a sum over 1PI diagrams.

In the limit α→ 0 the expression (5.5) for Ω reduces to the original harmonic expression

that we started from initially in (4.1). With the exception of the last term in (5.5), which

will recombine with other terms in due course, the almost harmonic terms have to be

included into the expression for the function that encodes the effective action. Hence they

imply that the original non-harmonic modification lnN in (4.6) is incomplete and must be

modified order-by-order by additional non-harmonic term. These terms will thus contribute

to the effective action, where they are expected to encode non-local interactions associated

with the massless modes.

We remind the reader that Ω is not a symplectic function and the next step is to deter-

mine the symplectic function H(1) in third order of α, which follows upon substitution of
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the above result for Ω into (3.18). Let us first concentrate on the terms that are not ‘almost

harmonic’. They originate from three different sources. First there is the last term in (5.5)

(which appears with an additional factor 4 in H(1)), then there are explicit non-harmonic

terms in the expression (3.18) for H(1), and finally there are the non-holomorphic contri-

butions in (5.2) that were summarized in (5.3), which induce corresponding modifications

in H(1). These three contibutions are

− 16αΩIJN
IKNJLΩK̄L̄

− 16αΩIN
IJFJMNN

MPNNQF̄PQKN
KL ΩL̄

− 16 iαΩIN
IJFJKLN

KMNLN ΩM̄N̄ + h.c. (5.6)

and they combine into

−16α
(
ΩIJ + iFIJMN

MPΩP

)
N IK NJL

(
ΩK̄L̄ − iF̄KLNN

NQΩQ̄

)
, (5.7)

which equals precisely −16α times the non-harmonic symplectic function G1(Y, Ȳ) that

has been listed in appendix B, up to terms of order Ω3. The function H(1) thus acquires

the form

H(1)(Y, Ȳ;N) = 4α lnN + h(Y, Ȳ) + h̄(Ȳ,Y)− 16αG1(Y, Ȳ) +O(α4) , (5.8)

where

h(Y, Ȳ) = 4ω − 4
(
ωI − iαFIKLN

KL
)
N IJ

(
ωJ − iαFJMNN

MN
)

+ 8αωIJN
IJ − 8αN IJNKL

[
ωIK ωJL − αωIJKL

]
+

32

3
iα2 FIJKN

ILNJMNKN ωLMN

+ 16iα2N••
(
F••IJ + iF•IMN

MNF•JN
)
N IKNJL ωKL

− 16αωI••N
••N IJ

(
ωJ − iαFJ••N

••)
+ 8

(
ωI − iαFI••N

••)N IJ ωJK N
KL
(
ωL − iαFL••N

••)
+

8

3
iFIJKN

ILNJMNKN
(
ωL − iαFL••N

••)
×
(
ωM − iαFM••N

••)(ωN − iαFN••N
••)

− 16iα
(
ωI − iαFI••N

••)N IJFJKLN
KMNLN ωMN

+ 8iα2
(
ωI − iαFI••N

••)N IJ

×
(
FJKL•• +

4

3
iFJKM•N

MNFLN•

)
NKLN••

− 8iα
(
ωI − iαFI••N

••)N IJ
(
FJK•• + iFJP•N

PQFKQ•
)
N••

×NKL
(
ωL − iαFL••N

••)
− 16α2

(
ωI − iαFI••N

••)N IJFJKLN
KMNLN

×
(
FMN•• + iFMP•N

PQFNQ•
)
N••

− 4α2

[
iFIJKL −

2

3
FIKMFJLNN

MN

]
N IJNKL
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− 8

3
α3N IJ

[
iFIJKLMNN

KLNMN − 4FIJKLM NKNNLPNMQ FNPQ
]

+ 8α3

[
N IJFIJKLN

KPNLQFPQRS N
RS

+
1

3
FIJKLN

IMNJNNKPNLQ FMNPQ

]
+ 16iα3FIJKL

[
N IJNKMNLNFMPQN

PRNQSFRSN

+N IMNJNNKPNLQFMNRN
RSFPQS

]
− 8α3FIJKFLPQFRSTFUVWN

ILNJPNKRNQUNSVNTW

− 16

3
α3FIJKFLPQFRSTFUVWN

ILNJRNKUNPSNQVNTW

+O(α4) . (5.9)

As before the ω(Y) will transform holomorphically such that its explicit transformation

rule follows from (5.9) upon making the substitution NIJ → iZIJ . We have verified by

explicit calculation that this is indeed the case, which provides an explicit check on the

calculation.

At this point one can again determine the holomorphic anomaly equation following

the same steps as before. As it turns out the result coincides with (4.27), but now valid

up to order α4. This can be seen as an indication that the holomorphic anomaly equation

will not acquire further corrections in higher orders.

6 Summary and conclusions

Based on the observation that the duality transformations act differently on the function

that encodes the effective action than on the topological free energy, we have proposed

a conceptual framework based on the Hesse potential of real special geometry to under-

stand the relation between the two. Subsequently we have studied the Hesse potential by

iteration for a generic effective action, first starting from a Wilsonian effective action and

subsequently by considering the effect of non-harmonic deformations. The Hesse poten-

tial decomposes into an infinite series of symplectic functions and we established that the

topological string free energy could reside in precisely one of them. This function is then

subject to the holomorphic anomaly equation, irrespective of its dynamical content.

The results of an explicit iteration of the genus g ≤ 3 topological string free energy

fully confirms the correctness of the proposal. We should again stress that we concentrate

on the generic features of this relationship, rather than on specific models. The relations

that we find are thus universal, but it is not assumed that the resulting expression for the

topological string free energy will have an actual realization as a topological string model.

This is the reason that we do not make contact with specific aspects of the topological

string, such as the wave function approach and the issue of background dependence [35].

One implication of our result is that we are also able to relate the non-holomorphic

terms associated to the effective action to the ones that appear in the topological string

free energy. This is perhaps not so surprising in view of the fact that there is a qualitative
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relation between the pinching of a cycle that decreases the genus of the Riemann surface

in the topological string and the integration over massless modes in the effective action!

But it is important to realize that, while our construction demonstrates how to construct

the topological string free energy from a given effective action, the inverse is clearly not

possible because the effective action is equivalent to the full Hesse potential, while the

topological string free energy constitutes only part of the Hesse potential.

At several occasions we already mentioned that the results of this paper are consistent

with our previous work [15, 16], where we analyzed the same issues by using a variety

of different strategies. It is therefore of interest to compare the present results with the

results of the past. To highlight some interesting issues we therefore reconsider the earlier

results on the FHSV model, which were based on imposing the exact S- and T-dualities

of this model on the effective action. There we used a slightly different perturbative pro-

cedure and we worked in a parametrization based on special coordinates. Subsequently

we determined the Hesse potential by iteration, in a way that is similar to what was done

in the present paper. We then discovered that the Hesse potential did indeed contain

terms that cannot belong to the topological string free energy at genus-2, because they do

not depend (anti-)holomorphically on the topological string coupling. As we now know,

those are the contributions that do not belong to the function H(1), but at that stage

such a systematic classification was not available. Nevertheless, the terms that did depend

(anti-)holomorphically on the topological string coupling were consistent with the results

obtained from the FHSV topological string [27], except that the proportionality constant

remained ambiguous in view of the fact that the corresponding expression was duality in-

variant, so that its leading contribution could be changed by a corresponding change in the

effective action where we had only imposed the requirement of invariance. Interestingly, the

present approach which emphasizes covariance rather than invariance, clarifies this result.

To appreciate all this we have summarized some of details of the derivation of the genus-2

FHSV topological string free energy in appendix E.

Finally we wish to return to the issue of BPS black hole entropy in supersymmetric

theories with eight supercharges, which formed a major motivation for the present work.

In [31, 33] a general formula for BPS black hole entropy was given based on Wald’s defini-

tion of black hole entropy [36], which was covariant under dualities and incorporated the

higher-derivative corrections to the Weyl multiplet that we already referred to in section 1.

(Incidentally, there is now increasing evidence that other higher-derivative couplings will

not contribute to BPS black hole entropy by virtue of certain non-renormalization theo-

rems [3, 4].) The formula of [33] was reinterpreted in [29] in terms of a mixed partition

function which was subsequently related to the topological string. However, this relation-

ship depended crucially on the assumption that the topological free energy and the function

that encodes the supergravity action are directly related, or perhaps even identical! As we

have been trying to emphasize in this paper, the topological string does capture certain

string amplitudes that should also follow from the effective action. But this does not imply

that the topological string and the action are given by the same function.

We should perhaps add here that it is possible to present the supergravity input in

the form of the Hesse potential (analogous to converting a Lagrangian into a Hamiltonian
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description), for which one can define a modified black hole partition function associated

with the canonical ensemble [22]. This would offer an effective way to make contact with

the topological string, were it not for the fact that the black hole solutions from which one

starts in supergravity are, by definition, solutions of the full effective action. Therefore they

should involve the full Hesse potential, which, as we have shown in this paper, consists of an

infinite series of symplectic functions of which just one will correspond to the topological

string free energy. Finally we note that the work of this paper pertains specifically to

theories with eight supercharges, while a substantial part of the literature on BPS black

holes is based on theories with sixteen supercharges (although often treated in a reduction

to eight supercharges). An extension of the work of this paper for theories to sixteen

supersymmetries should therefore be of interest.
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Ooguri, Álvaro Osorio, Ashoke Sen, Samson Shatashvili, Marcel Vonk, Edward Witten

and Maxim Zabzine. The work of G.L.C. is partially funded by Fundação para a Ciência

e a Tecnologia (FCT/Portugal) through project PEst-OE/EEI/LA0009/2013 and through

the grants PTDC/MAT/119689/2010 and EXCL/MAT-GEO/0222/2012. The work of

B.d.W. is supported by the ERC Advanced Grant no. 246974, “Supersymmetry: a window

to non-perturbative physics”. This work is also supported by the COST action MP1210

“The String Theory Universe”.

We thank our respective institutes for hospitality during the course of this work. S.M.

thanks the Alexander von Humboldt Stiftung for a reinvitation grant which enabled her

to visit the Max Planck Institut, München, and Dieter Lüst for offering hospitality. We
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A Non-holomorphic deformation of special geometry

In this appendix we prove the following theorem.

A.1 Theorem

Given a Lagrangian L(φ, φ̇) depending on n coordinates φi and n velocities φ̇i, with cor-

responding Hamiltonian H(φ, π) = φ̇i πi − L(φ, φ̇), there exists a description in terms of

complex coordinates xi = 1
2(φi + iφ̇i) and a complex function F (x, x̄), such that,

2 Rexi = φi ,

2 ReFi(x, x̄) = πi , where Fi =
∂F (x, x̄)

∂xi
. (A.1)

The function F (x, x̄) is defined up to an anti-holomorphic function and can be decomposed

into a holomorphic and a purely imaginary non-harmonic function,

F (x, x̄) = F (0)(x) + 2iΩ(x, x̄) . (A.2)
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The equivalence transformations take the form,

F (0) → F (0) + g(x) , Ω→ Ω− Im g(x) , (A.3)

which results in F (x, x̄)→ F (x, x̄) + ḡ(x̄).

The Lagrangian can then be expressed in terms of F and Ω,

L = 4[ImF − Ω] , (A.4)

so that the Hamiltonian takes the form

H = −4
[
ImF − Ω

]
+ 2πi Imxi . (A.5)

This expression is identical to the expression for the Hesse potential given in (2.4), up to

an overall minus sign. Alternatively the Hamiltonian can be written as

H = −i(xi F̄ı̄ − x̄ı̄ Fi)− 4 Im

[
F (0) − 1

2
xi F

(0)
i

]
− 2(2 Ω− xiΩi − x̄ı̄Ωı̄) , (A.6)

where Fi = ∂F/∂xi, F̄ı̄ = ∂F̄ /∂x̄ı̄, and similarly for the functions F (0) and Ω. When the

function F (0)(x) is homogeneous of second degree, the second term will vanish. The third

term is a measure of the deviation from homogeneity of Ω. This decomposition is known

from the entropy function for BPS black holes [22].

Furthermore, the 2n-vector (xi, Fi) turns out to define a complexification of the phase-

space coordinates (φi, πi) that transforms precisely as (φi, πi) under canonical (symplectic)

reparametrizations,(
xi

Fi(x, x̄)

)
−→

(
x̃i

F̃i(x̃, ¯̃x)

)
=

(
U ij Z

ij

Wij Vi
j

)(
xj

Fj(x, x̄)

)
, (A.7)

where the real matrix is an element of Sp(2n,R). Observe that for the real part of the vector

(xi, Fi), the above transformation is the standard canonical transformation on coordinates

and momenta. The equation (A.7) is integrable so that the symplectic transformation leads

to new functions F̃ (0) and Ω̃.

A.2 Proof

The proof of this theorem proceeds as follows. First note the following complex vectors,

xi =
1

2

(
φi + i

∂H
∂πi

)
, yi =

1

2

(
πi − i

∂H
∂φi

)
, (A.8)

constructed out of two canonical pairs, one comprising the variables φi, πi and the other

one the derivatives of the Hamiltonian, which transform in the same way under canonical

transformations (here we use that the Hamiltonian transforms as a function under canonical

transformations).
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In view of the inverse Legendre relation, φ̇i = ∂H/∂πi, the complex xi in (A.8) coincide

with the xi defined previously. Furthermore, when writing the Lagrangian as a function of

the xi and x̄ı̄, it follows that

∂L(x, x̄)

∂xi
= −2iyi . (A.9)

Here we used that the Legendre transformation leading to the Hamiltonian yields ∂L/∂φi =

−∂H/∂φi (where on the right-hand side πi is kept constant and on the left-hand side φ̇i is

kept constant). Observe that we did not make use of the equations of motion.

Subsequently we write L as the sum of a harmonic and a non-harmonic function,

L = −2i
[
F (0)(x)− F̄ (0)(x̄)

]
+ 4 Ω(x, x̄) = 4[ImF − Ω] , (A.10)

so that (A.9) reads

yi =
∂

∂xi
[
F (0)(x) + 2i Ω(x, x̄)

]
. (A.11)

Thus yi = ∂iF (x, x̄) with F (x, x̄) = F (0)(x)+2iΩ(x, x̄), up to an arbitrary anti-holomorphic

function, and Re yi = πi. The Hamiltonian then follows from (A.5), which leads to the

expression (A.6). Hence we now have shown that (xi, Fi) equals the vector (xi, yi) which

transforms under canonical transformations according to (A.7).

What remains to be proven is that the result of the transformation (A.7) is inte-

grable. The vector (xi, yi) transforms according to (A.7) into a vector (x̃i, ỹi) while the

Hamiltonian, which depends on (xi + x̄i, yi + ȳi), transforms as a function under canonical

transformations, so that H̃(x̃i + ¯̃xi, ỹi + ¯̃yi) = H(xi + x̄i, yi + ȳi). The dual quantities

(x̃i, ỹi) and the new Hamiltonian H̃ will satisfy the same relation as the original quantities.

The new Lagrangian L̃ which follows from an inverse Legendre transformation of the new

Hamiltonian, will depend on x̃i and ¯̃xi. Applying the same steps as before we then find

the new function F̃ (x̃, ¯̃x).

There is one subtlety here and that is that the decomposition of the function F into

F (0) and Ω is ambiguous. The ambiguity is resolved by noting that the symplectic trans-

formation (A.7) can also be applied to the the vector (xi, Fi
(0)(x)). In that case the new

function F (0) can be determined separately, as the holomorphic case is known to be inte-

grable, and it is given in (2.7), up to a constant and terms linear in x̃i. The latter terms

can be determined explicitly, for instance, by using that F (0) − 1
2x

iFi
(0) transforms as a

function under duality. Having determined the functions F̃ (0) and F̃ , the non-harmonic

function Ω̃ follows. This completes the proof of the theorem.

A.3 Corollary

Let us derive the well-known result (see, for instance, [37]) that the first-order derivative of

the Lagrangian with respect to some parameter (such as a coupling constant) transforms

as a function under symplectic transformations (A.7). We denote this parameter by g and

note that ∂gH(φ, π; g) transforms as a function under canonical transformations (which do

not depend on g, but they act on g-dependent quantities as shown in (A.7)) for any value
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of g. Subsequently, take the derivative of the Hamiltonian with respect to g keeping φi and

πi fixed. Consequently one derives

∂H(φ, π; g)

∂g
=

(
πi −

∂L(φ, φ̇; g)

∂φ̇i

)
∂φ̇i

∂g
− ∂L(φ, φ̇; g)

∂g
= −∂L(φ, φ̇; g)

∂g
, (A.12)

which proves the assertion.

B The symplectic functions H(a)
i for a ≥ 2 and some other functions

that do not initially appear in H

Here we collect the explicit results for various functions H(a)
i that appear in (3.16). These

functions have been determined by iteration in orders of Ω and its derivatives. We present

the terms of the iterative expansion up to O(Ω5). At the end of this appendix we will be

presenting two more functions, G1 and G2, that did not initially show up in the iterative

procedure for the Hesse potential carried out in this paper. These will only be given up

to order Ω3. Note that here and elsewhere we only use indices Ī , J̄ , . . . when they are

necessary. For instance, we will write FIJK and F̄IJK because F is holomorphic and

F̄ is anti-holomorphic, so that there is no need for using holomorphic or anti-holomorphic

indices, whereas for the derivatives of the real quantity Ω we write ΩI and ΩĪ to distinguish

holomorphic and anti-holomorphic derivatives. The reason is that N IJ has no unique

assignment of (anti)holomorphic indices, so that there will never be a consistent pattern

of contractions based on holomorphic and anti-holomorphic indices. Denoting (NΩ)I ≡
N IJ ΩJ and (N Ω̄)I ≡ N IJ ΩJ̄ , we have obtained the following expressions,

H(2) = 8N IJΩIΩJ̄ − 16
[
ΩIJ(N Ω̄)I(NΩ)J + ΩIJ̄(N Ω̄)I(N Ω̄)J + h.c.

]
− 8i

[
FIJK(N Ω̄)I(NΩ)J(NΩ)K − h.c.

]
+

16

3
i
[ (
FIJKL + 3iFIJMN

MNFNKL
)

(NΩ)I(NΩ)J(NΩ)K(N Ω̄)L − h.c.
]

+ 16
[
ΩIJK (NΩ)I(NΩ)J(N Ω̄)K + h.c.

]
+ 16

[ (
ΩIJK̄ + iFIJMN

MNΩNK̄

) (
(NΩ)I(NΩ)J(NΩ)K + 2(NΩ)I(N Ω̄)J(N Ω̄)K

) ]
+ 16

[ (
ΩĪJ̄K − iF̄IJMN

MNΩN̄K

) (
(N Ω̄)I(N Ω̄)J(N Ω̄)K + 2(N Ω̄)I(NΩ)J(NΩ)K

) ]
+ 32

[
ΩIK N

KL ΩLJ (NΩ)I(N Ω̄)J + h.c.
]

+ 32 ΩIK N
KL ΩL̄J̄ (NΩ)I(N Ω̄)J

+ 16i
[
FIJK N

KL ΩLM

(
(NΩ)I(NΩ)J(N Ω̄)M + 2(NΩ)M (NΩ)I(N Ω̄)J

)
− h.c.

]
+ 16i

[
FIJK N

KL ΩL̄M̄ (NΩ)I(NΩ)J(N Ω̄)M − h.c.
]

+ 8 (NΩ)I (NΩ)J FIJMN
MN F̄NKL(N Ω̄)K(N Ω̄)L

+ 32
[
(NΩ)I ΩIJ N

JKΩKL̄(NΩ)L + h.c.
]

+ 32
[
(N Ω̄)I ΩIJ N

JKΩKL̄(N Ω̄)L + h.c.
]

+ 32
[
(NΩ)I ΩIJ N

JKΩK̄L(NΩ)L + h.c.
]
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+ 16i
[
(NΩ)I(NΩ)JFIJKN

KLΩL̄M (NΩ)M − h.c.
]

+ 32
[
(NΩ)IΩIJ̄ N

JK ΩK̄L (N Ω̄)L + h.c.
]

+ 32
[
(NΩ)IΩIJ̄ N

JK ΩKL̄ (N Ω̄)L
]
, (B.1)

H(3)
1 =− 8

3
iFIJK(N Ω̄)I(N Ω̄)J(N Ω̄)K

+ 8iFIJK(N Ω̄)I(N Ω̄)J NKL

×
[
2ΩL̄M̄ (N Ω̄)M + 2 ΩL̄M (NΩ)M − iF̄LMN (N Ω̄)M (N Ω̄)N

]
, (B.2)

H(3)
2 = 8

(
ΩIJ + iFIJK(NΩ)K

)
(N Ω̄)I(N Ω̄)J

− 8

3
i
(
FIJKL + 3iFM(IJN

MNFKL)N

)
×
[
3(NΩ)I(NΩ)J(N Ω̄)K(N Ω̄)L − 2(N Ω̄)I(N Ω̄)J(N Ω̄)K(NΩ)L

]
− 16

3
ΩIJK

(
3 (N Ω̄)I(N Ω̄)J(NΩ)K − (N Ω̄)I(N Ω̄)J(N Ω̄)K

)
− 16 ΩIJK̄(N Ω̄)I(N Ω̄)J(N Ω̄)K

− 16iFIJKN
KL ΩLM

×
[
− (N Ω̄)I(N Ω̄)J(N Ω̄)M + (N Ω̄)I(N Ω̄)J(NΩ)M + 2(N Ω̄)I(NΩ)J(N Ω̄)M

]
− 16 (N Ω̄)I ΩIJ N

JKΩKL (N Ω̄)L

− 32 (NΩ)I
(
ΩIJ + iFIJK(NΩ)K

)
NJL

(
ΩL̄M̄ − iF̄LMN (N Ω̄)N

)
(NΩ)M

+ 16i(NΩ)I(NΩ)JFIJKN
KL
(

ΩL̄M̄ − iF̄LMN (N Ω̄)N̄
)

(NΩ)M

− 16 (NΩ)IΩĪJN
JKΩKM̄ (NΩ)M

− 32 (N Ω̄)I
(
ΩIJ + iFIJK(NΩ)K

)
NJLΩL̄M (NΩ)M

− 16i (N Ω̄)I (N Ω̄)JFIJKN
KLΩLM̄ (N Ω̄)M , (B.3)

H(3)
3 =− 16 ΩIJ̄(N Ω̄)I(NΩ)J

+ 16
[
2(N Ω̄)I(NΩ)J

(
ΩIKN

KLΩLJ̄ + ΩIJ̄M (NΩ)M
)

+ (N Ω̄)IΩIJ̄N
JK
(
iFKLM (NΩ)L(NΩ)M + 2ΩKL(NΩ)L + 2ΩKL̄(N Ω̄)L

)
+ 2i(N Ω̄)I(NΩ)JFIJKN

KLΩLM̄ (NΩ)M + h.c.
]
, (B.4)

H(4)
1 = 32 (N Ω̄)I

(
ΩIJ + iFIJK(NΩ)K

)
NJL

(
ΩL̄M̄ − iF̄L̄M̄N̄ (N Ω̄)N

)
(NΩ)M , (B.5)

H(4)
2 = 32 (NΩ)I ΩĪJ N

JK ΩK̄L (N Ω̄)L (B.6)

H(4)
3 = 8FIJMN

MN F̄NKL (N Ω̄)I(N Ω̄)J(NΩ)K(NΩ)L , (B.7)

H(4)
4 =− 4

3
i
(
FIJKL + 3iFMIJN

MNFKLN
)

(N Ω̄)I(N Ω̄)J(N Ω̄)K(N Ω̄)L , (B.8)

H(4)
5 =− 16iFIJKN

KQΩQ̄L(N Ω̄)L (N Ω̄)I(N Ω̄)J , (B.9)

H(4)
6 =− 16iFIJKN

KL
(
ΩL̄M̄ − iF̄LMN (N Ω̄)N

)
(N Ω̄)I(N Ω̄)J(NΩ)M , (B.10)

H(4)
7 = 16

(
ΩIJK̄ + iFIJLN

LM ΩMK̄

)
(N Ω̄)I(N Ω̄)J(NΩ)K , (B.11)
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H(4)
8 = 32 (N Ω̄)I

(
ΩIJ + iFIJK(NΩ)K

)
NJLΩL̄M (N Ω̄)M , (B.12)

H(4)
9 =− 16i (N Ω̄)I(N Ω̄)JFIJKN

KLΩL̄M (N Ω̄)M . (B.13)

As indicated above there are also other functions that do not initially appear in H.

We give two examples below up to terms of order Ω3.

G1 =
(
ΩIJ + iFIJMN

MPΩP

)
N IK NJL

(
ΩK̄L̄ − iF̄KLNN

NQΩQ̄

)
, (B.14)

G2 = ΩIJ̄N
ILNJKΩKL̄ . (B.15)

Note that the functions G1,2 take the form of 1PI connected diagrams, whereas the functions

H(0)
i do not.

C Transformation rules of ωI and ωIJ to order α2

In this appendix we list the transformation rules of some of the derivatives of the function

ω. For the first four multiple derivatives those were already given in (4.13) and (4.15) to

order α. However, the transformation rule of ω itself is known to order α2 (cf. (4.19)) so

that also the derivatives can be determined in that order. In section 5 we in fact need the

transformation rules for ωI and ωIJ to order α3. In view of their length we display these

transformations in this appendix. The results read as follows,

ω̃I = [S−1]J I

[
ωJ + αFJKLZKL + 2iαωJKLZKL

− 2i
(
ωJ• + αFJ•KLZKL

)
Z••

(
ω• + αF•MNZMN

)
+ i
(
ω• + αF•KLZKL

)
Z•• FJ••Z••

(
ω• + αF•MNZMN

)
− 2iαZK• FJ••Z•L

[
ωKL − FKL•Z••

(
ω• + αF•MNZMN

)]
− 2iα2ZK• FJ••Z•L

(
FKLMN − FKM•Z•• FLN•

)
ZMN

+ iα2

[
FJKLMN −

4

3
FJKM•Z•• FLN•

]
ZKLZMN

]
+O(α3) ,

ω̃IJ = [S−1]K (I [S−1]LJ)

×
[
ωKL − FKLMZMN (ωN + αFNPQZPQ)

+ α
(
FKLMN − FKMP FLNQZPQ

)
ZMN

+ 2iα
[(
ωKLPQ − FKL•Z•• ω•PQ

)
ZPQ − 2 (ωK••Z••FL••Z••)

]
− 2i

(
ωK• + αFK•MNZMN

)
Z••

(
ωL• + αFL•PQZPQ

)
+ 2iFKL•Z••

(
ω•• + αF••MNZMN

)
Z••

(
ω• + αF•PQZPQ

)
− 2i

(
ωKL• + αFKL•MNZMN

)
Z••

(
ω• + αF•PQZPQ

)
+ 4i

(
ωK• + αFK•MNZMN

)
Z•• FL••Z••

(
ω• + αF•PQZPQ

)
+ i
(
ω• + αF•MN ZMN

)
Z••

[
F•KL• − 2F•K•Z••F•L•

]
Z••

(
ω• + αF•PQZPQ

)
− iFRST (ZR• F•KL

) [
ZS•

(
ω• + αF•MN ZMN

)] [
ZT•

(
ω• + αF•PQZPQ

)]
+ 4iα

(
FX••Z••FK••Z••

)
ZX•

(
ωL• + αFL•MN ZMN

)
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+ 4iα
(
FXK••Z••FL••Z••

)
ZX•

(
ω• + αF•MN ZMN

)
− 4iα

(
FX••Z••FK••Z••

)
ZX• F•L•Z••

(
ω• + αF•MN ZMN

)
− 2iα (FKLRS − FKL•Z••F•RS − 2FK•RZ••FL•S)ZRTZSU

×
[
ωTU − FTU•Z••

(
ω• + αF•XY ZXY

)]
+ iα2

[
FKLMN••Z•• − 4

(
FKMN••Z••FL••Z••

)]
ZMN

+ 2iα2
(
ZM•FK••Z•N

) [
FMNPQ − FMP•Z••F•NQ

](
ZP•FL••Z•Q

)
− 2iα2

(
Z••FK••Z••FX••

)
ZXY

(
FY ••Z••FL••Z••

)
+ 8iα2 FKMNP FQRS ZMQZNR

(
ZP•FL••Z•S

)
− 2iα2

(
ZM•FKL••Z•N − 2ZM•FK••Z••FL••Z•N

)
×
[
FMNPQ − FMP•Z••F•NQ

]
ZPQ

− 4

3
iα2
(
FKLMNP FQRS + FKMNP FLQRS

)
ZMQZNRZPS

+ 2iα2 FKL•Z•X ZM• FX••Z•N
(
FMNPQ − FMP•Z•• F•NQ

)
ZPQ

− iα2 FKL•Z••
[
F•MNPQ −

4

3
FMP••Z•• F•NQ

]
ZMN ZPQ

− 2iα2
(
Z•• F•K•Z•• F•M•Z•• F•L•Z•• F•N•

)
ZMN

]
+O(α3) . (C.1)

Again we have sometimes represented indices by bullets whenever they are contracted in

an ope or closed stringlike fashion and there is no ambiguity.

D Topological free energies for genus g ≤ 3 that satisfy the holomorphic

anomaly equation

In this appendix we list the topological free energies F (g)(Y, Ȳ) that follow from expanding

H(1), given in (4.20), order-by-order in α. To order α3 we obtain

H(1)(Y, Ȳ;N) = 4
[
F (1)(Y, Ȳ) +

(
F (2)(Y, Ȳ) + F (3)(Y, Ȳ) + h.c.

)]
− 16αG1(Y, Ȳ) +O(α4) , (D.1)

where the function G1 is given in (B.14),. The symplectic functions F (g)(Y, Ȳ) that appear

at order αg are given by (for g = 1, 2, 3)

F (1)(Y, Ȳ) = ω(1) + ω̄(1) + α ln detNIJ ,

F (2)(Y, Ȳ) = ω(2) −N IJ
(
ω

(1)
I − iαFIKLN

KL
)(
ω

(1)
J − iαFJPQN

PQ
)

+ 2αN IJω
(1)
IJ − α

2

[
iN IJNKLFIJKL −

2

3
N IJFIKLN

KPNLQFJPQ

]
,

F (3)(Y, Ȳ) = ω(3) − 2N IJ ω
(2)
I ω

(1)
J + 2ω

(1)
IJ N

IK ω
(1)
K NJL ω

(1)
L

+
2

3
iFIJKN

IP ω
(1)
P NJQ ω

(1)
Q NKLω

(1)
L

+ α
[
2iN IJω

(2)
I FJKLN

KL − 4N IJω
(1)
IKLN

KLω
(1)
J

− 4 iN IJNKLFILMN
MNω

(1)
KN ω

(1)
J − 2iFIJKLN

KLN IPω
(1)
P NJQω

(1)
Q
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+ 2FIKPN
KLFLQJN

PQN IRω
(1)
R NJSω

(1)
S

− 4iω
(1)
IJ N

IKω
(1)
K NJLFLPQN

PQ

+ 2FIJKN
IPω

(1)
P NJQω

(1)
Q NKRFRSTN

ST

+ 2N IJ ω
(2)
IJ − 2N IJNKL ω

(1)
IK ω

(1)
JL

]
+ α2

[
2iN IJFIKLMNN

KLNMN ω
(1)
J − 4N IJNKLFILMN

MNFKNPQN
PQ ω

(1)
J

− 8

3
N IJFIMNPN

MKNNLNPQFKLQ ω
(1)
J

− 4iN IJNKLFILMN
MNFKRTN

RPNTQFNPQ ω
(1)
J

+ 4iN IJω
(1)
IMNN

MNFJKLN
KL − 4N IJNMNFINPN

PQω
(1)
MQFJKLN

KL

− 2ω
(1)
IJ N

IKFKPQN
PQNJLFLRSN

RS

− 4FIJMNN
MNN IKω

(1)
K NJLFLRSN

RS

− 4iFIMNN
MPFJPQN

QNN IKω
(1)
K NJLFLRSN

RS

− 2 iFIJKN
IPω

(1)
P NJQFQSTN

STNKRFRUVN
UV

+ 2N IJNKL ω
(1)
IJKL +

8

3
iFIJKN

ILNJPNKQ ω
(1)
LPQ

+ 4iFIJRS N
IJNRKNSL ω

(1)
KL − 4FIPQFJRSN

IKNJLNPRNQS ω
(1)
KL

]
+ α3

[
2N IJFIMNPQN

MNNPQFJKLN
KL

+ 4iN IJNPMFIMNN
NQFPQRSN

RSFJKLN
KL

+
8

3
iN IJFIMNPN

MKNNLNPQFKLQFJRSN
RS

− 4N IJNPMFIMNN
NQFPTUN

TRNUSFQRSFJKLN
KL

+ 2iFIJMNN
MNN IKFKPQN

PQNJLFLRSN
RS

− 2FIMNN
MTFJTUN

UNN IKFKPQN
PQNJLFLRSN

RS

− 2

3
FIJKN

IPFPMNN
MNNJQFQSTN

STNKRFRUVN
UV

− 2

3
iFIJKLPQN

IJNKLNPQ +
8

3
N IJ FIJKLP N

KRNLSNPT FRST

+ 2N IJ FIJKLN
KPNLQ FPQRS N

RS

+
2

3
FIKPS N

IJNKLNPQNSR FJLQR

+ 4iN IJFIJKLN
KPNLQ FPST N

SUNTV FQUV

+ 4iFIJKLN
IPNJQNKRNLSFPQUN

UV FV RS

− 2FIJKFLPQFRSTFUVWN
ILNJPNKRNQUNSVNTW

− 4

3
FIJKFLPQFRSTFUVWN

ILNJRNKUNPSNQVNTW

]
. (D.2)
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Here we expanded ω(Y) as ω(Y) =
∑∞

n=1 ω
(n)(Y), where we count ω(n)(Y) as being of

order αn, following (4.16). The non-holomorphicity of F (g)(Y, Ȳ) is entirely contained in

the quantities N IJ . Observe that F (1) is real, while the higher F (g) (g ≥ 2) are not.

The expressions for F (g) given above were obtained by explicit construction and they

satisfy the holomorphic anomaly equations (4.27) of perturbative topological string theory

(g ≥ 2),

∂ĪF
(g) = i F̄IJK N

JMNKN

[
−2αDM∂NF

(g−1) +

g−1∑
r=1

∂MF
(r) ∂NF

(g−r)

]
, (D.3)

whereDM denotes the covariant derivative introduced in (4.23). The expression for F (2) has

been obtained before by other methods [11, 26, 27] based on a direct integration of (D.3).

Partial results for F (3) have been given in [11].

E An application: the FHSV model

In this appendix we illustrate our results in the context of the FHSV model [28] and

compare them to earlier results obtained in [16] by means of a related but slightly different

approach. Here we restrict ourselves to second order. In the type-II description, the

FHSV model corresponds to the compactification on the Enriques Calabi-Yau three-fold,

which is described as an orbifold (T2 × K3)/Z2, where Z2 is a freely acting involution.

The massless sector of the four-dimensional theory comprises 11 vector supermultiplets, 12

hypermultiplets and the N = 2 graviton supermultiplet. The classical moduli space of the

vector multiplet sector equals the special-Kähler space,

Mvector =
SL(2)

SO(2)
× O(10, 2)

O(10)×O(2)
, (E.1)

which is encoded in the classical holomorphic function

F (0)(Y) = −Y
1 YaηabYb

Y0
, (E.2)

where a, b = 2, . . . , 11, and the symmetric matrix ηab is an SO(9, 1) invariant metric of

indefinite signature. The two factors of the special-Kähler space are associated with T2/Z2

and the K3 fiber, and ‘special’ coordinates for these two spaces are denoted by S = −iY1/Y0

and T a = −iYa/Y0. This leads to the following expression for N ≡ det[2 Im[F
(0)
IJ ]] and

H|Ω=0,

N = c (S + S̄)10
(
(T + T̄ )2

)2
, H|Ω=0 = −(S + S̄)(T + T̄ )2 |Y0|2 , (E.3)

where c is an irrelevant constant. Here we use the notation that T 2 ≡ T aηabT b and likewise

for |T |2. Observe that N is not covariant under symplectic reparametrizations, whileH|Ω=0

is covariant. Note that in the present approach we are making use of a specifc parametriza-

tion defined by (E.2). Therefore the covariance under symplectic reparametrizations is not

always clear, and instead we may have to rely on the S- and T-duality invariances that we

will discuss below. This was also the strategy used in [15, 16].
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Subsequently, we expand both ω(Y) and Ω(Y, Ȳ) into powers of α as ω = ω(1) +ω(2) +

O(α3) and Ω = Ω(1) + Ω(2) +O(α3), respectively. Following the discussion in [16], we start

with the expression for Ω(1), known from threshold corrections and from the topological

string side [38, 39]. In the conventions of [15], it is given by

Ω(1)(Y, Ȳ) = − 1

4π

[
1

2
ln[η24(2S) Φ(T )] +

1

2
ln[η24(2S̄) Φ(T̄ )]

+ 2 ln[(S + S̄)3(T + T̄ )2]

]
. (E.4)

It is invariant under S-duality transformations belonging to the Γ(2) subgroup of SL(2;Z),

and also invariant under the T-duality group O(10, 2;Z), since Φ(T ) is a holomorphic

automorphic form of weight 4 [40], transforming under the T-duality transformation T a →
T a [T 2]−1 as

Φ(T )→ [T 2]4 Φ(T ) . (E.5)

We can now recast (E.4) in the form of (4.6),

Ω(1)(Y, Ȳ) = ω(Y) + ω̄(Ȳ)− 1

8π
lnN + Ψ(Y, Ȳ) , (E.6)

so that α = −1/(8π) and β = 1, with

ω(1)(Y) =− 3

2π
ln η2(2S)− 1

8π
ln Φ(T ) +

1

4π
lnY0 ,

Ψ(Y, Ȳ) =− 1

4π
ln
[
(S + S̄)(T + T̄ )2|Y0|2

]
, (E.7)

where we note that Ψ(Y, Ȳ) transforms as a function because it is equal to the logarithm

of H|Ω=0, the classical part of the Hesse potential.

Next, we insert these expressions into Ω(2). Here we recall that in the presence of a

function Ψ(Y, Ȳ), the expression for Ω(2) is not simply obtained by the second line of (4.18),

but to this we also have to add β-dependent terms, as shown in (4.7). Thus, we have

Ω2)(Y, Ȳ) =
[
ω(2) + 2αN IJω

(1)
IJ − α

2

[
iFIJKL −

2

3
FIKMFJLNN

MN

]
N IJNKL + h.c.

]
+N IJ

[
2 ∂I

(
ω(1) + α lnN

)
ΨJ + ΨIΨJ + h.c.

]
. (E.8)

Then, direct evaluation of this results in

Ω(2) =

{
ω(2) +

1

(Y0)2

[
1

64π2
G2(2S)

∂ ln Φ(T )

∂T a

∂ ln Φ(T )

∂Ta
− 1

32π2
G2(2S)

∂2 ln Φ(T )

∂T a∂Ta

]
+

1

(Y0)2

[
4 Ĝ2(2S, 2S̄)

∂Ω(1)

∂T a

∂Ω(1)

∂Ta
+

1

32π2
Ĝ2(2S, 2S̄)

(
∂2 ln Φ(T )

∂T a∂Ta
+
∂ ln Φ(T )

∂T a

∂ ln Φ(T )

∂Ta

)]
− 1

(Y0)2

[
G2(2S)

∂Ω(1)

∂T a

∂Ω(1)

∂Ta
+

1

4

∂ ln Φ(T )

∂Ta

∂Ω(1)

∂T a

∂Ω(1)

∂S

]
+ h.c.

}
, (E.9)

where

G2(2S) =
1

2
∂S ln η2(2S) ,

Ĝ2(2S, 2S̄) = G2(2S) +
1

2(S + S̄)
. (E.10)
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The first line of (E.9) contains purely holomorphic terms, while the second line contains

terms that are invariant under S- and T-duality. The last line contains the terms that

are neither holomorphic nor invariant under S- and T-dualities. They were already ob-

tained in [15] by requiring invariance of the model under S- and T-duality, and thus were

determined up to invariant terms. Here, the duality invariant terms are unambiguously

determined and given by the second line of (E.9), as we just established. The reason is

that the scheme presented in this paper ensures the validity of the holomorphic anomaly

equation. This implies that invariant terms cannot be arbitrarily included, as we discussed

in section 4. Earlier results obtained in [15, 16] are fully consistent with the ones given

above.

Next, we compute the symplectic function F (2), which is constructed from Ω(2) as

follows. Recalling (E.8), we write Ω(2) as Ω(2) = ∆ + ∆̄. Then, from (D.2) we infer the

relation F (2) = ∆ − N IJΩ
(1)
I Ω

(1)
J , where however (and differently from (D.2)) Ω(1) now

also contains Ψ(Y, Ȳ), cf. (4.6). As we have observed in the text below (4.10), the terms

depending on Ψ cancel in the higher order result for H(1), and therefore F (2) will not

depend on Ψ. We obtain

F (2) = ω(2) +
1

(Y0)2

[
1

64π2
G2(2S)

∂ ln Φ(T )

∂T a
∂ ln Φ(T )

∂Ta
− 1

32π2
G2(2S)

∂2 ln Φ(T )

∂T a∂Ta

]
+

1

32π2 (Y0)2
Ĝ2(2S, 2S̄)

(
∂2 ln Φ(T )

∂T a∂Ta
+
∂ ln Φ(T )

∂T a
∂ ln Φ(T )

∂Ta

)
(E.11)

− 3

64π2 (Y0)2
Ĝ2(2S, 2S̄)

∂ log
[
Φ(T ) [(T + T̄ )2]4

]
∂Ta

∂ log
[
Φ(T ) [(T + T̄ )2]4

]
∂T a

.

The first line contains purely holomorphic terms, while the second and third lines are

given in terms of non-holomorphic combinations that are S- and T-duality invariant. The

holomorphic contributions in the first line should, however, be invariant as well. We can

verify this by making use of the transformation rule (4.19) for ω(2). We have checked that

the first line is indeed invariant under S-duality, and we expect the same for T-duality. At

this stage we are not able to give an explicit representation of ω(2) as a function of Y0, S

and T a that generates the desired transformations. The expression for F (2) given above is

in agreement with the finding of [27].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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