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1 Introduction

It is well known that the so-called Maxwell algebra M corresponds to a modification of
the Poincaré symmetries, where a constant electromagnetic field background is added to
the Minkowski space [1-6]. In D = 4 this algebra is obtained by adding to the Poincaré
generators (Jgp, Py) the tensorial central charges Z,;, modifying the commutativity of the
translation generators P, as follows

[Pay Pb] = Zab- (11)

In this way, the Maxwell algebra is an enlargement of Poincaré algebra, i.e., if we consider
Zap = 0 we recover the Poincaré algebra.

Recently, it was shown that the Maxwell algebra can be obtained as an expansion
procedure of the AdS Lie algebra s0(3,2) [7, 8]. In particular, in ref. [8] it was shown
that the Maxwell algebra can be derived using the S-expansion procedure introduced in
ref. [9], using Sg) = {0, A1, A2, A3} as the relevant semigroup. Furthermore, this result
was extended to all Maxwell algebras type M,, which can be obtained as an S-expansion
of the AdS algebra using S}(EN) = {)\a}giol as an abelian semigroup [10]. The S-expansion
procedure is not only an useful method to derive new Lie (super)algebras but it is a powerful
tool in order to build new (super)gravity theories. For example, it was also shown that
standard odd-dimensional General Relativity can be obtained from Chern-Simons gravity
theory for these M,, algebras' and recently it was found that standard even-dimensional

! Also known as generalized Poincaré algebras 9B,,,.



General Relativity emerges as a limit of a Born-Infeld like theory invariant under a certain
subalgebra of the Lie algebra M,, [10-13].

In ref. [14], it was shown that the N = 1, D = 4 Maxwell superalgebra sM can be
obtained as an enlargement of the Poincaré superalgebra. This is particularly interesting
since it describes the supersymmetries of generalized N = 1, D = 4 superspace in the
presence of a constant abelian supersymmetric field strength background. Very recently it
was shown that minimal Maxwell superalgebra sM can be obtained using the Maurer Car-
tan expansion method [7]. Subsequently, this superalgebra and its generalization sM,, o
have been obtained as an S-expansion of the osp (4|1) superalgebra [15]. This family of
superalgebras which contain the Maxwell algebras type M2 as bosonic subalgebras may
be viewed as a generalization of the D’ Auria-Fré superalgebra [16] and Green algebras [17].

It is the purpose of this work to construct the minimal D = 4 supergravity action
from the minimal Maxwell superalgebra sMy. To this aim, we apply the S-expansion
procedure to the osp (4]1) superalgebra and we build a Mac Dowell-Mansouri like action
with the expanded 2-form curvatures. We show that N = 1, D = 4 pure supergravity can
be derived alternatively as the MacDowell-Mansouri like action from the minimal Maxwell
superalgebra sMy. This result corresponds to a supersymmetric extension of ref. [12] in
which four-dimensional General Relativity is derived from Maxwell algebra as a Born-Infeld
like action. We extend this result to all minimal Maxwell superalgebras type sM,+2 in
D = 4. Interestingly, when the simplest Maxwell superalgebra is considered we obtain the
action found in ref. [18].

This work is organized as follows: in section 2, we briefly review the principal aspects
of the S-expansion procedure. In section 3, we review the N = 1, D = 4 supergravity
with cosmological constant for the osp (4|1) superalgebra. Section 4 and 5 contain our
main results. In section 4, we obtain the supergravity action as a Mac Dowell-Mansouri
like action from the Maxwell superalgebra sM, . We show that this action describes pure
Supergravity. In section 5 we extend our results to all minimal Maxwell superalgebras type
sMmt2 and we study the invariance under supersymmetry. Section 6 concludes the work
with some comments.

2 S-expansion procedure

It is the purpose of this section to review the main properties of the S-expansion method
introduced in ref. [9].

The S-expansion procedure consists in combining the inner multiplication law of a
semigroup S with the structure constants of a Lie algebra g. Let S = {\,} be an abelian
semigroup with 2-selector K, 57 defined by

1 when A\yA\g = A
K = anf = 2 2.1
af { 0 otherwise, (2.1)

and g a Lie (super)algebra with basis {T 4} and structure constants C 4z~

[T, Tp] = Cyx’ Te. (2.2)



Then, the direct product & = S x g is also a Lie (super)algebra with structure constants

C7 .
C(Aﬂ)(BWB) 0~ K,5Cup ', given by

_ ()
[Taa) T8 =Clanms | T (2.3)

The Lie algebra & defined by & = S x g is called S-expanded algebra of g.

When the semigroup has a zero element Og € .9, it plays a somewhat peculiar role in
the S-expanded algebra. The algebra obtained by imposing the condition 0gT 4 = 0 on &
is called Og-reduced algebra of &.

Interestingly, it is possible to extract smaller algebras from S x g. However, before to
extract smaller algebras it is necessary to apply a decomposition of the original algebra g.
Let g = @pe 1 Vp be a decomposition of g in subspaces V},, where I is a set of indices. Then
for each p,q € I it is always possible to define i(, ;) C I such that

VoVl c @ Vi (2.4)

T€i(p,q)

Now, let S = Upe 1 Sp be a subset decomposition of the abelian semigroup S such that

Sp-Sec |J S (2.5)
T€i(p,q)

When such subset decomposition exists, then we say that this decomposition is in resonance
with the subspace decomposition of g. Defining the subspaces of & = 5 X g,

Wy, =Sy XV, pel (2.6)

we have that
6r =P W, (2.7)
pel
is a subalgebra of & = S x g, and it is called a resonant subalgebra of the S-expanded
algebra &.

Another case of smaller algebra can be derived when the semigroup has a zero element
0s € S. The algebra obtained by imposing the condition 0gT4 = 0 on & is called Og-
reduced algebra of &. Additionally a reduced algebra can be extracted from a resonant
subalgebra.

A useful property of the S-expansion procedure is that it provides us with an invariant
tensor for the S-expanded algebra & = S x g in terms of an invariant tensor for g. As was
shown in ref. [9] the theorem VII.1 provide a general expression for an invariant tensor for
an expanded algebra.

Theorem VII.1 Let S be an abelian semigroup, g a Lie (super)algebra of basis {T 4},
and let (T4, ---Ta,) be an invariant tensor for g. Then, the expression

(Tara) Tapan)) = 9 Kaya,, (Tay - Ta,) (2.8)

where oy are arbitrary constants and Ka,...a, | is the n-selector for S, corresponds to an
invariant tensor for the S-expanded algebra & = S X g.

The proofs of these definitions and theorem can be found in ref. [9].



3 N =1, D = 4 AdS supergravity

In ref. [19] was presented a geometric formulation of N = 1 supergravity in four dimen-
sions, where the relevant gauge fields of the theory are those corresponding to the osp(4|1)
supergroup. The resulting action, constructed only in terms of the gauge fields, leads to
N = 1 supergravity plus cosmological and topological terms. In this section a brief review
of this construction is considered.

The (anti)-commutation relations for the osp (4|1) superalgebra are given by

[jaba jcd: = Mbedad — TacTbd — MbdJac + NadJbe, (3.1)
[jab, Pc: = MbePa — NacDs, (3.2)
Pu By = T, (33)
Qo =5 (@) [P Ga] =5 (30Q) (34)
(@ @a} =5 (1)  Jon 26701 ). (35)

where Jy, P, and Q, correspond to the Lorentz generators, the AdS boost generators and
the fermionic generators, respectively.
In order to write down a Lagrangian for this algebra, we start from the one-form gauge

connection . . .
A= iwabJab + Zeapa + \TZWQQ, (3.6)
and the associated two-form curvature F =dA + AN A
A 1 ab 1 a 1 o
F=F"Ty= 57?, Jab + jR Pa + Wﬂ Qa, (37)

where
1 1 -
Rab _ dwab +wacwcb + ﬁeaeb + 2l,¢,yabw7
1-
R = de” +whe’ — Sy,
1 ab 1, 1,
p=d+ Ty + et = DY+ et yat.

The one-forms e, w® and 1) are respectively the vierbein, the spin connection and the
gravitino field (a Majorana spinor, i.e, ¢ = ¥%TC, where C is the charge conjugation
matrix).

Here we have introduced a length scale [. This is done because we have chosen the Lie
algebra generators Ty = {Jup, Pa, Qa} as dimensionless and thus the one form connection
A= A’;‘LTAdx“ must also be dimensionless. However, the vierbein e = e, dz* must have
dimensions of length if it is related to the spacetime metric g,,, through the usual equation
Juv = eauebynab. This means that the “true” gauge field must be considered as e®/l, with



[ a length parameter. In the same way, as the gravitino ¢ = 9,dz#* has dimensions of
(length)l/ 2 we must consider that 1 /V/1 is the gauge field of supersymmetry.
The general form of an action constructed with the 2-form curvature (3.7) is given by

5_2/<F/\F>_2/FA/\FB<TATB). (3.8)

Let us note that if we choose (T'4Tg) as an invariant tensor (which satisfies the Bianchi
identity) for the Osp (4|1) supergroup, then the action (3.8) is a topological invariant and
gives no equations of motion. Nevertheless, with the following choice of the invariant tensor

o <Jab=]cd> = €abed
T = { (@uQs) =2 (35)us 39

the action (3.8) becomes
1 2 _
S = 2/ ZRabRabfabcd + jp’y5p (3.10)

which corresponds to the Mac Dowell-Mansouri action [19]. This choice of the invariant
tensor, which is necessary in order to reproduce a dynamical action, breaks the Osp (4|1)
supergroup to their Lorentz subgroup.

The explicit form of the action is given by,

1 2 1 2 -
S = /26abcd (RabRCd + Z—QRabeced + lzeaebeced + lgw’yabweced>

+ %i}e‘%%Dw + ?d (V15 D9) (3.11)

which can be written, modulo boundary terms, as follow
1 ab _c_d 7 a 1 1abcd 2’ab c, d
S = 7 (eabcdR e“e” + de ’Ya’)’5D1/J> + S €abed | gzeieie’e + ﬁ¢7 pee” ). (3.12)

The action (3.12) corresponds to the Mac Dowell-Mansouri action for the osp (4|1) super-
algebra [19, 20]. This action, describing N = 1, D = 4 supergravity, is not invariant under
the osp (4|1) gauge transformations. However the invariance of the action under supersym-

b

metry transformation can be obtained modifying the spin connection w® supersymmetry

transformation [21].

4 D = 4 supergravity from minimal Maxwell superalgebra sAM

It was shown in ref. [15] that the minimal Maxwell superalgebra sMy in D = 4 can
be found by an S-expansion of the osp (4]1) superalgebra given by (3.1)—(3.5). In fact,
following [15] let us consider the S-expansion of the Lie superalgebra osp (4|1) using
Sgl) = { Ao, A1, A2, A3, Ag, A5} as an abelian semigroup. The elements of the semigroup
are dimensionless and obey the multiplication law

Aa+8 when a + 8 < s,
Aag = 4.1
A {/\5, when a + 8 > A5, (4.1)



where A5 plays the role of the zero element of the semigroup. After extracting a resonant
subalgebra and considering a reduction, one finds a new algebra, whose generators J,, =
Nodabs Po = NoPu, Zap = Madus Zap = Mdap, Qa = MQa, Ta = \3Q, satisfy the following
commutation relations

[Jab, Jed] = Mbedad — NacIvd — MbdJac + NadJbe, (4.2)
[Jabs Pe] = MbePa — Nac P, [Po, Py) = Zap, (4.3)
[Jabv ch] = nchad - nachd - nbdZac + Uadec, (4'4)
1
[Pa7 Qa] - _5 (7(12)04 9 (45)
1
[Jab7 Qa] - _5 (VabQ)a 5 (46)
1
[Jaba Ea] - _5 (’Yabz)a 5 (47)
1 _
{Qas Qs = —3 {(fy“”c) D =20C)ag Pal (4.8)
1
{Qu. S5} = —5 (+'0) _ Zan (4.9)
[Jaba Zab| = MeZad — NacZba — MoaZac + NadZbe, (4.10)
|:Zab7 ch = nchad - nachd - nbdZac + nadem (411)
~ 7 1
|:Zab7 Qa = _5 (7ab2)a ) (4'12)
others = 0. (4.13)

This new superalgebra obtained after a reduced resonant S-expansion of osp (4|1) superal-
gebra corresponds to a minimal superMaxwell algebra sMy in D = 4 which contains the
Maxwell algebra My = {Ju, P, Zap} and the Lorentz type subalgebra £M4 = {J,, Zop}
as subalgebras. One can see that setting Z, = 0 leads us to the minimal Maxwell
superalgebra introduced in ref. [14]. This can be done since the Jacobi identities for
spinors generators are satisfied due to the gamma matrix identity (C7*)(,5 (C7a) 5 = 0
(cyclic permutations of «, 3,7). An alternative expansion method to obtain the minimal

Maxwell superalgebra can be found in ref. [7].
In order to write down an action for s My, we start from the one-form gauge connection
A= %WabJab + %i/v‘abzab + %kabzab =+ %eapa + \}ZwaQa + %éazaa (414)

where the 1-form gauge fields are given by

wab — w(ab,O) _ )\o(zjab, % — e(a,2) — )\Zéa7
];;ab _ w(ab,Q) _ )\Za}ab’ wa _ ¢(a,1) _ )\11/'}047
kab _ w(ab,4) — )\4(Ijab7 fa — 1/}(04,3) — )\31/;047

in terms of &%, and v which are the components of the osp (4]1) connection.



The associated two-form curvature F'=dA + AN A is
1

1 1 1oy~ 1
F=FAT, = 5RabJab + ZROP,+ —F®Z, + —F®Z., + —0°Q, +

I 2 ) Vi
where

b b b
R = dw® + w’w®,
1
R = de® + whe’ — 51!)7“1/},

~ ~ ~ 1 -
ab _ dk,ab + wack,cb o (/chk?ca + 27[11),)/0,1)1#’

—x

—

NG

-~ 1 1-
ab __ dk‘ab + wack,cb - wbckca + kack‘Cb + jeaeb + 7é-,)/abbw’

l

1
U =dy+ *wab’y“bw = D,
1 ab ab -
g + JWab? §+ kaw Y+ 216 Yot

— 7~ ab - a
= D¢+ 4kaw Y+ 216 Ya¥h-

(1
I

La,

(4.15)

(4.16)

(4.17)
(4.18)
(4.19)

(4.20)

(4.21)

From the Bianchi identity VF = 0, where V = d + [A, -], it is possible to show that the

Lorentz covariant exterior derivatives of the curvatures are given by,
DR™ =0,
DR* = Rabeb + )y,

~ 1 -
DFab Ra ka Rbckca . jw,yab\:[j

g 1
DF® = ROk — R e 4 Fofict — fbfiea 4 L pach — L caph

12 12
-, 1.,
T Py — 757 ",
1
DU = 2 Rapy™¢,

4

— 1
DS = {Ru% = kan ™0 + 3 Fuy™p + o Rt —

Then, the action can be written as

s:2/<FAF>=2/FAAFB<TATB>,

21

1
—ey, V.

(4.29)

where (T4 Tg) corresponds to an S-expanded invariant tensor which is obtained from (3.9).

Using theorem VII.1 of ref. [9] it is possible to show that these components are given by

(Jabded) spr, = @0 (JabJea) 5
<Jachd>SM4 = az (JapJea)

(4.30)
(4.31)



< achd> = oy (JapJed) (4.32)
(JabZe d>5M4 ay (JabJed) (4.33)
(QaQp) pq, = 2 (RaQp) (4.34)
<Qa26>5/\44 = Q4 <QaQﬁ> ) (4.35)
where
<Jachd> = €abed (436)
(QaQp) =2(15)as (4.37)

and the o’s are dimensionless arbitrary independent constants.
Considering the different components of the invariant tensor (4.30)-(4.35) and the
two-form curvature (4.15), we found that the action can be written as

1 1 ~ 1
S = 2/ <4a0€adeRabRcd + §a26abcdRabFCd + §a4€abcdRabFCd‘
1 rhab rhed 2 T, 4 T~ =
+Za4€adeF et 4 7042\1/75\11 + 7044\1175: (4.38)
or explicitly,
- 1 _
S = / %EabcdRabRCd + a2€abed (Rakacd + QZRabQ,Z)'Vde)
4 - 1~ ~
+ 702 D95 DY + Qucabea (R“kaCd + 5Dkabz)k“l lzR“b
1 - . 1
+27leabw,ycdw + Rabk‘cfk‘fd + lRabE')/de)
8 2 4
+ lOé4D1lW5D§ + 044D¢757€ab7 bip + et Yy ys D (4.39)
where D = d + [w, -]. Using the gravitino Bianchi identity
1 ab
D¥ = 4 Rt (4.40)
and the gamma matrix identity
2YabY5 = —€abea’™ (4.41)

it is possible to show that,

1 _ _ _
ifabcdRabw’Yabw + 4DYpy5 DY = d (ADYys1))
€abca R €Y + 8DEv; Dy = d (8DEsy) |

1 I . .
5 €abea DE™U M + 20k a5 D = d (SR a150)



Thus the Mac Dowell-Mansouri like action for the sMy superalgebra is finally given by
_ Qo ab ped ab7.cd 4=
S = ?EabcdR R™ + O[2d EadeR k< + 7D¢75¢
1 ab _c d 4 - a
+ay ﬁeabcdR ee’ + ﬁ¢€ Va5 DY
aby.cd 1 7.aby.cd 8z 1 7.7.ab
+d | €apea | R + ka k + 7575D¢ + fﬁk‘ VabV5Y . (442)

Here we can see that the lagrangian is split into three independent pieces proportional
to g, ag and ay. The term proportional to ag corresponds to the Euler invariant. The
piece proportional to a9 is a boundary term. The term proportional to a4 contains the
Einstein-Hilbert term e,p.qR*e‘e? plus the Rarita-Schwinger lagrangian 41pe®v,v5D1), and
a boundary term.

From (4.42) we can see that the minimal Maxwell superalgebra sMy leads us to the
pure supergravity action plus boundary terms. In this way the new Maxwell gauge fields
do not contribute to the dynamics and enlarge only the boundary terms. Furthermore,
as a consequence of the S-expansion procedure the supersymmetric cosmological term
disappears completely from the action for sMy.

This result is particularly interesting since it corresponds to the supersymmetric case
of refs. [10, 12], where Einstein-Hilbert action is obtained from Maxwell algebra? as a
Born-Infeld like action.

Let us note that if we consider k% = 0, the term proportional to a4 corresponds to
the action found in [18], namely

Sy = Q4 / l% (eabcdR“beCed + we“vaww) +d <eabcdR“bkcd + fémr,Dm) (4.43)
which corresponds to four-dimensional pure supergravity plus a boundary term. This is
not a surprise but something expected, because as we said before setting Zap = 0 in sMy
leads us to the simplest minimal Maxwell superalgebra [15], whose two-form curvature
associated allows the construction of (4.43) as was shown in [18].

It would be interesting to study the possibility to obtain the action (4.42) from the
approach considered in ref. [22] in which N =1 and N = 2 supergravities are constructed
in the presence of a non trivial boundary.

4.1 sM, gauge transformations and supersymmetry

The gauge transformation of the connection A is
6pA = Dp=dp+[A,p] (4.44)

where p is the sM, gauge parameter,

1 1., ~ 1 1 1 1
P = 7pabJab + 7ﬁabZab + *ﬁabZab + 7paPa + TeaQa +

2 2 2 l NG Vi

2 Also known as B4 algebra.

0°Sa. (4.45)




Then, using

5 (AT n) = dp+ [APTp, p°Tc] (4.46)

the s M, gauge transformation are given by
dw® = Dp?, (4.47)
Sk — DR — (12;“0 o - lébcpac) - %a“%, (4.48)

2 1 1
+ ﬁeapb - T@’Yabiﬁ - ZE’Yab& (4.49)
6e® = Dp® + e’p2 + &y, (4.50)
1 1
5 = de + Zw“b'yabe — Zp“b’yabd), (4.51)
1 1 1 1
0¢ = do + W™ Yabe + €™ Yae = 53"Vt — 70" ané
1- 1.
+ Zkab%bﬁ - Eﬁab%bw- (4.52)

In the same way, from the gauge variation of the curvature
0, F = [F, p] (4.53)

it is possible to show that the gauge transformations of the curvature F are given by

SR® = R™pb — Rp°, (4.54)
~ ~ ~ 1
5Fab _ (Rac~ Rbc a> _ (Facpbc _ Fbcpac) jg ab\I] (455)
5Fab _ (Rac Rbc a ) o (F‘acpbC o Fbcpac> ( Fac a )
a b 1_ ab 1 ab—=
+ R — oYV — —ey*’=, (4.56)
12 l l
OR* = R%p* + Rp2 + &y, (4.57)
1 1
ov = fR“bvabe - Zpabyablll, (4.58)

1 1 S 1.
lRa’ya 2lp“'ya\lf — Zpabyab: + ZFab'YabE — Zfi“b'yablll, (4.59)

Although the Mac Dowell-Mansouri like action (4.42) is built from the sM, curvature,
it is not invariant under the sM, gauge transformations. As we can see the action does

5 = [ e+ 5

not correspond to a Yang-Mills action, nor a topological invariant.
Furthermore, the action is not invariant under gauge supersymmetry. In fact, if we
consider the variation of the action (4.42) under gauge supersymmetry, we find

4 e
dsusyS = —l20z4/R WUy vs€. (4.60)

,10,



As in osp (4]1) and super-Poincaré cases, the action is invariant under gauge super-

symmetry imposing the super torsion constraint
R =0. (4.61)

This yields to express the spin connection w® in terms of the vielbein and the gravitino
fields. This leads to the supersymmetric action for sM, superalgebra in second order
formalism.

Alternatively, it is possible to have supersymmetry in first order formalism if we modify
the supersymmetry transformation for the spin connection w®. In fact, if we consider the
variation of the action under an arbitrary 6w we find

2
5wS == pa4/eadeRaeb5de, (4.62)

thus the variation vanish for arbitrary éw® if R* = 0. Similarly to ref. [21], it is possible
to modify dw® adding an extra piece to the gauge transformation such that the variation
of the action can be written as

4 - 1
08 = —l2a4/R“ (‘Pvavg,e - 2eabcdebéextraw0d> . (4.63)
In order to have an invariant action, Soxtraw® is given by

5extrawab = 2¢bed (\Tjec’Yd'YBf + qjde’}’c’)%f - \Tlcd’}’e’}%ﬁ) e, (4.64)

with ¥ = U e%el.
Then the action in the first order formalism is invariant under the following supersym-

metry transformations

6w = 2e (Weerarse + Waererse — Veareyse) ¢, (4.65)

Sk = —%aa%, (4.66)

Sk = —%aabg, (4.67)

56 — ey, (4.68)

0 = de + %wab%be = De, (4.69)

56 = = cPye + kPygpe. (4.70)
21 4

On the other hand, it is important to note that there is a new supersymmetry related to
the spinor charge . The new supersymmetry transformations are given by

dw® =0, (4.71)

5k =0, (4.72)
1

ok = —757“% (4.73)

— 11 —



e =0, (4.74)
51 = 0, (4.75)

1
0¢ = do + 7w ape- (4.76)

Considering the variation of the action (4.42) under the new gauge supersymmetry trans-
formations, we find that the action is truly invariant

5S = 0. (4.77)

Then one can see that the action is off-shell invariant under a subalgebra of sM, given
by sLam, = {Jab, Zaby Zab, Ea} which corresponds to a Lorentz type superalgebra. These
results are interesting since we have shown that the Poincaré supersymmetry is not the

only supersymmetry of D = 4 pure supergravity.

5 D = 4 supergravity from the minimal Maxwell superalgebra type

SMm+2

It was shown in ref. [15] that the D = 4 minimal superMaxwell algebra type sM, o
can be found by an S-expansion of the osp (4|1) superalgebra given by (3.1)—(3.5). In
fact, following [15] let us consider the S-expansion of the Lie superalgebra osp (4|1) using
ng = { Ao, A1, A2, -+, Aam+1} as the relevant finite abelian semigroup. The elements of
the semigroup are dimensionless and obey the multiplication law

A h <A\
Aadg = ot when o+ 5 < Ao, (5.1)
A2m41, when o + 8 > Ao,
where Agp,+1 plays the role of the zero element of the semigroup ng). After extracting

a resonant subalgebra and considering a reduction, one finds the D = 4 minimal Maxwell
superalgebra type sM,,12. The new superalgebra obtained by the S-expansion procedure
is generated by

{Jabk)> Pty Qi) } (5.2)
where these new generators can be written as
Jab (k) = Aok Jabs (5.3)
Pa,(l) - )\QZPG,7
Qa,(p) = )\2])71@0&7

with £ =0,...,m; l =p =1,...,m. Here, the generators jab,ﬁa and Qa correspond to
the osp (4]1) generators. The new generators satisfy the commutation relations

[Jab,(k)s Ted,(5)) = Mbead,(k+5) — NacTod,(k+j) — MdTac,(k+7) T NadTbe, (k+)» (5.6)
[Tab,(k)> Py ] = M Lo ott) — NacPo, (1) (5.7)
[Pa,@) Pom)] = Jab14n)» (5.8)

— 12 —



1

[Jab, (k) Qo)) = —5 (Vab @) o, (k4 » (5.9)

[Pa.)s Qa.m)] = (%Q) (4p) (5.10)
1 ab a

{Qav(p)7 QB,(Q)} = _5 (fy C) aB Jab,(erq) —2 (’Y C)Olﬂ Pa7(p+q) . (511)

Naturally, when k£ 4+ j > m the generators T’ ng) and Tlgj ) are abelian. One sees that if we
redefine the generators as

Jab = Jabo = NoJabs P, = Pys = \oF,,
Zé’Z’ = Jabak = NakJab, Z0 = Py aiv2 = M2 P,
ZC(LIZ) = Jubak—2 = Mk—2Jab, 7\ = Py = Ay P,

Qa = Qa1 = MQa, S = Quab—1 = Mi—1Qa,

O = Qaarr1 = Mrt1Qa,

we obtain the commutation relations for sM,, 12 introduced in [15]. However, if we want
to build an action and avoid extensive terms we shall use (5.3)—(5.5). In order to write
down a Lagrangian for sM,, o, we start from the one-form gauge connection

Zw ™) Jop (k) lZe \[Zwa )Qu () (5.12)

where the different components are given by

w?F) = Agp o, (5.13)
ev V) = A%, (5.14)
wm(p) = )\Qp_l’l;a, (5.15)

in terms of €%, &% and 1) which are the components of the osp (4/1) connection.
The associated two-form curvature F' =dA + AN A is

F=FAT, == ZR“W b ( ZR“U () +7Z\Ifa<p Qo) (5.16)

where

RAK) = 4™ ®) 4 g2 O p DGk, ll? e Dehmgk

1
+ 51/1(”)7“" AP Dsk (5.17)

RO = gem®) 4 % ) p gt W)v“ A2 (5.18)
U = qy®) 4 ZWab(k),yab A (@ 5k+q + 276@,(1)% A (@ 5l+q, (5.19)
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with £ =0,...,m;l=p=1,...,m. The Bianchi identities can be obtained by considering
VF =0, where V=d+ [A4, ],

DRab:(k) — (Rac,(i) WU _ Rbe () wca,(j+1)) o

n % ( R0 b(n) _ pan(n) Rbm) 5k — %@(p)fyabq;(@(;gﬁq, (5.20)
DR = Rbie, 7(j)5§+j + ROy a0+ gl 4 g Peg@g2 | (5.21)
Dy — i (Rab,m%w(q)) &, - % <wab,<z‘+1>%b\1,<q>> i
+ 2% (7" Oyas @) 57, — 2% (0w @) o, (5.22)
where D corresponds to the Lorentz covariant exterior derivative D = d + [w, -].
Then the action can be written as
5:2/<F/\F>:2/FA/\FB<TATB), (5.23)

where (T'4Tg) corresponds to an S-expanded invariant tensor which is obtained from (3.9).
Using theorem VII.1 of ref. [9] it is possible to show that these components are given by

(Tt e () s pt g = @200 (JabTed) (5.24)
<Qa,(p)Q67(q)>st+2 = M(ptq-1) (Qa@p) (5.25)

which can be written as

(Tab, ) Ted,(3)) s, 1y = @2(0-+j) Eabed: (5.26)
(Qo.0)@8.0)) sptyn 5 = 202(p+a-1) (W)ag (5.27)

where the a’s are arbitrary independent constants and Jyp (1), Qa,(p) are given by (5.3),
(5.5), respectively. Using the different components of the invariant tensor (5.26)—(5.27)
and the two-form curvature (5.16), we found that the action is given by

- , 4
S =29 / Z @%bcdflaab,(khgcd,(ﬂ) + Z a2(p+q_l)7\p(p) A 75\11(4)7 (5.28)
k.j P

with k,7=0,...,m;p,g=1,...,m.

5.1 sM,, 42 gauge transformations and supersymmetry

The gauge transformation of the connection A is
dpA = Dp=dp+ [A,p] (5.29)

where p is the sM,, 12 gauge parameter:

1 a 1 “ 1 N
pP = 5 Z P b7(k)Jab,(k) + 7 Z p ’(Z)Pa,(l) —+ W Z € ’(p)Qa,(p)' (530)
k 1 ?

— 14 —



Here we have written the components of the gauge parameter as an S-expansion of the
component of the osp (4|1) gauge parameter,
pab,(k) _ )\Qkﬁab
pa’(l) = )‘%ﬁa)

P =\, e

withk=0,...,m;l=p=1,...,mand \; € ng) = {0, A1, A2, -, A1} Then, using
the multiplication law of the semigroup (5.1) and

§ (A?Ty) = dp + [APTg, p“T¢] (5.31)
it is possible to show that the gauge transformations are given by

6wab,(k) — Dpab,(k) _ (wac,(iJrl)pbc,(j) _ wbc (2+1) ( )) 51+J+1

+ l%e“’(l)pb( i %e A2y Q)égiq, (5.32)
eV = Do) 4 wab,(k+1) b (n)(; e (")pba’(k)dl o 4 EP) (D) 521 7 (5.33)
5@ = ge®) 4+ }J (K >,yab€(q>5k+q n 21l WP,
— ipab,(k)%bw(q)cgzﬂ _ %Pa’(l)7a¢(q)5f+q' (5.34)
In the same way, from the gauge variation of the curvature
N = [F, )] (5.35)

it is possible to show that the gauge transformations of the curvature F' are given by

SRab:(k) _ (Rac,a) p ) b pa s <a>> 3+ Ra() bm)gk

l

- f(p) ab\p(q)(gzﬁrq’ (5.36)

SR — R“b’(k) pb,(n) 55{ ot RU() pba,(k) 52 ot g(za),ya\;[;(q)(;zl+ o (5.37)
su®) — iRab’(’“)%be(Q)éiﬂ n 2% RO, 05— i AR IOr

VO, (5.38)

withk=i=75=0,....m;l=n=p=q=1,...,m

Although the Mac Dowell-Mansouri like action (5.28) is built from the sM,, 12 curva-
ture, it is mot invariant under the sM,, o gauge transformations.

Besides the action is not invariant under gauge supersymmetry. In fact, if we consider
the variation of the action (5.28) under gauge supersymmetry related to Q(1), we find

susy = l2 /ZQQkRa ’Ya75€5l+pg (539)
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with £ = 2,...,m; [,p > 1 and where € is the gauge parameter associated to the spinor
charge Q).

As in the previous case the action is invariant for every value of k under gauge super-
symmetry imposing the expanded super torsion constraint

R¥W =, (5.40)

This yields to express the expanded spin connection wab (k)

in terms of the expanded fields as
we can see in (5.18). This leads to the supersymmetric action for the sM,, 9 superalgebra
in the second order formalism.

Alternatively, since the a’s are arbitrary and independent we can study the supersym-
metry in each term separately. Then if we consider the variation of the action proportional

to agy under gauge supersymmetry transformations asociated to Q(x_1), we find

4 _
6susyS = l2a2k/Ra\IJ’7a’75€(k_1)7 (541)

with &£ = 2, ..., m and where ¢(*~1) is the gauge parameter associated to the spinor charge
Q(x—1)- Here R* and ¥ correspond to R and v respectively.

It is possible to have invariance under supersymmetry in first order formalism in every
term if we modify the supersymmetry transformation for every expanded spin connection.

In fact, if we consider the variation of the action under an arbitrary dw®*=2) we find
2 a, bs, cd,(k—2)
0,58 = 7202k €abed R 70w , (5.42)
with £ =2,...,m; R* = R*M and e = ¢»(M). One can see that the variation vanishes for

arbitrary dw® (=2 if Re — ().
Nevertheless it is possible to modify 6w (*~2) by adding an extra piece such that the
variation of the action (~ aogy) can be written as

4 = 1
0S8 = —l2042k/Ra (\I]7a756(k_1) - 26abcd€b5extraWCd’(k_2)> . (543)

Thus the transformation of the w® (=2 field leaving the term proportional to agy, invari-
ant is

5extrawab’(k_2) = 2¢abed (qjecf)’d'%e(k_l) + \dee'70'75€(k_1) - ‘chd'76'75€(k_1)> e,

with ¥ = U e%el.
On the other hand, it is important to note that the term proportional to awy is truly
q) with q > k.

Clearly for m = 2 in sM,,+2 we recover the results presented in the previous section.

invariant under gauge supersymmetry transformations associated to Q
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5.2 Pure supergravity from the minimal Maxwell algebra type sM,, ;2

Since we are interested in obtaining the Einstein-Hilbert and the Rarita-Schwinger terms,
we shall consider only the piece proportional to cy. Then the action is written with the
following choice for the non-vanishing components of an invariant tensor

(Jab,(0) e, (1)) spn,, ., = 4 (abTea) (5.44)

<<]ab,(2)‘]0d:(2)>5/\/[m+2 = a4 (JapJed) (5.45)

(Qa)@8,3))spm,, ., = 4 (QaQs) (5.46)
which can be written as

(Jab(0)Ted,(4)) s p1,,,, = ¥4€abeds (5.47)

<Jab,(2)ch,(2)>st+2 = Q4€qbed; (5.48)

(Qu)Q5,3))on,,.., = 204 (15)as - (5.49)

Then we only need the two-form curvatures asociated to Jup (0)s Jap,(2)s J(ab4)s @a,(1) and
Qa,(3) Which can be derived from (5.17)—(5.19).

Considering the different non-vanishing components of the invariant tensor and the
respective two-form curvatures we obtain the following action for the S-expanded superal-
gebra

1 1 4 _
S =2y / <2eab0dnabv<0>ncd»<4> + Zeabcdnabv@)wdv@) + 7\11(3) A 75\1;(1)) . (5.50)
which can be written explicitly as follows
1 _
S=au / Cated (Rab,m)eam)ed,(z) + 4 W@y o Dw“))

+ d <6(1de (Rabf(o)wab)(‘l) + 1wa(lb,(2)wcd,(2)>
2

8  _ 11 o
+7 Dt Mysp® 4+ 29 bv%aww“)) : (5.51)

Here we have used the gravitino Bianchi identity DW() = %Rab%b\p(l) and the matrix

gamma identity (4.41) to show that
Cared ROy D 4 8D D4 = D (8D 50 )
1 _ _ _
5 €abea D™ DYDY 4 25Dy s DY® = D (0w sV

Then using the following identification

wab,(()) — wab’ wab,(2) _ l%ab’

wab,(4) _ kab’ 6a,(2) _ ea’

Rab,(O) — Rab’ w(l) — ¢7
¥ =g,
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the action is given by
1 ab _c d T a
S=oy €abed 13 (R e“e” + de %75Doﬂ/1)
1 - - 8 - 1~
+d <eabcd <Rabkcd + 2Dwkabkcd> + 7695 Dut) + lwkabfyabm}) . (5.52)

Here we can see that the action proportional to a4 contains the Einstein-Hilbert term
€apea Rece?, the Rarita-Schwinger lagrangian 41;ea'ya’y5D@/} and a boundary term involving
the new fields kg, l%ab, ¢ and the original ones.

Unlike the Mac Dowell-Mansouri lagrangian for osp (4|1) superalgebra the supersym-
metric cosmological constant does not appear explicitly in this action. This is due to the
S-expansion procedure since if we want to obtain the supersymmetric cosmological constant

27§46m€beced + llg&,yabweced
in the action, it should be necessary to consider the components <Jab7(4) ch7(4)> and
<Jab,(2)ch,(4)> which are proportional to ag and «g, respectively.

Independently of the numbers of new generators of the Maxwell superalgebra, the new
Maxwell fields do not contribute to the dynamics of the term proportional to ay4. In this
way, we have shown that N = 1, D = 4 pure supergravity can be obtained as a Mac
Dowell-Mansouri like action for the minimal Maxwell superalgebras sM, 12 (with m > 1).

1 _
S =ay / 2 [eabcdRabeced + 4epe®y,v5 D1 | + boundary terms. (5.53)

It is important to note that the case m = 1 corresponds to D = 4 Poincaré superalgebra
sP = {Jap, Pa, Qo } as mencioned in ref. [15]. However it is not possible to derive the pure
supergravity action from a Mac Dowell-Mansouri like action for this superalgebra since it
is not possible to obtain the Eintein-Hilbert term from (JupJ.q) for sP.

6 Comments and possible developments

In the present work we have derived the minimal D = 4 supergravity action from the min-
imal Maxwell superalgebra sM,. For this purpose we have applied the abelian semigroup
expansion procedure to the osp (4|1) superalgebra allowing us to build a Mac Dowell-
Mansouri like action. Interestingly, the action obtained describes pure supergravity in four
dimensions. This result can be seen as a supersymmetric generalization of ref. [12] in which
four-dimensional General Relativity is derived from Maxwell algebra as a Born-Infeld like
action.

We have also obtained the D = 4 supergravity action from the minimal Maxwell
superalgebra type sM,, 2 using bigger semigroups. These superalgebras enlarge the pure
supergravity action adding new terms containing new Maxwell symmetries. In particular,
the action found in ref. [18] can be obtained when the simplest Maxwell superalgebra is
considered. The invariance of the actions under the new supersymmetry transformations
has been analized in detail.
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Our results provide another example showing that the S-expansion procedure is not
only a useful method to derive new lie superalgebras but it is a powerful and simple tool
in order to construct a supergravity action for an S-expanded superalgebra. Moreover
the invariance of the pure supergravity action under new supersymmetry transformations
could not be guessed trivially.

A future work could be consider the N-extended Maxwell superalgebras and the con-
struction of N-extended supergravities in a very similar way to the one shown here. It
would be also interesting to build lagrangians in odd dimensions using the Chern-Simons
formalism and the S-expansion method. It seems that it should be possible to recover

standard odd-dimensional supergravity from the Maxwell superalgebras [work in progress].
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