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1 Introduction

Superstring theory is a promising candidate for the theory of quantum gravity. UV diver-

gence of the gravity is well controlled and it unifies gauge theory and gravity consistently.

Therefore much effort has been devoted to reveal the quantum nature of the gravity. In this

paper, we proceed those discussions and describe the quantum geometry in the superstring

theory.

The superstring theory contains not only fundamental strings but also Dp-branes which

extend p spacial directions [1]. In the low energy limit, the superstring theory is well
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approximated by the supergravity, and Dp-branes are described by a classical solution

which is called a black p-brane [2, 3]. In the extremal case where the mass and Ramond-

Ramond charge of the black p-brane are balanced, quantum corrections to the classical

solution are suppressed. Then for a special class of black brane solutions, a statistical

derivation of its entropy is possible from the dual gauge theory on the corresponding D-

branes [4]. Furthermore, by taking a near horizon limit of extremal black branes the

geometry becomes anti-de-Sitter space-time, and it is conjectured that the superstring

theory in the AdS background is dual to the gauge theory on the D-branes [5]. Correlation

functions of the gauge theory can be calculated from the dual gravity theory [6, 7]. On the

other hand, the entropy counting or test of the gauge gravity duality of non-extremal black

branes is quite difficult because quantum corrections become important which are not well

understood so far. In this paper, we discuss quantum corrections to the non-extremal black

0-brane by explicitly solving equations of motion.1

In order to investigate quantum nature of the non-extremal black p-brane, we need to

know quantum corrections to the supergravity. As the superstring theory is defined pertur-

batively, it is possible to derive corrections to the supergravity so as to be consistent with

the scattering amplitude [10, 11] or σ-model calculations [12, 13]. Among these corrections,

the structure of higher curvature R4 terms is well studied [14, 15] and they come from 4

gravitons amplitudes at tree and 1-loop levels [10, 11, 16]. R4 terms are also derived by

imposing local supersymmetry [17]–[22]. There are several attempts to solve the modified

equations of motion [23]–[27]. For the black p-brane, however, it is difficult to solve the

equations of motion consistently since the full form of the effective action including R-R

gauge fields is not completely determined so far.2 In this paper we concentrate on the

black 0-brane in type IIA supergravity, thus at least the knowledge of quantum correc-

tions to a metric, a dilaton field and a R-R 1-form filed are necessary. This problem is

resolved by noting that these fields are gathered into the metric in 11 dimensions [29]. For-

tunately supersymmetric higher curvature corrections to the 11 dimensional supergravity

are well known [20–22], so usual Kaluza-Klein dimensional reduction gives 1-loop quantum

corrections to the type IIA supergravity which are relevant to the black 0-brane.

By taking account of the R4 terms, quantum corrections to the near horizon geometry

of the non-extremal black 0-brane is analytically solved in ref. [29]. This is quite useful to

test the gauge gravity duality, since computer simulations of the dual gauge theory on the

D0-branes are well developed in refs. [30]–[35]. In fact, the test of the gauge gravity duality

is examined in ref. [36], including 1/N2 quantum corrections to the classical gravity. And

the analytic result from the gravity side is well reproduced from the gauge theory side

numerically [36]. See also ref. [37] for introductory review.

In this paper, we generalize the discussions in ref. [29] to derive quantum corrections to

asymptotically flat non-extremal M-wave and black 0-brane. We often call these solutions

quantum M-wave and quantum black 0-brane. Organization of this paper is as follows.

In section 2, we briefly review the classical M-wave and black 0-brane solution. The main

1Higher derivative corrections are also important for the extremal case [8, 9].
2In three dimensions the higher derivative corrections are well controlled. Although physical quantities

are affected by the quantum corrections, the solution is the same as the classical one [28].
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part of this paper appears in section 3, where the quantum corrections to the non-extremal

M-wave and black 0-brane are analytically solved. In section 4, we consider extremal limit,

Schwarzschild one and near horizon one for the quantum black 0-brane. In section 5, the

ADM mass and the R-R charge of the quantum black 0-brane are derived. Validity of the

solution is examined in section 6, and section 7 is devoted to conclusion and discussion. In

the appendix, we employ Noether and Wald’s method to derive the quantum corrections

to the ADM mass and the charge formulae. We also discuss the near horizon limit of the

internal energy of the quantum black 0-brane.

2 Review of classical M-wave and black 0-brane

It is conjectured that the strong coupling limit of type IIA superstring theory in 10 dimen-

sions is described by M-theory in 11 dimensions [38, 39]. The string coupling constant gs
and string length ℓs in the type IIA superstring theory are related to the radius of 11th cir-

cle R11 = gsℓs and 11 dimensional Planck length ℓp = g
1/3
s ℓs in the M-theory. A D0-brane is

identified with a Kaluza-Klein mode, and the mass of the D0-brane is given by 1/R11. In the

low energy limit, the type IIA superstring theory and M-theory are approximated by type

IIA supergravity and 11 dimensional supergravity, respectively. Then the D0-brane is ap-

proximated by a black 0-brane solution in the type IIA supergravity, and the Kaluza-Klein

mode is described by a M-wave solution in the 11 dimensional supergravity. In this section,

we briefly review classical properties of the black 0-brane via dimensional reduction of the

M-wave solution. Simultaneously we fix the notations and conventions used in this paper.

The fields of the 11 dimensional supergravity consist of a graviton gMN , a 3-form

field AMNP and a Majorana gravitino ψM [40]. Here M,N,P are space-time indices in 11

dimensions, and both bosonic and fermionic fields have 128 physical degrees of freedom.

Since we only consider the M-wave solution which does not couple to AMNP and ψM , a

relevant part of the action is simply given by

S
(0)
11 =

1

2κ211

∫

d11x
√
−gR, (2.1)

where 2κ211 = (2π)8ℓ9p. The equations of motion become RMN − 1
2gMNR = 0, and the

following geometry becomes a solution.

ds211 = −H−1Fdt2 + F−1dr2 + r2dΩ2
8 +

(

H
1

2dz −
(

r+
r−

)
7

2

H−
1

2dt

)2

, (2.2)

H = 1 +
r7−
r7
, F = 1−

r7+ − r7−
r7

.

This is the non-extremal M-wave solution, which contains two parameters r±. The extremal

case is saturated when r+ = r−, and Schwarzschild black hole smeared along z direction is

obtained when r− → 0.

The type IIA supergravity consists of a graviton gµν , a dilaton φ, a R-R 1-form field

Cµ, a NS-NS 2-form field Bµν , a R-R 3-form field Cµνρ, a Majorana gravitino ψµ and a

Majorana dilatino ψ. Here µ, ν, ρ are space-time indices in 10 dimensions, and both bosonic
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and fermionic fields have the same physical degrees of freedom as those in 11 dimensional

supergravity. The type IIA supergravity is derived by dimensional reduction of the 11

dimensional supergravity if we express the metric in 11 dimensions as

gMNdx
MdxN = e−2φ/3gµνdx

µdxν + e4φ/3(dz − Cµdx
µ)2, (2.3)

where z direction is the circle with the radius R11 [41]. By inserting this metric into the

action (2.1), we obtain the 10 dimensional action of the form

S
(0)
10 =

1

2κ210

∫

d10x
√
−g

{

e−2φ
(

R+ 4∂µφ∂
µφ

)

− 1

4
GµνG

µν

}

, (2.4)

where 2κ210 = (2π)7ℓ8sg
2
s and Gµν is the field strength of Cµ. Notice that the coordinate

transformation z′ = z + χ(x) in 11 dimensions corresponds to the gauge transformation

C ′
µ = Cµ − ∂µχ in 10 dimensions.

The non-extremal black 0-brane solution is obtained by the dimensional reduction of

the M-wave solution (2.2). By applying eq. (2.3), we obtain [42]

ds210 = −H−
1

2Fdt2 +H
1

2F−1dr2 +H
1

2 r2dΩ2
8, eφ = H

3

4 , C =

(

r+
r−

)
7

2

H−1dt. (2.5)

Thus the purely geometrical object in 11 dimensions becomes the charged black hole in 10

dimensions. The event horizon is located at

rH = (r7+ − r7−)
1

7 ≡ r−α, (2.6)

where α is a dimensionless parameter. And the massM and the R-R charge Q of the black

0-brane are evaluated as

M =
VS8

2κ210

(

8r7+ − r7−
)

, Q =
VS8

2κ210
7
(

r+r−
)

7

2 . (2.7)

VS8 = 2π9/2

Γ(9/2) = 2(2π)4

7·15 is the volume of S8. Since the charge of N D0-branes is quantized

as Q = N
ℓsgs

in the type IIA superstring theory, the parameters r± can be expressed as

r7± = (1 + δ)±1(2π)215πgsNℓ
7
s, (2.8)

by introducing a non-negative parameter δ. There are three limits of the solution (2.5)

which are important in later sections. (See table. 1.) First one is the extremal limit

r+ → r− which is equivalent to α → 0. Second one is the Schwarzschild limit r− → 0,

where the charge Q goes to zero. Final one is the near horizon limit which is realized by

r → 0 with U ≡ r/ℓ2s, λ ≡ gsN/(2π)
2ℓ3s and U0 ≡ r−α/ℓ

2
s fixed [43]. This is equivalent to

α→ 0 by fixing r−α/r, ℓ
2
s/(r−α) and g

2
sN

2/(r−α)
3, so the near horizon limit corresponds

to the near extremal limit.
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Extremal limit α → 0

Schwarzschild limit r− → 0

Near horizon limit α → 0 by fixing r
−
α

r , ℓ2s
r
−
α and g2sN

2

(r
−
α)3

Table 1. Extremal, Schwarzschild and near horizon limits.

3 Quantum M-wave and black 0-brane

In this section, we consider leading quantum correction to the M-wave solution (2.2). Since

the M-wave solution is purely geometrical in 11 dimensions, the 3-form AMNP is irrelevant

to our analyses. Thus it is enough to investigate the effective action of the M-theory which

depends only on higher curvature terms. The leading structure of those is known to be R4

terms [14, 15]. The explicit form of the effective action is given by

S11 =
1

2κ211

∫

d11x e

{

R+ γ

(

t8t8R
4 − 1

4!
ǫ11ǫ11R

4

)}

=
1

2κ211

∫

d11x e
{

R+ 24γ
(

RabcdRabcdRefghRefgh − 64RabcdRaefgRbcdhRefgh

+ 2RabcdRabefRcdghRefgh + 16RacbdRaebfRcgdhRegfh

− 16RabcdRaefgRbefhRcdgh − 16RabcdRaefgRbfehRcdgh

)

}

. (3.1)

Although we neglected fermionic terms, a part of them is also obtained in refs. [20–22].

The expansion parameter in the action is given by

γ =
π2ℓ6p
21132

, (3.2)

and a, b, c, · · · = 0, 1, · · · , 10 are local Lorentz indices. All indices are lowered for simplicity

but should be contracted by the flat metric. Note that γ ∼ g2sℓ
6
s, so when the effective ac-

tion (3.1) is reduced to ten dimensions, it becomes one-loop leading corrections to the type

IIA supergravity. By varying the effective action (3.1), equations of motion are obtained as

Eij ≡ Rij −
1

2
ηijR+ γ

{

− 1

2
ηij

(

t8t8R
4 − 1

4!
ǫ11ǫ11R

4

)

+
3

2
RabciX

abc
j −

1

2
RabcjX

abc
i − 2D(aDb)X

a
ij
b

}

= 0. (3.3)

Here Da is a covariant derivative for local Lorentz indices and

Xabcd =
1

2

(

X ′

[ab][cd] +X ′

[cd][ab]

)

, (3.4)

X ′

abcd = 96
(

RabcdRefghRefgh − 16RabceRdfghRefgh + 2RabefRcdghRefgh

+ 16RaecgRbfdhRefgh − 16RabegRcfehRdfgh − 16RefagRefchRgbhd

+ 8RabefRceghRdfgh

)

.

The details of the derivation can be found in ref. [29].
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Let us solve the eq. (3.3) up to the linear order of γ. The leading part of the metric (2.2)

itself is not a solution of the eq. (3.3), we should relax the ansatz for the M-wave. Most

general static ansatz with SO(9) rotation symmetry is given by

ds211 = −H−1
1 F1dt

2 + F−1
1 dr2 + r2dΩ2

8 +
(

H
1

2

2 dz −
√

1 + α7H
−

1

2

3 dt
)2
, (3.5)

Hi = 1 +
r7−
r7

+
γ

r6−α
13
hi

(

r

r−α

)

, F1 = 1−
r7−α

7

r7
+

γ

r6−α
6
f1

(

r

r−α

)

.

Here α is given by α = (r7+/r
7
− − 1)

1

7 , and hi(i = 1, 2, 3) and f1 are functions of r
r
−
α .

Note that, up to the linear order of γ, the coordinate transformation dz → dz + cgdt is

interpreted as the change of h2(x) + h3(x),

γ

r6−α
13
(h2 + h3) →

γ

r6−α
13
(h2 + h3) +

2cg√
1 + α2

(

1 +
r7−
r7

)2

. (3.6)

It is clear that this corresponds to the gauge transformation of Cµ in 10 dimensions.

Now we insert the ansatz (3.5) into the eq. (3.3). In order to make the equations of

motion simple, we introduce following dimensionless coordinates,

τ =
t

r−α
, x =

r

r−α
, y =

z

r−α
. (3.7)

Then all components of the metric are expressed as a function of x, and we obtain following

5 differential equations for hi(x) and f1(x).
3

E1 = −7(9 + 32α7x7 + 16α14x14)(1 + α7x7)x34f1 − (9 + 16α7x7)(1 + α7x7)2x35f ′1

− 49(1 + α7)x41h1 + 49(1− x7)x34h2 + (1− x7)(23 + 16α7x7)(1 + α7x7)x35h′2

+ 2(1− x7)(1 + α7x7)2x36h′′2 + 98(1 + α7)x41h3 + 7(1 + α7)(1 + α7x7)x42h′3 (3.8)

+ 17418240(61 + (4032 + 4093α7)x7 − 3640(1 + α7)x14)(1 + α7x7)2 = 0,

E2 = 7(9 + 32α7x7 + 16α14x14)(1 + α7x7)x34f1 + (9 + 16α7x7)(1 + α7x7)2x35f ′1

+ 7(9− (2− 23α7)x7 − 16α7x14)x34h1 + (1− x7)(9 + 16α7x7)(1 + α7x7)x35h′1

− 112(1−x7)(1+α7x7)x34h2−16(1−x7)(1+α7x7)2x35h′2−98(1+α7)x41h3 (3.9)

− 7(1 + α7)(1 + α7x7)x42h′3 − 17418240α34(329 + 124x7)(1 + α7x7)3 = 0,

E3 = 7(19 + 24α7x7 + 12α14x14)(1 + α7x7)x34f1 + 7(5 + 4α7x7)(1 + α7x7)2x35f ′1

+ 2(1 + α7x7)3x36f ′′1 + 14(6− 5(4 + 3α7)x7 + α7x14)x34h1

+ 7(4− (7 + α7)x7 − 2α7x14)(1 + α7x7)x35h′1 + 2(1− x7)(1 + α7x7)2x36h′′1 (3.10)

− 7(5−(26+23α7)x7+2α7x14)x34h2−7(3−(6+α7)x7−2α7x14)(1+α7x7)x35h′2

− 2(1− x7)(1 + α7x7)2x36h′′2 + 98(1 + α7)x41h3 + 7(1 + α7)(1 + α7x7)x42h′3

− 30481920α34(283− 186x7)(1 + α7x7)3 = 0,

E4 = 7(37 + 32α7x7 + 16α14x14)(1 + α7x7)x34f1 + (53 + 32α7x7)(1 + α7x7)2x35f ′1

3In order to derive the equations of motion, 3 independent Mathematica codes are used.
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+ 2(1 + α7x7)3x36f ′′1 + 147(1− (3 + 2α7)x7)x34h1

+ (37− (58 + 5α7)x7 − 16α7x14)(1 + α7x7)x35h′1 + 2(1− x7)(1 + α7x7)2x36h′′1

+ 147(1 + α7)x41h2 + 21(1 + α7)(1 + α7x7)x42h′2 (3.11)

+ 294(1 + α7)x41h3 + 21(1 + α7)(1 + α7x7)x42h′3

− 17418240(4093− (7672− 61α7)x7 + 3640x14)(1 + α7x7)2 = 0,

E5 = 49x34h1 + 7(1 + α7x7)x35h′1 + 49x34h2 − (1 + 8α7x7)(1 + α7x7)x35h′2

− (1 + α7x7)2x36h′′2 − 98x34h3 − 2(11 + 15α7x7 + 4α14x14)x35h′3 (3.12)

− (1 + α7x7)2x36h′′3 + 975421440α27(72− 65x7)(1 + α7x7)2 = 0.

The above equations come from the linear order of γ, and equations of O(γ0) are automat-

ically satisfied. In following subsections, we will solve 5 equations of motion step by step

and determine hi(x) and f1(x). Although there appear several integral constants, these

are uniquely fixed by imposing appropriate conditions. For example, we require that hi(x)

and f1(x) do not diverge around the event horizon, and h3(x) should be determined up to

the gauge transformation (3.6). Consistency conditions with the extremal limit and the

Schwarzschild one in table 1 are also taken into account. A complete form of the solution

is summarized in section 4.

3.1 Solve E1 − E2 + E3 − E4 = 0

First let us consider a combination of E1 − E2 + E3 − E4. After some calculations, it is

simplified as

0 =
E1 − E2 + E3 − E4

36x28(1 + α7x7)3

= −(x7f1)
′ − 1− x7

2

{

x7(h1 − h2)

1 + α7x7

}′

+
362880

x28
(5317− 4254x7). (3.13)

From this equation, (x7f1)
′ is expressed in terms of (h1 − h2) as

(x7f1)
′ = −1− x7

2

{

x7(h1 − h2)

1 + α7x7

}′

+
362880

x28
(5317− 4254x7). (3.14)

There remain 4 equations to be solved.

3.2 Solve E2 + E3 = 0

Next we evaluate a combination of E2 + E3.

0 =
E2 + E3

(1 + α7x7)3

= 2x28
{

8(x7f1)
′ + x(x7f1)

′′
}

+ 49(3− (6 + α7)x7 − 2α7x14)
x34(h1 − h2)

(1 + α7x7)3

+ (37− (58− 9α7)x7 − 30α7x14)
x35(h1 − h2)

′

(1 + α7x7)2
+ 2(1− x7)

x36(h1 − h2)
′′

1 + α7x7

– 7 –
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− 4354560(3297− 806x7)

= 2x28
{

8(x7f1)
′ + x(x7f1)

′′
}

+ 3(3− 10x7)x28
{

x7(h1 − h2)

1 + α7x7

}′

+ 2(1− x7)x29
{

x7(h1 − h2)

1 + α7x7

}′′

− 4354560(3297− 806x7)

= (1− x7)x29
{

x7(h1 − h2)

1 + α7x7

}′′

+ (1− 15x7)x28
{

x7(h1 − h2)

1 + α7x7

}′

− 1451520(63061− 30069x7)

=
x28

1− x7

[

x(1− x7)2
{

x7(h1 − h2)

1 + α7x7

}′]′

− 1451520(63061− 30069x7). (3.15)

Note that the eq. (3.14) is employed to eliminate f1(x) out of the equation. It is possible

to integrate the above equation once, and the result becomes

{

x7(h1 − h2)

1 + α7x7

}′

=
1451520

(1− x7)2

(

− 63061

27x28
+

9313

2x21
− 2313

x14

)

+
c1

x(1− x7)2

= 1451520

{

− 63061

27x28
− 793

54x21
− 61

9x14
+

61

54x7
+

61(8− x7)

54(1− x7)2

}

(3.16)

+
c1

x(1− x7)2
,

where c1 is an integral constant. h1(x)−h2(x) can be derived by integrating the eq. (3.16).

In order to execute the integral, we define the following function,

I(x) = log
x7(x− 1)

x7 − 1
−

∑

n=1,3,5

cos
nπ

7
log

(

x2 + 2x cos
nπ

7
+ 1

)

− 2
∑

n=1,3,5

sin
nπ

7

{

tan−1

(

x+ cos nπ
7

sin nπ
7

)

− π

2

}

. (3.17)

It is useful to note following relations.

I ′(x) =
7(1− x)

x(1− x7)
,

{

log

(

1− 1

x7

)}′

= − 7

x(1− x7)
,

{

1

7
I(x) +

1

7
log

(

1− 1

x7

)}′

= − 1

1− x7
,

{

1

7

x

x7 − 1
+

6

49
I(x) +

6

49
log

(

1− 1

x7

)}′

= − 1

(1− x7)2
, (3.18)

{

1

7

1

x7 − 1
+

1

7
log

(

1− 1

x7

)}′

= − 1

x(1− x7)2
.

By using these relations it is possible to integrate the eq. (3.16), and the result becomes

h1 − h2
1 + α7x7

=
1130053120

9x34
+

1065792

x27
+

9838080

13x20
− 273280

x13
− 1639680(x− c̃1)

x7(x7 − 1)

− 1639680

x7
I(x) +

c2
x7

− (1− c̃1)
1639680

x7
log

(

1− 1

x7

)

, (3.19)
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where c2 is an integral constant and c1 is redefined as c1 = −11477760c̃1. Because h1(x)−
h2(x) should be finite at x = 1, we choose c̃1 = 1. Then h1(x)− h2(x) takes the form of

h1 − h2 =
1130053120

9x34
+

448(21411 + 2522440α7)

9x27
+

81984(120 + 169α7)

13x20

− 273280(13− 36α7)

13x13
− 1639680

x7
+

273280(6− α7)

x6

− 1639680(1 + α7)(x− 1)

x7 − 1
− 1639680

(

1

x7
+ α7

)

I(x) +
c2
x7

+ c2α
7. (3.20)

Now we are ready to derive an explicit form of f1(x). By inserting the eq. (3.16) into

the eq. (3.14), we obtain differential equation for f1(x),

(x7f1)
′ = 725760

{

(1− x7)

(

63061

27x28
+

793

54x21
+

61

9x14
− 61

54x7

)

− 61(8− x7)

54(1− x7)

}

+
5738880

x(1− x7)
+

362880

x28
(5317− 4254x7)

= 725760

(

269681

54x28
− 240187

54x21
− 427

54x14
− 427

54x7

)

+
5738880(1− x)

x(1− x7)
. (3.21)

By using the relations (3.18), f1(x) can be solved as

f1 = −1208170880

9x34
+

161405664

x27
+

5738880

13x20
+

956480

x13
+
c3
x7

+
819840

x7
I(x), (3.22)

where c3 is an integral constant. So far we solved E1 −E2 +E3 −E4 = 0 and E2 +E3 = 0

to obtain h1(x)− h2(x) and f1(x). There remain 3 equations to be solved.

3.3 Solve E1 + E2 = 0

A linear combination of E1 + E2 is calculated as follows.

0 = − E1 + E2

2x28(1− x7)(1 + α7x7)2

= −9 + 16α7x7

2

{

x7(h1 − h2)

1 + α7x7

}′

+
34836480

x28
(67− (910 + 941α7)x7)− (x8h′2)

′

= 725760(9 + 16α7x7)

{

63061

27x28
+

793

54x21
+

61

9x14
− 61

54x7
− 61(8− x7)

54(1− x7)2

}

+
5738880(9 + 16α7x7)

x(1− x7)2
+

34836480

x28
(67− (910 + 941α7)x7)− (x8h′2)

′

= 725760

(

72709

3x28
− 2351583 + 421120α7

54x21
+

1647 + 6344α7

27x14
− 183− 1952α7

18x7

)

+ 819840(9 + 16α7)

{

7(1− x)

x(1− x7)2
− 1

1− x7

}

− 91822080α7(1− x)

x(1− x7)
− (x8h′2)

′. (3.23)

Here we employed the eq. (3.16). This is a differential equation only on h2(x), and it is

possible to integrate it once by employing the relations (3.18). The result is calculated as

h′2 = −651472640

x35
+

672(2351583 + 421120α7)

x28
− 1639680(27 + 104α7)

13x21
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+
409920(3− 32α7)

x14
+ 819840(9 + 16α7)

1− x

x8(1− x7)
+

7378560

x8
I(x)− 7c4

x8

= −651472640

x35
+

672(2351583 + 421120α7)

x28
− 1639680(27 + 104α7)

13x21

+
409920(3− 32α7)

x14
+ 1639680(9 + 8α7)

1− x

x8(1− x7)
+

(

− 1054080

x7
I(x)

)′

− 7c4
x8

= −651472640

x35
+

672(2351583 + 421120α7)

x28
− 1639680(27 + 104α7)

13x21

+
409920(3− 32α7)

x14
+

1639680(9 + 8α7)

x8
− 1639680(9 + 8α7)

x7

+

{

1054080

(

2− 1

x7
+

16α7

9

)

I(x)

}′

− 7c4
x8
, (3.24)

where c4 is an integral constant. Now it is easy to integrate the above differential equation,

and h2(x) is derived as

h2 =
19160960

x34
− 224(2351583 + 421120α7)

9x27
+

81984(27 + 104α7)

13x20

− 409920(3− 32α7)

13x13
− 234240(9 + 8α7)

x7
+

273280(9 + 8α7)

x6

+ 1054080

(

2− 1

x7
+

16α7

9

)

I(x) +
c4
x7

+ c5, (3.25)

where c5 is an integral constant. Inserting this result into the eq. (3.20), we obtain

h1 =
1302501760

9x34
− 224(2308761− 4623760α7)

9x27
+

1721664(7 + 13α7)

13x20

− 956480(5− 24α7)

13x13
− 1873920(2 + α7)

x7
+

273280(15 + 7α7)

x6

− 1639680(1 + α7)
x− 1

x7 − 1
+ 117120

(

18− 23

x7
+ 2α7

)

I(x)

+
c2 + c4
x7

+ c2α
7 + c5. (3.26)

We have already solved E1 − E2 + E3 − E4 = 0, E2 + E3 = 0 and E1 + E2 = 0 to obtain

h1(x), h2(x) and f1(x). There remain 2 equations to be solved.

3.4 Solve E5 = 0

The equation E5 = 0 should be solved to determine h3(x).

0 =
E5

7x28(1 + α7x7)2

=

{

− 2x7(h2 + h3)

1 + α7x7
− x8

7
(h2 + h3)

′ +
x7(h1 + 3h2)

1 + α7x7
− 371589120

x27
+

452874240

x20

}′

=

[

− (1+α7x7)2

7x6

{

x14(h2+h3)

(1+α7x7)2

}′

+
x7(h1+3h2)

1+α7x7
− 371589120

x27
+
452874240

x20

]′

. (3.27)
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This can be easily integrated once, and by using the eqs. (3.25) and (3.26) we obtain a

differential equation for h2(x) + h3(x).

{

x14(h2 + h3)

(1 + α7x7)2

}′

=
7x13

(1+α7x7)3

{

h1+3h2−
371589120(1+α7x7)

x34
+
452874240(1+α7x7)

x27
+
c6(1+α

7x7)

x7

}

=
7x13

(1+α7x7)3

{

− 1524454400

9x34
+
2240(883233−1156952α7)

9x27
+
4032(4636+1472055α7)

13x20

− 273280(31−228α7)

13x13
− 234240(43+32α7)

x7
+
273280(42+31α7)

x6
− 1639680(1+α7)(x−1)

x7 − 1

+ 234240

(

36− 25

x7
+ 25α7

)

I(x) +
c2 + 4c4 + c6

x7
+ c2α

7 + 4c5 + c6α
7

}

=

[

x14

(1 + α7x7)2

{

533559040

9x34
− 118368320

x27
− 21807744

13x20
+

3747840

x14
− 59301760

13x13
− 4216320

x7

+
4919040

x6
+234240

(

18− 25

x7

)

I(x)+
c2+4c4+c6

x7
+c2α

7+2c4α
7+2c5+c6α

7

}]′

where c6 is an integral constant. In order to obtain the last equality we used relations (3.18).

This is a differential equation only on h2(x) + h3(x) and we obtain

h2 + h3 =
533559040

9x34
− 118368320

x27
− 21807744

13x20
+

3747840

x14

− 59301760

13x13
− 4216320

x7
+

4919040

x6
+ 234240

(

18− 25

x7

)

I(x)

+
c2 + 4c4 + c6

x7
+ c2α

7 + 2c4α
7 + 2c5 + c6α

7 + cg

(

α7 +
1

x7

)2

, (3.28)

where cg is an integral constant. As explained in eq. (3.6), cg corresponds to the parameter

of the coordinate transformation dz → dz + cgdt. Since the explicit form of h2(x) is given

by the eq. (3.25), h3(x) is expressed as

h3 =
361110400

9x34
− 224(2404287− 421120α7)

9x27
− 81984(293 + 104α7)

13x20

+
3747840

x14
− 136640(425 + 96α7)

13x13
− 234240(9− 8α7)

x7

+
273280(9− 8α7)

x6
+ 117120

(

18− 41

x7
− 16α7

)

I(x)

+
c2 + 3c4 + c6

x7
+ c2α

7 + 2c4α
7 + c5 + c6α

7 + cg

(

α7 +
1

x7

)2

. (3.29)

Now we have solved 4 equations and derived hi(x) and f1(x). There remain only one

equation to be solved.
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3.5 Solve E1 = 0

The final independent equation which should be solved is E1 = 0. By inserting solutions

obtained so far, the equation E1 = 0 gives a relation among integral constants.

− E1

49α7x34(1 + x7)
= 1873920α14 + c3α

7 − c4(2 + α7)− c5 − c6(1 + α7) = 0. (3.30)

From this, c3 is expressed as

c3α
7 = −1873920α14 + c4(2 + α7) + c5 + c6(1 + α7). (3.31)

There remain 4 integral constants c2, c4, c5 and c6 in hi(x), which should be fixed by

imposing boundary conditions and requiring consistencies with various limits in table 1.

3.6 Determination of integral constants

Our remaining task is to determine integral constants c2, c4, c5 and c6 in hi(x). First of all,

the solution should be asymptotically flat. This means that when x goes to the infinity,

h1(x), h2(x) and f1(x) should vanish and h2(x) + h3(x) should do up to the coordinate

transformation (3.6). Since the function I(x) is expanded around x ∼ ∞ as

I(x) = − 7

6x6
+

1

x7
− 7

13x13
+

1

2x14
+O

(

1

x15

)

, (3.32)

asymptotic behaviors of h1(x), h2(x), h2(x) + h3(x) and f1(x) are evaluated like

h1 = c2α
7 + c5 +

c2 + c4
x7

+
1756800α7

x14
+O

(

1

x15

)

,

h2 = c5 +
c4
x7

+
936960α7

x14
+O

(

1

x15

)

, (3.33)

h2 + h3 = c2α
7 + 2c5 + c6α

7 +
c2 + c6
x7

− 2c4
α7x14

+

(

cg +
2c4
α7

)(

α7 +
1

x7

)2

+O
(

1

x15

)

,

f1 =
c3
x7

+
819840

x14
+O

(

1

x15

)

.

Due to the asymptotic flatness, constants in h1(x) and h2(x) should vanish in the above

equations. Therefore we obtain

c2 = c5 = 0, (3.34)

and asymptotic behaviors of h1(x), h2(x), h2(x) + h3(x) and f1(x) become

h1 =
c4
x7

+
1756800α7

x14
+O

(

1

x15

)

,

h2 =
c4
x7

+
936960α7

x14
+O

(

1

x15

)

, (3.35)

h2 + h3 = − c6
x7

− 2c4 + c6
α7x14

+

(

cg +
2c4 + c6
α7

)(

α7 +
1

x7

)2

+O
(

1

x15

)

,
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f1 =
c3
x7

+
819840

x14
+O

(

1

x15

)

.

Note that f1(x) automatically goes to zero when x→ ∞.

Below we consider consistency conditions with the extremal limit and the Schwarzschild

one in the table 1. In the extremal limit α → 0, the classical geometry preserves a half

supersymmetry and does not receive any higher curvature corrections [44]. Therefore the

mass and the charge are fixed to be the same, and we require 1
α6 f1(

r
r
−
α) should be zero and

1
α13 (h2(

r
r
−
α) + h3(

r
r
−
α)) should vanish up to the gauge transformation. These conditions

are satisfied if c3 ∼ αn(n ≥ 0) and c4 ∼ c6 ∼ αn(n ≥ 7).

On the other hand, by taking the Schwarzschild limit r− → 0 with r−α fixed, f1(
r

r
−
α)

should be finite and r7−(h2(
r

r
−
α) + h3(

r
r
−
α)) should vanish up to the gauge transformation.

These conditions are satisfied if c3 ∼ αn(n ≤ 0), c4 ∼ αn(n ≤ 13) and c6 ∼ αn(n ≤ 6).

Combining these restrictions with the eq. (3.31), we obtain

c3 = 3747840, c4 = 1873920α7, c6 = 0, (3.36)

and finally asymptotic behaviors of h1(x), h2(x), h2(x) + h3(x) and f1(x) become

h1 =
1873920α7

x7
+

1756800α7

x14
+O

(

1

x15

)

,

h2 =
1873920α7

x7
+

936960α7

x14
+O

(

1

x15

)

, (3.37)

h2 + h3 = −3747840

x14
+
(

cg + 3747840
)

(

α7 +
1

x7

)2

+O
(

1

x15

)

,

f1 =
3747840

x7
+

819840

x14
+O

(

1

x15

)

.

Therefore all integral constants except cg are uniquely determined by imposing asymptotic

flatness and requiring consistencies with the extremal limit and the Schwarzschild one.

4 3 limits of the quantum black 0-brane

4.1 The quantum black 0-brane solution

Let us summarize the quantum black 0-brane solution. The dimensional reduction of the

quantum M-wave solution is identified with the quantum black 0-brane in 10 dimensions,

and the geometry is described by

ds210 = −H−1
1 H

1

2

2 F1dt
2 +H

1

2

2 F
−1
1 dr2 +H

1

2

2 r
2dΩ2

8, (4.1)

eφ = H
3

4

2 , C =
√

1 + α7(H2H3)
−

1

2dt,

where

Hi = 1 +
r7−
r7

+
γ

r6−α
13
hi

(

r

r−α

)

, F1 = 1−
r7−α

7

r7
+

γ

r6−α
6
f1

(

r

r−α

)

. (4.2)
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And the functions hi(x) and f1(x) are uniquely determined as

h1(x) =
1302501760

9x34
− 224(2308761− 4623760α7)

9x27
+

1721664(7 + 13α7)

13x20

− 956480(5− 24α7)

13x13
− 3747840

x7
+

273280(15 + 7α7)

x6

− 1639680(1 + α7)
x− 1

x7 − 1
+ 117120

(

18− 23

x7
+ 2α7

)

I(x),

h2(x) =
19160960

x34
− 224(2351583 + 421120α7)

9x27
+

81984(27 + 104α7)

13x20

− 409920(3− 32α7)

13x13
− 2108160

x7
+

273280(9 + 8α7)

x6

+ 1054080

(

2− 1

x7
+

16

9
α7

)

I(x), (4.3)

h3(x) =
361110400

9x34
− 224(2404287− 421120α7)

9x27
− 81984(293 + 104α7)

13x20

− 136640(425 + 96α7)

13x13
− 2108160

x7
+

273280(9− 8α7)

x6

+ 117120

(

18− 41

x7
− 16α7

)

I(x),

f1(x) = −1208170880

9x34
+

161405664

x27
+

5738880

13x20
+

956480

x13
+

3747840

x7
+

819840

x7
I(x),

where the function I(x) is defined by the eq. (3.17). Note that h2(x) + h3(x) and f1(x) do

not depend on α. Below we examine 3 limits in table 1.

4.2 The extremal limit

In the extremal case, the classical solution is described by the eq. (2.2) with r+ = r−. This

is a half BPS solution and does not receive any higher curvature corrections [44]. This

is explicitly checked by taking the extremal limit α → 0 to the solution (4.1) with (4.2)

and (4.3). In fact, because of the asymptotic behaviors (3.37), all quantum corrections are

irrelevant and the solution is given by the eq. (4.1) with

Hi = 1 +
r7−
r7
, F1 = 1. (4.4)

Thus the extremal solution coincides with a half BPS solution and is not affected by the

leading quantum correction at 1-loop.

4.3 The Schwarzschild limit

The Schwarzschild limit is given by r− → 0 with r−α fixed. The solution is given by the

eq. (4.1) with

Hi = 1 +
γ

r6−α
6
ĥi

(

r

r−α

)

, F1 = 1−
r7−α

7

r7
+

γ

r6−α
6
f1

(

r

r−α

)

, (4.5)
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and

ĥ1(x) =
1035722240

9x27
+
1721664

x20
+
22955520

13x13
+
1912960

x6
−1639680

x− 1

x7 − 1
+234240I(x),

ĥ2(x) = −ĥ3(x) = −94330880
9x27

+
655872

x20
+
13117440

13x13
+
2186240

x6
+1873920I(x). (4.6)

Notice that ĥ2(x) + ĥ3(x) = 0, which means that R-R 1-form gauge field is trivial and the

R-R charge is zero.

4.4 The near horizon limit

If we take the near horizon limit α → 0 with r
r
−
α and γ

r6
−

α6
fixed, terms of higher powers

of α in the eq. (4.3) vanish and the solution is given by the eq. (4.1) with

Hi =
r7−
r7

+
γ

r6−α
13
h̃i

(

r

r−α

)

, F1 = 1−
r7−α

7

r7
+

γ

r6−α
6
f1

(

r

r−α

)

, (4.7)

and

h̃1(x) =
1302501760

9x34
− 57462496

x27
+

12051648

13x20
− 4782400

13x13
− 3747840

x7
+

4099200

x6

− 1639680
x− 1

x7 − 1
+ 117120

(

18− 23

x7

)

I(x),

h̃2(x) =
19160960

x34
− 58528288

x27
+

2213568

13x20
− 1229760

13x13
− 2108160

x7
+

2459520

x6

+ 1054080

(

2− 1

x7

)

I(x), (4.8)

h̃3(x) =
361110400

9x34
− 59840032

x27
− 24021312

13x20
− 58072000

13x13
− 2108160

x7
+

2459520

x6

+ 117120

(

18− 41

x7

)

I(x).

This is the quantum near horizon geometry of the black 0-brane which is first derived in

ref. [29]. Notice that compared with ref. [29] there is an additional 3747840
x7 term in f1(x).

As is clear form the discussions so far, this term is necessary to be consistent with the

extremal limit and the Schwarzschild one, which was not obvious in ref. [29]. Anyway, this

additional term does not affect the entropy of the black 0-brane since it depends on f1(x)

through 7f1(1) + f ′1(1).

5 Mass, R-R charge and internal energy of the quantum black 0-brane

In this section we evaluate the mass, the R-R charge and the internal energy of the quantum

black 0-brane. Formulae for the mass and the R-R charge including higher derivative

corrections are discussed in the appendix. As a result, we can employ usual ADM mass

and charge formulae.
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5.1 The mass

The mass of the quantum black 0-brane is calculated by using ADM mass formula. In

order to use the formula the metric should be written in Einstein frame. The metric in the

Einstein frame gEµν is written as gEµν = e−
φ
2 gµν , so the line element in the Einstein frame is

given by

ds2E = −H−1
1 H

1

8

2 F1dt
2 +H

1

8

2 F
−1
1 dr2 +H

1

8

2 r
2dΩ2

8

= −H−1
1 H

1

8

2 F1dt
2 +H

1

8

2

{

δij + (F−1
1 − 1)

xixj
r2

}

dxidxj , (5.1)

where r2 = (x1)2 + · · · + (x9)2 and i, j = 1, · · · , 9. Then, by using the eq. (3.37), the

deviation from the flat space-time is given by

hij = H
1

8

2

{

δij + (F−1
1 − 1)

xixj
r2

}

− δij

=
r7− + 1873920γ r−α

8r7
δij +

r7−α
7 − 3747840γ r−α

r7
xixj
r2

+O
(

1

r14

)

. (5.2)

Now we are ready to apply the ADM mass formula. The mass of the quantum black 0-brane

is evaluated as

M =
1

2κ210

∫

r=∞

dΩ8r
8(∂jh

ij − ∂ihjj)
xi
r

=
VS8

2κ210

{

8r7−α
7 + 7r7− − 16865280γ r−α

}

. (5.3)

Thus the mass receives the nontrivial quantum correction at 1-loop level.

5.2 The R-R charge

The black 0-brane couples to the R-R 1-form field and carries the R-R charge. From the

eq. (4.1), the R-R 1-form field C and 2-form field strength G2 = dC are given by

C =

(

r+
r−

)
7

2

H
−

1

2

2 H
−

1

2

3 dt,

G2 =
1

2

(

r+
r−

)
7

2

H
−

1

2

2 H
−

1

2

3

(

H−1
2

dH2

dr
+H−1

3

dH3

dr

)

dt ∧ dr. (5.4)

Then the R-R charge of the quantum black 0-brane is evaluated as

Q =
1

2κ210

∫

r=∞

∗G2

=
1

2κ210

∫

r=∞

dΩ8

{

− 1

2

(

r+
r−

)
7

2

H
1

2

1 H2H
−

1

2

3

(

H−1
2

dH2

dr
+H−1

3

dH3

dr

)

r8
}

=
1

2κ210

∫

r=∞

dΩ8

(

r+
r−

)
7

2

[

− r8
dH

dr
− γ r8

2r6−α
13

d

dr

{

h2

(

r

r−α

)

+ h3

(

r

r−α

)}]

=
VS8

2κ210
7r7−

√

1 + α7. (5.5)

Quantum corrections do not contribute to the R-R charge because h2(
r

r
−
α)+h3(

r
r
−
α) ∼

1
r14

when r → ∞. Therefore the R-R charge remains the same as the classical one.
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6 Validity of the quantum black 0-brane solution

So far we constructed the quantum black 0-brane solution by considering the effective

action (3.1). After the dimensional reduction, this corresponds to the leading quantum

correction to the type IIA supergravity. However, this is a part of the effective action in

the type IIA superstring theory, so the black 0-brane is affected by other higher derivative

corrections in general. In this section, we examine those corrections and clarify the validity

of the solution (4.1).

Since we compactify the 11 dimensional direction on the circle, when the radius of

the circle is finite, the Kaluza-Klein modes give nontrivial contributions to the effective

action. This corresponds to the leading tree level effective action, which is expressed by

by e−2φR4 [45]. It is also known that there are terms of e2φ∂4R4 at two loop level [46].

Although the full structure of the effective action of the type IIA superstring theory is not

completed yet, from the string duality arguments, it takes the following form [47]

g2se
2φL ∼ R+

(

α′3R4 + α′5∂4R4 + · · ·
)

+ g2se
2φ
(

α′3R4 + α′6∂6R4 + · · ·
)

+ (g2se
2φ)2

(

α′5∂4R4 + · · ·
)

+ · · ·+ (g2se
2φ)n

(

α′3+n∂2nR4 + · · ·
)

+ · · · , (6.1)

where α′ = ℓ2s. The Riemann tensor behaves like Rabcd ∼ E2, where E is a typical energy

of the black 0-brane, such as the internal energy. Then the dimensional analysis shows that

g2se
2φL ∼ E2

{

1 +
(

α′3E6 + α′5E10 + · · ·
)

+ g2s
(

α′3E6 + α′6E12 + · · ·
)

+ g4s
(

α′5E10 + · · ·
)

+ · · ·+ g2ns
(

α′3+nE6+2n + · · ·
)

+ · · ·
}

. (6.2)

The leading 1-loop quantum correction g2sα
′3E6 becomes sub-dominant when

1 < g2s <
1

α′E2
. (6.3)

The solution (4.1) is valid in this region. This means that the radius of the 11th direction

gsℓs is large compared to the string scale, and the typical energy E is small compared to

the Kaluza-Klein mass 1
gsℓs

.

7 Conclusion and discussion

In this paper we investigated the quantum corrections to the non-extremal M-wave and

black 0-brane solutions. The effective action for the M-theory is taken into account includ-

ing higher curvature R4 terms, and the equations of motion for the non-extremal M-wave

are analytically solved up to the leading quantum level. The Kaluza-Klein reduction of the

quantum M-wave gives the quantum black 0-brane solution which is asymptotically flat.

The explicit form of the solution is given by eqs. (4.1)–(4.3). The integral constants of the

solution are uniquely fixed by imposing asymptotic flatness and finiteness around the event

horizon. We also required consistencies with the extremal limit and the Schwarzschild one

in the table 1. The extremal limit of the solution remains the same as the classical one,
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so it is not affected by the leading quantum corrections. The Schwarzschild limit of the

quantum black 0-brane is given by eqs. (4.5) and (4.6). The near horizon limit is done by

eqs. (4.7) and (4.8). Notice that the near horizon limit of the metric is the same as that

in ref. [29] except 1
x7 term in f1(x). This extra term was dropped in ref. [29] by imposing

stronger boundary condition. Nevertheless, this does not affect physical quantities, such

as the near horizon limit of the internal energy.

The quantum corrections to the ADM mass and the R-R charge are discussed in the

appendix. We employed Noether and Wald’s method with the vielbein formalism. After

some calculations we concluded that the corrections are suppressed at the spacial infinity

and the ADM mass and the charge formulae are still valid for the quantum black 0-brane.

The mass of the quantum black 0-brane receives the quantum correction, and the R-R

charge remains the same as the classical one. This would be a renormalization of the mass

of the gravitational objects.

One of the important future works is to generalize the above discussions to the other

black p-branes. Although our knowledge of the effective action for the superstring theory

is limited, it is possible to consider quantum corrections to the black 6-brane, since this

is uplifted to a Kaluza-Klein monopole solution in 11 dimensions. It is also possible to

construct Schwarzschild black hole solutions in various dimensions by compactifications.

Schwarzschild black hole in 11 dimensions is important from the viewpoint of the test of

gauge gravity duality. The solution in 4 dimensions will also be important because it could

give some astrophysical predictions to be observed in the future. For other black p-branes,

first we need to know the effective action including R-R gauge fields.
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A Higher derivative corrections to the ADM mass and the R-R charge

Since the effective action of the M-theory (3.1) contains higher curvature terms, the ADM

mass formula and the charge of the non-extremal M-wave or the black 0-brane would be

affected by these terms. In this section we derive higher curvature corrections to the ADM

mass and the charge via Noether and Wald’s method [48, 49]. We use the vielbein formalism

which is important for the supergravity [50].

First, the variation of the Lagrangian (3.1) is evaluated as

2κ211δL = e
(

ηacηbd + γXabcd
)

δRabcd − eeaM

{

R+ γ

(

t8t8R
4 − 1

4!
ǫ11ǫ11R

4

)}

δeMa

= 2e

[

Rij −
1

2
ηijR+ γ

{

RabciX
abc

j −
1

2
ηij

(

t8t8R
4 − 1

4!
ǫ11ǫ11R

4

)}]

δeij

− 2e
(

ηacηbd + γXabcd
)

Ddδωcab
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= 2e

[

Rij −
1

2
ηijR+ γ

{

RabciX
abc

j −
1

2
ηij

(

t8t8R
4 − 1

4!
ǫ11ǫ11R

4

)}]

δeij

+ 2γeDdX
abcd

(

δkaηbiηcj + δkaηbjηci + δkc ηiaηbj
)

Dkδe
ij

− 2∂M
{

e
(

eNaeMb + γXabNM
)

δωNab

}

= 2eEijδe
ij ++∂M

(

eΘM (δ)
)

, (A.1)

where δeij = eiMδe
Mj and ΘM (δ) is defined by

ΘM (δ)=2eMaeNbδωNab+2γ
{

XabMNδωNab+e
Ma(DbXaijb+D

bXajib+D
bXabij)δe

ij
}

. (A.2)

Eij = 0 is the equations of motion given by the eq. (3.3). The variation of the Lagrangian

becomes total derivative term up to Eij = 0. Since these variations are not covariant

under the local Lorentz transformation, we consider following field dependent local Lorentz

transformation simultaneously.

δLe
M

a = −eMbǫ
b
a,

δLωN
ab = −DN ǫ

ab, (A.3)

ǫab =
1

2
eaP δe

Pb − 1

2
ebP δe

Pa.

Then the variations of fields with (A.3) becomes

δ̄eMa = −1

2
gMNδgNP e

P
a,

δ̄ωN
ab =

1

2
eaP ebQ(∇QδgPN −∇P δgQN ), (A.4)

where ∇P represents a covariant derivative with respect to space-time indices. These

variations are covariant under local Lorentz transformation. In the following we write δ̄ as

δ for simplicity. Now we consider the variation for the general coordinate transformation

x′M = xM − ξM . In this case the variation (A.4) becomes

δξe
M

a = −1

2
eMb(Daξb +Dbξa),

δξωN
ab =

1

2
ecN

{

Db(Dcξa +Daξc)−Da(Dcξb +Dbξc)
}

(A.5)

= ξPRab
PN − 1

2
DN (Daξb −Dbξa).

Inserting the eq. (A.5) into the eq. (A.2), ΘM (ξ) = ΘM (δξ) is evaluated as

eΘM (ξ) = 2eRM
Nξ

N − eeMae
N

bDN (Daξb −Dbξa)

+ 2γ
{

eRabciX
abcMξi − eeMjX

ajibDaDbξi + eeMj(DbX
ijab +DbX

ajib)Daξi
}

= 2eRM
Nξ

N + 2γ
{

eRabciX
abcMξi − eeMj(DaDbX

ijab + 2D(aDb)X
aijb)ξi

}

+ ∂N
[

− 2e∇[MξN ] − 2γe
{

XMNPQ∇P ξQ + eMie
N

a(DbX
ijab − 2DbX

a(ij)b)ξj
}]

= ∂N
[

− 2e∇[MξN ] − 2γe
{

XMNPQ∇P ξQ + eMie
N

a(DbX
ijab − 2DbX

a(ij)b)ξj
}]

+ 2κ211ξ
ML+ 2eeMjξiEij . (A.6)
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Therefore the variation of the Lagrangian is given by

2κ211δξL = ∂M (eΘM (ξ)) + 2eEijδe
ij , (A.7)

eΘM (ξ) = ∂N
(

eQMN (ξ)
)

+ 2κ211ξ
ML+ 2eeMjξiEij ,

eQMN (ξ) = −2e∇[MξN ] − 2γe
{

XMNPQ∇P ξQ + eMie
N

a(DbX
ijab − 2DbX

a(ij)b)ξj
}

.

Next, let us consider the variation of the Lagrangian by using the general covariance.

Since e−1L transforms as a scalar field, the Lagrangian does like

δξL = ∂M
(

ξML
)

. (A.8)

From the eqs. (A.7) and (A.8), the Noether current is constructed as

2κ211eJ
M (ξ) = eΘM (ξ)− 2κ211ξ

ML+ ∂N
(

eQ̃MN (ξ)
)

= ∂N
{

e
(

QMN (ξ) + Q̃MN (ξ)
)}

+ 2eeMjξiEij . (A.9)

Here Q̃MN (ξ) is an antisymmetric tensor and represents the ambiguity of the current. In

order to fix Q̃MN (ξ), let us consider the variation of the current.

δ
(

2κ211eJ
M (ξ)

)

= δ
(

eΘM (ξ)
)

− 2κ211ξ
MδL+ ∂N

{

δ
(

eQ̃MN (ξ)
)}

= δ
(

eΘM (ξ)
)

− ξM∂N
(

eΘN (δ)
)

− 2eξMEijδe
ij + ∂N

{

δ
(

eQ̃MN (ξ)
)}

= eωM (ξ, δ)+∂N
{

− 2eξ[MΘN ](δ)+δ
(

eQ̃MN (ξ)
)}

−2eξMEijδe
ij , (A.10)

where we defined the symplectic current

eωM (ξ, δ) = δ
(

eΘM (ξ)
)

− δLξ
(

eΘM (δ)
)

. (A.11)

The integral of the symplectic current over Cauchy surface gives the variation of the Hamil-

tonian. Therefore in order to obtain correct equations of motion, we should eliminate the

surface term in the eq. (A.10). So we choose the variation of Q̃MN (ξ) as

δ
(

eQ̃MN (ξ)
)

= 2eξ[MΘN ](δ). (A.12)

From the eq. (A.9), the variation of the current is given by

δ
(

2κ211eJ
M (ξ)

)

= ∂N
{

δ
(

eQMN (ξ)
)

+ 2eξ[MΘN ](δ)
}

+ δ
(

2eeMjξiEij

)

. (A.13)

Conserved quantities are obtained by integrating ejt(ξ) over 10 dimensional space.

When ξ is chosen as an asymptotic time translation ξT and the variation of the fields,

such as δeMa, satisfy linearized equations of motion, the variation of the mass is given by

δM =
1

2κ211

∫

r=∞

{

δ
(

eQtr(ξT )
)

+ 2eξ
[t
TΘ

r](δ)
}

=
1

2κ211

∫

r=∞

{

δ
(

− 2e∇[tξ
r]
T

)

+ 4eξ
[t
T e

r]aeNbδωNab

}

+
γ

2κ211

∫

r=∞

[

δ
{

− 2eXtrPQ∇P ξTQ − 2eetie
r
a(DbX

ijab − 2DbX
a(ij)b)ξTj

}
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+ 4eξ
[t
TX

r]NabδωNab + 4eξ
[t
T e

r]a(DbXaijb +DbXajib +DbXabij)δe
ij
]

=
1

2κ211

∫

r=∞

{

δ
(

− 2e∇[tξ
r]
T

)

+ 2eξ
[t
T g

r]P gNQ(∇QδgPN −∇P δgQN )
}

. (A.14)

Since each non zero component of the Riemann tensor behaves like Rabcd ∼ O( 1
r9
) asymp-

totically, in the above we dropped terms which depend on Xabcd. The last equation is

equivalent to the variation of the ADM mass [49]. Therefore the mass is simply given by

the ADM mass formula.

When ξ is chosen as an asymptotic translation along z direction ξZ , it satisfies

ξtZΘ
r(δ)− ξrZΘ

t(δ) = 0, and the charge is given by

Q =
1

2κ211

∫

r=∞

eQtr(ξZ)

=
1

2κ211

∫

r=∞

(

− 2e∇[tξ
r]
Z

)

+
γ

2κ211

∫

r=∞

{

− 2eXtrPQ∇P ξZQ − 2eetie
r
a(DbX

ijab − 2DbX
a(ij)b)ξZj

}

=
1

2κ210

∫

r=∞

√
−g Gtr. (A.15)

As explained in the mass formula, terms which depend on Xabcd are dropped, and the

dimensional reduction (2.3) is used in the last step. Thus the R-R charge is given by the

integral of the R-R flux as usual.

Finally we choose the Killing vector as ξ = ξT + ΩξZ , which becomes zero at the

bifurcate horizon Σ. Then δξe
M

a = δξωN
ab = 0, and the symplectic current and the

variation of the current also vanish. Furthermore, if the variation of the fields, such as

δeMa, satisfy linearized equations of motion, the eq. (A.13) is simplified as

0 =
1

2κ211
∂N

{

δ
(

eQMN (ξ)
)

+ e
(

ξMΘN (δ)− ξNΘM (δ)
)}

. (A.16)

By integrating the above equation over 10 dimensional asymptotically flat space with the

horizon, we derive the first law of the black hole,

δM +ΩδQ =
κ

2π
δS. (A.17)

Here κ is the surface gravity which is given by ∇MξN = κNMN at the bifurcate horizon

Σ, and NMN is an antisymmetric tensor which is binormal to the bifurcate horizon Σ. S

corresponds to the entropy and is given by

S = − 2π

2κ211

∫

Q

√
h(gMP gNQ + γXMNPQ)NMNNPQ. (A.18)

√
h is a volume factor of Σ.
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B Near horizon limit of the internal energy

The internal energy E of the quantum black 0-brane is defined by E =M −Q. From the

eqs. (5.3) and (5.5), the internal energy is written as

E =
VS8

2κ210

(

8r7−α
7 + 7r7− − 7r7−

√

1 + α7 − 16865280γ r−α
)

. (B.1)

Below we consider the near horizon limit of the internal energy, which was first derived in

ref. [29] by using the black hole thermodynamics.

Since we will express E in terms of the temperature in the near horizon limit, first we

need to derive the relation between parameters in the solution and the temperature. The

location of the event horizon r = rH is obtained by solving F1(rH) = 0 and modified up to

the linear order of γ as

rH = r−α− γ

7r5−α
5
f1(1). (B.2)

The Hawking temperature of the black 0-brane is given by

T =
1

4π
H

−
1

2

1

dF1

dr

∣

∣

∣

∣

rH

=
7r

5

2

−α
5

2

4πr
7

2

−

√
1 + α7

[

1+
γ

r6−α
6

{(

8

7
− 1

2(1 + α7)

)

f1(1)+
1

7
f ′1(1)−

1

2(1+α7)
h1(1)

}]

, (B.3)

up to the linear order of γ. Now let us take the near horizon limit,

α→ 0,
r7±
ℓ10s

→ (2π)415πλ with U0 =
r−α

ℓ2s
,

γ

r6−α
6
=

π6λ2

2732N2U6
0

fixed. (B.4)

Then the temperature (B.3) approaches to

T̃ = a1Ũ
5

2

0

(

1 + ǫa2Ũ
−6
0

)

, (B.5)

where

a1 =
7

16π3
√
15π

∼ 2.06× 10−3,

a2 =
9

14
f1(1) +

1

7
f ′1(1)−

1

2
h1(1) ∼ −4.02× 105, (B.6)

ǫ =
π6

2732N2
∼ 0.835

N2
.

Here dimensional quantities T̃ ≡ T/λ
1

3 and Ũ0 ≡ U0/λ
1

3 are introduced to make expressions

simple. From the eq. (B.5), it is possible to express Ũ0 in terms of T̃ as

Ũ0 = a
−

2

5

1 T̃
2

5

(

1− 2

5
ǫa

12

5

1 a2T̃
−

12

5

)

. (B.7)

By using this relation, the near horizon limit of the internal energy is expressed as a function

of the temperature.
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Finally let us evaluate the near horizon limit of the internal energy. By taking the

near horizon limit (B.4) and using 2κ210 = (2π)7ℓ8sg
2
s = (2π)11ℓ14s λ2

N2 , VS8 = 2(2π)4

7·15 and the

eq. (B.7), it is calculated as follows.

E =
2N2

(2π)7105ℓ14s λ
2

(

9

2
U7
0 ℓ

14
s − 16865280ǫλ2U0ℓ

14
s

)

=
9N2λ

1

3

(2π)7105

(

Ũ7
0 − 3747840ǫŨ0

)

=
9N2λ

1

3

(2π)7105

{

a
−

14

5

1 T̃
14

5 − ǫ

(

14

5
a2 + 3747840

)

a
−

2

5

1 T̃
2

5

}

. (B.8)

By inserting numerical values of (B.6), the dimensionless internal energy of the quantum

black 0-brane Ẽ = E/λ
1

3 is written as

Ẽ

N2
= 7.41T̃

14

5 − 5.77

N2
T̃

2

5 . (B.9)

This is exactly the same as the result derived in ref. [29]. The above relation is also

reproduced by the numerical simulation from the dual gauge theory [36], which strongly

supports the gauge gravity duality at the quantum level.
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