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1 Introduction

Integrability has played an important role in understanding the spectrum of the superstring

theory on AdS5 × S5 [1]. This fact has been one of the key ingredient in exploring the

conjectured AdS/CFT duality [2] because of the fact that in planar limit both sides of the

duality, namely the gauge theory and string theory, are more tractable [3–7]. This stems

from the basic fact that bosonic rigid spinning strings in the AdS5 × S5 space-time are

naturally described as periodic solutions of the finite dimensional integrable system. It

was further noticed that the string theory is also integrable in the semiclassical limit and

the anomalous dimension of the N = 4 Super Yang Mills (SYM) can be derived from the

relation between conserved charges of the rotating strings in AdS5 × S5.

There have been many ideas to introduce various classes of integrable deformations

to the string sigma model on AdS5 × S5. Typically they are constructed by applying T-

duality on any given integrable model(e.g. [11–16]). Contrary to the usual wisdom, however

more recently, a novel example of a one-parameter integrable deformation of the AdS5×S5

supercoset model was found in [8], following earlier proposals.1 This model is parameterized

by a real deformed parameter η ∈ [0, 1) and string tension T ≡ g =
√
λ

2π . This model appears

to be quite complicated and involved due to the presence of fermionic degrees of freedom.

As a first step to understand the background better in [17] a Lagrangian corresponding to

the bosonic degrees of freedom has been studied in detail. Infact, the tree-level bosonic

S-matrix was also computed and quite successfully matched with the semi-classical limit

of the q-deformed S-matrix computed in [18, 19]. In a related development, the bosonic

1Also in [9, 10] non-standard q-deformed model based on the classical r-matrix satisfying classical Yang-

Baxter equations was explored.
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subsectors of the q-deformed AdS5 × S5 superstring action was studied and the classical

integrable structure of anisotropic Landau-Lifshitz sigma models was derived by taking

fast-moving limits in [20]. Recently in [21] the bosonic spinning strings in the η-deformed

(AdS5×S5) have been studied, and shown that they are naturally described by the periodic

solution of a new finite dimensional integrable system, which in turn could be viewed as a

deformed Neumann model. Restricting the motion of the string to the deformed sphere, the

Lax representation for the deformed Neumann model has been presented. In [22] various

deformation limits are discussed. In particular, in the so called maximal deformation

(η = 1), the AdS5 × S5 is transformed to the T dual of the double wick rotated version

of iteself, i.e. dS5 ×H5, where dS5 is the five dimensional de-Sitter and the H5 is the five

dimensional hyperboloid. The corresponding worldsheet theory is non-unitary, nevertheless

the later is a solution to the type IIB supergravity equations of motion with a imaginary

five form flux. Infact more recently this problem of non-unitarity was resolved in [23] in a

background known as mirror space [24] which is formally related to dS5 ×H5 by a double

T -duality. The mirror sigma model, which is derived by taking a double Wick rotation in

the worldsheet theory of light cone AdS5×S5, inherits the symmetries, and the integrability

of the light cone AdS5 × S5 sigma model, and is well-behaved. The corresponding metric

admits a lift to a full solution of the standard type IIB supergravity as well. There exists

also the so called “imaginary deformation” η = i, in which the total 10d metric transforms

into a pp-wave like background having a curved transverse part. In [22], using a related

parameter κ,2 the 6d and 4d reductions of the total 10d metric have been performed and

(AdS3 × S3)κ and (AdS2 × S2)κ backgrounds have been proposed. The integrability of

the 6d and 4d stems from the fact that the original 10d spacetime is integrable. Knowing

the integrability of the sigma model in the limiting background, it is interesting to explore

the dual gauge theories and the corresponding stringy states in the string theory side. It

is notable that the deformed 10d background breaks the SO(2, 4) × SO(6) symmetry of

AdS5 × S5 into [U(1)]6 , making the dual field theory description obscure. Of course the

role of this deformation parameter κ in the dual CFT is not clear at all. In order to

know more about the boundary field theory, it is imperative to investigate various rotating

and pulsating strings in the gravity side and then look for the relevant operators. In this

connection, in a subspace of the deformed AdS5 × S5, the so called giant magnon solution

was proposed and the magnon excitation energy was computed in [25]. In the deformed

parameter κ → 0 limit, it reduces to the form of usual giant magnon dispersion relation

proposed by Hofman-Maldacena (HM) [26]. The HM giant magnon dispersion relation was

derived in the string theory side by looking at the rigidly rotating strings in the AdS5×S5.

General rotating and pulsating string solutions in the semiclassical limit have been

very useful in understanding the AdS/CFT like dualities in various backgrounds. The

semiclassical calculations in the string theory side has shown that the multi spin rotating

and pulsating string solutions beyond their BPS limit with large charges are in perfect

agreement with the ones calculated in dual gauge theory. The pulsating strings in general

correspond to the highly excited sigma model operators. In this connection a large number

2
κ = 2η

1−η2 [17], where κ ∈ [0,∞).
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of rotating and pulsating string solutions have been studied in various string theory back-

grounds, see for example, [27–39]. Motivated by the recent surge of interest in the string

spectrum of deformed AdS5 × S5 background that in general preserves the integrability,

here we find a class of rotating and pulsating strings in this background [22]. We solve

for the most general ansatz for the rotating strings in various subspaces of κ-deformed

AdS3 × S3 and look for classical solutions. We construct two classes of solutions corre-

sponding to the giant magnon [25, 40] and single spike solutions from the equations of

motion of a fundamental string in this deformed background.3 Single Spike strings are a

general class of solutions corresponding to the higher twist operators in gauge theory [27].

Furthermore it was also shown that the giant magnon can be thought of as a subclass of

more general solutions in the short wavelength limit. Infact in [35] it was found out that

both the giant magnon and single spike solutions of the string on the sphere can be thought

of as two limiting solutions.

Rest of the paper is organized as follows. In section-2, we will study the rotating

strings in the κ-deformed AdS3 × S3 background. As explained in [22] this background

reduced from the κ-deformed AdS5×S5 [17] does not contain a NS-NS B-field even though

the original space has it. We find two classes of solutions corresponding to the known giant

magnon and new single spike solutions of the F-string equations of motion in two different

subspaces of the κ-deformed AdS3 × S3. We write the relevant dispersion relations and

check that in κ → 0 limit they do reduce to the known dispersion relations. We also provide

some additional comments here. Section-3 is devoted to the study of string solutions which

is pulsating in S3
κ. In section-4 we conclude with some remarks.

2 Rigidly rotating strings in κ-deformed AdS3 × S3

We are interested in the deformed AdS3×S3 metric proposed in [22] (a consistent reduction

from the deformed AdS5 × S5 [17]). It is given by

ds2 = −h(ρ)dt2 + f(ρ)dρ2 + ρ2dψ2 + h̃(r)dϕ2 + f̃(r)dr2 + r2dφ2 , (2.1)

where

h(ρ) =
1 + ρ2

1− κ2ρ2
, f(ρ) =

1

(1 + ρ2)(1− κ2ρ2)

h̃(r) =
1− r2

1 + κ2r2
, f̃(r) =

1

(1− r2)(1 + κ2r2)
, (2.2)

and the NS-NS two form B field vanishes. We are interested in studying rigidly rotating

and pulsating strings in this background in two different planes of rotation when the motion

is restricted to Rt×S3
κ only which can be obtained by putting ρ = 0.4 The relevant metric

is written as

ds2 = −dt2 + 1− r2

1 + κ2r2
dϕ2 +

1

(1− r2)(1 + κ2r2)
dr2 + r2dφ2 . (2.3)

3Finite size giant magnon solution in η deformed AdS5 × S5 has been investigated in [41].
4this has been argued by solving the equations of motion of a fundamental string in the given background

in [40].
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2.1 String rotating in (θ, ϕ) plane

We start by putting φ = constant and r = cos θ in (2.3) to get the 2d subspace which is

just the 1-parameter κ-deformed S2 solution presented in [22] as

ds2 = −dt2 + 1

1 + κ2 cos2 θ
dθ2 +

sin2 θ

1 + κ2 cos2 θ
dϕ2 (2.4)

Our starting point is the Polyakov action of the string in this Rt×Sκ-deformed background

S = − T̂
2

∫
dσdτ [

√−γγαβgMN∂αX
M∂βX

N ] , (2.5)

where γαβ is the world-sheet metric and T̂ = T
√
1 + κ2 is the effective string tension [17].

Under conformal gauge (i.e.
√−γγαβ = ηαβ) with ηττ = −1, ησσ = 1 and ητσ = ηστ = 0.

Here we have to mention that when the deformation parameter κ has a general value, it

is not known whether the total 10d background satisfies full type IIB supergravity field

equations. Specifically the RR fluxes and the nontrivial dilaton are not exactly known in

this case. Indeed, it was shown in [22] that the full (AdS3 × S3)κ admits a dilaton and

RR 3-form fluxes in the κ → i limit. But since we are using the conformal gauge, the

worldsheet scalar curvature R(2) = 0, so that the dilaton will not affect the worldsheet

action in general.

Variation of the action (2.5) with respect to XM gives us the following equation of

motion

2∂α(η
αβ∂βX

NgKN ) − ηαβ∂αX
M∂βX

N∂KgMN = 0 , (2.6)

and variation with respect to the metric gives the two Virasoro constraints,

gMN (∂τX
M∂τX

N + ∂σX
M∂σX

N ) = 0 ,

gMN (∂τX
M∂σX

N ) = 0 . (2.7)

To study rotating strings in this background we use the following ansatz

t = µτ, θ = θ(y), ϕ = ω(τ + h(y)), y = σ − vτ . (2.8)

The equation of motion for ϕ gives

∂yh =
1

1− v2

[
A1(1 + κ

2 cos2 θ)

sin2 θ
− v

]
. (2.9)

A1 here is an integration constant. Putting the above equation into the equation of motion

for θ we get

(1− v2)2(
∂θ

∂y
)2 = − ω2

[
A2

1(1 + κ
2 cos2 θ)2

sin2 θ
+ sin2 θ

]

+ A2(1 + κ
2 cos2 θ) . (2.10)
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Since we are interested in the infinite J magnon, we put the boundary condition when

θ = θmax = π/2 , ∂θ
∂y → 0. This means A2 = ω2(A2

1 + 1). Now putting these values back

into the θ equation of motion, we recover

(1− v2)2
(
∂θ

∂y

)2

= ω2(1 + κ
2) cot2 θ[sin2 θ(1 +A2

1κ
2)−A2

1(1 + κ
2)] , (2.11)

which leads to the equation

∂θ

∂y
=
ω
√

(1 + κ2)(1 +A2
1κ

2) cot θ

(1− v2)

√
sin2 θ − sin2 θ0 , (2.12)

where

sin2 θ0 =
A2

1(1 + κ
2)

1 +A2
1κ

2
. (2.13)

Again subtracting the two Virasoro constraints we get a relation between the constants

µ2 − ω2A1

v
= 0 . (2.14)

Also by equating the θ equation with the first Virasoro constraint we get the equation for

A1 as

A2
1 −A1

1 + v2

v
+ 1 = 0, (2.15)

the solutions of which gives the values of A1 consistent with the Virasoro constraints. We

can see the roots of the above equation correspond to two different limiting solutions which

we identify as

A1 = v magnon case

=
1

v
single spike case (2.16)

Now the symmetry of the background gives rise to the following conserved charges

E = −
∫
∂L
∂ṫ
dσ

=
T̂√

(1 + κ2)(1 +A2
1κ

2)

µ(1− v2)

ω

∫
sin θ dθ

cos θ
√
(sin2 θ − sin2 θ0)

Jϕ =

∫
∂L
∂ϕ̇

dσ = T̂

∫
ϕ̇ gϕϕ dσ

=
T̂√

(1 + κ2)(1 +A2
1κ

2)
(1− vA1)

∫
sin θ dθ

cos θ
√
(sin2 θ − sin2 θ0)

− T̂

√
(1 + κ2)

(1 +A2
1κ

2)

∫
sin θ cos θ dθ

(1 + κ2 cos2 θ)
√

(sin2 θ − sin2 θ0)
. (2.17)

The angle deficit in this case can be defined by

∆ϕ = ω

∫
∂h

∂y
dy

=
1√

(1 + κ2)(1 +A2
1κ

2)

∫ (
A1(1 + κ

2 cos2 θ)

sin2 θ
− v

)
sin θ dθ

cos θ
√
(sin2 θ − sin2 θ0)

.

(2.18)
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Now we wish to find the relation between the above Noether charges in the limits mentioned

in (2.16) using some particular regularization scheme to avoid divergences.

2.1.1 Giant magnon solution

Using the limit A1 = v we evaluate the charges as explained above. The expression for

energy

E = 2
T̂√

(1 + κ2)(1 + v2κ2)

µ(1− v2)

ω

∫ π/2

θ0

sin θ dθ

cos θ
√
(sin2 θ − sin2 θ0)

(2.19)

diverges in the upper limit. While the angular momenta looks like

Jϕ =
2T̂√

(1 + κ2)(1 + v2κ2)
(1− v2)

∫ π/2

θ0

sin θ dθ

cos θ
√
(sin2 θ − sin2 θ0)

− 2T̂

√
(1 + κ2)

(1 + v2κ2)

∫ π/2

θ0

sin θ cos θ dθ

(1 + κ2 cos2 θ)
√
(sin2 θ − sin2 θ0)

, (2.20)

which is also divergent evidently due to the first integral. However the difference ωE
µ − Jϕ

remains finite. This can be easily seen by writing explicitly,

Ẽ − Jϕ = 2T̂

√
(1 + κ2)

(1 + v2κ2)

∫ π/2

θ0

sin θ cos θ dθ

(1 + κ2 cos2 θ)
√
(sin2 θ − sin2 θ0)

=
2T̂

κ

√
(1 + κ2)

(1 + v2κ2)(1 + κ2 cos2 θ0)
tanh−1(

κ cos θ0√
1 + κ2 cos2 θ0

). (2.21)

Here Ẽ = ωE
µ is the re-scaled energy.5 We can also evaluate the deficit angle, which is a

finite quantity in this limit, as

∆ϕ =
2v

√
1 + κ2

√
1 + v2κ2

∫ π/2

θ0

cos θ dθ

sin θ
√
(sin2 θ − sin2 θ0)

=
2v

√
1 + κ2

√
1 + v2κ2

cos−1(sin θ0)

sin θ0

= 2 cos−1(sin θ0). (2.22)

Here, we have used the value of sin θ0 from (2.13). So using the above expression, we can

readily see that the finite difference (2.21) takes the form

Ẽ − Jϕ =
2T̂

κ
tanh−1


 κ| sin(∆ϕ

2 )|√
1 + κ2 sin2(∆ϕ

2 )


 , (2.23)

Which is the giant magnon dispersion relation presented in [40]. It can be shown that

under a κ → 0 limit the above expression reduces to the form of HM giant magnon on

R× S2

lim
κ→0

Ẽ − Jϕ = 2T sin

(
∆ϕ

2

)
=

√
λ

π
sin

(
∆ϕ

2

)
. (2.24)

5Here one can note that from (2.14) the scaling factor ω

µ
can be safely put to be 1 in this case.
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Further it has also been noted in [40] that the giant magnon dispersion relation (2.23)

can be shown to agree with the magnon excitation energy calculated in [25], by using the

relation between η and κ defined in [17].

2.1.2 Single spike solution

In the opposite limit solution we put A1 = 1
v , so the expression for energy remains the

same

E =
2T̂√

(1 + κ2)(1 + κ2

v2
)

µ(1− v2)

ω

∫ θ0

π/2

sin θ dθ

cos θ
√
(sin2 θ − sin2 θ0)

. (2.25)

The angular momentum Jϕ now becomes finite as

Jϕ = −2T̂

√
(1 + κ2)

(1 + κ2

v2
)

∫ θ0

π/2

sin θ cos θ dθ

(1 + κ2 cos2 θ)
√
(sin2 θ − sin2 θ0)

=
2T̂

κ
tanh−1

(
κ cos θ0√

1 + κ2 cos2 θ0

)
. (2.26)

We can show that in the required limit the above reduces to the known value as

lim
κ→0

Jϕ = 2T cos θ0. (2.27)

In this case we can also write the expression for deficit angle as

∆ϕ =
2√

(1 + κ2)(1 + κ2

v2
)

[(
1

v
− v

)∫ θ0

π/2

sin θ dθ

cos θ
√
(sin2 θ − sin2 θ0)

+
1 + κ

2

v

∫ θ2

π/2

cos θ dθ

sin θ
√
(sin2 θ − sin2 θ0)

]
. (2.28)

This is now a divergent quantity, but we can subtract the divergent integral by combining

it with E as follows

Ē − T̂∆ϕ =
ωE

µv
− T̂∆ϕ

= −2T̂

v

√
1 + κ2

√
1 + κ2

v2

∫ θ0

π/2

cos θ dθ

sin θ
√
(sin2 θ − sin2 θ0)

=
2T̂

v

√
1 + κ2

√
1 + κ2

v2

cos−1(sin θ0)

sin θ0

= 2T̂

(
π

2
− θ0

)
, (2.29)

which is analogous to the usual spike height relation, where θ̄ = (π2 −θ0) denotes the height
of the spike.6 This relation evidently reduces to the usual spike height relation [35] in the

κ → 0 limit.

6Again we note that the scaling factor ω

µv
can be put to be unity from (2.14) in this case.
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Before we close this section, let us make some remarks about the fate of our solution in

the two different limits of the background discussed in [22] i.e. i) κ = i and ii) κ = ∞. As

explained in [22], in the first limit, together with scaling of the coordinates, transforms the

background to a pp-wave geometry with the transverse part having a non zero curvature.

However the limit has to be taken cautiously, because naively taking κ → i will make the

effective string tension T̂ vanish. For this purpose we can follow the recipe pointed out

in [22] and take the limit in non trivial way as

κ
2 = −1 + sǫ2, t =

x+

ǫ
− ǫx−, ϕ =

x+

ǫ
+ ǫx− (2.30)

where ǫ → 0 and s can be put to 1 after taking the limit without loss of generality. For

the simple deformed (R× S2) case ((θ, ϕ) plane) we can find the pp-wave type metric as

ds2 = 4dx+dx− − sinh2 β(dx+)
2 + dβ2, (2.31)

where we have used the transformation r = tanhβ. Evidently when sinhβ = β, this

reduces to the usual pp-wave metric for AdS backgrounds, which have been extensively

studied. However, studying string solutions in this type of pp-wave backgrounds with

general rotating string ansatz as proposed in (2.8) may not be useful. However, one can

study simpler solutions like the “straight strings” in the AdS-pp wave background as studied

in, for example, [43].

On the other hand κ = ∞ limit relates the AdS5 × S5 metric to the T-dual of double

wick rotated version of it, i.e. dS5×H5. As mentioned earlier, this background is a solution

of IIB supergravity equations supported by imaginary 5-form flux. Again, naively taking

the κ → ∞ limit on the dispersion relations will not be meaningful. To proceed further,

we start with the limiting background derived from AdS2 × S2 [22]

κ
2ds2 = − dρ̃2

1 + ρ̃2
+ (1 + ρ̃2)dt2 +

dr̃2

r̃2 − 1
+ (r̃2 − 1)dϕ2, (2.32)

where r̃ = 1
r and ρ̃ = 1

ρ . This geometry corresponds to that of dS2 ×H2 without any need

of T-duality, albeit upto an overall κ2 factor. Here, ρ̃ acts like the new time coordinate.

String solutions in this kind of geometry has to be understood in a better way.

2.2 String rotating in (θ, φ) plane

We start with putting r = sin θ in the metric (2.1) and using the general ansatz

t = µτ, θ = θ(y), φ = ω(τ + g(y)), ϕ = constant, y = σ − vτ (2.33)

The choice can be justified by the equation of motion for ϕ

∂α[gϕϕ η
αβ∂βϕ] = 0 , (2.34)

which is satisfied by a constant value of ϕ. For this geometry the string equation of motion

are written as

∂yg =
1

1− v2

[
C1

sin2 θ
− v

]
. (2.35)
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Here C1 is the integration constant. Using these two above equations and putting them

into the θ equation of motion we get,

(1− v2)2
(
∂θ

∂y

)2

= − ω2

[
C2
1 (1 + κ

2 sin2 θ)

sin2 θ
+ sin2 θ(1 + κ

2 sin2 θ)

]

+ C2(1 + κ
2 sin2 θ) (2.36)

Again we would like to investigate the infinite J string states, so we can put the boundary

condition when θ = θmax = π/2 ∂θ
∂y → 0. This means C2 = ω2(C2

1 + 1). Now putting

these values into the θ equation of motion, we recover

(1− v2)2
(
∂θ

∂y

)2

= cot2 θ[(ω2 − ω2C2
2κ

2) sin2 θ + ω2
κ
2 sin4 θ − ω2C2

1 ] , (2.37)

which leads to the equation

∂θ

∂y
=
ωκ cot θ

(1− v2)

√
[(sin2 θ − sin2 θ1)(sin

2 θ − sin2 θ2)] . (2.38)

Here, we can note that the roots are sin2 θ1 = − 1
κ2 < 0 and sin2 θ2 = C2

1 > 0. In this case

the existence of a negative root can argued as in [42] for a large J expansion. Since we have

already put one of the roots to be π/2 we would expect the positive solution sin2 θ2 ∈ (0, 1)

which will be justified by the string state solutions in question. The Virasoro constraints

on the other hand will again lead to two limiting values of C1 as before, which will lead

to the two independent solutions, namely giant magnon and single spiky string solution.

Now looking at the isometries of the metric (2.3) we can write the conserved charges in

this background as follows

E = −
∫
∂L
∂ṫ
dσ

=
T̂

κ

µ(1− v2)

ω

∫
sin θ dθ

cos θ
√
(sin2 θ − sin2 θ1)(sin

2 θ − sin2 θ2)
,

Jφ =

∫
∂L
∂φ̇

dσ = T̂

∫
φ̇ sin2 θ dσ ,

=
T̂

κ
[(1− vC1)

∫
sin θ dθ

cos θ
√
(sin2 θ − sin2 θ1)(sin

2 θ − sin2 θ2)
,

−
∫

sin θ cos θ dθ√
(sin2 θ − sin2 θ1)(sin

2 θ − sin2 θ2)
]. (2.39)

We can also define the angle deficit as

∆φ = ω

∫
∂g

∂y
dy

=
1

κ

∫ (
C1

sin2 θ
− v

)
sin θ dθ

cos θ
√
(sin2 θ − sin2 θ1)(sin

2 θ − sin2 θ2)
. (2.40)

Using these conserved quantities we can investigate the relationship between them for the

two limits mentioned before.
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2.2.1 Giant magnon solution

Using C1 = v, we evaluate the conserved charges using the integrals mentioned in the

appendix. The expression for energy

Ẽ = E
ω

µ
=

2T̂

κ
(1− v2)

∫ π/2

θ2

sin θ dθ

cos θ
√
(sin2 θ − sin2 θ1)(sin

2 θ − sin2 θ2)
, (2.41)

which diverges. Also in this limit the angular momenta

Jφ =
2T̂

κ

[
(1− v2)

∫ π/2

θ2

sin θ dθ

cos θ
√
(sin2 θ − sin2 θ1)(sin

2 θ − sin2 θ2)

−
∫ π/2

θ2

sin θ cos θ dθ√
(sin2 θ − sin2 θ1)(sin

2 θ − sin2 θ2)

]
(2.42)

diverge due to the first integral. However the difference Ẽ − Jφ remains finite and can be

evaluated to be

Ẽ − Jφ =
2T̂

κ
tanh−1(

cos θ2
cos θ1

). (2.43)

However the angular deficit is finite in this case and can be written as

∆φ =
2v

κ

∫ π/2

θ2

cos θ dθ

sin θ
√
(sin2 θ − sin2 θ1)(sin

2 θ − sin2 θ2)

=
2v

κ sin θ1 sin θ2
tanh−1

(
sin θ1 cos θ2
cos θ1 sin θ2

)
. (2.44)

Putting the values of sin θ1 and sin θ2 into the above equation, we can see it translates to

sin

(
∆φ

2

)
=

√
1− v2√

1 + v2κ2
. (2.45)

Now it can be easily proved that the conserved charges in this case obey the dispersion

relation as

Ẽ − Jφ =
2T̂

κ
tanh−1


 κ| sin(∆φ

2 )|√
1 + κ2 sin(∆φ

2 )


 , (2.46)

which is the same dispersion relation as mentioned in [40]. We can take a κ → 0 limit

to get

Ẽ − Jφ = 2T sin

(
∆φ

2

)
=

√
λ

π
sin

(
∆φ

2

)
, (2.47)

which is indeed the giant magnon dispersion relation in R× S2 as mentioned in [26].

2.2.2 Single spike solution

Using the other viable limit C1 = 1
v , we again evaluate the conserved charges as before.

Here also the Ẽ remains divergent as

Ẽ =
2T̂

κ
(1− v2)

∫ θ2

π/2

sin θ dθ

cos θ
√
(sin2 θ − sin2 θ1)(sin

2 θ − sin2 θ2)
. (2.48)
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While Jφ in this case is finite as

Jφ = −2T̂

κ

∫ θ2

π/2

sin θ cos θ dθ√
(sin2 θ − sin2 θ1)(sin

2 θ − sin2 θ2)

=
2T̂

κ
tanh−1

(
cos θ2
cos θ1

)
. (2.49)

On the other hand the angle deficit

∆φ =
2

κ

[(
1

v
− v

)∫ θ2

π/2

sin θ dθ

cos θ
√
(sin2 θ − sin2 θ1)(sin

2 θ − sin2 θ2)

+
1

v

∫ θ2

π/2

cos θ dθ

sin θ
√
(sin2 θ − sin2 θ1)(sin

2 θ − sin2 θ2)

]
(2.50)

diverges due to the first integral present here. Although it is easy to see that by combining,

we get

Ē − T̂∆φ = E
ω

µv
− T̂∆φ

= −2T̃

vκ

∫ θ2

π/2

cos θ dθ

sin θ
√
(sin2 θ − sin2 θ1)(sin

2 θ − sin2 θ2)

=
2T̃

vκ sin θ1 sin θ2
tanh−1

(
sin θ1 cos θ2
cos θ1 sin θ2

)
. (2.51)

As we can see the spike height (and hence the energy) in this case is modified non trivially

in contrast to the previous case (2.29). Putting all the values and doing little algebra we

can see that under the limit κ → 0 this relation again becomes

Ē − T∆φ = 2T tan−1

(
cos θ2
sin θ2

)

= 2T

(
π

2
− θ2

)
, (2.52)

which is the usual spike-height relation as mentioned in [35]. Even it can also be proved

that under κ → 0 limit the expression for angular momentum becomes

Jφ = 2T cos θ2, (2.53)

as we get usually for the R×S2 case. Now, few comments are in order about the solutions

derived above, mainly in the light of the recent work [22]. The background (2.3) has an

unique property in the sense the φ and ϕ are related by a discrete Z2 symmetry [22] which

is manifested as

φ→ ϕ; r →
√

1− r2

1 + κ2r2
. (2.54)

Surely, We can see that these symmetries are quite evident by the form of equations (2.23)

and (2.46) as these two giant magnon dispersion relations are simply connected by the

change φ → ϕ. For the single spike solutions, from equations (2.29) and (2.52), it can be

– 11 –
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seen that the height of the spike solutions depend on the two angles θ0 and θ2. Further,

keeping in mind that we have put r = sin θ for the solutions in (θ, φ) plane and r = cos θ

for the solutions in (θ, ϕ) plane, we can relate the angles θ0 and θ2 as

r2 = sin θ2 → r0 = cos θ0 =

√
1− r22

1 + κ2r22
, (2.55)

since sin θ2 = 1
v and cos θ0 =

√
v2−1
v2+κ2 with the appropriate choice of constants for the

spiky string cases as expalined in the previous subsections. This, coupled with φ → ϕ

relates (2.29) and (2.52) explicitly. These symmetries have been used extensively in [22] to

relate the κ deformed model to other classically integrable models.

3 Pulsating strings in deformed R × S3

In this section, we wish to study a class of strings pulsating in full deformed S3 with an

extra angular momentum. Beginning with the metric (2.1) and putting r = cos θ we get

the full deformed R× S3 metric as

ds2 = −dt2 + 1

1 + κ2 cos2 θ
dθ2 +

sin2 θ

1 + κ2 cos2 θ
dϕ2 + cos2 θdφ2. (3.1)

The Polyakov action for the string in the above background is given by

S=
T̂

2

∫
dτdσ

[
− (ṫ2−t′2)+ 1

1 + κ2 cos2 θ
(θ̇2− θ′2)+ sin2 θ

1 + κ2 cos2 θ
(ϕ̇2−ϕ′2)+cos2 θ(φ̇2−φ′2)

]
.

(3.2)

We chose the following simple ansatz for studying the pulsating and rotating string in the

above mentioned space

t = t(τ), θ = θ(τ), ϕ = mσ, φ = φ(τ). (3.3)

Instead of solving the equation of motion, we concentrate on the Virasoro constraint

gMN (∂τX
M∂τX

N + ∂σX
M∂σX

N ) = 0, (3.4)

which gives us the following equation for the evolution of θ as

− ṫ2 +
1

1 + κ2 cos2 θ
θ̇2 +

sin2 θ

1 + κ2 cos2 θ
m2 + cos2 θφ̇2 = 0 (3.5)

The conserved Noether charges are given by

E = ṫ, J = cos2 θφ̇. (3.6)

Putting the above in 3.5 we get the equation

θ̇2 = (1 + κ
2 cos2 θ)E2 −m2 sin2 θ − (1 + κ

2 cos2 θ)J 2

cos2 θ
. (3.7)
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The above equation looks like the equation of motion of a particle in a classical potential.

We note that the effective potential is finite at θ = 0 while it diverges at θ = π/2. So in

a classical perspective this is the equation of a particle oscillating between θ = 0 to some

extremum value. We then define the oscillation number, which is an adiabatic invariant

for the system, as

N =
1

2π

∮
dθ

√
(1 + κ2 cos2 θ)E2 −m2 sin2 θ − (1 + κ2 cos2 θ)J 2

cos2 θ
. (3.8)

Putting sin θ = x in the above equation (3.8), we get

N =
1

π

∫ √
R

0

dx

1− x2

√
E2(1− x2)(1 + κ2(1− x2))−m2x2(1− x2)− J 2(1 + κ2(1− x2)),

(3.9)

where R is an appropriate root of the polynomial

g(x) = x4(κ2E2 +m2) + x2(−2κ2E2 −m2 − E2 + κ
2J 2) + (1 + κ

2)(E2 − J 2). (3.10)

Differentiating (3.9) w.r.t. m we can write

∂N
∂m

= −m
π

∫ √
R

0

x2√
(E2(1− x2)− J 2)(1 + κ2(1− x2))−m2x2(1− x2)

dx. (3.11)

Putting x2 = z we can write the above integral as follows

∂N
∂m

= − m

π
√
κ2E2 +m2

∫ R
−

0

z dz√
z(z −R+)(z −R−)

, (3.12)

where the roots R± are the solutions of (3.10) with z = x2. It can be worthily noted that

the bigger root R+ is greater than 1, hence not appropriate here. In this consideration,

the above integral can be written as a combination of Elliptic integrals as follows,

∂N
∂m

=
2m

√
R+

π
√
κ2E2 +m2

[
E

(R−
R+

)
−K

(R−
R+

)]
(3.13)

E and K are the known Elliptic integral of first and second kind respectively. Now to find

a relation between Energy and Angular momenta via the oscillation number, we expand

the above equation in small E and J limit to get

∂N
∂m

=

[
(1 + κ

2)J 2

2m2
− 3(1 + κ

2)(5 + κ
2)J 4

16m4
+O(J 6)

]

+

[
−(1 + κ

2)

2m2
+

(9 + 6κ2 − 3κ4)J 2

8m4
− 15(κ6 − 9κ4 − 45κ4 − 35)J 4

128m6
+O(J 6)

]
E2

+

[
3(−1 + 2κ2 + 3κ4)

16m4
+

45(5 + 3κ2 − κ
4 + κ

6)J 2

128m6

− 105(105 + 140κ2 + 30κ4 − 4κ6 + κ
8)J 4

1024m8
+O(J 6)

]
E4 +O(E6). (3.14)
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Integrating the above equation (3.14) with respect to m and reversing the series to that

of E , we get a very long and complicated expression. But this expression under the limit

κ → 0 can be shown to reduce to the expression

E =
√
2mG A(J )

[
1−B(J )

G
8m

+O[G2]

]
, (3.15)

with G = N +
J 2

2m
− 5J 4

16m3
+O[J 6]

A(J ) =

[
1− 3J 2

4m2
+

105J 4

64m4
+O[J 6]

]−1/2

also, B(J ) =

[
1− 45J 2

8m2
+

1575J 4

64m4
+O[J 6]

]
A4(J ). (3.16)

Which is the exact same relation as obtained recently in [44] for rotating and pulsating

strings in the undeformed R× S3. This small J limit is called the short string limit. The

above equation presents the energy-spin relation of the strings in this limit.

4 Conclusion

In this paper, we have studied rigidly rotating and oscillating string solutions in the κ-

deformed AdS3 × S3 background. For the rigidly rotating string, we have restricted the

motion to two subspaces of the S3
κ by reducing along two isometries. We have found two

limits corresponding to the known giant magnon [25, 40] limit and the new single spike

solution of the string moving in this background. We have found out the most general

form of the charges and derived the dispersion relation among the charges and the angular

separation between the end points of the string. We also have explicitly checked that in the

limit κ → 0 limit they reduce to the well known relation presented, for example, in [35].

Since it is not understood how the parameter κ deforms the dual CFT, the realization of the

newly found dispersion relations in the CFT are not clear to us at present. It would further

be interesting to generalize the results presented here to the case of two angular momenta

along the two isometries of the S3
κ. Unfortunately, the analysis appears to be tricky and

we hope to present the results in a future work. Also it would be interesting enough to

study string dynamics in the two limiting backgrounds mentioned in [22]. Since these can

be related to other integrable models, they might give us more options to gain insight into

the dual field theory. Further we study the oscillating strings in the S3
κ space and derive

the energy of pulsating string, as function of the oscillation number and conserved angular

momentum. We also check that the relation reduces to the known one in the κ → 0 limit.

There are other problems which could be pursued further given the integrable nature of

this background and its reductions. It will be useful to find more general rotating and

wound strings in the full (AdS5 × S5)κ of [17] as the AdS part contains a singularity for

particular value of κ. We hope to report on these issues in future.
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