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1 Introduction

Non-perturbative constraints on conformal field theories (CFTs) are useful for many areas

of theoretical physics. An elementary fact about CFTs in arbitrary dimension is that the

spacetime forms of the two and three point functions are fixed for all primary operators.

Even though the four point function is not fixed by conformal symmetry, it is nevertheless

constrained by crossing symmetry and the operator product expansion. These constraints

led to a proposal by Polyakov in 1974 [1] called the conformal bootstrap program. Starting

with [2], many works in recent years [3–20] have used the bootstrap approach to find general

results about the space of possible CFTs. Special functions called conformal blocks have

been an essential ingredient in all of these studies. A pedagogical discussion of them can

be found in [21].

The conformal block for a primary operator O, is the contribution of O and its descen-

dants to the correlation function of four scalar primaries. We will let φi denote a scalar

primary with dimension ∆i. Writing xij ≡ xi − xj and ∆ij ≡ ∆i −∆j , such a four point

function is

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 =

(
|x24|
|x14|

)∆12
(
|x14|
|x13|

)∆34 G(u, v)

|x12|∆1+∆2 |x34|∆3+∆4
, (1.1)

where G(u, v) is a function of the conformal invariants:

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

. (1.2)
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The fundamental tool for manipulating correlation functions is the operator product ex-

pansion (OPE):

φ1(x1)φ2(x2) =
∑
O
λ12OC

(
x12,

∂

∂x2

)µ1...µ`

Oµ1...µ`(x2) . (1.3)

Here, C(x, ∂) is a differential operator which becomes xµ1 ...xµ`
|x|∆1+∆2−∆+` in the limit of small x.

Taking the OPE in the 12 and 34 channels, (1.1) can be rewritten as a linear combination:

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉=
(
|x24|
|x14|

)∆12
(
|x14|
|x13|

)∆34 ∑
O
λ12Oλ34O

GO(u, v)

|x12|∆1+∆2 |x34|∆3+∆4
.

(1.4)

In the usual terminology, (1.4) expresses G(u, v) as a sum of conformal blocks and it

expresses the four point function as a sum of conformal partial waves. The conformal block

GO(u, v) depends on the spin ` and scaling dimension ∆ of the exchanged primaryO. It also

depends on ∆12 and ∆34, the dimension differences of the external operators. Considering

two, four and six spacetime dimensions, Dolan and Osborn found exact solutions [22, 23]

for the blocks in terms of hypergeometric functions. In an odd (or fractional) number of

dimensions, the conformal bootstrap must be carried out using one of the following more

limited results:

1. Expressions in terms of Jack or Gegenbauer polynomials [23, 24].

2. Expressions in terms of Mellin-Barnes integrals [25].

3. A double power series for ` = 0 together with recurrence relations [22, 26].

4. A sum over poles in ∆ that generates rational approximations [17].

5. The restriction to (u− v + 1)2 = 4u [11, 27].

6. The large d limit [28].

In this note, we propose adding another special case to this list: the limit where −∆12 is

large.

The Casimir differential equation, which Dolan and Osborn used in their exact solu-

tions, will be important for this derivation as well. In section 2, we review this equation

and explain why an even d makes it easier to solve than an odd d. In section 3, we make

an ansatz for the conformal blocks with a highly disparate pair of scaling dimensions and

demonstrate that it agrees with the solutions in even spacetime dimension. It is remarkably

simple to show that the ansatz is correct for other spacetime dimensions as well up to an

overall constant. Determining this constant is the focus of section 4.

Throughout these calculations, we may only consider large scaling dimension differ-

ences if at least one of the scaling dimensions themselves is large. Operators with large

scaling dimensions lead to OPE coefficients that are exponentially small. Therefore, while

∆2 � ∆1 clearly leads to simpler expressions, it is not obvious that this case is interesting.

Before we conclude, section 5 is used to argue that it is at least not obvious that this case

is uninteresting.

– 2 –
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2 Main background

An important result [23] reviewed in [2] is that the conformal blocks are eigenfunctions of a

second order differential operator that is symmetric in two variables. Although not the first

derivation of the exact conformal blocks [22], this more intuitive treatment continues to

be useful in understanding their properties [26–29]. We will work in a Euclidean signature

so that the conformal group is SO(d + 1, 1) generated by four types of transformations:

dilations D, translations Pµ, special conformal transformations Kµ and rotations Mµν .

2.1 The Casimir differential equation

In a rotation group, the quadratic Casimir element is obtained by contracting the generators

with themselves. In the conformal group, this Casimir is slightly different:

C2 =
1

2
MµνM

µν −D2 − 1

2
(PµK

µ +KµP
µ) . (2.1)

This can either be found by brute force, or by realizing that the conformal group is the

Lorentz group of a higher dimensional space. Primary operators transform under the

generators according to

[D,O] = i (xµ∂µ + ∆)O
[Pµ,O] = i∂µO

[Kµ,O] = i
(
x2∂µ − 2xµx

ν∂ν − 2xµ∆ + 2xνM `
µν

)
O

[Mµν ,O] = i
(
xµ∂ν − xν∂µ +M `

µν

)
O

where M `
µν is the rotation operator in the spin ` representation [30]. Using these trans-

formations and antisymmetry of M `
µν , it can be shown that primary operators satisfy the

eigenvalue equation

C2O = −2ΛdO
2Λd = ∆(∆− d) + `(`+ d− 2) . (2.2)

Since the Casimir for a Lie algebra is part of the center, (2.2) holds for all descendants of O
as well. Therefore, the conformal partial wave for O in 〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 should

have the same eigenvalue under C2. When we apply C2 to the partial wave in (1.4), we

need two copies of each generator because O comes from the OPE of φ1(x1) and φ2(x2).

Instead of writing
(
M1
µν +M2

µν

)
(Mµν

1 +Mµν
2 ) etc, it is much easier to write

C2 =
1

2

(
L1
AB + L2

AB

) (
L1
AB + L2

AB

)
where LiAB = P iA

∂
∂P iB
− P iB

∂
∂P iA

acts on the d + 2 dimensional null rays P i. Lifting (1.4)

into this space, the object we must differentiate is

WO(P1, P2, P3, P4) =

(
P2 · P4

P1 · P4

) 1
2

∆12
(
P1 · P4

P1 · P3

) 1
2

∆34 GO(u, v)

(P1 · P2)
1
2

(∆1+∆2)(P3 · P4)
1
2

(∆3+∆4)

(2.3)

– 3 –
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with u and v defined by changing x2
ij to Pi · Pj . The computations reveal the following

equation for the conformal blocks:[
−2v

(
(1− v)2 − u(1 + v)

) ∂2

∂v2
+ 4uv(1 + u− v)

∂2

∂u∂v
− 2u2(1− u+ v)

∂2

∂u2

]
GO

+

[
−2
(
(1− v)2 − u(1 + v)

) ∂
∂v
− 2u(1− d− u+ v)

∂

∂u

]
GO

− (∆12 −∆34)

[
(1 + u− v)

(
u
∂

∂u
+ v

∂

∂v

)
− (1− u− v)

∂

∂v

]
GO

− 1

2
∆12∆34(u− v + 1)GO = −2ΛdGO . (2.4)

After deriving (2.4), Dolan and Osborn made it symmetric with the following change of

variables [23]:

u = xz , v = (1− x)(1− z) . (2.5)

This leads to the equation DdGO = ΛdGO, where

Dd = x2(1− x)
∂2

∂x2
+ x(c− (a+ b+ 1)x)

∂

∂x
− abx+ (x↔ z)

+(d− 2)
xz

x− z

(
(1− x)

∂

∂x
− (1− z) ∂

∂z

)
(2.6)

for a = −1
2∆12, b = 1

2∆34 and c = 0.

2.2 Known solutions

An important eigenvalue equation to use when trying to solve this is[
x2(1− x)

d2

dx2
+ x(c− (a+ b+ 1)x)

d

dx
− abx

]
xλ2F1(λ+ a, λ+ b; 2λ+ c;x)

= λ(λ+ c− 1)xλ2F1(λ+ a, λ+ b; 2λ+ c;x) . (2.7)

When d = 2, this can be used immediately to say that

GO(x, z) = xλ1zλ2
2F1(λ1 +a, λ1 +b; 2λ1 +c;x)2F1(λ2 +a, λ2 +b; 2λ2 +c; z)+(x↔ z) (2.8)

is an eigenfunction of Dd with eigenvalue λ1(λ1 − 1) + λ2(λ2 + 1 − d). This eigenvalue is

precisely Λd if

λ1 =
1

2
(∆ + `) , λ2 =

1

2
(∆− `) . (2.9)

For higher dimensions (2.6) has coupling between x and z. This case is handled by

introducing the functions

F±,rp,q (x, z) = xp+rzq+r2F1(p+a, p+b; 2p+c;x)2F1(q+a, q+b; 2q+c; z)± (x↔ z) . (2.10)

The known solutions are of the form

GO(x, z) =
∑
p,q

ap,q
F±,rp,q (x, z)

(x− z)s
(2.11)

– 4 –
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where we choose the positive sign for even s and the negative sign for odd s. To fix the

unspecified parameters in (2.11), the first step is to make DdGO as simple as possible by

choosing s appropriately. A straightforward calculation tells us that

(x− z)sDd
F

(x− z)s
= D2F − scF − s(a+ b+ 1)(x+ z)F − s(d− 2)(x+ z − 1)F

+s(s− d+ 3)
x2(1− x) + z2(1− z)

(x− z)2
F − 2s

(
x(1− x)

∂F

∂x
+ z(1− z)∂F

∂z

)
+(d− 2− 2s)

xz

x− z

(
(1− x)

∂F

∂x
− (1− z)∂F

∂z

)
(2.12)

The choice that allows us to absorb most of the extra terms into D2 is s = d − 3. This

gives us the equation:

Dd
F

(x− z)d−3
=

1

(x− z)d−3

[
D2

∣∣∣∣a7→a−d+3,b 7→b−d+3
c 7→c−2d+6

+(d− 3)(d− 2− c)

−(d− 4)
xz

x− z

(
(1− x)

∂

∂x
− (1− z) ∂

∂z

)]
F . (2.13)

In order to benefit from the simplified form of (2.13), we want our F±,rp,q to be eigenfunctions

of the shifted D2 operator. This forces us to set r = d− 3 as well. Inserting

GO(x, z) =
∑
p,q

ap,q
F±,d−3
p,q (x, z)

(x− z)d−3
(2.14)

into DdGO = ΛdGO, we arrive at∑
p,q

ap,q[p(p+ c− 1) + q(q + c− 1)− (d− 3)(d− 2− c)− Λd]

(
1

x
− 1

z

)
F±,d−3
p,q (x, z)

= −(d− 4)
∑
p,q

ap,q

(
(1− x)

∂

∂x
− (1− z) ∂

∂z

)
F±,d−3
p,q (x, z) . (2.15)

There are recurrence relations satisfied by the F±,rp,q that we can use on either side of (2.15).

Defining

Ap,q = 2(p− q)(p+ q + c− 1)
(2a− c)(2b− c)

(2p+ c)(2p+ c− 2)(2q + c)(2q + c− 2)

Bp =
(p+ a)(p+ b)(p+ c− a)(p+ c− b)
(2p+ c− 1)(2p+ c)2(2p+ c+ 1)

, (2.16)

they are:(
1

x
− 1

z

)
F±,rp,q (x, z) = F∓,rp−1,q(x, z)− F

∓,r
p,q−1(x, z) +Ap,qF

∓,r
p,q (x, z) +BpF

∓,r
p+1,q(x, z)−BqF

∓,r
p,q+1(x, z)(

(1− x)
∂

∂x
− (1− z) ∂

∂z

)
F±,rp,q (x, z) = (p+ r)F∓,rp−1,q(x, z)− (q + r)F∓,rp,q−1(x, z)

− c− 2r − 2

2
Ap,qF

∓,r
p,q (x, z)− (p+ c− 1− r)BpF∓,rp+1,q(x, z) + (q + c− 1− r)F∓,rp,q+1(x, z) . (2.17)

– 5 –
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Figure 1. This simple shape has exactly one boundary point of each type. The left and right

boundary points as we are defining them are circled with dotted red lines. The top and bottom

boundary points are circled with dashed blue lines.

If we substitute (2.17) into (2.15) and reindex the sum, we find a recurrence relation among

the coefficients:

0 = ap+1,q[(p+ 1)(p+ c) + (d− 4)(p+ d− 2) + q(q + c− 1)− (d− 3)(d− 2− c)− Λd] (2.18)

− ap,q+1[p(p+ c− 1) + (q + 1)(q + c) + (d− 4)(q + d− 2)− (d− 3)(d− 2− c)− Λd]

+ ap,qAp,q

[
p(p+ c− 1) + q(q + c− 1)− (d− 4)

c− 2d− 4

2
− (d− 3)(d− 2− c)− Λd

]
+ ap−1,qBp−1[(p− 1)(p+ c− 2)− (d− 4)(p+ c− d+ 1) + q(q + c− 1)− (d− 3)(d− 2− c)− Λd]

− ap,q−1Bq−1[p(p+ c− 1) + (q − 1)(q + c− 2)− (d− 4)(q + c− d+ 1)− (d− 3)(d− 2− c)− Λd] .

Our ability to solve this for only finitely many ap,q 6= 0 depends on d being even. To help

explain this, we can draw a lattice with integer spacing where ap,q 6= 0 if and only if the circle

at (p, q) is shaded. Every shape with finitely many shaded points must have a left boundary

point. This is an unshaded circle where all of its nearest neighbours are unshaded except

the one to the left. Similarly, it must also have a right boundary point. The p-coordinates

of these points will differ by at least two integer units m. If the shape is reasonably

symmetric, their q-coordinates can be chosen to be the same. Therefore, we are dealing

with (p∗, q∗) and (p∗+m, q∗). The left boundary point requires the coefficient on ap+1,q to

vanish when (p, q) = (p∗, q∗). The right boundary point requires the coefficient on ap−1,q to

vanish when (p, q) = (p∗ +m, q∗). Setting these coefficients equal to each other, we have:

p2
∗ + (d− 3)p∗ + (d− 4)(d− 2) = (p∗ +m)2 − (d− 1)(p∗ +m) + (d− 4)(d− 1) + 2

2(m− d+ 2)p∗ = (m− d+ 2)(1−m) .

If m 6= d− 2, our left and right boundary points are (1−m
2 , q∗) and (1+m

2 , q∗) respectively.

The same analysis tells us that the top and bottom boundary points are (p∗, 1+n
2 ) and

(p∗, 1−n
2 ) respectively. These expressions are not compatible for general λ1 and λ2. In

order for the aforementioned coefficients to be zero, q∗ depends on λ1 and λ2 in such a

way that it is almost surely not an integer number of units away from the half integers
1±n

2 . Similarly, the value that p∗ must have is almost surely not an integer away from 1±m
2 .

We should instead consider m = n = d − 2. This property holds for the known solutions

– 6 –
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(a) d = 4 (b) d = 6 (c) d = 8?

Figure 2. The solution in four dimensions corresponds to the point at (λ1, λ2 − 1). In six

dimensions, this becomes 5 points centred at (λ1, λ2 − 2). If one were to solve for conformal blocks

in eight dimensions, this would most likely involve the 13 points centred at (λ1, λ2 − 3).

defined below [23].

d = 4 aλ1,λ2−1 = 1

aλ1,λ2−3 = 1

aλ1−1,λ2−2 = −λ1−λ2+3
λ1−λ2+1

d = 6 aλ1,λ2−2 = − (λ1+λ2+c−4)(λ1−λ2+3)
(λ1+λ2+c−3)(λ1−λ2+2)Aλ1,λ2−2

aλ1,λ2−1 = (λ1+λ2+c−4)(λ1−λ2+3)
(λ1+λ2+c−2)(λ1+λ2+1)Bλ2−2

aλ1+1,λ2−2 = −λ1+λ2+c−4
λ1+λ2+c−2Bλ1

(2.19)

In four dimensions, the width and height equal to 2 leave only a single shaded circle.

In six dimensions, the width and height equal to 4 leave the diamond of five shaded circles

shown in figure 2. It is clear from figure 2 that we can move from left to right by shading

the (p, q − 1), (p, q − 2) and (p± 1, q − 1) circles every time (p, q) is shaded. This suggests

that the d + 2 dimensional conformal block at (λ1, λ2) is a diamond shaped sum of the

five d dimensional conformal blocks centred at (λ1, λ2−1). This recurrence relation, found

in [26], shows that a solution for a particular odd value of d is enough to give us all

odd-dimensional conformal blocks.

We run into a problem if we try to find such an odd d solution with the current

method. When the distance between boundary points is an odd integer, we are forced to

draw a square instead of a diamond as the most symmetric shape having this property.

From (2.18), it is clear that if a certain coefficient vanishes at (p, q), it will not vanish at

(p ± 1, q) or (p, q ± 1). Therefore the recurrence relation is not compatible with a square

because it does not allow boundary points to be nearest neighbours.

3 The highly disparate limit

To approximate conformal blocks for large parameters, it will be useful to first do this

for the hypergeometric function. Defining the Pochhammer symbol by (x)n = Γ(x+n)
Γ(x) , the

– 7 –
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Figure 3. Each boundary point for this square has a boundary point across from it that is three

units away. However, this is not a sufficient shape for the coefficients in five dimensions because

some of the boundary points are adjacent.

Gauss hypergeometric function is

2F1(a, b; c;x) =

∞∑
n=0

(a)n(b)n
(c)n

xn

n!
(3.1)

in the unit disk. We can see the asymptotic behaviour more easily from the Euler integral

which holds for <c > <b > 0:

B(b, c− b)2F1(a, b; c;x) =

∫ 1

0
tb−1(1− t)c−b−1(1− tx)−adt . (3.2)

To expand this integral for large a, one writes (1−tx)−a = e−af(t) where f(t) = log(1−tx).

Since 0 < x < 1, the minimum of f on the interval [0, 1] is achieved at t = 1. The saddle

point approximation therefore takes the form:

e−af(t) ≈ e−af(1)−a(t−1)f ′(1) = (1− x)−ae(t−1) ax
1−x .

This is different from the usual expression e−af(t) ≈ e−af(t0)−a (t−t0)2

2
f ′′(t0) because the

function was minimized at an endpoint. In the resulting integral, we may substitute s for

1− t and change the upper limit from 1 to ∞ if we are only going to leading order:

B(b, c− b)2F1(a, b; c;x) ≈ (1− x)−a
∫ 1

0
e−s

ax
1−x sc−b−1(1− s)b−1ds

≈ (1− x)−a
∫ 1

0
e−s

ax
1−x sc−b−1ds

≈ (1− x)−a
∫ ∞

0
e−s

ax
1−x sc−b−1ds

= Γ(c− b)(1− x)−a
(

1− x
ax

)c−b
. (3.3)

We neglected (1− s)b−1 because s = 0 provides the dominant contribution to the integral.

For a saddle point approximation to be effective, the minimum of the exponent should be

– 8 –
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unique. Since f(t) is constant for x = 0, (3.3) breaks down in this degenerate case. We

will henceforth assume that x > 1
a which includes the neighbourhood of 1

2 most relevant to

the conformal bootstrap.

3.1 Asymptotic eigenfunctions

We will now find the large a limit of the conformal blocks. To do this, we do not need

to know a full solution to the Casimir differential equation, only the first few terms in its

asymptotic series. This means that instead of DdGO = ΛdGO, we may consider the easier

problem DdGO = ΛdGO
(
1 +O

(
1
a

))
. Motivated by (3.3), we expect

G
(0)
O (x, z) =

(1− x)−a(1− z)−a

aλ1+λ2−2b

(
xz

(1− x)(1− z)

)b
(3.4)

to be the leading behaviour. For any number of dimensions, the smallest power of 1
a in

DdG
(0)
O (x, z) is λ1 + λ2 − 2b + 1. Therefore, we need at least one more term to produce

ΛdG
(0)
O (x, z).1 Choosing

G
(1)
O (x, z) =

(1− x)−a(1− z)−a

2aλ1+λ2−2b+1

(
xz

(1− x)(1− z)

)b(
γ − 1

x
− 1

z

)
[Λd − b(2b− d)] (3.5)

for some γ, this can be made to work as follows:

Dd
(
G

(0)
O (x, z) + G

(1)
O (x, z)

)
=
zb(1− z)−a−b

aλ1+λ2−2b

[
x2(1− x)

∂

∂x
− x2(a+ b+ 1) + (d− 2)

xz(1− x)

x− z

]
[(
bxb−1(1− x)−a−b + (a+ b)xb(1− x)−a−b−1

)(
1 +

Λd − b(2b− d)

2a

(
γ − 1

x
− 1

z

))
+xb−2(1− x)−a−b

Λd − b(2b− d)

2a

]
− abxx

b(1− x)−a−bzb(1− z)−a−b

aλ1+λ2−2b(
1 +

Λd − b(2b− d)

2a

(
γ − 1

x
− 1

z

))
+ (x↔ z)

=
x2(1− x)−a−b−1zb(1− z)−a−b

aλ1+λ2−2b[(
b(b− 1)xb−2(1− x)2 + 2b(a+ b)xb−1(1− x) + (a+ b)(a+ b+ 1)xb

)
(

1 +
Λd − b(2b− d)

2a

(
γ − 1

x
− 1

z

))
+
(

(b− 1)xb−1(1− x)2 + (a+ b)xb(1− x)
)

Λd − b(2b− d)

ax2

]
+
zb(1− z)−a−b

aλ1+λ2−2b

[
−x2(a+ b+ 1) + (d− 2)

xz(1− x)

x− z

]
[(
bxb−1(1− x)−a−b + (a+ b)xb(1− x)−a−b−1

)(
1 +

Λd − b(2b− d)

2a

(
γ − 1

x
− 1

z

))
+xb−2(1− x)−a−b

Λd − b(2b− d)

2a

]
− abxx

b(1− x)−a−bzb(1− z)−a−b

aλ1+λ2−2b(
1 +

Λd − b(2b− d)

2a

(
γ − 1

x
− 1

z

))
+ (x↔ z)

=
xb(1− x)−a−bzb(1− z)−a−b

aλ1+λ2−2b[
1

2
(Λd − b(2b− d)) + b(b− 1) + b(d− 2)

xz

x− z
1− x
x

]
+O

(
1

aλ1+λ2−2b+1

)
+ (x↔ z)

1This is clear from the fact that (3.4) is symmetric in λ1 and λ2 but the desired eigenvalue is not.
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= Λd
xb(1− x)−a−bzb(1− z)−a−b

aλ1+λ2−2b

(
1 +O

(
1

a

))
= ΛdG

(0)
O (x, z)

(
1 +O

(
1

a

))
= Λd

(
G

(0)
O (x, z) +G

(1)
O (x, z)

)(
1 +O

(
1

a

))
. (3.6)

The longest line in (3.6) has terms of order a2b−λ1−λ2+2 but one can quickly see that their

coefficients sum to zero. The terms of order a2b−λ1−λ2+1 can be seen to vanish almost as

quickly; one has to use (x ↔ z) to cancel an antisymmetric function. Since eigenvalue

equations are linear, our asymptotic (3.4) can be multiplied by a constant depending on

the dimension. Restating our main result in less specialized notation,

GO(u, v) ∼ C(d)
O

v
1
2

∆12∣∣1
2∆12

∣∣∆−∆34

(u
v

) 1
2

∆34

, ∆12 → −∞ . (3.7)

As with (3.3), one must be careful about x and z values close to zero. This places the

requirement u > 1
|∆12|2 , v <

(
1− 1

|∆12|

)2
on (3.7).

3.2 Agreement with exact blocks

Even though we have already proven our main result (3.7), it is interesting to see how

it is reproduced by the conformal blocks in even spacetime dimension. For the d = 2

solution (2.8), one may expand the hypergeometric functions to first order to arrive at:

GO(x, z) ∼ 2
Γ(2λ1)Γ(2λ2)

Γ(λ1 + b)Γ(λ2 + b)
G

(0)
O (x, z) . (3.8)

The second asymptotic term in the two dimensional blocks can only match (3.5) if a single

hypergeometric function has

2F1(a, b; c;x) ∼ Γ(c)

Γ(b)
(1− x)−a

(
1− x
ax

)c−b [
1 +

(c− b)(b− 1)

a

(
γ

2
− 1

x

)]
(3.9)

as its first correction beyond the saddle point. We will not need to know γ for these

calculations but we would see that γ = 1 if we followed the procedure in [31].2 With (3.9)

in hand, we may expand the d = 4 solution

GO(x, z)=
xλ1+1zλ2

2F1(λ1+a, λ1+b; 2λ1;x)2F1(λ2−1+a, λ2−1+b; 2λ2−2; z)−(x↔z)

x− z
.

(3.10)

The a2b−λ1−λ2+1 term vanishes because the numerator is antisymmetric. We are left with:

GO(x, z) ∼ (λ1 − λ2 + 1)(λ1 + λ2 − 2)
Γ(2λ1)Γ(2λ2 − 2)

Γ(λ1 + b)Γ(λ2 − 1 + b)
G

(0)
O (x, z) . (3.11)

2This is not the value we would get if we naively used the binomial theorem in (3.3) and tried to integrate

from 0 to ∞ again.
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∆
34

 = 2

0 0.1 0.2 0.3 0.4 0.5
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∆
34
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∆
34

 = 4
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Figure 4. For three different pairs (∆,∆34), we compare the four dimensional conformal block

(black line) to the asmyptotic version of it (red dotted line). The top plot has x ∈ (0.1, 0.5), while

the bottom plot has x ∈ (0.5, 0.9). For each of these plots z = 1
2 , ∆12 = −40 and ` = 1.

The four dimensional block and its large −∆12 limit are plotted in the figure 4. The d = 6

solution is

GO(x, z) =
∑
p,q

ap,q
F−,3p,q (x, z)

(x− z)3
(3.12)

with ap,q given by (2.19). Even though an individual F−,3p,q is of order a2b−λ1−λ2+3, the

coefficients conspire to cancel the first three asymptotic terms in the whole expression.

To get a2b−λ1−λ2 , we must expand each hypergeometric function in (3.12) to fourth or-

der. This will indeed give us the same form that the two dimensional block has after its

hypergeometric functions are expanded to first order:

GO(x, z)∼ 1

6
(λ1−λ2+2)(λ1−λ2+3)(λ1+λ2−3)(λ1+λ2−4)

Γ(2λ1)Γ(2λ2−4)

Γ(λ1+b)Γ(λ2−2+b)
G

(0)
O (x, z) .

(3.13)

4 Solution for the coefficient

From the Casimir differential equation, it would seem that the normalization for a conformal

block is arbitrary. While performing the bootstrap however, it is essential for the blocks

and the two point functions to be normalized in a consistent way. The convention that was

first used in computing (2.8) and (2.19) is

lim
x→0

lim
z→0

GO(x, z)

xλ1zλ2
= 1 . (4.1)

There is another common convention which is particularly natural for computing diagonal

conformal blocks:

lim
z→0

GO(z, z)

zλ1+λ2
= 1 . (4.2)
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These are not the same, as can be demonstrated by expanding the d = 4 block around

x = z. Using the fact that hypergeometric functions tend to unity for small arguments,

GO(x, z) ≈ 1

x− z

[
xλ1+1zλ2 − xλ2zλ1+1

]
=

1

x− z

[
zλ2(z + (x− z))λ1+1 − zλ1+1(z + (x− z))λ2

]
≈ 1

x− z

[
zλ1+λ2+1

(
1 + (λ1 + 1)

x− z
z

)
− zλ1+λ2+1

(
1 + λ2

x− z
z

)]
=

1

x− z

[
(λ1 − λ2 + 1)zλ1+λ2+1x− z

z

]
= (λ1 − λ2 + 1)zλ1+λ2 . (4.3)

We see that the four dimensional solution satisfying (4.1) picks up a factor of λ1−λ2 + 1 if

we try to take the limit in (4.2). This factor appears in our asymptotic (3.11). Similarly,

the six dimensional solution would pick up a factor of 1
6(λ1−λ2 +2)(λ1−λ2 +3) appearing

in (3.13) if we took the same limit. Notice that

λ1 − λ2 + 1 =
(2)`
(1)`

1

6
(λ1 − λ2 + 2)(λ1 − λ2 + 3) =

(4)`
(2)`

.

In general, defining ε = d−2
2 , multiplication by (2ε)`

(ε)`
takes us from the normalization used

in [11, 24, 26, 27] to the one used in [22, 23].3 When solving for the constant C
(d)
λ1,λ2

≡ C(d)
O ,

we will switch to the (4.2) normalization to avoid these extra factors.

4.1 Base case

Looking at (3.8), (3.11) and (3.13), it seems reasonable to guess that

C
(d)
λ1,λ2

=
Γ(2λ1)Γ(2λ2 − 2ε)

Γ(λ1 + b)Γ(λ2 − ε+ b)

Γ(λ1 + λ2 − ε)
Γ(λ1 + λ2 − 2ε)

. (4.4)

Taking the z → 0 limit of (3.7) and trying to read off the coefficient would not be correct.

This is because we have used an asymptotic expansion that only works away from zero.

Proving our guess will therefore require more work.

To start, we will show that the conformal block for a spinless operator agrees with (4.4).

Setting λ1 = λ2 ≡ λ, the double power series valid in any number of dimensions is:

Gλ,λ(u, v) =

∞∑
m,n=0

(λ− a)m(λ− b)m
(2λ− ε)m

(λ+ a)m+n(λ+ b)m+n

(2λ)2m+n

um

m!

(1− v)n

n!

=
∞∑
m=0

(λ− a)m(λ+ a)m(λ− b)m(λ+ b)m
(2λ− ε)m(2λ)2m

um

m!
2F1(λ+ a+m,λ+ b+m; 2λ+ 2m; 1− v) .

3Confusingly, the normalization (−2)−` (2ε)`
(ε)`

appears in some parts of [22, 23] as well.
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Expanding this hypergeometric function will give us a factor of (λ + a + m)b−λ which we

may approximate as ab−λ.

Gλ,λ(u, v) ∼
∞∑
m=0

(λ− a)m(λ+ a)m(λ− b)m(λ+ b)m
(2λ− ε)m(2λ)2m

um

m!

Γ(2λ+ 2m)

Γ(λ+ b+m)
v−a−b[(λ+ a+m)(1− v)]b−λ−m

=
Γ(2λ)

Γ(λ+ b)
uλv−a−b(1− v)b−λ

∞∑
m=0

(λ− a)m(λ+ a)m(λ− b)m
(2λ− ε)mm!

(
u

1− v

)m
(λ+ a+m)b−λ−m

∼ Γ(2λ)

Γ(λ+ b)
ab−λuλv−a−b(1− v)b−λ

∞∑
m=0

(λ− a)m(λ+ a)m(λ− b)m
(λ+ a+m)m(2λ− ε)mm!

(
u

1− v

)m
Since (λ + a + m)m and (λ + a)m are degree m polynomials in a with the same leading

coefficient, we are justified in cancelling them when a is large. This turns the sum into a

hypergeometric function once again.

Gλ,λ(u, v) ∼ Γ(2λ)

Γ(λ+ b)
ab−λuλv−a−b(1− v)b−λ2F1

(
λ− a, λ− b; 2λ− ε; u

1− v

)

Hypergeometric functions satisfy the identity 2F1(a, b; c;x) = (1−x)−b2F1

(
c− a, b; c; x

x−1

)
.

We will use this twice so that the arguments have a and b appearing with positive signs:

Gλ,λ(u, v) ∼ Γ(2λ)

Γ(λ+ b)
ab−λuλv−a−b(1− u− v)b−λ

(
1− v

1− u− v

)ε−λ−a
2F1

(
λ+ a− ε, λ+ b− ε; 2λ− ε; u

1− v

)
∼ Γ(2λ)Γ(2λ− ε)

Γ(λ+ b)Γ(λ+ b− ε)
a2b−2λubv−a−b . (4.5)

The expected coefficient thus appears for ` = 0. A recursion will help us show that this

continues to hold for higher spin.

4.2 Inductive step

Following [26], three useful operators to define are:

F0 =
1

x
+

1

z
− 1

F1 = (1− x)
∂

∂x
+ (1− z) ∂

∂z
− a− b

F2 =
x− z
xz

[
x2(1− x)

∂2

∂x2
− x2 ∂

∂x
− (x↔ z)

]
. (4.6)

These allow us to express the conformal block Gλ1,λ2 in terms of Gλ1±1,λ2±1. Recalling the

definition of Bp in (2.16), the recurrence relations also derived in [26] are:

F0Gλ1,λ2 =
λ1 − λ2 + 2ε

λ1 − λ2 + ε
Gλ1,λ2−1 +

λ1 − λ2

λ1 − λ2 + ε
Gλ1−1,λ2 +

(λ1 + λ2 − 1)(λ1 + λ2 − 2ε)

(λ1 + λ2 − 1− ε)(λ1 + λ2 − ε)(
λ1 − λ2 + 2ε

λ1 − λ2 + ε
Bλ1Gλ1+1,λ2 +

λ1 − λ2

λ1 − λ2 + ε
Bλ2−εGλ1,λ2+1

)
− ab

2

λ1(λ1 − 1) + λ2(λ2 − 1− 2ε) + 2ε

λ1(λ1 − 1)(λ2 − ε)(λ2 − 1− ε) Gλ1,λ2 (4.7)

– 13 –



J
H
E
P
0
9
(
2
0
1
4
)
0
0
5

F1Gλ1,λ2 = λ2
λ1 − λ2 + 2ε

λ1 − λ2 + ε
Gλ1,λ2−1 + (λ1 + ε)

λ1 − λ2

λ1 − λ2 + ε
Gλ1−1,λ2 −

(λ1 + λ2 − 1)(λ1 + λ2 − 2ε)

(λ1 + λ2 − 1− ε)(λ1 + λ2 − ε)(
(λ1 − 1− ε)λ1 − λ2 + 2ε

λ1 − λ2 + ε
Bλ1Gλ1+1,λ2 + (λ2 − 1− 2ε)

λ1 − λ2

λ1 − λ2 + ε
Bλ2−εGλ1,λ2+1

)
− (1 + ε)

ab

2

λ1(λ1 − 1) + λ2(λ2 − 1− 2ε) + 2ε

λ1(λ1 − 1)(λ2 − ε)(λ2 − 1− ε) Gλ1,λ2 (4.8)

F2Gλ1,λ2 = (λ1 + λ2 − 1)
(λ1 − λ2)(λ1 − λ2 + 2ε)

λ1 − λ2 + ε

[
Gλ1,λ2−1 −Gλ1−1,λ2

− (λ1 + λ2 − 2ε)(λ1 + λ2 − 1− 2ε)

(λ1 + λ2 − ε)(λ1 + λ2 − 1− ε) (Bλ1Gλ1+1,λ2 −Bλ2−εGλ1,λ2+1)

]
− ab

2

(λ1 − λ2)(λ1 − λ2 + 2ε)(λ1 + λ2 − 1)(λ1 + λ2 − 1− 2ε)

λ1(λ1 − 1)(λ2 − ε)(λ2 − 1− ε) Gλ1,λ2 . (4.9)

After shifting λ2 7→ λ2 + 1, any two of these relations can be combined to eliminate

Gλ1+1,λ2+1. The following equations come from combining (4.7) with (4.9) and (4.8) re-

spectively:

(λ1 + λ2 − ε)(λ1 − λ2 − 1 + 2ε)

λ1 − λ2 − 1 + ε
Gλ1,λ2 =

ε(2λ1 − 1)

λ1 − λ2 − 1 + ε
Gλ1−1,λ2+1

+
1

2

[
(λ1 + λ2 − 2ε)

(
F0 +

ab

2

λ1(λ1 − 1) + (λ2 + 1)(λ2 − 2ε) + 2ε

λ1(λ1 − 1)(λ2 + 1− ε)(λ2 − ε)

)
+

1

λ1 − λ2 − 1

(
F2 +

ab

2

(λ1 − λ2 − 1)(λ1 − λ2 − 1 + 2ε)(λ1 + λ2)(λ1 + λ2 − 2ε)

λ1(λ1 − 1)(λ2 + 1− ε)(λ2 − ε)

)]
Gλ1,λ2+1

− (λ1 + λ2)(λ1 + λ2 − 2ε)(λ1 + λ2 + 1− 2ε)

(λ1 + λ2 − ε)(λ1 + λ2 + 1− ε) Bλ2+1−εGλ1,λ2+2 (4.10)

(λ1 + λ2 − ε)(λ1 − λ2 − 1 + 2ε)

λ1 − λ2 − 1 + ε
Gλ1,λ2 =

[
(λ1 − 1− ε)F0 + F1

+
ab

2

λ1(λ1 − 1) + (λ2 + 1)(λ2 − 2ε) + 2ε

(λ1 − 1)(λ2 + 1− ε)(λ2 − ε)

]
Gλ1,λ2+1 − (λ1 − λ2 − 1)[

(λ1 + λ2)(λ1 + λ2 + 1− 2ε)

(λ1 + λ2 − ε)(λ1 + λ2 + 1− ε)Bλ2+1−εGλ1,λ2+2 +
2λ1 − 1

λ1 − λ2 − 1 + ε
Gλ1−1,λ2+1

]
. (4.11)

In the appendix of [11], these same recurrence relations appear for the case a = b = 0. They

give spin ` operators on the left in terms of spin ` − 1 and ` − 2 operators on the right.

Notice that the last term in (4.11) vanishes when λ1 − λ2 = 1. Therefore, this equation

can be used to convert the spin 0 block Gλ+ 1
2
,λ+ 1

2
into the spin 1 block Gλ+ 1

2
,λ− 1

2
. Using

this to find the large a spin 1 block from (4.5),

Gλ+ 1
2
,λ− 1

2
=

1

4λ− 2ε

[(
λ− 1

2
− ε
)
F0 + F1 +

ab

2

(
λ+ 1

2

)
(2λ− 1− 2ε) + 2ε(

λ− 1
2

) (
λ+ 1

2
− ε
) (
λ− 1

2
− ε
)]Gλ+ 1

2
,λ+ 1

2

∼ 1

4λ− 2ε

[
(1− x)

∂

∂x
+ (1− z) ∂

∂z
− a+

ab

2

(
λ+ 1

2

)
(2λ− 1− 2ε) + 2ε(

λ− 1
2

) (
λ+ 1

2
− ε
) (
λ− 1

2
− ε
)]Gλ+ 1

2
,λ+ 1

2

∼ 1

4λ− 2ε

[
a+

ab

2

(
λ+ 1

2

)
(2λ− 1− 2ε) + 2ε(

λ− 1
2

) (
λ+ 1

2
− ε
) (
λ− 1

2
− ε
)]Gλ+ 1

2
,λ+ 1

2

=
a

4λ− 2ε

λ− 1
2

+ b− ε
λ− 1

2
− ε

Gλ+ 1
2
,λ+ 1

2
.

Inserting the u and v dependence,

Gλ+ 1
2
,λ− 1

2
(u, v) ∼

λ− 1
2 + b− ε

(2λ− ε)(2λ− 1− 2ε)

Γ(2λ+ 1)Γ(2λ+ 1− ε)
Γ
(
λ+ 1

2 + b
)

Γ
(
λ+ 1

2 + b− ε
)a2b−2λubv−a−b
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=
1

2λ− 1− 2ε

Γ(2λ+ 1)Γ(2λ− ε)
Γ
(
λ+ 1

2 + b
)

Γ
(
λ− 1

2 + b− ε
)a2b−2λubv−a−b . (4.12)

Since the coefficient (4.4) holds for ` = 0 and ` = 1, we may use (4.10) to show that it

holds for all `. Instead of working with this equation for general x and z, it is sufficient

to restrict it to the diagonal x = z. The advantage of this is that F2 drops out giving

us a recursion with no derivatives. This diagonal limit allowed [11] to solve the recursion

with a = b = 0. A solution for a = 0 but b 6= 0 was later found in [27]. We will instead

drop terms surpressed by powers of a so that none of the parameters have to be zero. This

means that Gλ1,λ2+1 only survives when multiplied by a and Gλ1,λ2+2 only survives when

multiplied by a2. This yields
(λ1 + λ2 − ε)(λ1 − λ2 − 1 + 2ε)

λ1 − λ2 − 1 + ε
G

(0)
λ1,λ2

(z, z) =
ε(2λ1 − 1)

λ1 − λ2 − 1 + ε
G

(0)
λ1−1,λ2+1(z, z)

+
ab(λ1 + λ2 − 2ε)[λ1(λ1 − 1) + λ2(λ2 + 1− 2ε) + (λ1 − λ2 − 1 + 2ε)(λ1 + λ2)]

4λ1(λ1 − 1)(λ2 + 1− ε)(λ2 − ε)
G

(0)
λ1,λ2+1(z, z)

+
a2(λ1 + λ2)(λ1 + λ2 − 2ε)(λ1 + λ2 + 1− 2ε)[(λ2 + 1− ε)2 − b2]

4(λ1 + λ2 − ε)(λ1 + λ2 + 1− ε)(λ2 + 1− ε)2(2λ2 + 3− 2ε)(2λ2 + 1− 2ε)
G

(0)
λ1,λ2+2(z, z) .(4.13)

Cancelling the factors of a2b−λ1−λ2z2b(1−z)−2a−2b on either side, this becomes a recurrence

relation for the coefficients:
(λ1 + λ2 − ε)(λ1 − λ2 − 1 + 2ε)

λ1 − λ2 − 1 + ε
C

(d)
λ1,λ2

=
ε(2λ1 − 1)

λ1 − λ2 − 1 + ε
C

(d)
λ1−1,λ2+1

+
b(λ1 + λ2 − 2ε)[λ1(λ1 − 1) + λ2(λ2 + 1− 2ε) + (λ1 − λ2 − 1 + 2ε)(λ1 + λ2)]

4λ1(λ1 − 1)(λ2 + 1− ε)(λ2 − ε)
C

(d)
λ1,λ2+1

+
(λ1 + λ2)(λ1 + λ2 − 2ε)(λ1 + λ2 + 1− 2ε)[(λ2 + 1− ε)2 − b2]

4(λ1 + λ2 − ε)(λ1 + λ2 + 1− ε)(λ2 + 1− ε)2(2λ2 + 3− 2ε)(2λ2 + 1− 2ε)
C

(d)
λ1,λ2+2 . (4.14)

It is not difficult to check that (4.14) is solved by (4.4). It follows that (4.4) gives the

correct coefficient for any spin.

5 Discussion and summary

Using an asymptotic expansion in the large parameter a = −1
2∆12, we have managed to

rewrite the complicated function GO(u, v) as G
(0)
O (u, v) which is monomial in u and v.

Specifically, it is (3.7) with a prefactor given by (4.4). We now return to the question of

whether the conformal bootstrap becomes more tractable in this large parameter case.

Most studies involving the conformal bootstrap have considered four point functions

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 where the fields have equal or comparable scaling dimensions.

Such a correlator will only produce large dimension differences when the exchanged primary

O is a heavy operator. The infinite set of constraints from crossing symmetry requires one

to discard all sufficiently heavy operators from the linear programming problem before it

can be solved numerically. For example, [2] considered scaling dimensions of at most 20 with

the hope that the rest have a negligible contribution. This was made rigorous in [32] which

found that for fixed ∆1 and ∆2, the OPE coefficient λ12O decreases rapidly as ∆→∞.

In the limit we have taken, the largest λ12O coefficient in the conformal block expansion

will be smaller than any that were kept by previous studies. These coefficients will again

need to be cut off once they reach an even smaller size. A key question is whether this can

be done before the dimension of O approaches |∆12|. This would enable us to use∑
O
λ12Oλ34OG

(0)
O (u, v) (5.1)
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to approximate the unknown part of the four point functon G(u, v). The problem is that

the ∆ appearing in this sum will eventually become large enough to invalidate (3.7). With

the tail of the series not controlled by our approximation, one has to worry about whether

it still converges.

Powers of u and v in (3.7) multiply a2b−∆ which decreases exponentially with ∆. How-

ever, for fixed `, b and d, (4.4) is asymptotic to

(
Γ(∆)

Γ(∆
2 )

)2

which has a faster than exponential

increase. This would have to be cancelled by the decrease of λ12Oλ34O for the terms in (5.1)

to go to zero. As argued by [32], in a basis for the CFT Hilbert space, the number of local op-

erators with dimension ∆ is exponential in ∆
d−1
d . When these same states are weighted by

their OPE coefficients, they instead find a power law, suggesting that the rate λ12Oλ34O → 0

cannot be faster than exponential. We are therefore using an approximation that changes

the convergence properties of the conformal block expansion. This makes it doubtful that

it is valid to truncate the series in a regime where the approximation still holds.

Even if we are not able to take the large a limit of all the conformal blocks in G(u, v),

it was emphasized in [33] that a single conformal block bears some relation to an AdS

Feynman diagram or Witten diagram. The idea is to find the poles δm that the conformal

blocks have in Mellin space and write∑
m

Res (WO, δm)
1

δ − δm
. (5.2)

The difference between this sum over poles and a corresponding Witten diagram would not

be obvious in position space. An advantage of Mellin space is that diagrams like the ones

in [34] will only differ from (5.2) by polynomials.

Up to a normalization, a conformal partial wave in Mellin space is given by:

WO(δij) = eπi(
d
2
−∆)

(
eπi(δ+∆−d) − 1

) Γ
(

∆−`−δ
2

)
Γ
(
d−∆−`−δ

2

)
Γ
(

∆1+∆2−δ
2

)
Γ
(

∆3+∆4−δ
2

)P (d)
` (δij) . (5.3)

Note that dimension differences are encoded in the variables through
∑

i 6=j δij = ∆j . While

this formula makes the locations of the poles explicit in arbitrary dimension, their residues

depend crucially on the Mack polynomials P
(d)
` which are defined by rather complicated

recurrence relations. One could probably gain more information about what they are for

large a by inverting the Mellin-Barnes integral representation of our result:

WO(P1, P2, P3, P4) =

∫ i∞

−i∞
WO(δij)

∏
i<j

Γ(δij)P
−δij
ij dδij . (5.4)

The presence of heavy operators makes the conformal block we have considered very

different from the ones related to scattering processes in [33]. This is because correlation

functions involving heavy operators are not described by Witten diagrams. From the

generating functional for CFT correlators, exp
(∫

Rd Oi(x)φi,∂(x)dx
)
, it is clear that the

dimensions of a bulk field and its dual operator must add up to d. If ∆i is large but d is

not, the dual field is not relevant in a low energy effective action for the bulk.

A case that falls under our limit is 〈φ(x1)Φ(x2)Φ(x3)Φ(x4)〉 where ∆Φ � ∆φ. If the

boundary CFT is in a state corresponding to these operators, its gravity dual is essentially

– 16 –
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a test particle travelling through a warped geometry. This should only be asymptotically

AdS because of the backreaction caused by the three heavy operators. If the connection

between conformal blocks and scattering continues to hold in this case, the pole structure

of our result can be used to probe the geometries associated with certain heavy operators

in the CFT.
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