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1 Introduction

Computations involving Fierz identities in curved backgrounds for various dimensions and

signatures are a cumbersome ingredient of supergravity and string theories and their ap-

plications. As any student of the subject knows all too well, the very construction of

such theories relies in crucial ways on such identities, whose expert manipulation is often

essential for answering various questions.

So far, little progress appears to have been made in giving a conceptually unified and

computationally efficient treatment of Fierz identities in various dimensions and signatures,

though partial steps in this direction were taken from various perspectives. In the present

paper, we initiate such a unified treatment by using concepts and techniques borrowed from

a certain approach to spinors known as “geometric algebra”. Employing such methods, we

give a systematic and unified treatment of Fierz identities for form-valued pinor bilinears,

which can be applied in curved backgrounds (including flux backgrounds) of any dimension

and signature. We also show how various results which were obtained previously can be

recovered quite efficiently through our approach.
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As typical in the geometric algebra approach to pinors (see [1] for our formulation),

we start by viewing a bundle S of pinors over a pseudo-Riemannian manifold (M, g) as a

bundle of modules over the (real) Kähler-Atiyah bundle (∧T ∗M, ⋄) of (M, g), with module

structure specified by a morphism γ : (∧T ∗M, ⋄) → (End(S), ◦) of bundles of algebras.

We give a uniform description of the image and kernel of this morphism using the Schur

bundle Σγ of γ, which we define as the commutant sub-bundle of the image of γ inside

the bundle of algebras (End(S), ◦). When γ is irreducible (which is the case of interest

in many applications), Schur’s lemma implies that the Schur bundle is a bundle of simple

associative algebras, thus — by the Frobenius theorem on the classification of such algebras

— having fiber isomorphic with either of the algebras R, C or H. It turns out that the

image of γ equals the commutant sub-bundle EndΣγ (S) of Σγ inside (End(S), ◦), while the

kernel of γ equals a (possibly vanishing) sub-bundle ∧−γT ∗M of the Kähler-Atiyah bundle,

whose complement in the latter is denoted by ∧γT ∗M and whose construction we explain

in the main text. The bundle ∧γT ∗M plays the role of effective domain of definition of γ,

allowing us to define a partial inverse γ−1 : EndΣγ (S) → ∧γT ∗M of γ which can be used

to transport sections of EndΣγ (S) to inhomogeneous forms belonging to the subalgebra

Ωγ(M)
def.
= Γ(M,∧γT ∗M) of the Kähler-Atiyah algebra (Ω(M), ⋄) of (M, g). This general-

izes the ‘dequantization’ procedure which was used in [1] in a particular case. Using the

partial inverse γ−1 and the results of [2–6], we show how basic Fierz identities constraining

differential forms constructed as bilinears in sections of S admit a systematic formulation

in terms of so-called Fierz isomorphisms, thereby providing algebraic constraints on certain

systems of differential forms defined on (M, g). We also show how the algebra of constraints

on differential forms extracted in this manner can be formulated in a concise form which

allows for easy analysis of their structural properties.

The paper is organized as follows. In section 2, we systematize the basic properties of

pin bundles within the geometric algebra approach, taking the theory of representations

of real Clifford algebras as a starting point. The discussion is organized into the normal,

almost complex and quaternionic cases, according to the type of the corresponding Schur

algebra. Section 3 discusses admissible bilinear forms on such bundles using the language

and results of [5, 6]. Section 4 gives our treatment of basic Fierz identities for form-

valued (s)pinor bilinears in the normal, almost complex and quaternionic case. Section 5

illustrates our treatment by considering three examples, one for each of the three cases

mentioned above — while explaining how the more traditional treatment of the examples

used to illustrate the almost complex and quaternionic cases can be recovered within our

approach. Section 6 contains our conclusions while appendix A summarizes some properties

of real (s)pinors in those dimensions of signatures which are of most direct physical interest.

Notations. We work within the smooth differential category, so all manifolds, vector

bundles, maps, morphisms of bundles, differential forms etc. are taken to be smooth. We

further assume that our smooth manifolds M are connected, paracompact and Hausdorff.1

1As is well-known, this implies that M is second countable, σ-compact and admits countable atlases.

Furthermore, it implies that M has finite Lebesgue covering dimension, equal to its usual dimension as a

manifold. In particular, we have partitions of unity of finite multiplicity subordinate to any open cover and

the smooth version of the Serre-Swan correspondence applies for finite rank vector bundles over M .

– 2 –
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If V is an R-vector bundle over M , we let Γ(M,V ) denote the space of smooth (C∞)

sections of V . We also let End(V ) = Hom(V, V ) = V ⊗ V ∗ denote the bundle of endomor-

phisms of V , where V ∗ = Hom(V,OR) is the dual vector bundle to V while OR denotes

the trivial R-line bundle on M . The unital ring of smooth R-valued functions defined on

M is denoted by C∞(M,R) = Γ(M,OR). The tensor product of R-vector bundles is de-

noted by ⊗, while the tensor product of C∞(M,R)-modules is denoted by ⊗C∞(M,R); hence

Γ(M,V1 ⊗ V2) = Γ(M,V1) ⊗C∞(M,R) Γ(M,V2). The space of R-valued smooth inhomoge-

neous globally-defined differential forms on M is denoted by Ω(M)
def.
= Γ(M,∧T ∗M) and

is a Z-graded module over the commutative ring C∞(M,R). The fixed rank components

of this graded module are denoted by Ωk(M) = Γ(M,∧kT ∗M) (k = 0 . . . d, where d is the

dimension of M).

The kernel and image of any R-linear map T : Γ(M,V1) → Γ(M,V2) will be de-

noted by K(T ) and I(T ); these are R-linear subspaces of Γ(M,V1) and Γ(M,V2), respec-

tively. In the particular case when T is C∞(M,R)-linear (i.e. when it is a morphism of

C∞(M,R)-modules), the subspaces K(T ) and I(T ) are C∞(M,R)-submodules of Γ(M,V1)

and Γ(M,V2), respectively — even in those cases when T is not induced by any bundle

morphism from V1 to V2. We always denote a morphism f : V1 → V2 of R-vector bundles

and the C∞(M,R)-linear map Γ(M,V1) → Γ(M,V2) induced by it between the modules

of sections through the same symbol. Because of this convention, we clarify that the no-

tations K(f) ⊂ Γ(M,V1) and I(f) ⊂ Γ(M,V2) denote the kernel and the image of the

corresponding map on sections Γ(M,V1)
f
→ Γ(M,V2), which in this case are C∞(M,R)-

submodules of Γ(M,V1) and Γ(M,V2), respectively. In general, there does not exist any

sub-bundle ker f of V1 such that K(f) = Γ(M, ker f) nor any sub-bundle imf of V2 such

that I(f) = Γ(M, imf) — though there exist sheaves ker f and imf with the correspond-

ing properties.

Given a pseudo-Riemannian metric g onM of signature (p, q), we let (ea)a=1...d (where

d = dimM) denote a local frame of TM , defined on some open subset U of M . We let

(ea)a=1...d be the dual local coframe (= local frame of T ∗M), which satisfies ea(eb) = δab
and ĝ(ea, eb) = gab, where ĝ is the metric induced on the cotangent bundle and (gab) is the

inverse of the matrix (gab). The contragradient frame (ea)# and contragradient coframe

(ea)# are given by:

(ea)# = gabeb , (ea)# = gabe
b ,

where the # subscript and superscript denote the (mutually inverse) musical isomorphisms

between TM and T ∗M given respectively by lowering and raising indices with the metric

g. We set ea1...ak
def.
= ea1 ∧ . . . ∧ eak and ea1...ak

def.
= ea1 ∧ . . . ∧ eak for any k = 0 . . . d. A

general R-valued inhomogeneous form ω ∈ Ω(M) expands as:

ω =
d∑

k=0

ω(k) =
U

d∑

k=0

1

k!
ω(k)
a1...ak

ea1...ak , (1.1)

where the symbol =
U
means that the equality holds only after restriction of ω to U and

– 3 –
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where we used the expansion:

ω(k) =
U

1

k!
ω(k)
a1...ak

ea1...ak . (1.2)

The locally-defined smooth functions ω
(k)
a1...ak ∈ C∞(U,R) (the ‘strict coefficient functions’

of ω) are completely antisymmetric in a1 . . . ak. Given a pinor bundle on M with under-

lying fiberwise representation γ of the Clifford bundle of T ∗M , the corresponding gamma

‘matrices’ in the coframe ea are denoted by γa
def.
= γ(ea), while the gamma matrices in the

contragradient coframe (ea)# are denoted by γa
def.
= γ((ea)#) = gabγ

b. We will occasionally

assume that the frame (ea) is pseudo-orthonormal in the sense that ea satisfy:

g(ea, eb) (= gab) = ηab ,

where (ηab) is a diagonal matrix with p diagonal entries equal to +1 and q diagonal entries

equal to −1.

2 Real (s)pin bundles over a pseudo-Riemannian manifold

Let (M, g) be an oriented pseudo-Riemannian manifold of dimension d = p + q, where p

and q are the numbers of positive and negative eigenvalues of the metric tensor g. Let ν

be the (real) volume form of (M, g).

2.1 Basics

We start by recalling the basics of our approach to “geometric algebra” and spin geometry,

which is based on the theory of Kähler-Atiyah bundles. We refer the reader to [1] for a

detailed discussion of this approach and for the derivation of some results which are used

in the present paper.

The Kähler-Atiyah algebra and Kähler-Atiyah bundle of (M, g). Recall that

the Kähler-Atiyah bundle of (M, g) is a bundle of Z2-graded associative and unital R-

algebras (∧T ∗M, ⋄) whose underlying vector bundle coincides with the exterior bundle of

M (endowed with its natural Z2-grading induced by rank, namely ∧T ∗M = ∧evT ∗M ⊕

∧oddT ∗M) and whose fiberwise R-bilinear, associative and unital multiplication ⋄ is the

so-called geometric product of (M, g) (see [1] for a detailed discussion). The fibers of the

Kähler-Atiyah bundle are unital and associative algebras which are isomorphic with the

real Clifford algebra Cl(p, q),2 which we view as a Z2-graded algebra in the usual manner.

Note that (∧evT ∗M, ⋄) is a bundle of unital subalgebras of the Kähler-Atiyah bundle, which

we shall call the even Kähler-Atiyah bundle of (M, g).

Let π be the main automorphism (a.k.a. the signature, or grading automorphism), i.e.

that involutive automorphism of the Kähler-Atiyah bundle which is uniquely determined

2Our convention is that the canonical generators e1, . . . , ep+q of Cl(p, q) satisfy e2i = +1 for i = 1, . . . , p

and e2j = −1 for j = p+ 1, . . . , p+ q. This is the same convention used in [1], to which we refer the reader

for further details.

– 4 –
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by the property that it acts as minus the identity on all one-forms:

π(ω)
def.
=

d∑

k=0

(−1)kω(k) , ∀ω =
d∑

k=0

ω(k) ∈ Ω(M) , where ω(k) ∈ Ωk(M) (2.1)

and τ be the main anti-automorphism (a.k.a. reversion), i.e. the involutive anti-

automorphism of the Kähler-Atiyah bundle given by:

τ(ω)
def.
= (−1)

k(k−1)
2 ω , ∀ω ∈ Ωk(M) . (2.2)

It is the unique anti-automorphism of (∧T ∗M, ⋄) which acts trivially on all one-forms.

The fact that the exterior product is recovered from the geometric product in the limit

of infinite metric (through a trivial direct computation3) implies that τ and π are also

(anti-)automorphisms of the exterior bundle (∧T ∗M,∧) — see sections 3.2. and 3.3. of [1].

We have the relations:

π ◦ τ = τ ◦ π , π ◦ π = τ ◦ τ = idΩ(M) .

The (real) volume form ν = volM ∈ Ωd(M) of (M, g) satisfies the following properties (see

table 1):

ν ⋄ ν = (−1)q+[
d
2 ]1M =





(−1)
p−q
2 1M , if d = even

(−1)
p−q−1

2 1M , if d = odd
(2.3)

and:

ν ⋄ ω = πd−1(ω) ⋄ ν , ∀ω ∈ Ω(M) . (2.4)

Hence ν is central in the Kähler-Atiyah algebra when d is odd and twisted central (i.e., we

have ν ⋄ ω = π(ω) ⋄ ν) in the Kähler-Atiyah algebra when d is even.

Real pin bundles on (M, g). A bundle of real pinors on (M, g) is a real vector bun-

dle S over M endowed with a unital morphism of bundles of algebras γ : (∧T ∗M, ⋄) →

(End(S), ◦) from the Kähler-Atiyah bundle of (M, g) to the bundle of endomorphisms of

S, i.e. a bundle of modules over the Kähler-Atiyah bundle of (M, g). The map induced on

global sections (which we denote by the same letter):

γ : (Ω(M), ⋄) → (Γ(M,End(S)), ◦)

is a unital morphism of C∞(M,R)-algebras from the Kähler-Atiyah algebra of (M, g) to

the algebra of globally-defined endomorphisms of S. For each point x ∈ M , the fiber γx
is a representation of the Clifford algebra (∧T ∗

xM, ⋄x) ≈ Cl(p, q) in the R-vector space Sx

3Namely, take 1 ≤ a1 < . . . < ak ≤ d. Then, on a sufficiently small open subset U around any point, we

have ea1 ⋄ . . . ⋄ eak = ea1 ∧ . . .∧ eak since ea is an orthonormal coframe. Since π is an automorphism of the

Kähler-Atiyah bundle, we have π(ea1 ⋄ . . . ⋄ eak ) = π(ea1) ⋄ . . . ⋄ π(eak ). Using the fact that π(ea) = −ea

and the previous observation, this gives π(ea1 ∧ . . . ∧ eak ) = π(ea1 ⋄ . . . ⋄ eak ) = (−1)kea1 ⋄ . . . ⋄ eak =

(−1)kea1 ∧ . . .∧ eak = π(ea1)∧ . . .∧ π(eak ). This implies that π acts as an automorphism of the restricted

exterior algebra (Ω(U),∧). Using a partition of unity, we find that π is an automorphism of the full exterior

algebra (Ω(M),∧). A similar argument shows that τ is an anti-automorphism of the exterior algebra.
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ν ⋄ ν = +1 ν ⋄ ν = −1

ν is central 1(R),5(H) 3(C),7(C)

ν is not central 0(R),4(H) 2(R),6(H)

Table 1. Properties of the (real) volume form ν according to the mod 8 reduction of p− q. At the

intersection of each row and column, we indicate the values of p− q (mod 8) for which the volume

form ν has the corresponding properties. In parentheses, we also indicate the Schur algebra (see

subsection 2.2) S for that value of p − q (mod 8). The real Clifford algebra Cl(p, q) is non-simple

iff. p− q ≡8 1, 5, which corresponds to the upper left cell of the table and is also indicated through

the blue shading of that table cell. In the non-simple cases, there are two choices for γ, which are

distinguished by the signature ǫγ = ±1; these are also the only cases when γ fails to be injective.

Notice that ν is central iff. d is odd. The green color indicates those values of p − q (mod 8) for

which a spin endomorphism can be defined (see next page).

(the fiber of S at x). We say that S is a real pin bundle if this representation is irreducible

for each x ∈ M , i.e. when the fibers of S are simple modules. Similarly, a bundle of real

spinors of (M, g) is a bundle of modules over the even Kähler-Atiyah bundle (∧evT ∗M, ⋄)

of (M, g); it is called a spin bundle when its fibers are simple modules. Notice that any

bundle of pinors is a bundle of spinors in a natural way.4 From now on, we let S be a pin

bundle of (M, g), so we assume that γ is fiberwise irreducible.

Spin projectors and spin bundles. Giving a direct sum bundle decomposition S =

S+ ⊕ S− amounts to giving a product structure on S, i.e. a bundle endomorphism R ∈

Γ(M,End(S)) such that R ◦ R = idS . Indeed, S± determine R as that product structure

whose eigenbundles associated with the eigenvalues +1 and −1 of R equal S+ and S−,

while a product structure R determines S± as the sub-bundles associated with its two

eigenvalues. We say that R is non-trivial if S+ and S− are both non-zero, i.e. if R differs

from +idS as well as from −idS . It is easy to see that the restriction:

γev
def.
= γ|∧evT ∗M : ∧evT ∗M → End(S) (2.5)

is reducible on the fibers as a morphism of bundles of algebras iff. there exists a nontrivial

product structure on S which lies in the commutant of γ(Ωev(M)), i.e. a globally-defined

endomorphism R ∈ Γ(M,End(S)) \ {−idS , idS} which satisfies:

R2 = idS and [R, γ(ω)]−,◦ = 0 , ∀ω ∈ Ωev(M) . (2.6)

Such an endomorphism (when defined) is called a spin endomorphism. When γev is

fiberwise reducible, we define the spin projectors determined by R to be the globally-

defined endomorphisms:

PR
±

def.
=

1

2
(idS ±R) ,

4Indeed, the restriction γev of γ to the sub-bundle ∧evT ∗M ⊂ ∧T ∗M makes any pinor bundle (S, γ) into

a spinor bundle (S, γev).
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which are complementary idempotents in Γ(M,End(S)). Then the eigen sub-bundles:

S± def.
= PR

± (S) ⊂ S

corresponding to the eigenvalues +1 and −1 of R are complementary in S:

S = S+ ⊕ S−

and we have:

γ(ω)(S±) ⊂ S± , ∀ω ∈ Ωev(M) .

This gives a nontrivial direct sum decomposition γev = γ+ ⊕ γ− of γev into morphisms of

bundles of algebras:

γ±
def.
= γ|

End(S±)
∧evT ∗M : (∧evT ∗M, ⋄) → (End(S±), ◦) .

Of course, the vector bundles S± are spin bundles with underlying morphisms given by

γ±. Such a nontrivial decomposition of γ (and hence a spin endomorphism R) exists iff.

p−q ≡8 0, 4, 6, 7. In the Physics literature, the sections of S± are addressed by historically-

motivated names. This terminology is summarized below:

• When p − q ≡8 0, the sections of S± are called Majorana-Weyl spinors (of positive

and negative chirality).

• When p− q ≡8 4, the sections of S
± are called symplectic Majorana-Weyl spinors (of

positive and negative chirality).

• When p− q ≡8 6, the sections of S+ are called symplectic Majorana spinors.

• When p− q ≡8 7, the sections of S+ are called Majorana spinors.

Local expressions. Let em be an oriented local pseudo-orthonormal frame of (M, g).

We set:

γ(em)
def.
= γm , γm = ηmnγ

n (2.7)

For A = (m1, . . . ,mk) with 1 ≤ m1 < . . . < mk ≤ d, we let |A|
def.
= k denote the length of

A and:

eA
def.
= em1 ∧ . . . ∧ emk , γA

def.
= γm1 ◦ . . . ◦ γmk , γA

def.
= γm1 ◦ . . . ◦ γmk

. (2.8)

Since γ−1
m = γm and [γm, γn]+,◦ = 2ηmn, we have γ

−1
mk

◦. . .◦γ−1
m1

= γmk◦. . .◦γm1 , which gives:

γ−1
A = (−1)

|A|(|A|−1)
2 γA . (2.9)

Also note the relation:

γ(ν) = γ(d+1) def.
= γ1 ◦ . . . ◦ γd . (2.10)

– 7 –
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2.2 The Schur bundle and algebra

As before, let S be a real pin bundle with underlying morphism γ. We let:

N
def.
= rkRS (2.11)

denote the rank of S.

Definition. Let x be any point in M . The Schur algebra of γx is the unital subalgebra

Σγ,x defined as the commutant of the image γx(∧T
∗
xM) inside the algebra (End(Sx), ◦x):

Σγ,x
def.
= {Tx ∈ End(Sx) | [Tx, γx(ωx)]−,◦ = 0 , ∀ωx ∈ ∧T ∗

xM} .

It is easy to see that the subset:

Σγ = {(x, Tx) | x ∈M , Tx ∈ Σγ,x} = ⊔x∈MΣγ,x

is a sub-bundle of unital algebras of the bundle of algebras (End(S), ◦), which we shall

call the Schur bundle of γ. In particular, the isomorphism type (as a unital associative

algebra) of the fiber (Σγ,x, ◦x) is independent of x and is denoted by5 S, being called the

Schur algebra of γ. Notice that the space Γ(M,Σγ) of globally-defined smooth sections of

the Schur bundle is a unital subalgebra of the C∞(M,R)-algebra (Γ(M,End(S)), ◦), which

coincides with the commutant of γ(Ω(M)) inside Γ(M,End(S)):

Γ(M,Σγ) = {T ∈ Γ(M,End(S)) | [T, γ(ω)]−,◦ = 0 , ∀ω ∈ Ω(M)} .

Since γ is irreducible on the fibers, Schur’s lemma implies that S is a division algebra

over R and hence (by the Frobenius theorem on classification of such algebras) the abstract

fiber of Σγ is isomorphic with R,C or H. Notice that S becomes a bundle of left Σγ-

modules if one defines left fiberwise multiplication with elements of Σγ as evaluation of the

corresponding R-linear operator. On global sections, this gives:

Cξ
def.
= C(ξ) ∈ Γ(M,S) , ∀ξ ∈ Γ(M,S) , ∀C ∈ Γ(M,Σγ) .

As a consequence, the dual vector bundle S∗ = Hom(S,OR) becomes a bundle of right

Σγ-modules with external multiplication given by postcomposition, which on global sec-

tions gives:

ηC
def.
= η ◦ C ∈ Γ(M,S∗) , ∀η ∈ Γ(M,S∗) , ∀C ∈ Γ(M,Σγ) .

Finally, End(S) ≈ S ⊗ S∗ becomes a bundle of Σγ-bimodules if one uses the module

structures on S and S∗, i.e. if one defines left and right multiplication with elements of

Σγ through composition from the left and right with the corresponding R-linear operators.

On global sections, this gives:

C1TC2
def.
= C1 ◦ T ◦ C2 , ∀T ∈ Γ(M,End(S)) , ∀C1, C2 ∈ Γ(M,Σγ) .

5Since γ is fiberwise irreducible, it turns out that S depends only on p− q mod 8.
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The fibers of S are in fact free as left modules over the fibers of Σγ (since the latter is a

field or a skew-field), so we have an isomorphism of R-vector bundles:

S ≈ Σγ ⊗ S0 ,

where S0 is an R-vector bundle over M whose rank we denote through:

∆
def.
= rkRS0 = rkΣγS (2.12)

and call the Schur rank of S. We have the relation:

rkRS = rkRΣγ rkΣγS ⇐⇒ N = ∆dimR S .

The bundle of bimodule endomorphisms of S can be identified with the sub-bundle

EndΣγ (S) of those endomorphisms of S which commute with all elements of Σγ . On

global sections, this gives:

Γ(M,EndΣγ (S)) = {T ∈ Γ(M,End(S)) | [T,M ]−,◦ = 0 ,

∀M ∈ Γ(M,Σγ)} ⊂ Γ(M,End(S)) , (2.13)

which is a unital subalgebra of the C∞(M,R)-algebra (Γ(M,End(S)), ◦). Notice the bundle

isomorphism:

EndΣγ (S) ≈ Σγ ⊗ End(S0) .

In the following (and especially in sections 4 and 5) we will sometimes denote EndΣγ (S)

through EndS(S); this is justified by the fact that left multiplication with elements of Σγ

induces an S-module structure on each of the fibers of S.

2.3 The image and kernel of γ

Twisted (anti-)selfdual forms. When p − q ≡8 0, 1, 4, 5, we have ν ⋄ ν = +1 and we

can consider the sub-bundles ∧±T ∗M ⊂ ∧T ∗M , whose spaces of smooth global sections:

Ω±(M)
def.
= {ω ∈ Ω(M) | ω ⋄ ν = ±ω} ⊂ Ω(M)

are the C∞(M,R)-modules of twisted selfdual and twisted anti-selfdual inhomogeneous

differential forms of (M, g), respectively (see [1] for details). We have the direct sum

decompositions:

∧T ∗M = ∧+T ∗M ⊕ ∧−T ∗M , Ω(M) = Ω+(M)⊕ Ω−(M) ,

which corresponds to the complementary projectors:

P±
def.
=

1

2
(1± ∗̃) , Ω±(M) = P±(Ω(M)) ,

where ∗̃ is the twisted Hodge operator of [1]:

∗̃ω
def.
= ω ⋄ ν , ∀ω ∈ Ω(M) . (2.14)

The latter is related to the ordinary Hodge operator of (M, g) though [1]:

∗̃ = ∗ ◦ τ . (2.15)
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injective non-injective

surjective 0(R),2(R) 1(R)

non-surjective 3(C),7(C),4(H),6(H) 5(H)

Table 2. Fiberwise character of real pin representations γ. At the intersection of each row and

column, we indicate the values of p − q (mod 8) for which the map induced by γ on each fiber of

the Kähler-Atiyah algebra has the corresponding properties. In parentheses, we also indicate the

Schur algebra S of γ for that value of p − q (mod 8). Note that γ is fiberwise surjective exactly

for the normal case, i.e. when the Schur algebra is isomorphic with R. Also notice that γ fails to

be fiberwise injective precisely in the non-simple case p− q ≡8 1, 5, which we indicate through the

blue shading of the corresponding table cells.

Image, kernel and signature of γ. Well-known facts from the representation theory

of Clifford algebras imply the following:

Proposition.

1. The image of the bundle morphism γ coincides with the sub-bundle EndΣγ (S).

This gives:

γ(Ω(M)) = Γ(M,EndΣγ (S)) .

2. γ is fiberwise injective iff. Cl(p, q) is simple as an associative R-algebra, i.e. iff.

p− q 6≡8 1, 5 (the so-called simple case).

3. When γ fails to be fiberwise injective (i.e. when p−q ≡8 1, 5, the so-called non-simple

case), we have:

γ(ν) = ǫγ idS ,

where the sign factor ǫγ ∈ {−1, 1} is called the signature of γ. The two choices for

this sign factor lead to two inequivalent choices for γ. In this case, ∧ǫγT ∗M is a

sub-bundle of algebras of the Kähler-Atiyah bundle of (M, g) (see [1]). Moreover,

the kernel of the bundle morphism γ equals ∧−ǫγT ∗M , which implies the following

relation for the C∞(M,R)-modules of global sections:

K(γ) = Ω−ǫγ (M) .

Furthermore, the restriction of γ to its so-called effective domain ∧ǫγT ∗M gives an

isomorphism of bundles of algebras between (∧ǫγT ∗M, ⋄) and (EndΣγ (S), ◦).

The fiberwise injectivity and surjectivity properties of γ are summarized in table 2.

2.4 The effective domain and the partial inverse of γ

The following notation allows one to treat fiberwise injective and non-injective cases

simultaneously:

Ωγ(M)
def.
=

{
Ω(M) , if γ is fiberwise injective (simple case) ,

Ωǫγ (M) , if γ is not fiberwise injective (non− simple case)
(2.16)
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Type
p− q
mod 8

S

normal 0,1,2 R

almost complex 3,7 C

quaternionic 4,5,6 H

Table 3. Type of the pin bundle of (M, g) according to the mod 8 reduction of p − q. The pin

bundle S is called normal, almost complex or quaternionic depending on whether its Schur algebra

is isomorphic with R, C or H. The non-simple sub-cases are indicated in blue, while those cases

when a spin operator can be defined are indicated in green.

and:

Ω−γ(M)
def.
=

{
0 , if γ is fiberwise injective (simple case) ,

Ω−ǫγ (M) , if γ is not fiberwise injective (non− simple case) .

(2.17)

With this notation, we always have:

K(γ) = Ω−γ(M) , Ω(M) = Ωγ(M)⊕ Ω−γ(M)

and the restriction of the (map on sections induced by) γ to its effective domain Ωγ(M)

is injective. Since γ(Ωγ(M)) = Γ(M,EndΣγ (S)), we can define the partial inverse γ−1 :

EndΣγ (S) → ∧γT ∗M of γ to be the (map of bundles which induces the) partial inverse of

this restriction:

γ−1 def.
=
(
γ|

Γ(M,EndΣγ (S))

Ωγ(M)

)−1

: Γ(M,EndΣγ (S)) −→ Ωγ(M) . (2.18)

Notice the relations:

γ ◦ γ−1 = idEndΣγ (S)
, γ−1 ◦ γ = Pγ |

∧γT ∗M def.
= Pǫγ |

∧ǫγT ∗M ,

where in the right hand side we indicate explicitly the appropriate co-restriction.

Local expressions. Let em be a pseudo-orthonormal local coframe of M defined above

an open subset U ⊂M . For later reference, we define:

emγ
def.
= γ−1(γm) = Pγ(e

m) ∈ Ωγ(U) , ∀m = 1 . . . d , (2.19)

as well as:

eAγ
def.
= γ−1(γA) = γ−1(γm1) ⋄ . . . ⋄ γ−1(γmk) = em1

γ ⋄ . . . ⋄ emk
γ ∈ Ωγ(U) (2.20)

for any increasingly-ordered k-uple A = (m1, . . . ,mk).

2.5 Representation types

Recall that the Schur algebra S is isomorphic with R (the normal case), C (the almost

complex case) or H (the quaternionic case), where the terminology in brackets is due to [2–

4]. The results of [2–4] imply that the three types of real pin bundles occur according to

the mod 8 reduction of the difference p − q as shown in table 3 (see also table 4). In this

section, we summarize some properties of the three types of real pin bundles.
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S
p− q

mod 8

∧T ∗
xM

≈ Cl(p, q)
∆ N

Number of

choices

for γ

γx(∧T
∗
xM)

Fiberwise

injectivity

of γ

R 0,2 Mat(∆,R) 2[
d
2
] = 2

d
2 2[

d
2
] 1 Mat(∆,R) injective

H 4,6 Mat(∆,H) 2[
d
2
]−1 = 2

d
2
−1 2[

d
2
]+1 1 Mat(∆,H) injective

C 3,7 Mat(∆,C) 2[
d
2
] = 2

d−1
2 2[

d
2
]+1 1 Mat(∆,C) injective

H 5 Mat(∆,H)⊕2 2[
d
2
]−1 = 2

d−3
2 2[

d
2
]+1 2 (ǫγ = ±1) Mat(∆,H) non-injective

R 1 Mat(∆,R)⊕2 2[
d
2
] = 2

d−1
2 2[

d
2
] 2 (ǫγ = ±1) Mat(∆,R) non-injective

Table 4. Summary of pin bundle types. The non-negative integer N
def.
= rkRS is the real rank of S

while ∆
def.
= rkΣγ

S is the Schur rank of S. The non-simple cases are indicated by the blue shading

of the corresponding table cells.

2.6 The normal case

This occurs when S ≈ R, which happens for p − q ≡8 0, 1, 2. We have N = ∆ = 2[
d
2 ] and

the Schur bundle Σγ ≈ OR is the trivial real line bundle generated by the identity section

of End(S). This implies:

Γ(M,Σγ) = C∞(M,R) idS = {f idS | f ∈ C∞(M,R)} ≈ C∞(M,R) ,

where≈ denotes the obvious isomorphism of R-algebras. We have ν⋄ν = +1 for p−q ≡8 0, 1

and ν ⋄ ν = −1 for p − q ≡8 2. Furthermore, ν is central in the Kähler-Atiyah algebra of

(M, g) iff. p− q ≡8 1.

2.6.1 Injectivity and surjectivity

The morphism γ is always fiberwise surjective. It is fiberwise injective for p−q ≡8 0, 2 (the

normal simple case) but fails to be fiberwise injective when p − q ≡8 1 (the normal non-

simple case). When p−q ≡8 1, we have γ(ν) = ǫγ idS , where ǫγ ∈ {−1,+1} is the signature

of γ. The two choices of signature correspond to different fiberwise representations of the

real Clifford algebra Cl(p, q) and of the pin group Pin(p, q) ⊂ Cl(p, q), but induce equivalent

representations of the spin group Spin(p, q) ⊂ Pin(p, q).

2.6.2 Spin projectors

In the normal case, the restriction γev is fiberwise reducible iff. p − q ≡8 0, in which case

spin projectors can be constructed from the product structure R = γ(ν), which determines

the eigen sub-bundles S± of Majorana-Weyl spinors, on which γ(ν) has eigenvalues ±1.

Sections of S+ or S− are called Majorana-Weyl spinors (of positive and negative chiralities,

respectively). We have:

Γ(M,S±) = {ξ ∈ Γ(M,S) | γ(ν)ξ = ±ξ} .

The situation is summarized in table 5.
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p− q
mod 8

Cl(p, q)
γ

is injective
ǫγ R (real spinors) ν ⋄ ν

ν

is central

0 simple Yes N/A γ(ν) (Majorana-Weyl) +1 No

1 non-simple No ±1 N/A +1 Yes

2 simple Yes N/A N/A −1 No

Table 5. Summary of subcases of the normal case.

2.7 The almost complex case

This case occurs when S ≈ C, which happens for p − q ≡8 3, 7. In this case, d is odd

and we have N = 2∆ = 2[
d
2
]+1. We also have ν ⋄ ν = −1 and ν is always central in the

Kähler-Atiyah algebra.

2.7.1 Complex structures and the endomorphism D

There exist two complex structures on the bundle S which lie in the commutant of the

image of γ, i.e. two globally-defined endomorphisms J ∈ Γ(M,End(S)) which satisfy:

J2 = −idS and [J, γ(ω)]−,◦ = 0 , ∀ω ∈ Ω(M) . (2.21)

The two solutions J of (2.21) differ by a sign factor:

J → −J

and are given by:

J = ±γ(ν) .

In this case, the Schur bundle Σγ is the trivial rank two real vector bundle spanned by idS
and by any of these two choices of J . In particular, we have:

Γ(M,Σγ) = C∞(M,R)idS ⊕ C∞(M,R)J = {f idS + gJ | f, g ∈ C∞(M,R)} .

Each of the two choices of J determines an isomorphism of C∞(M,R)-algebras from

C∞(M,C) to Γ(M,Σγ):

ϕJ(f + ig) = f + gJ ∈ Γ(M,Σγ) , ∀f, g ∈ C∞(M,R) ,

so ϕJ and ϕ−J are related through complex conjugation, which is an C∞(M,R)-linear

involutive automorphism of C∞(M,C):

ϕ−J(u) = ϕJ(ū) , ∀u ∈ C∞(M,C) .

A choice for J makes the Schur bundle into a trivial complex line bundle, the two opposite

choices being related through complex conjugation. When viewing S as a bundle of Σγ-

modules, opposite choices for J correspond to two choices of complex structure on S, which
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p− q
mod 8

Cl(p, q)
γ

is injective
ǫγ D2 R (real spinors) ν ⋄ ν

ν

is central

3 simple Yes N/A −idS N/A −1 Yes

7 simple Yes N/A +idS D (Majorana) −1 Yes

Table 6. Summary of subcases of the almost complex case. In this case, γ(ν) defines a complex

structure J on S and we have imγ = EndC(S). We also have an endomorphism D of S which

anticommutes with J (thus giving a complex conjugation on S, when the latter is viewed as a

complex vector bundle) and satisfies [D, γm]+,◦ = 0. The two subcases p − q ≡8 3 and p − q ≡8 7

are distinguished by whether D2 equals −idS or +idS . In both cases, γ can be viewed as an

isomorphism of bundles of R-algebras from the Kähler-Atiyah bundle (∧T ∗M, ⋄) to (EndC(S), ◦),

while its complexification γC gives an isomorphism of bundles of C-algebras from the complexified

Kähler-Atiyah bundle (∧T ∗
C
M, ⋄) to (EndC(S), ◦). When p − q ≡8 7, D is a real structure which

can be used to identify S with the complexification (S+)C
def.
= S+ ⊗OC of the real bundle S+ ⊂ S

of Majorana spinors. When p− q ≡8 3, D is a second complex structure on S, which anticommutes

with the complex structure J = γ(ν). In that case, the operators J,D and J ◦ D define a global

quaternionic structure on S — which, however, is not compatible with γ since D anticommutes

with γm.

are again related through complex conjugation.6 The results of [2] imply that there exists

a globally-defined endomorphism D ∈ Γ(M,End(S)) which satisfies:

D ◦ γ(ω) = γ(π(ω)) ◦D , ∀ω ∈ Ω(M) , (2.22)

D2 = (−1)
p−q+1

4 idS =

{
−idS , if p− q ≡8 3 ,

+idS , if p− q ≡8 7 ,
(2.23)

[J,D]+,◦ = 0 (2.24)

and which is determined by these properties up to a sign ambiguity D → −D.

2.7.2 Injectivity and surjectivity

In this case, γ is always fiberwise injective but non-surjective. The image of γ coincides with

the sub-bundle EndC(S)
def.
= EndΣγ (S) of End(S), which in turn is the bundle of complex-

linear endomorphisms of S, when the latter is viewed as a C-vector bundle upon using the

complex structure J . This sub-bundle of End(S) is isomorphic through γ (as a bundle

of R-algebras) with the Kähler-Atiyah bundle of (M, g). The situation is summarized in

table 6.

2.7.3 Spin projectors

The restriction γev is fiberwise reducible iff. p − q ≡8 7, so spin projectors can only be

defined when this condition holds, which we assume to be the case for the remainder

of this sub-subsection. When p − q ≡8 7, the spin endomorphism in (2.6) is given by

6The two choices for J are exchanged when changing the orientation of M , since this maps the volume

form ν into its opposite.
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R = D. Since D and J anticommute (see (2.24)), D can be viewed as a real structure

(complex conjugation operation) on the complex vector bundle obtained by endowing S

with the complex structure J . We then have J(ξ) = iξ for all ξ ∈ Γ(M,S) and γ(ω) is an

endomorphism of S as a complex vector bundle:

γ(ω) ∈ Γ(M,EndC(S)) , ∀ω ∈ Ω(M) ,

because γ(ω) commutes with J . Since γ is fiberwise injective in this case, we can thus view

γ as an isomorphism of bundles of algebras from the real Kähler-Atiyah bundle of (M, g)

to the bundle (EndC(S), ◦), where the latter is viewed as a bundle of R-subalgebras of the

bundle of R-algebras (End(S), ◦):

γ : (∧T ∗M, ⋄)
∼
→ (EndC(S), ◦) .

When this interpretation is used, we can denote the action of D by an overline, defining

the complex conjugate of a section of S through:

ξ̄
def.
= D(ξ) , ∀ξ ∈ Γ(M,S) .

The spin projectors P± = 1
2(idS ±D) relate to taking the real and imaginary parts:

ξ±
def.
= P±(ξ) =

1

2
(ξ ± ξ̄) , ∀ξ ∈ Γ(M,S) ,

with:

Reξ
def.
= ξ+ , Imξ

def.
= −J(ξ−) ⇐⇒ ξ+ = Reξ , ξ− = J(Imξ) = iImξ .

The R-vector bundles S±
def.
= P±(S) give the decomposition S = S+ ⊕ S−, while the fact

that J anticommutes with D implies:

J(S±) = S∓ =⇒ S = S+ ⊕ J(S+) .

sections of S± can be characterized through:

Γ(M,S±) = {ξ ∈ Γ(M,S) | D(ξ) = ±ξ ⇔ ξ̄ = ±ξ} ⊂ Γ(M,S)

and are called real and purely imaginary, respectively. In the physics literature, real sections

of S (i.e. sections ξ of S+) are also called Majorana spinors. Since S can be identified with

the complexification (S+)C
def.
= S+ ⊗ OC of S+, this means that the bundle S of real

pinors can be viewed as the underlying R-vector bundle of the complex vector bundle

of complexified Majorana spinors. Since the latter are usually called complex spinors, it

follows that real pinors in this case are simply complex spinors for which one has forgotten

the complex structure J . We also have:

Γ(M,S+) = {ξ ∈ Γ(M,S) | Imξ = 0} , Γ(M,S−) = {ξ ∈ Γ(M,S) | Reξ = 0} .

In fact, the restrictions J±
def.
= J |

S∓

S±
give isomorphisms of R-vector bundles:

J± : S±
∼

−→ S∓
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which satisfy J∓ ◦ J± = idS± , so any section ξ ∈ Γ(M,S) decomposes uniquely as:

ξ = ξ+ + ξ− = ξR + iξI

with ξ± ∈ Γ(M,S±) , ξR = Reξ ∈ Γ(M,S+) , ξI = Imξ ∈ Γ(M,S+) .(2.25)

As mentioned above, this decomposition corresponds to a bundle isomorphism which iden-

tifies the complexification (S+)C with the complex vector bundle S, mapping sections of

the former to sections of the latter via:

Γ(M, (S+)C) ≈ Γ(M,S+)⊕ iΓ(M,S+) ∋ ξR + iξI

−→ ξ = ξR + J(ξI) ∈ Γ(M,S) , ∀ξR, ξI ∈ Γ(M,S+) .

Since D anticommutes with J , we have:

ξ̄ = ξR − J(ξI) = ξR − iξI ⇐⇒ Re(ξ̄) = Re(ξ) , Im(ξ̄) = −Im(ξ) ,

so D coincides with the complex conjugation induced by this presentation of S as the

complexification of S+. We define the complex conjugate T̄ of any endomorphism T ∈

Γ(M,End(S)) through:

T̄
def.
= D ◦ T ◦D ∈ Γ(M,End(S)) , so T̄ (ξ) = T (ξ) , ∀ξ ∈ Γ(M,S) ,

thus obtaining an antilinear involutive automorphism T → T̄ of Γ(M,End(S)). We say

that T is real or imaginary if T̄ = T or T̄ = −T , respectively. We have:

T (S±) ⊂

{
S± , if T = real ,

S∓ , if T = imaginary .

For example, notice that D is real while J is imaginary. Also notice that the product of

two endomorphisms is real when both of them are either real or imaginary and imaginary

when one of them is real and the other is imaginary. Relation (2.22) takes the form:

γ(ω) = γ(π(ω)) , ∀ω ∈ Ω(M) ,

and hence:

γ(ω) =

{
real , if ω ∈ Ωev(M) ,

imaginary , if ω ∈ Ωodd(M) .
(2.26)

Local expressions for p − q ≡8 7. Let U ⊂ M be an open subset supporting both

a local pseudo-orthonormal coframe (ea)a=1...d of (M, g) and a local frame (ǫα)α=1...∆ of

S+. Then (ǫα, J(ǫα)) is a local frame of S above U . Setting γa
def.
= γ(ea) ∈ Γ(U,End(S)),

relation (2.26) shows that γa are imaginary:

γa = −γa ⇐⇒ D ◦ γa ◦D = −γa
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while γA
def.
= γa1 ◦ . . . ◦ γak ∈ Γ(U,End(S)) for an ordered index set A = (a1 . . . ak) are real

or imaginary according to whether the length k = |A| of A is even or odd:

γA =

{
real , if |A| = even ,

imaginary , if |A| = odd .

In particular, we have:

γa(S±) = S∓ , γA(S±) ⊂

{
S± , if |A| = even ,

S∓ , if |A| = odd .

The matrix Γ̂a = (Γ̂a
i,j=1...N ) of γa with respect to the local frame (ǫα, J(ǫα)) of the R-

vector bundle S (a square matrix of size N × N with entries in C∞(U,R)) is given by

the expansions:

γa(ǫα) =
∆∑

β=1

γaβαǫβ =
∆∑

β=1

[
γaR,βαǫβ + γaI,βαJ(ǫβ)

]
,

γa(J(ǫα)) = J(γa(ǫα)) =
∆∑

β=1

γaβαJ(ǫβ) =
∆∑

β=1

[
γaR,βαJ(ǫβ)− γaI,βαǫβ

]
,

where we decomposed the complex-valued functions γaβα ∈ C∞(U,C) into their real and

imaginary parts:

γaβα = γaR,βα + iγaI,βα , with γaR,βα, γ
a
I,βα ∈ C∞(U,R)

and used the facts that J and γa commute and that the complex structure on S is defined

through iξ = J(ξ). It is convenient to encode the coefficients of the expansions above into

the following square matrices of size ∆×∆ with entries in C∞(U,C):

γ̂a
def.
= (γaαβ)α,β=1...∆ ,

which are called the complex gamma matrices defined by the local coframe (ea)a=1...d of

M with respect to the local frame (ǫα)α=1...∆ of S+. Since (ǫα)α=1...∆ is also a local frame

of the complex vector bundle (S, J), these are just the gamma matrices of ea with respect

to this local frame of S, when the latter is viewed as a complex vector bundle. With the

notations above, the real gamma matrices defined by (ea)a=1...d with respect to the local

frame (ǫα, J(ǫα))α=1...∆ of S are given by:

Γ̂a =

[
γ̂aR γ̂aI
−γ̂aI γ̂

a
R

]
,

where γ̂aR, γ̂
a
I ∈ Mat(∆, C∞(U,R)) are the real and imaginary parts of γ̂a:

γ̂a = γ̂aR + iγ̂aI , γ̂aR = (γ̂aR,αβ)α,β=1...∆ , γ̂aI = (γ̂aI,αβ)α,β=1...∆ .
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A local section ξ ∈ Γ(U, S) expands as:

ξ =
∆∑

α=1

ξαǫα =
∆∑

α=1

[ξαRǫα + ξαI J(ǫα)] , (2.27)

where:

ξα = ξαR + iξαI ∈ C∞(U,C) , with ξαR, ξ
α
I ∈ C∞(U,R) .

We let ξ̂ denote the C∞(U,C)-valued column matrix of size ∆ with entries ξα. Since

γA commute with J (i.e. are complex-linear), we have γAξ =
∑∆

α=1(γ
Aξ)αǫα, the complex

coefficient functions (γAξ)α ∈ C∞(U,C) being given by the entries of the matrix γ̂Aξ̂, where:

γ̂A = γ̂A = γ̂a1 ◦ . . . ◦ γ̂ak ∈ Mat(∆, C∞(U,C)) , ∀ ordered A = (a1 . . . ak) .

Notice that ξ is real iff. the matrix ξ̂ is real in the sense that its entries are real-valued

functions, i.e. ξ̂ ∈ Mat(U, C∞(U,R)). Furthermore, γ̂A belongs to Mat(U, C∞(U,R)) when

|A| is even and to Mat(U, C∞(U, iR)) when |A| is odd. In the physics literature, one often

finds expressions written locally in terms of ξ̂ and γ̂a; such expressions should be understood

in the sense explained above.

2.8 The quaternionic case

This occurs for S ≈ H, which happens for p− q ≡8 4, 5, 6. Then N = 4∆ = 2[
d
2
]+1 and Σγ

is a bundle of quaternion algebras (the topology of such bundles was studied in [7]). We

have ν ⋄ν = +1 when p− q ≡8 4, 5 and ν ⋄ν = −1 for p− q ≡8 6. Furthermore, ν is central

in the Kähler-Atiyah algebra iff. p − q ≡8 5. When p − q ≡8 5, we have γ(ν) = ǫγ idS ,

where ǫγ ∈ {−1, 1} is the signature of γ, which can only be defined in this subcase (known

as the quaternionic non-simple case).

2.8.1 The quaternionic structure of S

For any sufficiently small open subset U ⊂ M , there exist three local sections Jj ∈

Γ(U,Σγ) ⊂ Γ(U,End(S)) (j = 1 . . . 3) lying in the commutant of the subset γ(Ω(U)) ⊂

Γ(U,End(S)), which satisfy the algebra of quaternion relations:

[Ji, γ(ω)]−,◦ = 0 , ∀ω ∈ Ω(U) , Ji ◦ Jj = −δij idS +

3∑

k=1

ǫijkJk , ∀i, j = 1 . . . 3 , (2.28)

where ǫijk is the totally anti-symmetric Levi-Civita symbol. In particular, we have J2
i =

−idS |U . Setting J0
def.
= idS |U ∈ Γ(U,End(S)), we have:

Γ(U,Σγ) = ⊕3
α=0C

∞(U,R)Jα =

{ 3∑

α=0

fαJα

∣∣∣ fα ∈ C∞(U,R)

}
.

In particular, the restriction Σγ |U is topologically trivial as a bundle of algebras. The group

C∞(U,O(3,R)) of O(3,R)-valued functions defined on U acts transitively on the space of

solutions Ji ∈ Γ(U,End(S)) to (2.28) through:

Ji →
3∑

j=1

RijJj where R = (Rij)i,j=1...3 ∈ C∞(U,O(3,R)) . (2.29)
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p− q

mod 8
Cl(p, q)

γ

is injective
ǫγ R (real spinors) ν ⋄ ν

ν

is central

4 simple Yes N/A γ(ν) (sympl. Majorana-Weyl) +1 No

5 non-simple No ±1 N/A +1 Yes

6 simple Yes N/A γ(ν) ◦ J (sympl. Majorana) −1 No

Table 7. Summary of subcases of the quaternionic case. J denotes any of the complex structures

induced on S by the quaternionic structure.

The most general complex structure J ∈ Γ(U,Σγ) on the restricted bundle S|U which lies

in the commutant of γ(Ω(U)) takes the form:

J =
3∑

i=1

fiJi where fi ∈ C∞(U,R) with
3∑

i=1

(fi)
2 = 1 . (2.30)

Equation (2.30) says that J is a local section (defined above U) of the twistor bundle Uγ

of (S, γ), which is the S2-sub-bundle of Σγ consisting of the imaginary units of the fibers

of Σγ :

Uγ
def.
= {(x, Jx) | Jx ∈ Σγ,x & J2

x = −1} ⊂ Σγ . (2.31)

Let jα (α = 0 . . . 3) be the canonical units of H, where j0 = 1 and ji (i = 1 . . . 3) are the

canonical imaginary units. For any choice of solution ~J = (J1, J2, J3) to (2.28) defined

above U , the morphism of R-vector bundles:

ϕ ~J
: H⊗OR|U → Σγ |U

which acts on sections through:

ϕ ~J

(
3∑

α=0

fαjα

)
def.
=

3∑

α=0

fαJα

is an isomorphism of bundles of R-algebras from H ⊗ OU to the restricted Schur bundle

Σγ |U , which provides a local trivialization of Σγ (as a bundle of R-algebras) above U . Here,

OR|U stands for the restriction of OR to U .

2.8.2 Injectivity and surjectivity

The bundle morphism γ is fiberwise injective iff. p − q ≡8 4, 6. It is always fiberwise

non-surjective, with image equal to the sub-bundle EndH(S)
def.
= EndΣγ (S) of End(S).

This sub-bundle of End(S) is isomorphic through γ (as a bundle of algebras) with the

Kähler-Atiyah bundle of (M, g) when p− q ≡8 4, 6 and with the sub-bundle ∧ǫγT ∗M when

p− q ≡8 5. The situation is summarized in table 7.
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2.8.3 Spin projectors

In the quaternionic case, the various possibilities for spin projectors are as follows:

• If p − q ≡8 4, then the restriction γev is fiberwise reducible and we can use the spin

projectors defined by the product structure R = γ(ν), which lies in the commutant of

Γ(M,Σγ). Sections of the sub-bundles S
± = ker(γ(ν)∓idS) ⊂ S are called symplectic

Majorana-Weyl spinors of positive and negative chiralities, respectively. They can

be viewed as those sections ξ of S which satisfy the conditions:

ξ ∈ Γ(M,S±) =⇒ γ(ν)ξ = ±ξ .

We have S = S+ ⊕ S−, so any section ξ ∈ Γ(M,S) decomposes uniquely as:

ξ = ξ+ + ξ− with ξ± ∈ Γ(M,S±) .

Since Jα commute with γ(ν), we have Jα(S
±) ⊂ S± and hence the sub-bundles S±

of symplectic Majorana-Weyl spinors inherit from S the structure of bundles of free

modules over the Schur bundle Σγ — in particular, each of S± carries a quaternionic

structure. The restricted morphism γev can be viewed as an isomorphism of bundles

of algebras from the even Kähler-Atiyah algebra of M to the sub-bundle of algebras

EndH(S
+)⊕ EndH(S

−) of (EndH(S), ◦):

γev : (∧evT ∗M, ⋄)
∼

−→ (EndH(S
+), ◦)⊕ (EndH(S

−), ◦) .

• If p− q ≡8 5 (the quaternionic non-simple case), then the restriction γev is fiberwise

irreducible, so spin projectors cannot be defined. This is also the only quaternionic

non-simple subcase, i.e. the only quaternionic subcase for which γ fails to be fiberwise

injective.

• If p−q ≡8 6, then the restriction γev is fiberwise reducible and we can define symplectic

Majorana spinors using the product structure RJ = γ(ν) ◦ J induced by any global

section J ∈ Γ(M,Uγ) of the twistor bundle Uγ of (S, γ).

2.8.4 The biquaternion formalism

Real pinors in the quaternionic case can be described indirectly by first complexifying the

real vector bundle S and then recovering it from its complexification by using the appro-

priate real structure. This approach is common in the physics literature, though its precise

relation with the direct construction of real pinors (on which we rely) is rarely clarified.

The complexified pin bundle and its biquaternionic structure. Recall that the

algebra of biquaternions (or complexified quaternions) is the C-algebra C ⊗R H, which is

isomorphic with the C-algebra Mat(2,C) ≈ ClC(2) through the map:

C⊗H ∋ w0j0 + w1j1 + w2j2 + w3j3 −→

[
w0 + iw1 w2 + iw3

−w2 + iw3 w0 − iw1

]
∈ Mat(2,C) ,
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where wα ∈ C. This well-known isomorphism maps the imaginary quaternion units into i

times the Pauli matrices:

j1 → i

[
1 0

0 −1

]
= iσ3 , j2 →

[
0 1

−1 0

]
= iσ2 , j3 → i

[
0 1

1 0

]
= iσ1 ,

where i is, as usual, the imaginary unit of the field C of complex numbers. The complexified

Schur bundle:

(Σγ)C
def.
= Σγ ⊗OC

is a bundle of biquaternion algebras over M . We let SC
def.
= S ⊗ OC be the complexified

pin bundle, i.e. the complexification of the R-vector bundle S, which is a bundle of free

modules over the complexified Schur bundle and thus carries a biquaternionic structure.

Notice that SC is also a bundle of modules over the complexified Kähler-Atiyah bundle

∧T ∗
CM = ∧T ∗M ⊗OC of (M, g), through the morphism of bundles of algebras given by the

complexification γC of γ, which commutes with the biquaternionic structure of SC. Using

the (Σγ)C-module structure, left multiplication by the complex imaginary unit i gives a

globally-defined endomorphism I ∈ Γ(M,End(SC)) whose action on sections is given by:

I(ξ)
def.
= iξ , ∀ξ ∈ Γ(M,SC) ,

while the complexifications of Jk (which we denote Jk) define fiberwise C-linear endomor-

phisms of SC|U which satisfy the quaternion relations. In particular, we have:

[Jk, I]−,◦ = 0

and I, J1, J2, J3 form a local frame of the underlying R-vector bundle of (Σγ)C above U . In

every fiber of SC|U , the endomorphisms I, J1, J2, J3 represent the canonical basis i, j1, j2, j3
of the biquaternion algebra, when the latter is viewed as an eight-dimensional associative

algebra over the real numbers. The complexification SC comes endowed with a natural real

structure — a globally-defined endomorphism Z ∈ Γ(M,End(SC)), which is C-antilinear:

[Z, I]+,◦ = 0 ,

and satisfies:

Γ(M,S) = {ξ ∈ Γ(M,SC) | Z(ξ) = ξ} ,

iΓ(M,S) = I(Γ(M,S)) = {ξ ∈ Γ(M,SC) | Z(ξ) = −ξ} .

We have:

[Z|U , Jk]−,◦ = 0 , (2.32)

since the locally-defined endomorphisms Jk are obtained through complexification.
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The product structure induced by J1. Since I and J1 commute and since both of

them square to −idSC
|U , the opposite of their composition:

R
def.
= −I ◦ J1 = −iJ1

is a C-linear product structure on SC|U which anticommutes with Z|U :

R2 = +idSC
|U , [R,Z|U ]+,◦ = 0

and hence the C-linear endomorphisms of SC|U defined through:

P± =
1

2
(idSC

|U ±R)

are complementary in EndC(SC|U ). It follows that the complex sub-bundles SC|
±
U of

SC|U consisting of eigenvectors of R corresponding to the eigenvalues ±1 give a direct

sum decomposition:

SC|U = SC|
+
U ⊕ SC|

−
U .

Notice the equalities:

I(SC|
±
U ) = SC|

±
U , Z(SC|

±
U ) = SC|

∓
U

and the fact that SC|
±
U are the eigen sub-bundles of SC|U determined by the eigenvalues

±i of the complexified endomorphism J1. In particular, we have:

Γ(U, SC|
±
U ) = {ξ ∈ Γ(U, SC|U ) | J1(ξ) = ±iξ} .

Any ξ ∈ Γ(U, SC) decomposes uniquely as:

ξ = ξ+ + ξ− with ξ± ∈ Γ(U, SC|
±
U )

and we have:

J1(ξ)
± = ±iξ± .

Since J2 anticommutes with J1, it induces an isomorphism of C-vector bundles:

J2|
SC|

−
U

SC|
+
U

: SC|
+
U

∼
−→ SC|

−
U ,

which can be used to identify SC|
−
U with SC|

+
U . Using this isomorphism, we find that any

ξ also decomposes uniquely as:

ξ = ξ1 − J2(ξ
2) , where ξ1

def.
= ξ+ ∈ Γ(U, SC|

+
U ) and ξ2 = J2(ξ

−) ∈ Γ(U, SC|
+
U ) .

We can thus describe ξ through the column matrix:

ξ̂
def.
=

[
ξ1

ξ2

]
∈ Mat(2, 1; Γ(U, SC|

+
U )) (2.33)
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and describe any endomorphism T ∈ Γ(U,End(SC|U )) through the matrix T̂ ∈

Mat(2, 2; Γ(U,End(SC|
+
U )) defined by:

T̂ ξ = T̂ ξ̂ , ∀ξ ∈ Γ(U, SC) , (2.34)

where juxtaposition in the right hand side stands for matrix multiplication. Since J1(ξ
±) =

±iξ± and since J2 is C-linear, we have J1(ξ)
1 = iξ1 and J1(ξ)

2 = −iξ2. On the other hand,

an easy computation gives:

J2(ξ)
1 = ξ2 , J2(ξ)

2 = −ξ1 =⇒ J3(ξ)
1 = iξ2 , J3(ξ)

2 = iξ1 ,

where the implication displayed follows from the relation J3 = J1 ◦J2. In terms of descrip-

tion (2.34), this amounts to:

Ĵ1 = iσ3 =

[
i 0

0 −i

]
, Ĵ2 = iσ2 =

[
0 1

−1 0

]
, Ĵ3 = iσ1 =

[
0 i

i 0

]

and implies:

R̂ = σ3 =⇒ P̂± =
1

2
(1± σ3) .

We have:

Z(ξ)1 = −Z0(ξ
2) , Z(ξ)2 = Z0(ξ

1)

⇐⇒ Ẑ(ξ) = −iσ2(Z0ξ) =

[
0 −Z0

Z0 0

][
ξ1

ξ2

]
, ∀ξ ∈ Γ(U, SC) ,

where Z0 = [J2 ◦ Z] |
SC|

−
U

SC|
+
U

= [iZ ◦ J2] |
SC|

+
U

SC|
+
U

∈ Γ(U,EndR(SC|
+
U )) is an antilinear endomor-

phism of SC|
+
U which squares to −idSC|

+
U
. Hence the Z-reality condition for sections of SC

takes the form:

ξ ∈ Γ(U, S) ⇐⇒ Z(ξ) = ξ ⇐⇒ ξ1 = −Z0(ξ
2) ⇐⇒ ξ2 = Z0(ξ

1) ,

which can be viewed as a ‘generalized symplectic Majorana condition’ (see the example in

subsection 5.3) on the pair of sections (which are complex pinors) ξ1, ξ2 ∈ Γ(U, SC|
+
U ).

The complex pin bundle and complex pinors of spin 1/2. Local sections of SC
form a sheaf of left modules over the sheaf of sections of (Σγ)C. In particular, the space

Γ(U, SC) is a left module over the non-commutative ring Γ(U, (Σγ)C) for any open subset

U of M which supports a local frame of imaginary unit sections of Σγ . The discussion

above shows that this module structure is given by:

f̂ξ =

[
f0 + if1 f2 + if3
−f2 + if3 f0 − if1

]
ξ̂ , ∀f ∈ Γ(U, (Σγ)C) , ∀ξ ∈ Γ(U, SC) , (2.35)

where we used the decomposition:

f = f0idSC|U + f1J1 + f2J2 + f3J3 ∈ Γ(U, (Σγ)C) , with fα ∈ C∞(U,C) .

– 23 –



J
H
E
P
0
9
(
2
0
1
3
)
1
5
6

In equation (2.35), any complex-valued smooth function g = gR + igI ∈ C∞(U,C) (with

gR,I ∈ C∞(U,R)) acts on ξ ∈ Γ(U, SC) via the complex structure I:

gξ = gRξ + gII(ξ) , ∀ξ ∈ Γ(U, SC)

and we have gΓ(U, SC|
+
U ) ⊂ Γ(U, SC|

+
U ).

Since the complexified operators γ(ω) commute with I and Jk, we have:

[γ(ω),R]−,◦ = 0 ⇐⇒ γ(ω)(Γ(U, S±
C
)) ⊂ Γ(U, S±

C
) for ω ∈ Ω(U)

and J2 ◦ γ(ω) ◦ J
−1
2 = γ(ω). Defining γ±(ω)

def.
= γ(ω)|

SC|
±
U

SC|
±
U

and γ1(ω)
def.
= γ+(ω), γ2(ω)

def.
=

J2|
SC|

+
U

SC|
−
U

◦ γ−(ω) ◦
(
J2|

SC|
+
U

SC|
−
U

)−1
, the last relation implies γ2(ω) = γ1(ω)

def.
= Γ(ω). We thus

have a decomposition:

γ = γ+ ⊕ γ− ⇐⇒ γ = Γ⊕

[(
J2|

SC|
+
U

SC|
−
U

)−1

◦ Γ ◦ J2|
SC|

+
U

SC|
−
U

]
.

where:

Γ : (∧T ∗U, ⋄) → (EndC(SC|
+
U ), ◦)

is a morphism of bundles of R-algebras. The morphism Γ complexifies to a morphism of

bundles of C-algebras:

ΓC : (∧T ∗
CU, ⋄) → (EndC(SC|

+
U ), ◦)

whose fibers are irreducible representations of the complexified Clifford algebra ClC(p, q) ≈

ClC(d). This complexified morphism ΓC is always fiberwise surjective, being fiberwise

injective iff. d is even, i.e. iff. p − q ≡8 4, 6. Therefore, sections of Γ(U, SC|
+
U ) are locally-

defined complex pinors7 of spin 1/2. We have:

γ̂(ω) =

[
Γ(ω) 0

0 Γ(ω)

]
, ∀ω ∈ Ω(U) .

and hence (SC|U , γ) is equivalent with the direct sum (SC|
+
U ,Γ)⊕ (SC|

+
U ,Γ) as a bundle of

modules over the Kähler-Atiyah bundle of (M, g). Similarly, (SC|U , γC) is equivalent with

(SC|
+
U ,ΓC)⊕(SC|

+
U ,ΓC) as a bundle of modules over the complexified Kähler-Atiyah bundle

of (U, g|U ). In much of the supergravity literature, one constructs the bundle S of real

pinors by starting from such a direct sum of two copies of the bundle SC of complex pinors

and imposing the reality (‘generalized symplectic Majorana’) condition Z(ξ) = ξ. The

discussion above shows that this construction can always be applied locally.

Local expressions. If ea is a local pseudo-orthonormal coframe of (M, g) defined above

U , we set γa
def.
= γC(e

a) ∈ Γ(U,EndC(SC)) and Γa def.
= Γ(ea) ∈ Γ(U,EndC(S

+
C
)). We also

set γA = γa1 ◦ . . . ◦ γak ∈ Γ(U,EndC(SC)) and ΓA = Γa1 ◦ . . . ◦ Γak ∈ Γ(U,EndC(S
+
C
)) for

any ordered index set A = (a1, . . . , ak). The relation above gives:

γ̂a =

[
Γa 0

0 Γa

]
, γ̂A = γ̂a1 ◦ . . . ◦ γ̂ak =

[
ΓA 0

0 ΓA

]
.

7These are often called complex spinors in the physics literature, which is justified since any pinor is

also a spinor.
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S
p− q

mod 8
Cl(p, q) R

Terminology

for real spinors

R 0 simple γ(ν) Majorana-Weyl

C 7 simple D Majorana

H 4 simple γ(ν) symplectic Majorana-Weyl

H 6 simple γ(ν) ◦ J symplectic Majorana

Table 8. The product structure R used in the construction of the spin projectors PR
±

def.
= 1

2
(1±R)

for those cases when they can be defined and the corresponding terminology for real spinors. When

p − q ≡8 6, the locally-defined endomorphism J ∈ Γ(U,End(S)) appearing in the expression for

R is any of the complex structures associated with the quaternionic structure of S. Notice that

Cl(p, q) is always simple as an R-algebra (and hence γ is fiberwise injective) in those cases when

spin projectors can be defined.

2.9 Summary of spin projectors

The spin projectors in the three cases are summarized in table 8.

2.10 Relation to pin bundles over the complexified Kähler-Atiyah bundle of

(M, g)

2.10.1 General remarks

Let T ∗
CM be the complexified cotangent bundle of M , endowed with the nondegenerate

fiberwise C-bilinear pairing induced by the complexification of g. The complexified exterior

bundle ∧T ∗
CM carries a structure of bundle of algebras whose product (which we again

denote by ⋄) is obtained by complexfiying the geometric product induced on ∧T ∗M by

g. The bundle (∧T ∗
CM, ⋄) of unital associative algebras over C is called the complexified

Kähler-Atiyah bundle of (M, g); it coincides with the complexification of the real Kähler-

Atiyah bundle as a bundle of algebras. Its fibers are isomorphic with ClC(p, q) ≈ C ⊗R

Cl(p, q) ≈ ClC(d, 0), the complexification of the real Clifford algebra Cl(p, q). It is natural

to consider bundles of complex pinors, i.e. bundles S of modules over (∧T ∗
CM, ⋄); these are

C-vector bundles S over M endowed with a morphism:

γC : (∧T ∗
CM, ⋄) → (EndC(S), ◦) (2.36)

of bundles of C-algebras. A C-vector bundle S over M can be identified with the pair

(S, J), where S is the underlying R-vector bundle while J ∈ Γ(M,EndR(S)) is the globally-

defined endomorphism given by multiplication with the imaginary unit in each fiber. This

satisfies J2 = −idS , being the complex structure on S defining its original C-vector bundle

structure. The bundle EndC(S) of complex-linear endomorphisms of S identifies with the

commutant of J in EndR(S), being a bundle of R-subalgebras of the latter. On the other

hand, the complexified Kähler-Atiyah bundle can be written ∧T ∗
CM = OC⊗∧T ∗M , where

OC is the trivial complex line bundle on M . It is now easy to check that there exists a

bijection between morphisms (2.36) of bundles of C-algebras and morphisms:

γ : (∧T ∗M, ⋄) → (EndC(S), ◦) (2.37)
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of bundles of R-algebras, where γC is recovered from γ through J-complexification, an

operation which takes the following form when applied to global sections:8

γC((f+ig)⊗ω) = (f idS+gJ)◦γ(ω) = γ(ω)◦(f idS+gJ) , ∀ω ∈ Ω(M) , ∀f, g ∈ C∞(M,R) .

(2.38)

We can thus view a bundle of complex pinors as a pair (S, J) where J is a complex structure

on S and S is a bundle of real pinors whose underlying morphism γ has the property that

its image lies in the commutant of J . It is quite obvious that fiberwise irreducibility of γ

implies fiberwise irreducibility (over C) of γC. Well-known results from the representation

theory of complex Clifford algebras imply that the converse is also true, i.e. we have:

Proposition. Let γ, γC be related through (2.38) as above. Then γ is fiberwise irre-

ducible (over R) iff. γC is fiberwise irreducible (over C).

As in [1], it is convenient to consider the complex-valued volume form:

νC
def.
= iq+[

d
2 ]ν (2.39)

When fiberwise irreducibility holds (i.e. when (S, γ) is a real pin bundle and thus (S, γC)

is a complex pin bundle), the Schur algebra S must equal C or H (since J belongs to the

commutant of the image of γ and thus J is a section of the Schur bundle Σγ of γ), so

the real rank N of S equals 2[
d
2 ]+1 and hence its complex rank equals 2[

d
2 ]; this agrees

with a well-known fact from the representation theory of complex Clifford algebras. Let us

consider the two cases in turn:

2.10.2 The case S = C

In this case, we have two choices for J , namely J = ±γ(ν), leading through (2.38) to the

two J-complexifications:

γ±
C
((f + ig)⊗ ω) = (f idS ± gγ(ν)) ◦ γ(ω) , ∀ω ∈ Ω(M) , ∀f, g ∈ C∞(M,R) ,

whose fiberwise representations are complex-conjugate to each other. They are distin-

guished by the property:

γ±
C
(iν) = ∓idS ⇐⇒ γ±

C
(νC) = ǫγ±

C

idS ,

where we introduced the signature (see [1]) of γ±
C
(as morphisms of bundles of C-algebras):

ǫγ±
C

def.
= ±(−1)

1
2
(1+q+[ d2 ]) = ±

{
(−1)q+1 , if p− q ≡8 3

(−1)q , if p− q ≡8 7

and we used the fact that γC(ν) = γ(ν) = ±J as well as the congruence:

1 + q +

[
d

2

]
≡4

{
2(q + 1) , if p− q ≡8 3

2q , if p− q ≡8 7
.

8Notice that Γ(M,∧T ∗
CM) = ΩC(M) = C∞(M,C)⊗C∞(M,R)Ω(M) = Ω(M)⊗RC is the C∞(M,C)-module

of complex-valued forms defined on M .
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Notice that (S, J = γ(ν), γ+
C
) and (S, J = −γ(ν), γ−

C
) are inequivalent but mutually

complex-conjugate complex pin bundles over (M, g) — this corresponds to the well-known

fact that the complexified Clifford algebra ClC(p, q) ≈ ClC(d, 0) has two inequivalent (but

mutually complex-conjugate) irreducible C-representations when d is odd.

2.10.3 The case S = H

In this case, let us assume for simplicity that we are given a global section J ∈ Γ(M,Uγ)

of the twistor bundle (2.31) of (S, γ) (with slight adaptations of notations, the discussion

generalizes when such a section is given only locally). We then have a corresponding

morphism (acting on sections as in (2.38)) of bundles of C-algebras, which we denote

through γJ . This satisfies:

γJ(νC) = (−1)q+1

{
γ(ν) , if p− q ≡8 4, 5

γ(ν) ◦ J , if p− q ≡8 6
, (2.40)

where we used the congruence:

q +

[
d

2

]
≡4

{
2(q + 1) , if p− q ≡8 4, 5

2q + 3 , if p− q ≡8 6
.

It is convenient to distinguish the following subcases:

• When p−q ≡8 5 (so that d is odd), we have γ(ν) = ǫγ idS , which gives γJ(νC) = ǫγJ idS ,

where ǫγJ = (−1)q+1ǫγ . The two choices for the sign factor ǫγJ correspond to the

two inequivalent irreducible C-representations of the complexified Clifford algebra

ClC(p, q) ≈ ClC(d, 0) and lead to inequivalent complex pin bundles over (M, g).

• When p − q ≡8 4, 6 (so that d is even), equation (2.40) gives γJ(νC) = (−1)q+1R,

where R is the corresponding spin endomorphism, which obviously commutes with

J . Hence γJ(νC) is a globally-defined C-linear endomorphism of S, when the latter

is endowed with the complex structure induced by J — it plays the role of a spin

endomorphism acting on complex pinors given by sections of S.

3 Admissible bilinear pairings on the pin bundle

3.1 Basics

The B-transpose. For any non-degenerate fiberwise bilinear pairing B on S, we let T t

denote the transpose of T ∈ Γ(M,End(S)) with respect to B, which is defined through:

B(Tξ, ξ′) = B(ξ, T tξ′) , ∀ξ, ξ′ ∈ Γ(M,S) . (3.1)

This operation satisfies (T t)t = T and (idS)
t = idS . The operation T → T t of taking the B-

transpose defines a C∞(M,R)-linear anti-automorphism of the algebra (Γ(M,End(S)), ◦).

– 27 –



J
H
E
P
0
9
(
2
0
1
3
)
1
5
6

Remark. Consider a fiberwise non-degenerate bilinear pairing B̃ on S which is related

to B through:

B̃ = B ◦ (idS ⊗A) ⇐⇒ B̃(ξ, ξ′) = B(ξ, Aξ′) , ∀ξ, ξ′ ∈ Γ(M,S) , (3.2)

where A ∈ Γ(M,Aut(S)) is a globally-defined automorphism of S. Then the transpose T t̃

of a section T ∈ Γ(M,End(S)) with respect to B̃ is related to the transpose T t of T with

respect to B through:

T t̃ = A−t ◦ T t ◦At . (3.3)

Let us assume further that B(ξ, ξ′) = σB(ξ′, ξ) for all ξ, ξ′ ∈ Γ(M,S), with σ ∈ {−1, 1} and

that At = ηA for some η ∈ {−1, 1}. Then (3.2) implies B̃(ξ, ξ′) = σ̃B̃(ξ′, ξ), with σ̃ = ησ.

Admissible pairings on S. Recall from [5, 6] that a nondegenerate bilinear pairing B

on the pin bundle S is called admissible if it has the following properties:

1. B is either symmetric or skew-symmetric:

B(ξ, ξ′) = σBB(ξ′, ξ) , ∀ξ, ξ′ ∈ Γ(M,S) , (3.4)

where the sign factor σB = ±1 is called the symmetry of B;

2. For any ω ∈ Ω(M), we have:

γ(ω)t = γ(τB(ω)) ⇐⇒ B(γ(ω)ξ, ξ′) = B(ξ, γ(τB(ω))ξ′) , ∀ξ, ξ′ ∈ Γ(M,S) , (3.5)

where:

τB
def.
= τ ◦ π

1−ǫB
2 =

{
τ , if ǫB = +1

τ ◦ π , if ǫB = −1
(3.6)

is the B-modified reversion (an anti-automorphism of the Kähler-Atiyah algebra of

(M, g)) and the sign factor ǫB ∈ {−1, 1} is called the type of B;

3. If p − q ≡8 0, 4, 6, 7 (thus S = S+ ⊕ S− where S± ⊂ S are the real spin bundles),

then S+ and S− are either B-orthogonal to each other or B-isotropic. The isotropy

of B is the sign factor ιB ∈ {−1, 1} defined through:

ιB
def.
=

{
+1 , if B(S+, S−) = 0

−1 , if B(S±, S±) = 0
. (3.7)

When p− q 6≡ 0, 4, 6, 7, then ιB is undefined.

When p − q ≡8 0, 4, 6, 7, we have ιB = +1 iff. (S±)⊥ = S∓, where ⊥ denotes the B-

orthogonal complement of a sub-bundle of S. This case can occur for any symmetry σB

of B. The case ιB = −1 can occur only when σB = −1, in which case B is a symplectic

pairing on S. In this case, the condition ιB = −1 implies that S+ and S− are Lagrangian

sub-bundles of the symplectic vector bundle (S,B).
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Remark. Recall that (when γ is reducible on the fibers) the spin projectors are given by

PR
± = 1

2(1±R), where R is a product structure on S. It is easy to see that R satisfies the

following relation, where t stands for the transpose with respect to an admissible pairing

B on S:

Rt = ιBR ⇐⇒ (PR
± )t = PR

±ιB
. (3.8)

In fact, this relation can be used as an alternative definition of ιB. In particular, an

admissible pairing on S has the property that R is either self-adjoint (ιB = +1) or anti-

selfadjoint (ιB = −1) with respect to B. For later reference, we also note that (3.5) implies

the relation:

γ(ν)t = (−1)[
d
2 ]ǫdBγ(ν) , (3.9)

where we noticed that τ(ν) = (−1)[
d
2 ]ν and π

1−ǫB
2 (ν) = ǫd

B
ν .

Local expressions. Let em be a pseudo-orthonormal local coframe of (M, g) defined

above an open subset U ⊂M . Then property (3.5) amounts to:

(γm)t = ǫBγ
m ⇐⇒ B(γmξ, ξ′) = ǫBB(ξ, γmξ′) , ∀m = 1 . . . d , (3.10)

which in turn implies:

(γA)t = ǫ
|A|
B

(−1)
|A|(|A|−1)

2 γA (3.11)

and:

(γA)−t = ǫ
|A|
B
γA ⇐⇒ B((γA)−1ξ, ξ′) = ǫ

|A|
B

B(ξ, γAξ
′) , ∀ξ, ξ′ ∈ Γ(M,S) , (3.12)

where ǫ
|A|
B

def.
= (ǫB)|A|. If (εi)i=1...N is an arbitrary local frame of S defined above U (with

dual local coframe of S∗ denoted by (εi)i=1...N ), then any T ∈ Γ(M,End(S)) acts through:

T |Uεi =
N∑

j=1

Tjiε
j =

N∑

j=1

εj(Tεi)ǫj

where Tij
def.
= εi(T |Uεj) ∈ C∞(U,R). This gives:

T (ξ) =
U

N∑

j=1

εj(Tξ|U )εj , ∀ξ ∈ Γ(M,S) and tr(T |U ) =
N∑

i=1

Tii =
N∑

i=1

εi(T |Uεi) .

In particular, we have:

γAij
def.
= εi(γAεj) ∈ C∞(U,R) and γA(εi) =

N∑

j=1

(γA)jiε
j ,

with similar relations for γ−1
A . The matrices (γmij )i,j=1...N are the gamma matrices of em

(in fact, matrix-valued functions) with respect to the local frame εi of S.

Let us give more detail on the admissible bilinear pairings B for each of the three types

of real representations. If one drops the non-degeneracy assumptions, bilinear pairings on

S satisfying properties 1.− 3. above for any fixed σ, ǫ and ι form a free C∞(M,R)-module
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whose rank depends on p and q (see [5, 6]). A convenient basis of this free module is

provided by certain admissible bilinear pairings (determined up to multiplication with a

nowhere vanishing function) which were constructed in loc. cit. Below, we give more detail

on the properties of such admissible pairings.

3.2 Normal representation (p− q ≡8 0, 1, 2)

The spin projection exists only when p − q ≡8 0, with R = γ(ν). The situation for

admissible pairings is as follows.

When p− q ≡8 0, 2, i.e. the normal simple case. Up to multiplication by elements

of C∞(M,R), there are two admissible pairings B+ and B−, which are distinguished by the

value ǫ ∈ {−1, 1} of their type. Up to multiplication with a nowhere-vanishing function,

we can take:9

B+ = B− ◦ (idS ⊗ γ(ν)) (3.13)

⇔ B− = (−1)
p−q
2 B+ ◦ (idS ⊗ γ(ν)) =

{
+B+ ◦ (idS ⊗ γ(ν)) , if p− q ≡8 0

−B+ ◦ (idS ⊗ γ(ν)) , if p− q ≡8 2

where we used that d is even in this case and the relation γ(ν)2 = (−1)q+
d
2 idS = (−1)

p−q
2 idS

(which holds for d =even). The symmetry σ(ǫ, d) of Bǫ is uniquely determined by ǫ and

by the mod 8 reduction of d according to the table:

d
(mod 8)

0 2 4 6

σ(ǫ, d) +1 +ǫ −1 −ǫ

The isotropy type ι of Bǫ depends only on p and q and is as follows:

• When p − q ≡8 0, the restriction γev is fiberwise reducible and ι = (−1)
d
2 ={

+1 , if d = 0, 4 ,

−1 , if d = 2, 6 .
Indeed, we have R = γ(ν). Since d is even for such p, q, R satis-

fies Rt = (−1)
d
2R for any admissible pairing B on S due to (3.9). Hence ι = (−1)

d
2

(see (3.8)) for any admissible B. Together with (3.13), this gives:

1. When d ≡8 0, 4: B+|S±⊗S∓ = B−|S±⊗S∓ = 0 , B+|S±⊗S± = ±B−|S±⊗S±

2. When d ≡8 2, 6: B+|S±⊗S± = B−|S±⊗S± = 0 , B+|S±⊗S∓ = ∓B−|S±⊗S∓ ,

where we used the fact that γ(ν)|S± = ±idS± .

• When p− q ≡8 2 , the restriction γev is fiberwise irreducible, so ι is not defined.

The pairing B+ (which is uniquely determined up to multiplication by a nowhere-vanishing

smooth function) will be called the basic admissible pairing and will also be denoted B0.

9Relation (3.13) implies (γm)t− = γ(ν)−t+ ◦ (γm)t+ ◦γ(ν)t+ , where t± denotes the transpose taken with

respect to the pairing B±. Since d is even in this case, it follows that γ(ν) anticommutes with all γm and

thus (γm)t− = −(γm)t+ , so pairings related by (3.13) have opposite type, i.e. ǫ− = −ǫ+. Furthermore, we

have γ(ν)t+ = (−1)
d
2 γ(ν), which implies via relation (3.13) that the symmetries σ+ and σ− are related

through σ+ = (−1)
d
2 σ−.
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k 1 2 3

σk/σ0 −(−1)[
d
2 ] +1 (−1)[

d
2 ]

ǫk/ǫ0 +1 −1 −1

ιk/ι0 −1 +1 −1

Table 9. Characteristics of admissible bilinear forms in the almost complex case.

When p − q ≡8 1, i.e. the normal non-simple case. Then the admissible bilinear

pairing B is unique up to multiplication by a nowhere vanishing smooth function10 and

γev is fiberwise irreducible, so ιB is not defined. The values of σB and ǫB are determined

by the mod 8 reduction of d as shown in the table below:

d
(mod 8)

1 3 5 7

σB +1 −1 −1 +1

ǫB +1 −1 +1 −1

3.3 Almost complex representation (p− q ≡8 3, 7)

In this case, there are four independent choices B0,B1,B2 and B3 for the nondegenerate

admissible pairing, which we can take to be related through:

B1 = B0 ◦ (idS ⊗ J) , B2 = B0 ◦ (idS ⊗D) , B3 = B0 ◦ [idS ⊗ (D ◦ J)] . (3.14)

Here, B0 (which we shall call the basic admissible pairing) is a particular choice of admis-

sible pairing (determined up to multiplication by a nowhere-vanishing smooth real-valued

function), with type ǫ0 = −1, whose symmetry σ0 is given by:

d
(mod 8)

1 3 5 7

σ0 +1 −1 −1 +1

and whose isotropy ι0 is as follows [6]:

• When p− q ≡8 3, the restriction γev is fiberwise irreducible so ι0 is not defined.

• When p − q ≡8 7, the restriction γev is fiberwise reducible and we have ι0 = 1, i.e.

B0|S±⊗S∓ = 0.

The symmetry σk, type ǫk and isotropy ιk (the latter being defined iff. p− q ≡8 7) of Bk

for k = 1 . . . 3 are related to those of B0 as shown in the table below.

10Recall that γ(ν) = ǫγ idS in this case, so B ◦ (idS ⊗ γ(ν)) = ǫγB is proportional to B.
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B0-symmetry properties of J and D. In all subcases of the almost complex case,

the globally-defined endomorphisms J = γ(ν) and D satisfy [2, 6]:

J t = (−1)
d(d+1)

2 J , Dt = D =⇒ (D ◦ J)t = (−1)
d(d−1)

2 D ◦ J ,

where t denotes the transpose taken with respect to the basic pairing B0. In particular, D

is B0-selfadjoint. It is easy to check that these relations agree with the first row of table 9

if one uses the congruence:

d(d− 1)

2
≡2

[
d

2

]
=⇒

d(d+ 1)

2
≡2 1 +

[
d

2

]
.

Relations (2.23) and (3.3) imply:

D−t = (−1)
p−q+1

4 D ⇐⇒ B0(D
−1ξ, ξ′) = (−1)

p−q+1
4 B0(ξ,Dξ

′) . (3.15)

3.3.1 Bk-symmetry properties

The symmetry properties of various endomorphisms of S with respect to the other pairings

Bk (k = 1 . . . 3) can be obtained using (3.14). Applying (3.3), we find that the transposi-

tions T tk of T ∈ Γ(M,End(S)) with respect to the admissible pairings Bk (k = 1 . . . 3) are

related to the transposition T t of T with respect to B0 through:

T t1 = J−t ◦ T t ◦ J t = −J ◦ T t ◦ J ,

T t2 = D−t ◦ T t ◦Dt = (−1)
p−q+1

4 D ◦ T t ◦D , (3.16)

T t3 = D−t ◦ J−t ◦ T t ◦ J t ◦Dt = −(−1)
p−q+1

4 D ◦ J ◦ T t ◦ J ◦D .

Relations (3.16) simplify further when T is C-linear or C-antilinear, i.e. if T commutes or

anticommutes with J . In this case, we define:

λT
def.
=

{
+1 , if [T, J ]−,◦ = 0 ,

−1 , if [T, J ]+,◦ = 0
⇐⇒ T ◦ J = λTJ ◦ T

and find:

T t1 = λTT
t , T t2 = (−1)

p−q+1
4 D ◦ T t ◦D , T t3 = −(−1)

p−q+1
4 λTD ◦ T t ◦D ,

where we noticed that T t has the same (anti-)commutation properties with D as T . Sim-

ilarly, we find simplifications when T commutes or anticommutes with D, in which case

we define:

δT
def.
=

{
+1 , if [T,D]−,◦ = 0

−1 , if [T,D]+,◦ = 0
⇐⇒ T ◦D = δTD ◦ T

and find:

T t1 = −J ◦ T t ◦ J , T t2 = δTT
t , T t3 = −δTJ ◦ T t ◦ J ,

noticing now that T t has the same (anti-)commutation properties with J as T . A case

often encountered in applications is when T is both C-linear/antilinear and commutes/anti-

commutes with D. In this situation, both λT and δT are defined and we find:

T t1 = λTT
t , T t2 = δTT

t , T t3 = λT δTT
t .
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The Bα-transpose of γA. A typical example of the last type mentioned in the previous

paragraph is T = γA for some ordered multi-index A = (a1, . . . , ak) of length |A| = k. Then

λγA = +1 (since γa commute with J) and δγA = (−1)|A| (since γa anti-commute with D).

Since ǫ0 = −1, equation (3.11) becomes:

(γA)t = (−1)
|A|(|A|+1)

2 γA

and the relations above give:

(γA)t1 = (−1)
|A|(|A|+1)

2 γA =⇒ (γa)t1 = −γa ,

(γA)t2 = (−1)
|A|(|A|−1)

2 γA =⇒ (γa)t2 = +γa , (3.17)

(γA)t3 = (−1)
|A|(|A|−1)

2 γA =⇒ (γa)t3 = +γa .

These identities agree with the second row of table 9. Relations (3.17) imply:

B0(ξ, γ
Aξ′) = σ0(−1)

|A|(|A|+1)
2 B0(ξ

′, γAξ) ,

B1(ξ, γ
Aξ′) = σ1(−1)

|A|(|A|+1)
2 B1(ξ

′, γAξ) ,

B2(ξ, γ
Aξ′) = σ2(−1)

|A|(|A|−1)
2 B2(ξ

′, γAξ) , (3.18)

B3(ξ, γ
Aξ′) = σ3(−1)

|A|(|A|−1)
2 B3(ξ

′, γAξ) .

3.3.2 The case p− q ≡8 7

Let us consider this situation in more detail, given that a spin projection can be defined

in this case (leading to Majorana spinors). Viewing S as a complex vector bundle (with

complex structure given by J), recall that in this case D is a real structure (complex

conjugation) on S, which we also denote by an overline. For p − q ≡8 7, we always have

ι0 = 1, which means that the basic admissible pairing B0 satisfies:

B0|S±⊗S∓ = 0 =⇒ B0(ξ±, ξ
′
∓) = 0 , ∀ξ, ξ′ ∈ Γ(M,S) (3.19)

and hence it is determined by its restrictions to S+ ⊗ S+ and to S− ⊗ S−. In turn, the

second of these restrictions is determined by the first due to the first of identities (3.3),

which imply:

B0(Jξ, Jξ
′) = (−1)

d(d−1)
2 B0(ξ, ξ

′) , ∀ξ, ξ′ ∈ Γ(M,S)

=⇒ B0|S−⊗S− = (−1)
d(d−1)

2 B0|S+⊗S+ ◦ (J ⊗ J)|S−⊗S−

Property (3.19) implies:

B0(ξ, ξ
′) = B0(ξ+, ξ

′
+) + B0(ξ−, ξ

′
−)

= B0(ξR, ξ
′
R)− (−1)

d(d+1)
2 B0(ξI , ξ

′
I) , ∀ξ, ξ′ ∈ Γ(M,S) , (3.20)

where we used decomposition (2.25) and the first of identities (3.3). Together with (2.7.3),

this gives:

B0(ξ, γ(ω)ξ
′)=





B0(ξR, γ(ω)ξ
′
R)−(−1)

d(d+1)
2 B0(ξI , γ(ω)ξ

′
I) , if ω∈Ωev(M) ,

B0(ξR, (J ◦ γ(ω))ξ′I)+(−1)
d(d+1)

2 B0(ξI , (J ◦ γ(ω))ξ′R) , if ω∈Ωodd(M) ,

(3.21)
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where we used (3.3) and the fact that J and γ(ω) commute. On the other hand, we always

have ǫ0 = −1, which gives:

γ(ω)t = γ(τ(π(ω))) =

{
+γ(τ(ω)) , if ω ∈ Ωev(M) ,

−γ(τ(ω)) , if ω ∈ Ωodd(M) ,

thereby implying:

B0(ξ, γ(ω)ξ
′) = σ0B0(ξ

′, γ((τ ◦ π)(ω))ξ) , ∀ξ, ξ′ ∈ Γ(M,S) , (3.22)

which in turn gives:

B0(ξ, γ
Aξ′) = σ0(−1)

|A|(|A|+1)
2 B0(ξ

′, γAξ) , ∀ξ, ξ′ ∈ Γ(M,S) . (3.23)

The other admissible pairings (3.14) can be expressed as:

B1(ξ, ξ
′) = B0(ξ, Jξ

′) = −B0(ξR, ξ
′
I)− (−1)

d(d+1)
2 B0(ξI , ξ

′
R) ,

B2(ξ, ξ
′) = B0(ξ, ξ′) = B0(ξR, ξ

′
R) + (−1)

d(d+1)
2 B0(ξI , ξ

′
I) , (3.24)

B3(ξ, ξ
′) = −B0(ξ, J(ξ′)) = −B0(ξR, ξ

′
I) + (−1)

d(d+1)
2 B0(ξI , ξ

′
R) ,

so in particular we have:

B1|S±⊗S± = 0 =⇒ ι1 = −1 ,

B2|S±⊗S∓ = 0 =⇒ ι2 = +1 ,

B3|S±⊗S± = 0 =⇒ ι3 = −1 ,

which agrees with the third row of table 9. Also note the relations:

B0|S+⊗S+ = B2|S+⊗S+ , B0|S−⊗S− = −B2|S−⊗S− ,

B1|S+⊗S− = B3|S+⊗S− , B1|S−⊗S+ = −B3|S−⊗S+ .

When combined with (3.20), identities (3.24) give the following expressions which we list

for convenience of the reader:

B0(ξR, ξ
′
R) =

1

2
[B0(ξ, ξ

′) + B2(ξ, ξ
′)] ,

B0(ξI , ξ
′
I) =

(−1)
d(d+1)

2

2
[B2(ξ, ξ

′)− B0(ξ, ξ
′)] , (3.25)

B0(ξR, ξ
′
I) = −

1

2
[B1(ξ, ξ

′) + B3(ξ, ξ
′)] ,

B0(ξI , ξ
′
R) =

(−1)
d(d+1)

2

2
[B3(ξ, ξ

′)− B1(ξ, ξ
′)] . (3.26)
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Relations (3.24) also imply the following relations which we list for completeness:

B0(ξ, J ◦ γ(ω)ξ′)

=





−B0(ξR, γ(ω)ξ
′
I)− (−1)

d(d+1)
2 B0(ξI , γ(ω)ξ

′
R), if ω ∈ Ωev(M) ,

B0(ξR, (J ◦ γ(ω))ξ′R)− (−1)
d(d+1)

2 B0(ξI , (J ◦ γ(ω))ξ′I), if ω ∈ Ωodd(M) ,

B0(ξ,D ◦ γ(ω)ξ′)

=





B0(ξR, γ(ω)ξ
′
R)− (−1)

d(d+1)
2 B0(ξI , γ(ω)ξ

′
I) , if ω ∈ Ωev(M) ,

B0(ξR, (J ◦ γ(ω))ξ′I)− (−1)
d(d+1)

2 B0(ξI , (J ◦ γ(ω))ξ′R) , if ω ∈ Ωodd(M) ,

B0(ξ, J ◦D ◦ γ(ω)ξ′)

=





B0(ξR, γ(ω)ξ
′
I)− (−1)

d(d+1)
2 B0(ξI , γ(ω)ξ

′
R), if ω ∈ Ωev(M) ,

−B0(ξR, (J ◦ γ(ω))ξ′R)− (−1)
d(d+1)

2 B0(ξI , (J ◦ γ(ω))ξ′I), if ω ∈ Ωodd(M) .

The case of Majorana spinors. The expressions above simplify when ξ, ξ′ are Majo-

rana spinors, i.e. sections of S+ (that is, real sections of S when the latter is viewed as

the complexification of S+), which means that ξR = ξ, ξ′R = ξ′ and ξI = ξ′I = 0, i.e.

D(ξ) = ξ̄ = +ξ and D(ξ′) = ξ′ = +ξ′. In this case, identities (3.21) become:

B0(ξ, γ(ω)ξ
′) = 0 for ξ, ξ′ ∈ Γ(M,S+) and ω ∈ Ωodd(M) (3.27)

while (3.24) give:

B1(ξ, ξ
′) = B3(ξ, ξ

′) = 0 , B2(ξ, ξ
′) = B0(ξ, ξ

′) , ∀ξ, ξ′ ∈ Γ(M,S+) .

Notice that (3.25) and (2.7.3) imply the following relations, which generalize (3.27):

B0(ξ, γ(ω)ξ
′) = B2(ξ, γ(ω)ξ

′) = 0 for ξ, ξ′ ∈ Γ(M,S+) and ω ∈ Ωodd(M) ,

B1(ξ, γ(ω)ξ
′) = B3(ξ, γ(ω)ξ

′) = 0 for ξ, ξ′ ∈ Γ(M,S+) and ω ∈ Ωev(M) (3.28)

and which can be summarized as:

Bk(ξ, γ(ω)ξ
′) = 0 for ξ, ξ′ ∈ Γ(M,S+) and ω ∈ Ωopar(k)(M) ,

where:

opar(k)
def.
=

{
ev , if k = odd ,

odd , if k = even ,

is the opposite of the parity of k. In particular, we have:

Bk(ξ, γ
Aξ′) = 0 for ξ, ξ′ ∈ Γ(M,S+) unless |A| ≡2 k . (3.29)

We also have:

B0(ξ, γ(ω)ξ
′) = B2(ξ, γ(ω)ξ

′) for ξ, ξ′ ∈ Γ(M,S+) and ω ∈ Ωev(M) ,

B1(ξ, γ(ω)ξ
′) = B3(ξ, γ(ω)ξ

′) for ξ, ξ′ ∈ Γ(M,S+) and ω ∈ Ωodd(M) . (3.30)
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For a single Majorana spinor ξ, relations (3.18) imply the following properties, which are

often encountered in applications:

B0(ξ, γ
Aξ) = 0 unless (−1)

|A|(|A|+1)
2 = σ0 ,

B1(ξ, γ
Aξ) = 0 unless (−1)

|A|(|A|+1)
2 = σ1 ,

B2(ξ, γ
Aξ) = 0 unless (−1)

|A|(|A|−1)
2 = σ2 , (3.31)

B3(ξ, γ
Aξ) = 0 unless (−1)

|A|(|A|−1)
2 = σ3

and which can be summarized as:

Bk(ξ, γ
Aξ) = 0 unless (−1)

|A|(|A|−1)
2 ǫ

|A|
k = σ0 . (3.32)

3.3.3 Local expressions

Consider a pseudo-orthonormal local coframe (ea)a=1...d of (M, g) and a local frame

(ǫα)α=1...∆ of S+, both supported above an open subset U of M . Defining:

Bαβ
def.
= B0(ǫα, ǫβ) ∈ C∞(U,R) , ∀α, β = 1 . . .∆ ,

we let B̂ denote the C∞(U,R) square matrix of dimension ∆ with entries Bαβ . The

symmetry property of B implies:

Bβα = σ0Bαβ , ∀α, β = 1 . . .∆ ⇐⇒ B̂
T = σ0B̂ ,

where T denotes the ordinary transpose of matrices. If ξ, ξ′ ∈ Γ(M,S+) expand as in (2.27)

(with ξαI = 0, ξα = ξαR ∈ C∞(U,R) and similarly for ξ′), we have:

B0(ξ, ξ
′) =

U
ξ̂T B̂ξ̂′ ∈ C∞(U,R) .

Remark. As mentioned above, one can view the complex vector bundle S as the com-

pexification S ≈ S+ ⊗ OC of the real vector bundle S+, where OC is the trivial complex

line bundle over M . With this interpretation, D is the complex conjugation of this com-

plexified bundle and we can consider the fiberwise C-bilinear pairing β on S obtained by

complexification of the restriction B0|S+⊗S+ :

β(ξ, ξ′)
def.
= B0(ξR, ξ

′
R)− B0(ξI , ξ

′
I) + i

[
B0(ξR, ξ

′
I) + B0(ξI , ξ

′
R)
]

∈ C∞(M,C) , ∀ξ, ξ′ ∈ Γ(M,S) , (3.33)

i.e. (using (3.24)):

2β(ξ, ξ′) = B0(ξ, ξ
′) + B2(ξ, ξ

′) + (−1)
d(d+1)

2 (B0(ξ, ξ
′)− B2(ξ, ξ

′))

−i
[
B1(ξ, ξ

′) + B3(ξ, ξ
′) + (−1)

d(d+1)
2 (B1(ξ, ξ

′)− B3(ξ, ξ
′))
]

.

This fiberwise C-bilinear form satisfies:

β(Jξ, ξ′) = β(ξ, Jξ′) = iβ(ξ, ξ′) , ∀ξ, ξ′ ∈ Γ(M,S) ,

β(ξ, ξ′) = B0(ξ, ξ
′) , ∀ξ, ξ′ ∈ Γ(M,S+) .
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Using the relations above, it is easy to check we have the following local expression for any

pair of pinors ξ, ξ′ ∈ Γ(M,S):

β(ξ, γAξ′) = ξ̂T γ̂Aξ̂′ . (3.34)

We stress that the fiberwise C-bilinear pairing β on S is often used in the physics literature

instead of the admissible form B0, which is only fiberwise R-bilinear. The admissible forms

Bk can be reconstructed from β as follows:

B0(ξ, ξ
′) = β(ξR, ξ

′
R)− (−1)

d(d+1)
2 β(ξI , ξ

′
I) ,

B1(ξ, ξ
′) = −β(ξR, ξ

′
I)− (−1)

d(d+1)
2 β(ξI , ξ

′
R) ,

B2(ξ, ξ
′) = β(ξR, ξ

′
R) + (−1)

d(d+1)
2 β(ξI , ξ

′
I) ,

B3(ξ, ξ
′) = −β(ξR, ξ

′
I) + (−1)

d(d+1)
2 β(ξI , ξ

′
R) .

3.4 Quaternionic representation (p− q ≡8 4, 5, 6)

In this case, spin projectors can only be defined when p − q ≡8 4, 6. In order to simplify

notation, we shall assume thatM is contractible, so that all bundles under consideration are

topologically trivial; in particular, Ji are globally defined on M . Given that the discussion

below is local, this condition can always be removed by replacing M with a sufficiently

small open subset U . The situation for admissible pairings is summarized below [2, 5, 6].

3.4.1 The quaternionic simple case (p− q ≡8 4, 6)

When p − q ≡8 4, 6, the morphism γ is fiberwise-injective and we have eight independent

admissible pairings B
ǫ
α (ǫ = ±1, α = 0 . . . 3), which are given by [6]:

B
ǫ
k = B

ǫ
0 ◦ (idS ⊗ Jk) , ∀k = 1 . . . 3 , ∀ǫ ∈ {−1,+1} , (3.35)

where B
ǫ
0 are the two fundamental admissible pairings — which we can take to be re-

lated through:

B
+
0 = B

−
0 ◦ (idS ⊗ γ(ν)) (3.36)

⇐⇒ B
−
0 = (−1)

p−q
2 B

+
0 ◦ (idS ⊗ γ(ν)) =

{
+B

+
0 ◦ (idS ⊗ γ(ν)) , if p− q ≡8 4

−B
+
0 ◦ (idS ⊗ γ(ν)) , if p− q ≡8 6

and have type ǫ, symmetry σ0(ǫ, d) given in the table below:

d
(mod 8)

0 2 4 6

σ0(ǫ, d) −1 −ǫ +1 +ǫ

and isotropy given as follows:
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• If p−q ≡8 4, then γev is fiberwise reducible and γ(ν)2 = idS . Chiral projectors can be

constructed from the product structure R = γ(ν), which satisfies Rt = (−1)
d
2R with

respect to any admissible pairing B due to (3.9) since d is even. Thus ι = (−1)
d
2

(see (3.8)) for any admissible B and in particular ι±0 = (−1)
d
2 . In this case, we

have Ek(S±) = S±, where S± are the bundles of symplectic Majorana-Weyl spinors

of positive and negative chiralities (which are defined as the eigenbundles of γ(ν)

corresponding to the eigenvalues ±1 of the latter).

• If p− q ≡8 6, then γev is fiberwise reducible and γ(ν)2 = −idS , so γ(ν) is a globally-

defined complex structure on S. Spin projectors can be constructed using the product

structure R = γ(ν) ◦ J , where J ∈ Γ(U,Uγ) is any locally-defined complex structure

associated with the quaternionic structure. The eigenbundles of R corresponding to

the eigenvalues ±1 are denoted by S± and S+ is the bundle of symplectic Majorana

spinors. We have Rt = −(−1)
d
2R where t denotes the B

ǫ
0-transpose and hence

ιǫ0 = −(−1)
d
2 (independent of ǫ).

The pairing B
+
0 will also be denoted through B0:

B0
def.
= B

+
0

and will be called the basic pairing. The pairings B
ǫ
k for k = 1 . . . 3 will be called the

derived pairings. Notice that relations (3.35) and (3.36) imply:

B
ǫ
α = B0 ◦ (idS ⊗ γ(ν)

1−ǫ
2 ◦ Jα) , ∀α = 0 . . . 3 , ∀ǫ = ±1 , (3.37)

so that it suffices to work with the basic pairing B0.

Properties of derived pairings in the quaternionic simple case. The type ǫk(ǫ, d)

and symmetry σk(ǫ, d) of B
ǫ
k (k = 1 . . . 3) satisfy:

ǫk(ǫ, d) = ǫ0(ǫ, d) , σk(ǫ, d) = −σ0(ǫ, d)

while the isotropies of B
ǫ
k are as follows:

• When p− q ≡8 4, we have:

ιǫk = ιǫ0 = (−1)
d
2 , ∀k = 1 . . . 3 , ∀ǫ ∈ {−1, 1} .

• When p− q ≡8 6, we have the following isotropies if we define spin projectors using

the product structure R = γ(ν) ◦ J1:

k 1 2 3

ι±k /ι
±
0 +1 −1 −1

Also notice the relations J1(S±) = S± and J2(S±) = S∓, J3(S±) = S∓.
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3.4.2 The quaternionic non-simple case (p− q ≡8 5)

In this case, γ is fiberwise non-injective and we have γ(ν) = ǫγ idS , where ǫγ ∈ {−1, 1}

is the signature of γ. We have four admissible nondegenerate bilinear pairings (up to

multiplication with a nowhere vanishing function), given by:

Bk = B0 ◦ (idS ⊗ Jk) , ∀k = 1 . . . 3 , (3.38)

where B0 is the basic admissible pairing, whose type ǫ0(d) and symmetry σ0(d) are given

in the table below:

d
(mod 8)

1 3 5 7

ǫ0(d) +1 −1 +1 −1

σ0(d) −1 +1 +1 −1

In the quaternionic non-simple case, the restricted bundle morphism γev is fiberwise ir-

reducible so the isotropy of admissible pairings on S is not defined. The type ǫk(d) and

symmetry σk(d) of Bk (k = 1 . . . 3) are given by:

ǫk(d) = ǫ0(d) , σk(d) = −σ0(d) .

Note that relation (3.38) implies:

Bα = B0 ◦ (idS ⊗ Jα) , ∀α = 0 . . . 3 , (3.39)

since J0 = idS .

3.4.3 The B0-transpose of Jα

In all sub-cases of the quaternionic case, the globally-defined endomorphisms Jα are B
ǫ
0-

orthogonal (see [2, 6]) for p− q ≡8 4, 6 and B0-orthogonal for p− q ≡8 5:

(Jα)
−t = Jα ⇐⇒ B0(J

−1
α ξ, ξ′) = B0(ξ, Jαξ

′) , ∀α = 0 . . . 3 , (3.40)

where t denotes the B
ǫ
0-transpose (for any ǫ = ±1) when p−q ≡8 4, 6 or the B0-transpose,

when p− q ≡8 5. Since J
2
k = −idS , we have J−1

k = −Jk and hence:

J t
k = −Jk , ∀k = 1 . . . 3 , (3.41)

which implies:

J t = −J , ∀J ∈ Γ(U,Uγ) .

3.4.4 Admissible pairings in the biquaternion formalism

Possibly replacing M with a sufficiently small open subset, we assume for simplicity of

notation that M is contractible and hence Ji are globally defined. Passing to the com-

plexified bundle SC = S ⊗OC, the bilinear pairings B
ǫ
α (for the quaternionic simple case)
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and Bα(for the quaternionic non-simple case) complexify to fiberwise C-bilinear pairings

βǫα and βα on SC, respectively. Relations (3.37) and (3.39) give:

βǫα = B
ǫ
0 ◦ (idSC

⊗ Jα) (for p− q ≡8 4, 6) and βα = B0 ◦ (idSC
⊗ Jα) (for p− q ≡8 5) .

Of course, the complexified basic pairing β0 has the same symmetry σ0 as B0. Using a

β0-orthogonal local frame of SC when σ0 = +1 and a β0-symplectic (i.e. Darboux) local

frame of SC when σ0 = −1, the various relations given above translate immediately into

matrix identities familiar from the supergravity literature. We refer the reader to section 5

for an example of this.

4 Fierz identities for real pinors

4.1 Preparations

Given an admissible fiberwise bilinear pairing B on S, we define endomorphisms Eξ,ξ′ ∈

Γ(M,End(S)) ≈ HomC∞(M,R)(Γ(M,S),Γ(M,S)) through:

Eξ,ξ′(ξ
′′)

def
= B(ξ′′, ξ′)ξ , ∀ξ, ξ′ ∈ Γ(M,S) .

It is easy to check the identities:

Eξ1,ξ2 ◦ Eξ3,ξ4 = B(ξ3, ξ2)Eξ1,ξ4 , ∀ξ1, ξ2, ξ3, ξ4 ∈ Γ(M,S) , (4.1)

as well as:

tr(T ◦ Eξ,ξ′) = B(Tξ, ξ′) , ∀ξ, ξ′ ∈ Γ(M,S) . (4.2)

For later reference, note that the bundle End(S) is endowed with the natural nondegenerate

and symmetric fiberwise bilinear pairing 〈 , 〉 whose action on sections is the C∞(M,R)-

bilinear map given by:

〈A,B〉
def.
= tr(A ◦B) ∈ C∞(M,R) , ∀A,B ∈ Γ(M,End(S)) . (4.3)

Notice that this pairing does not depend on any choice of pairing of the bundle S itself.

Given T ∈ Γ(M,End(S)), we define the operators of left and right composition with T to

be the following C∞(M,R)-linear operators acting in Γ(M,End(S)):

LT (A)
def.
= T ◦A , RT (A)

def.
= A ◦ T , ∀A ∈ Γ(M,End(S)) . (4.4)

Cyclicity of the trace implies that LT and RT are adjoint with respect to 〈 , 〉:

〈LT (A), B〉 = 〈A,RT (B)〉 , ∀T,A,B ∈ Γ(M,End(S)) .

4.2 Fierz identities for the normal case

In this subsection, we consider the normal case, which corresponds to p−q ≡8 0, 1, 2. Since

this was already discussed in [1] and [8] (see also [2–4, 9]), we shall be brief.
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4.2.1 The completeness relation

We start from the local completeness relation (equation (2.7) of [3], see also [1, 2, 8]):

∑

A=ordered

(γ−1
A )jk(γA)lm =

2d

N
δjmδlk , (4.5)

where A runs over increasingly-ordered tuples of length |A| = 1 . . . d. Multiplying both

sides of (4.5) by Tkj and summing over j, k gives:

Proposition. We have the completeness relation for the normal case:

T =
U

N

2d

∑

A=ordered

tr(γ−1
A ◦ T )γA , ∀T ∈ Γ(M,End(S)) . (4.6)

Setting T = Eξ,ξ′ in this relation gives the expansion:

Eξ,ξ′ =U

N

2d

∑

A=ordered

tr(γ−1
A ◦ Eξ,ξ′)γA ,

which also takes the following form upon using identities (4.2) and (3.12):

Eξ,ξ′ =U

N

2d

∑

A=ordered

ǫ
|A|
B

B(ξ, γAξ′)γA . (4.7)

4.2.2 The geometric Fierz identities

Relation (4.7) implies that the inhomogeneous differential forms:

Ěξ,ξ′
def.
=
(
γ|Ωγ(M)

)−1
(Eξ,ξ′) ∈ Ωγ(M)

have the expansion:

Ěξ,ξ′ =U

N

2d

∑

A=ordered

ǫ
|A|
B

B(ξ, γAξ
′)eAγ , ∀ξ, ξ′ ∈ Γ(M,S) , (4.8)

where we used (2.20). We shall use the notation:

Ěξ,ξ′ =
N

2d

d∑

k=0

Ě
(k)
ξ,ξ′ , (4.9)

where:

Ě
(k)
ξ,ξ′

def.
=

U

1

k!
ǫkBB(ξ, γa1...akξ

′)ea1...akγ ∈ Ωk(M) ∩ Ωγ(M) .

The geometric Fierz identities amount to:

Ěξ1,ξ2 ⋄ Ěξ3,ξ4 = B(ξ3, ξ2)Ěξ1,ξ4 , ∀ξ1, ξ2, ξ3, ξ4 ∈ Γ(M,S) , (4.10)

an equality which holds in Ωγ(M). We refer the reader to [1, 8] for further details regarding

this case.
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4.3 Fierz identities for the almost complex case

This is the case p− q ≡8 3, 7 (which implies that d = p+ q is odd). In this situation, we

always have ǫB0 = −1 (see section 3) and:

N = 2∆ = 2[
d
2 ]+1 . (4.11)

The Schur algebra S is isomorphic with the R-algebra C of complex numbers, while the

C∞(M,R)-algebra Γ(M,Σγ) is spanned by the operators idS and J ∈ Γ(M,End(S)), where

J is a complex structure on S which lies in the commutant of the image of γ:

J2 = −1 , [J, γm]−,◦ = 0 , ∀m = 1 . . . d =⇒ [J, γA]−,◦ = 0 for all A . (4.12)

We have:

J = γ(ν) = γ(d+1) (4.13)

and ν ⋄ ν = −1 (which, of course, implies the property J2 = −idS listed above). As

shown in [2], there always exists a globally-defined endomorphismD ∈ Γ(M,End(S)) which

satisfies (2.22), (2.23) and (2.24). The space Γ(M,S) admits a structure of C∞(M,C)-

module defined through:

(α+ iβ)ξ
def.
= αξ + βJ(ξ) , ∀α, β ∈ C∞(M,C) , ∀ξ ∈ Γ(M,S) .

The module Γ(M,EndC(S)) of C
∞(M,C)-linear operators can be identified with the sub-

module of Γ(M,End(S)) consisting of those C∞(M,R)-linear operators which commute

with J :

Γ(M,EndC(S)) ≡ {T ∈ Γ(M,End(S)) | [J, T ]−,◦ = 0} . (4.14)

The map:

γ : Ω(M) −→ Γ(M,End(S))

is always injective, with image:

γ(Ω(M)) = Γ(M,EndC(S)) .

Its partial inverse is given by:

γ−1 def.
= (γ|Γ(M,EndC(S)))−1 : Γ(M,EndC(S)) → Ω(M) . (4.15)

4.3.1 Preparations

Consider the following C∞(M,R)-linear operator acting in Γ(M,End(S)):

J (T )
def.
= J ◦ T ◦ J , ∀T ∈ Γ(M,End(S)) .

The identity J2 = −idS implies:

J 2 = idΓ(M,End(S)) ,
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which shows that J is a product structure on the C∞(M,R)-module Γ(M,End(S)). On

the other hand, direct computation using cyclicity of the trace shows that J is self-adjoint

with respect to the natural pairing (4.3) on End(S):

〈J (A), B〉 = 〈A,J (B)〉 , ∀A,B ∈ Γ(M,End(S)) .

It follows that the operators:

Π±
def.
=

1

2
(idΓ(M,End(S)) ± J )

are complementary 〈 , 〉-orthoprojectors on the space Γ(M,End(S)). In particular, we have:

Π2
± = Π± , Π+ ◦Π− = Π− ◦Π+ , Π+ +Π− = idΓ(M,End(S))

and the submodules:

Γ(M,End(S))±
def.
= Π±(Γ(M,End(S)))

= {T ∈ Γ(M,End(S)) | J (T ) = ±T} ⊂ Γ(M,End(S)) (4.16)

provide a 〈 , 〉-orthogonal direct sum decomposition:

Γ(M,End(S)) = Γ(M,End(S))+ ⊕ Γ(M,End(S))− .

Corollary. Every T ∈ Γ(M,End(S)) decomposes uniquely as:

T = T+ + T− with T± = Π±(T ) =
1

2
(T ± J (T )) ∈ Γ(M,End(S))± . (4.17)

Proposition. We have:

Γ(M,End(S))− = {T ∈ Γ(M,End(S))|[J, T ]−,◦ = 0} ≡ Γ(M,EndC(S)) , (4.18)

Γ(M,End(S))+ = {T ∈ Γ(M,End(S))|[J, T ]+,◦ = 0} ,

where, in the first relation, we used the identification (4.14).

Proof. It suffices to prove the first equality, since the second follows similarly. For this,

consider the two inclusions in turn:

(⊂) If [J, T ]−,◦ = 0 then direct computation shows that J (T ) = −T , so that T ∈

Γ(M,End(S))− (see (4.16)).

(⊃) If T ∈ Γ(M,End(S))−, the relation J (T ) = −T (see (4.16)) reads:

J ◦ T ◦ J = −T ,

which implies T ◦ J = J ◦ T upon composing with J and using J2 = −idS . Thus

[J, T ]−,◦ = 0.
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Proposition. We have:

LD(Γ(M,End(S))±) = Γ(M,End(S))∓ , (4.19)

where LD is the C∞(M,R)-linear operator of left composition with T (see (4.4)).

Proof. Relation (2.24) implies:

LD ◦Π± = Π∓ ◦ LD ,

which immediately gives the conclusion.

Since idS ∈ Γ(M,End(S))− and LD(idS) = D, the Proposition gives the following:

Corollary. We have:

D ∈ Γ(M,EndC(S))
+ ,

as well as:

Corollary. Every T ∈ Γ(M,End(S)) decomposes uniquely as:

T = T0 +D ◦ T1 with T0, T1 ∈ Γ(M,EndC(S)) , (4.20)

where we used the identification (4.14) .

Proof. Follows immediately from (4.17) and (4.19).

Proposition. The following identities hold:

tr(γ−1
A ◦D−1 ◦ T ) = 0 , ∀A, T ∈ Γ(M,EndC(S)) . (4.21)

Proof. Since J commutes with γA (see (4.12)), we have γA ∈ Γ(M,End(S))−. On

the other hand, we have D−1 ◦ T ∈ LD(Γ(M,EndC(S))) ≡ LD(Γ(M,End(S))−) =

Γ(M,End(S))+ by (4.19). The conclusion now follows from the fact that Γ(M,End(S))−

and Γ(M,End(S))+ are mutually orthogonal with respect to the natural pairing (4.3).

Proposition. For all T ∈ Γ(M,End(S)) decomposed as in (4.20), we have:

tr(γ−1
A ◦ T ) = tr(γ−1

A ◦ T0) and tr(γ−1
A ◦D−1 ◦ T ) = tr(γ−1

A ◦ T1) . (4.22)

Proof. Follows immediately from (4.21).

Notice the relations:

D ◦ T = π(T ) ◦D (4.23)

where π is the parity signature acting in the Z2-graded C∞(M,R)-module Γ(M,EndC(S)) =

γ(Ω(M)) — the Z2-grading on the later being defined by transport from Ω(M) through the
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isomorphism γ : Ω(M)
∼

−→ Γ(M,EndC(S)). Consider the unital associative and commu-

tative (but not graded-commutative) Z2-graded algebra A = {α+ βe|α, β ∈ R} generated

over R by an odd element e which satisfies the single relation (cf. (2.23)):

e2 = (−1)
p−q+1

4 1 =

{
−1 , if p− q ≡8 3

+1 , if p− q ≡8 7
.

Since D satisfies (2.23), the results above show that Γ(M,End(S)) is a free left Z2-graded

module over the Z2-graded ring A ⊗R C∞(M,R) of A-valued smooth functions defined on

M , where left multiplication with e is given by LD:

eT
def.
= LD(T ) = D ◦ T , ∀T ∈ Γ(M,End(S))

and the Z2-grading is given by the decomposition:

Γ(M,End(S)) = Γ(M,End(S))ev ⊕ Γ(M,End(S))odd ,

with:

Γ(M,End(S))ev
def.
= Γ(M,EndC(S))

ev ⊕ LD(Γ(M,EndC(S))
odd) ,

Γ(M,End(S))odd
def.
= Γ(M,EndC(S))

odd ⊕ LD(Γ(M,EndC(S))
ev) .

In fact, relation (4.23) implies that (Γ(M,End(S)), ◦) it is a unital Z2-graded A ⊗R

C∞(M,R)-algebra with internal multiplication given by the composition ◦ of C∞(M,R)-

linear operators acting in Γ(M,S). We have a unital isomorphism of A ⊗R C∞(M,R)-

algebras (which maps D into e⊗̂RidS):

Γ(M,End(S)) ≈ A⊗̂RΓ(M,EndC(S)) ,

Here, Γ(M,EndC(S)) is viewed as a Z2-graded unital associative algebra with the Z2-

grading induced via γ from that of (Ω(M), ⋄) and ⊗̂R is the graded tensor product of

Z2-graded R-algebras. In particular, an R-linear endomorphism T ∈ Γ(M,End(S)) can be

identified with:

T ≡ T0 + e⊗ T1 ∈ A⊗̂RΓ(M,EndC(S)) ,

where T0, T1 ∈ Γ(M,EndC(S)) are the components appearing in the decomposition (4.20).

4.3.2 The partial and full completeness relations

The two identities below (which hold above any open subset U ⊂ M carrying a local

orthonormal coframe em of M and a local frame εi of S) follow immediately from the

results proved in [2]:

∑

A=ordered

(γ−1
A )jk(γA)lm =

2d

N
(δjmδlk − JjmJlk) (4.24)

and: ∑

A=ordered

[
(γ−1

A )jk(γA)lm + γ−1
A (D−1)jk(DγA)lm

]
=

2d+1

N
δjmδlk . (4.25)

These identities imply:
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Proposition. We have the partial completeness relation for the almost complex case:

2d+1

N
T =

2d

∆
T =

U

∑

A=ordered

tr(γ−1
A ◦ T )γA , ∀T ∈ Γ(M,EndC(S)) . (4.26)

and the full completeness relation for the almost complex case:

2d+1

N
T =

2d

∆
T =

U

∑

A=ordered

[
tr(γ−1

A ◦ T )γA + tr(γ−1
A ◦D−1 ◦ T )D ◦ γA

]
, (4.27)

∀T ∈ Γ(M,End(S)) .

Proof. Multiplying both sides of (4.25) with Tjk and summing over j, k gives:

2d

∆
Π−(T ) =

2d

N
(T − J (T )) =

U

∑

A=ordered

tr(γ−1
A ◦ T )γA , ∀T ∈ Γ(M,End(S)) , (4.28)

which implies (4.26) for T ∈ Γ(M,EndC(S)) ≡ Γ(M,End(S))−. On the other hand,

multiplying both sides of (4.25) with Tjk and summing over j, k gives (4.27).

Corollary. For any T ∈ Γ(M,End(S)) , we have:

T0 =
U

∆

2d

∑

A=ordered

tr(γ−1
A ◦ T )γA =

∆

2d

∑

A=ordered

tr(γ−1
A ◦ T0)γA ,

T1 =
U

∆

2d

∑

A=ordered

tr(γ−1
A ◦D−1 ◦ T )γA =

∆

2d

∑

A=ordered

tr(γ−1
A ◦ T1)γA , (4.29)

where T0 and T1 are defined as in (4.20).

Proof. The equalities follow immediately from (4.27) and from the decomposition (4.20).

In the second form of the expansions, we used (4.22).

4.3.3 The Fierz identities

Relations (4.20) show that we can decompose Eξ,ξ′ uniquely as:

Eξ,ξ′ = E
(0)
ξ,ξ′ +D ◦ E

(1)
ξ,ξ′ ,

where:

E
(0)
ξ,ξ′ =U

∆

2d

∑

A=ordered

tr(γ−1
A ◦ Eξ,ξ′)γA ∈ Γ(M,EndC(S)) , (4.30)

E
(1)
ξ,ξ′ =U

∆

2d

∑

A=ordered

tr(γ−1
A ◦D−1 ◦ Eξ,ξ′)γA ∈ Γ(M,EndC(S))

and (since E
(α)
ξ,ξ′ ∈ Γ(M,EndC(S))):

D ◦ E
(α)
ξ,ξ′ = π(E

(α)
ξ,ξ′) ◦D , ∀α = 0, 1 , (4.31)
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where we used (4.23). Hence identity (4.1) takes the form:

(
E

(0)
ξ1,ξ2

+D ◦ E
(1)
ξ1,ξ2

)
◦
(
E

(0)
ξ3,ξ4

+D ◦ E
(1)
ξ3,ξ4

)
= B0(ξ3, ξ2)

(
E

(0)
ξ1,ξ4

+D ◦ E
(1)
ξ1,ξ4

)
.

Using (4.31) and (2.23), this becomes:

E
(0)
ξ1,ξ2

◦E
(0)
ξ3,ξ4

+(−1)
p−q+1

4 π(E
(1)
ξ1,ξ2

) ◦ E
(1)
ξ3,ξ4

+D◦
(
π(E

(0)
ξ1,ξ2

) ◦ E
(1)
ξ3,ξ4

+ E
(1)
ξ1,ξ2

◦ E
(0)
ξ3,ξ4

)

= B0(ξ3, ξ2)
(
E

(0)
ξ1,ξ4

+D ◦ E
(1)
ξ1,ξ4

)

Separating components according to the decomposition (4.20) gives:

E
(0)
ξ1,ξ2

◦ E
(0)
ξ3,ξ4

+ (−1)
p−q+1

4 π(E
(1)
ξ1,ξ2

) ◦ E
(1)
ξ3,ξ4

= B0(ξ3, ξ2)E
(0)
ξ1,ξ4

,

π(E
(0)
ξ1,ξ2

) ◦ E
(1)
ξ3,ξ4

+ E
(1)
ξ1,ξ2

◦ E
(0)
ξ3,ξ4

= B0(ξ3, ξ2)E
(1)
ξ1,ξ4

. (4.32)

Using (4.2), (3.12), (3.15) and the fact that ǫ0 = −1, we compute:

tr(γ−1
A ◦ Eξ,ξ′) = B0(γ

−1
A ξ, ξ′) = (−1)|A|

B0(ξ, γ
Aξ′) ,

tr(γ−1
A ◦D−1 ◦ Eξ,ξ′) = B0((γ

−1
A ◦D−1)ξ, ξ′) = (−1)|A|

B0(D
−1ξ, γAξ′) =

= (−1)
p−q+1

4 (−1)|A|
B0(ξ, (D ◦ γA)ξ′) ,

which allows us to rewrite (4.30) as:

E
(0)
ξ,ξ′ =U

∆

2d

∑

A=ordered

(−1)|A|
B0(ξ, γ

Aξ′)γA ,

E
(1)
ξ,ξ′ =U

∆

2d

∑

A=ordered

(−1)
p−q+1

4 (−1)|A|
B0(ξ,D ◦ γAξ′)γA . (4.33)

4.3.4 Geometric algebra formulation

Using the partial inverse (4.15), we define:

Ě
(α)
ξ,ξ′

def.
= γ−1(E

(α)
ξ,ξ′) ∈ Ω(M) , ∀α = 0, 1 .

Applying γ−1 shows that identities (4.32) are equivalent with the geometric algebra form

of the Fierz identities in the almost complex case:

Ě
(0)
ξ1,ξ2

⋄ Ě
(0)
ξ3,ξ4

+ (−1)
p−q+1

4 π(Ě
(1)
ξ1,ξ2

) ⋄ Ě
(1)
ξ3,ξ4

= B0(ξ3, ξ2)Ě
(0)
ξ1,ξ4

,

π(Ě
(0)
ξ1,ξ2

) ⋄ Ě
(1)
ξ3,ξ4

+ Ě
(1)
ξ1,ξ2

⋄ Ě
(0)
ξ3,ξ4

= B0(ξ3, ξ2)Ě
(1)
ξ1,ξ4

,
(4.34)

while (4.33) give the expansions:

Ě
(0)
ξ,ξ′ =U

∆

2d

∑

A=ordered

(−1)|A|
B0(ξ, γAξ

′)eA ,

Ě
(1)
ξ,ξ′ =U

∆

2d

∑

A=ordered

(−1)
p−q+1

4 (−1)|A|
B0(ξ, (D ◦ γA)ξ

′)eA .

(4.35)
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Later on, we shall also use the notations:

Ě
(0,k)
ξ,ξ′

def.
=

U

1

k!
(−1)kB0(ξ, γa1...akξ

′)ea1...ak ∈ Ωk(M)

Ě
(1,k)
ξ,ξ′

def.
=

U

1

k!
(−1)

p−q+1
4 (−1)kB0(ξ, (D ◦ γa1...ak)ξ

′)ea1...ak ∈ Ωk(M) ,

so that:

Ě
(α)
ξ,ξ′ =

∆

2d

d∑

k=0

Ě
(α,k)
ξ,ξ′ , ∀α = 0, 1 . (4.36)

Consider the unital and associative Z2-graded C∞(M,R)-algebra defined through:

ΩA(M)
def.
= A⊗̂R(Ω(M), ⋄) ,

where the Kähler-Atiyah algebra of M is viewed as a Z2-graded algebra. Denoting the

composition of ΩA(M) again by ⋄ for simplicity of notation, equations (4.35) can be written

in the equivalent form:

Ěξ1,ξ2 ⋄ Ěξ3,ξ4 = B0(ξ3, ξ2)Ěξ1,ξ4 ,

where we defined:

Ěξ,ξ′
def.
= Ě

(0)
ξ,ξ′ + e⊗ Ě

(1)
ξ,ξ′ ∈ ΩA(M) . (4.37)

4.4 Fierz identities for the quaternionic case

In this case, the Schur algebra is isomorphic with the R-algebra H of quaternions, being

spanned over R by four linearly-independent elements Jα ∈ Γ(M,End(S)) (α = 0 . . . 3),

which we can take to correspond to the quaternion units — where we once again (possibly

replacing M with a sufficiently small open subset — we assume for simplicity of notation

that M is contractible and Ji are globally-defined. Hence J0 = idS while J1, J2, J3 satisfy:

Ji ◦ Jj = −δijJ0 + ǫijkJk , ∀i, j, k = 1 . . . 3 =⇒ [Ji, Jj ]+,◦ = 0 . (4.38)

This makes S into a left H-module through:

uξ =
3∑

α=0

uαJα(ξ) , ∀u =
3∑

α=0

uαjα ∈ H ,

where uα ∈ R and jα are quaternion units. The space Γ(M,EndH(S)) of globally-

defined Σγ-linear endomorphisms of this module can be identified with the subspace of

those C∞(M,R)-linear operators acting in Γ(M,S) which commute with J1, J2 and J3:

Γ(M,EndH(S)) ≡ {T ∈ Γ(M,End(S)) | [T, Ji]−,◦ = 0 , ∀i = 1 . . . 3} . (4.39)
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4.4.1 Preparations

Consider the following C∞(M,R)-linear operators Jα acting in the space Γ(M,End(S)):

Jα(T )
def.
= Jα ◦ T ◦ Jα , ∀i = 1 . . . 3 .

We obviously have J0 = idΓ(M,End(S)). Relations (4.38) imply:

J 2
i = J0 , [Ji,Jj ]−,◦ = 0 , ∀i 6= j

as well as:

Ji ◦ Jj = δijJ0 − |ǫijk|Jk ∀i, j = 1 . . . 3 ,

i.e.:

J1 ◦ J2 = J2 ◦ J1 = −J3 , J2 ◦ J3 = J3 ◦ J2 = −J1 , J1 ◦ J3 = J3 ◦ J1 = −J2 .

Let us define:

J
def.
=

3∑

k=1

Jk , R
def.
=

1

2
(J0 + J ) .

Using the relations above, we compute:

J 2 = 3J0 − 2J ⇐⇒ R2 = J0 .

This shows that R is a product structure on the C∞(M,R)-module Γ(M,End(S)). An

easy computation using cyclicity of the trace shows that J is selfadjoint with respect to

the pairing (4.3):

〈J (A), B〉 = 〈A,J (B)〉 , ∀A,B ∈ Γ(M,End(S)) .

It follows that the C∞(M,R)-linear operators Π± ∈ EndC∞(M,R)(Γ(M,End(S))) defined

through:

Π±
def.
=

1

2
(J0 ±R) ⇐⇒ Π+ =

1

4
(3J0 + J ) and Π− =

1

4
(J0 − J )

are complementary 〈 , 〉-orthoprojectors. In particular, we have:

Π2
± = Π± , Π+ ◦Π− = Π− ◦Π+ = 0 , Π+ +Π− = J0

and the C∞(M,R)-submodules:

Γ(M,End(S))±
def.
= Π±(Γ(M,End(S))

= {T ∈ Γ(M,End(S))|R(T ) = ±T} ⊂ Γ(M,End(S))

give an 〈 , 〉-orthogonal direct sum decomposition of the C∞(M,R)-module Γ(M,End(S)):

Γ(M,End(S)) = Γ(M,End(S))+ ⊕ Γ(M,End(S))− .
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Notice the characterizations:

Γ(M,End(S))+ = {T ∈ Γ(M,End(S))|J (T ) = T} ,

Γ(M,End(S))− = {T ∈ Γ(M,End(S))|J (T ) = −3T} .

Using identities (4.38), we compute:

3∑

i=1

Ji ◦ Jj ◦ Ji = −Jj + ǫijkJk ◦ Ji , ∀i, j = 1 . . . 3 ,

a relation which implies:

J (Ji) = Ji ⇐⇒ Ji ∈ Γ(M,End(S))+ , ∀i = 1 . . . 3 . (4.40)

For any T ∈ Γ(M,End(S)), we define:

T±
def.
= Π±(T ) =⇒ T = T+ + T− .

Then:

T+ =
1

4
(3T + J (T )) , T− =

1

4
(T − J (T )) . (4.41)

Proposition. We have:

Γ(M,End(S))− = {T ∈ Γ(M,End(S)) | [T, Ji]−,◦ = 0 , ∀i = 1 . . . 3 } ≡ Γ(M,EndH(S)) ,

where we used the identification (4.39).

Proof. (⊂) Direct computation using (4.38) gives:

Ji ◦ T− = T− ◦ Ji

=
1

4
([Ji, T ]+,◦ + ǫijkJj ◦ T ◦ Jk) , ∀T ∈ Γ(M,End(S)) , ∀i, j = 1 . . . 3 ,

which implies:

[Ji, T−]−,◦ = 0 , ∀T ∈ Γ(M,End(S)) , ∀i = 1 . . . 3 . (4.42)

For T ∈ Γ(M,End(S))−, we have T− = T and (4.42) shows that T commutes with

all Ji.

(⊃) Let T ∈ Γ(M,End(S)) satisfy [T, Ji]−,◦ = 0 , ∀i = 1 . . . 3. Using these commutation

relations as well as the identities J2
i = −idS , equation (4.41) gives T− = T , i.e.

T = Π−(T ) ∈ Γ(M,End(S))−.
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Proposition. The C∞(M,R)-submodules LJi(Γ(M,End(S))) are contained in

Γ(M,End(S))+, have trivial pairwise intersection and are mutually orthogonal with

respect to the pairing 〈 , 〉. Hence they give the 〈 , 〉-orthogonal direct sum decomposition:

Γ(M,EndH(S))
+ = ⊕3

i=1LJi(Γ(M,EndH(S))) ,

where we have identified Γ(M,EndH(S)) ≡ Γ(M,End(S))−.

Proof. (LJi(Γ(M,End(S))) are contained in Γ(M,End(S))+). For any T ∈

Γ(M,EndH(S)), we have [T, Jk]−,◦ = 0 , ∀k = 1 . . . 3, which gives:

(Ji ◦ T )− =
1

4

(
Ji ◦ T −

3∑

j=1

Jj ◦ Ji ◦ T ◦ Jj

)

=
1

4
(Ji − J (Ji)) ◦ T = Π−(Ji) ◦ T = 0 =⇒ Ji ◦ T ∈ Γ(M,EndH(S))

+

where we used (4.40), which implies Π−(Ji) = 0. Thus LJi(Γ(M,End(S))) are contained

in Γ(M,End(S))+:

Ji(Γ(M,EndH(S))) ⊂ Γ(M,EndH(S))
+ .

(trivial mutual intersection). Let 1 ≤ i 6= j ≤ 3. If T ∈ LJi(Γ(M,EndH(S))) ∩

LJj (Γ(M,EndH(S))), then T = Ji◦A = Jj◦B for some A,B ∈ Γ(M,EndH(S)). Composing

with Ji from the left and using J2
i = −idS gives:

A = −Ji ◦ Jj ◦B = ǫijkJk ◦B ∈ Γ(M,End(S))+ ,

where we used identities (4.38) (with i 6= j) as well as property (4.40). Since A ∈

Γ(M,EndH(S)) ≡ Γ(M,End(S))−, this implies A ∈ Γ(M,End(S))− ∩ Γ(M,End(S))+ =

{0}, where we used the fact that Γ(M,End(S))− and Γ(M,End(S))+ are complementary

submodules of Γ(M,End(S)). It follows that A = 0 and hence T = Ji ◦A = 0. Therefore,

we have:

LJi(Γ(M,End(S))) ∩ LJj (Γ(M,End(S))) = {0} , ∀ 1 ≤ i 6= j ≤ 3 .

(〈 , 〉-orthogonality). For any A,B ∈ Γ(M,EndH(S)), we have tr(Ji ◦ A ◦ Jj ◦ B) =

tr(Ji ◦ Jj ◦A ◦B) since Jj and A commute. Using relations (4.38), we compute:

tr(Ji ◦ Jj ◦A ◦B) = δijtr(A ◦B)− ǫijktr(Jk ◦A ◦B) . (4.43)

On the other hand, the left hand side is symmetric in i and j:

tr(Ji ◦ Jj ◦A ◦B) = tr(A ◦B ◦ Ji ◦ Jj) = tr(Jj ◦A ◦B ◦ Ji) = tr(Jj ◦ Ji ◦A ◦B)

where we used that fact that A and B commute with J1, J2 and J3 as well as cyclicity of

the trace. Hence tr(Ji◦Jj ◦A◦B) = 1
2(tr(Ji◦Jj ◦A◦B)+tr(Jj ◦Ji◦A◦B)) and (4.43) gives:

tr(Ji ◦ Jj ◦A ◦B) = δijtr(A ◦B) =⇒ tr(Ji ◦A ◦ Jj ◦B) = δijtr(A ◦B) ,

for all A,B ∈ Γ(M,EndH(S)) and for all i, j = 1 . . . 3. This shows that the subspaces

LJi(Γ(M,End(S))) are mutually orthogonal with respect to the pairing 〈 , 〉.
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The following consequence of the proposition is obvious.

Corollary. Any T ∈ Γ(M,End(S)) decomposes uniquely as:

T =

3∑

α=0

Jα ◦ Tα = T0 + J1 ◦ T1 + J2 ◦ T2 + J3 ◦ T3 , (4.44)

where Tα ∈ Γ(M,End(S))− ≡ Γ(M,EndH(S)) , ∀α = 0 . . . 3.

Hence End(S) is (as expected) a bundle of free modules over the Schur algebra, while

Γ(M,End(S)) is a free left module over the algebra Γ(M,Σγ) ⊂ Γ(M,End(S)), where left

multiplication with u ∈ Γ(M,Σγ) is given by Lu:

uT
def.
= Lu(T ) = u ◦ T , ∀T ∈ Γ(M,End(S)) .

In fact, (Γ(M,End(S)), ◦) is a left Γ(M,Σγ)-algebra whose internal multiplication is

given by composition of R-linear endomorphisms of S. We have a unital isomorphism

of Γ(M,Σγ)-algebras:

Γ(M,End(S)) ≈ Γ(M,Σγ)⊗C∞(M,R) Γ(M,EndH(S))

which maps Jα into Jα ⊗ idS . In particular, any endomorphism T ∈ Γ(M,End(S)) can be

identified with:

T ≡
3∑

α=0

Jα ⊗ Tα ∈ Γ(M,Σγ)⊗C∞(M,R) Γ(M,EndH(S)) ,

where Tα ∈ Γ(M,EndH(S)) are the components appearing in decomposition (4.44).

Proposition. We have:

tr(Ji ◦ T ) = 0 , ∀T ∈ Γ(M,EndH(S)) ≡ Γ(M,End(S))− , ∀i = 1 . . . 3 . (4.45)

Proof. The statement follows immediately from the fact that Ji ∈ Γ(M,End(S))+

(see (4.40)) together with the fact that Γ(M,End(S))+ and Γ(M,EndH(S)) ≡

Γ(M,End(S))− are 〈 , 〉-orthogonal. The statement can also be proved directly through

the following argument. If T ∈ Γ(M,EndH(S)), then [Ji, T ]−,◦ = 0 , ∀i = 1 . . . 3. Rela-

tion (4.38) implies:

Ji ◦ Jj + Jj ◦ Ji = −2δij idS .

Multiplying the above with T from the left and taking the trace gives:

tr(T ◦ Ji ◦ Jj) + tr(T ◦ Jj ◦ Ji) = −2δijtr(T ) .

This implies:

tr(T ◦ Ji ◦ Jj) = tr(T ◦ Jj ◦ Ji) = −δijtr(T ) , ∀T ∈ Γ(M,EndH(S)) , (4.46)

where we noticed the identity tr(T ◦Jj ◦Ji) = tr(Ji ◦T ◦Jj) = tr(Ji ◦Jj ◦T ), which follows

from cyclicity of the trace and from the fact that T commutes with Jj . Using (4.38),

we compute:

tr(T ◦ Ji ◦ Jj) = −δijtr(T ) + ǫijktr(T ◦ Jk) .

Hence ǫijktr(T ◦ Jk) = 0 , ∀i, j ∈ 1 . . . 3, which implies tr(T ◦ Jk) = tr(Jk ◦ T ) = 0.
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4.4.2 The partial and full completeness relations

The two identities below (which hold above any open subset U of M supporting a local

pseudo-orthonormal coframe em of (M, g) and a local frame εi of S) follow immediately

from the results proved in [2]:

∑

A=ordered

(γ−1
A )jk(γA)lm =

2d

N

(
δjmδlk −

3∑

a=1

(Ja)jm(Ja)lk

)
(4.47)

and

∑

A=ordered

(γ−1
A )jk(γA)lm −

3∑

a=1

(γ−1
A ◦ Ja)jk(Ja ◦ γA)lm =

2d+2

N
δjmδlk . (4.48)

Proposition. We have the partial completeness relation for the quaternionic case:

2d+2

N
T =

2d

∆
T =

U

∑

A=ordered

tr(γ−1
A ◦ T )γA , ∀T ∈ Γ(M,EndH(S)) (4.49)

and the full completeness relation for the quaternionic case:

2d+2

N
T =

2d

∆
T =

U

∑

A=ordered

tr(γ−1
A ◦ T )γA −

3∑

k=1

∑

A=ordered

tr(γ−1
A ◦ Jk ◦ T )Jk ◦ γA , (4.50)

for any T ∈ Γ(M,End(S)).

Proof. Multiplying both sides of (4.47) with Tkj and summing over j, k gives the equiva-

lent form:
2d

∆
Π−(T ) =

2d

N
(T − J (T )) =

U

∑

A=ordered

tr
(
γ−1
A ◦ T

)
γA . (4.51)

This gives (4.49) for T ∈ Γ(M,EndH(S)). On the other hand, (4.48) implies (4.50) upon

multiplying with the components Tkj and summing over j, k.

Corollary. For ∀α = 0 . . . 3 we have the expansion:

Tα =
U

∆

2d

∑

A=ordered

tr(γ−1
A ◦ J−1

α ◦ T )γA

=
∆

2d

∑

A=ordered

tr(γ−1
A ◦ Tα)γA , ∀T ∈ Γ(M,End(S)) . (4.52)

Proof. Combine the previous proposition with the identity:

tr(γ−1
A ◦ Jα ◦ T ) = −tr(γ−1

A ◦ Tα) , (4.53)

which follows from (4.44) upon using (4.38) and property (4.45).
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4.4.3 The Fierz identities

Relations (4.45) and (4.52) show that the operators Eξ,ξ′ ∈ Γ(M,End(S)) have the unique

decompositions:

Eξ,ξ′ =

3∑

α=0

Jα ◦ E
(α)
ξ,ξ′ ,

where E
(α)
ξ,ξ′ ∈ Γ(M,EndH(S)) for all α = 0 . . . 3 and:

E
(α)
ξ,ξ′ =U

∆

2d

∑

A=ordered

tr(γ−1
A ◦ J−1

α ◦ Eξ,ξ′)γA . (4.54)

Relation (4.2) gives:

tr(γ−1
A ◦ J−1

α ◦ Eξ,ξ′) = B0((γ
−1
A ◦ J−1

α )ξ, ξ′) ,

which in turn implies:

E
(α)
ξ,ξ′ =U

∆

2d

∑

A=ordered

B0((γ
−1
A ◦ J−1

α )ξ, ξ′)γA . (4.55)

Thus:

E
(0)
ξ,ξ′ =U

∆

2d

∑

A=ordered

B0(γ
−1
A ξ, ξ′)γA , (4.56)

E
(i)
ξ,ξ′ =U

∆

2d

∑

A=ordered

B0((γ
−1
A ◦ J−1

i )ξ, ξ′)γA , ∀i = 1 . . . 3 (4.57)

which leads to the expansion:

Eξ,ξ′ =U

3∑

α=0

Jα ◦ E
(α)
ξ,ξ′ =

∆

2d

∑

A=ordered

3∑

α=0

B0((γ
−1
A ◦ J−1

α )ξ, ξ′)Jα ◦ γA . (4.58)

Using (4.54) in (4.1) and relations (4.38), we find the Fierz identities for the quater-

nionic case:

E
(0)
ξ1,ξ2

◦ E
(0)
ξ3,ξ4

−
3∑

i=1

E
(i)
ξ1,ξ2

◦ E
(i)
ξ3,ξ4

= B0(ξ3, ξ2)E
(0)
ξ1,ξ4

, (4.59)

E
(0)
ξ1,ξ2

◦ E
(i)
ξ3,ξ4

+ E
(i)
ξ1,ξ2

◦ E
(0)
ξ3,ξ4

+
3∑

j,k=1

ǫijkE
(j)
ξ1,ξ2

◦ E
(k)
ξ3,ξ4

= B0(ξ3, ξ2)E
(i)
ξ1,ξ4

(i = 1 . . . 3) .

Let us write (4.56) and (4.57) in an equivalent form which is more convenient in

applications. Starting from relations (3.12) and (3.40), we compute:

B0((γ
−1
A ◦ J−1

α )ξ, ξ′) = ǫ
|A|
B0

B0(J
−1
α ξ, γAξ′) = ǫ

|A|
B0

B0(ξ, (Jα ◦ γA)ξ′) , ∀α = 0 . . . 3 .

This allows us to write (4.55) as:

E
(α)
ξ,ξ′ =U

∆

2d

∑

A=ordered

ǫ
|A|
B0

B0(ξ, (Jα ◦ γA)ξ′)γA , ∀α = 0 . . . 3 , ∀ξ, ξ′ ∈ Γ(M,S) .
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Thus:

E
(0)
ξ,ξ′ =U

∆

2d

∑

A=ordered

ǫ
|A|
B0

B0(ξ, γ
Aξ′)γA ,

E
(i)
ξ,ξ′ =U

∆

2d

∑

A=ordered

ǫ
|A|
B0

B0(ξ, (Ji ◦ γ
A)ξ′)γA , ∀i = 1 . . . 3 (4.60)

and we have the expansion:

Eξ,ξ′ =U

∆

2d

∑

A=ordered

3∑

α=0

ǫ
|A|
B0

B0(ξ, (Jα ◦ γA)ξ′)Jα ◦ γA .

4.4.4 Geometric algebra formulation

Since E
(α)
ξ,ξ′ ∈ Γ(M,EndH(S)) = γ(Ω(M)), applying γ−1 to (4.59) gives:

Ě
(0)
ξ1,ξ2

⋄ Ě
(0)
ξ3,ξ4

−
3∑

i=1

Ě
(i)
ξ1,ξ2

⋄ Ě
(i)
ξ3,ξ4

= B0(ξ3, ξ2)Ě
(0)
ξ1,ξ4

,

Ě
(0)
ξ1,ξ2

⋄ Ě
(i)
ξ3,ξ4

+ Ě
(i)
ξ1,ξ2

⋄ Ě
(0)
ξ3,ξ4

+
3∑

j,k=1

ǫijkĚ
(j)
ξ1,ξ2

⋄ Ě
(k)
ξ3,ξ4

= B0(ξ3, ξ2)Ě
(i)
ξ1,ξ4

(i = 1 . . . 3) ,

while (4.60) gives the expansions:

Ě
(α)
ξ,ξ′ =U

∆

2d

∑

A=ordered

ǫ
|A|
B0

B0(ξ, (Jα ◦ γA)ξ
′)eAγ , ∀α = 0 . . . 3 , ∀ξ, ξ′ ∈ Γ(M,S) ,

i.e.:

Ě
(0)
ξ,ξ′ =U

∆

2d

∑

A=ordered

ǫ
|A|
B0

B0(ξ, γAξ
′)eAγ , ∀ξ, ξ′ ∈ Γ(M,S) ,

Ě
(i)
ξ,ξ′ =U

∆

2d

∑

A=ordered

ǫ
|A|
B0

B0(ξ, (Ji ◦ γA)ξ
′)eAγ , ∀i = 1 . . . 3 .

Later on, we shall also use the notation:

Ě
(0,k) def.

=
U

1

k!
ǫkB0

B0(ξ, γa1...akξ
′)ea1...akγ ∈ Ωk(M) ∩ Ωγ(M)

Ě
(i,k) def.

=
U

1

k!
ǫkB0

B0(ξ, (Ji ◦ γa1...ak)ξ
′)ea1...akγ ∈ Ωk(M) ∩ Ωγ(M) ,

so that:

Ě
(α)
ξ,ξ′ =

∆

2d

d∑

k=0

Ě
(α,k)
ξ,ξ′ .

Consider the C∞(M,R)-module of Σγ-valued forms:

Ω(M,Σγ)
def.
= Γ(M,∧T ∗M ⊗ Σγ) ≈ Γ(M,Σγ)⊗C∞(M,R) Ω(M) ,

which we endow with the noncommutative Z2-graded algebra structure (with product de-

noted once again by ⋄) induced through the tensor product of algebras from the algebra

structures of Γ(M,Σγ) and of (Ω(M), ⋄):

(Ω(M,Σγ), ⋄)
def.
= (Γ(M,Σγ), ◦)⊗̂C∞(M,R)(Ω(M), ⋄) .

– 55 –



J
H
E
P
0
9
(
2
0
1
3
)
1
5
6

Thus

(u⊗ ω) ⋄ (v ⊗ η) = (u ◦ v)⊗ (ω ⋄ η) ∀ω, η ∈ Ω(M) , ∀u, v ∈ Γ(M,Σγ) .

We define:

Ěξ,ξ′
def.
=

3∑

α=0

Jα ⊗ Ě
(α)
ξ,ξ′ ∈ Ω(M,Σγ) . (4.61)

Then (4.61) is equivalent with:

Ěξ1,ξ2 ⋄ Ěξ3,ξ4 = B0(ξ3, ξ2)Ěξ1,ξ4 ,

5 Examples

In this section, we illustrate our approach to Fierz identities with three examples belong-

ing to the normal, real and quaternionic types. In previous work, we have already briefly

exemplified the simple and non-simple normal cases of our formalism with two other ap-

plications — namely one real pinor in eight Euclidean dimensions [1] (simple normal type)

and two real pinors in nine Euclidean dimensions [8] (non-simple normal type), giving some

hints on the computer algebra implementation used to perform the computations. As in

our previous work, the explicit form of the Fierz identities in the geometric algebra for-

mulation can be extracted and analyzed by using a symbolic computation system such as

Ricci [20].11

5.1 One real pinor in nine Euclidean dimensions (non-simple normal case)

Consider first a single real pinor on a nine-dimensional Riemannian manifold (M, g), i.e.

p = d = 9, q = 0. We have p − q ≡8 1, so this example belongs to the normal non-

simple case, for which the properties of pinors were treated in subsections 2.6 and 3.2.

This situation arises, for example, when using the cone or cylinder formalism [8] to study

N = 1 compactifications of M-theory on an eight-dimensional manifold by lifting the

problem to the nine-dimensional metric cone or metric cylinder (M, g) constructed over the

compactification space.12 The pin bundle S is an R-vector bundle of rank N = 2[
d
2 ] = 16.

The real pin representation γ : ∧T ∗M → End(S) of (M, g) is fiberwise surjective but not

fiberwise injective and we have γ(ν) = ǫγ idS , where ǫγ ∈ {−1,+1} is the signature of γ.

We shall choose ǫγ = +1. Since d ≡8 1, the discussion of subsection 3.2 shows that — up

to multiplication by a nowhere-vanishing smooth function — there is only one admissible

pairing B on S, which is symmetric (σB = +1) and of type ǫB = +1. Upon multiplying

with an appropriately-chosen nowhere vanishing function, one can assume without loss of

generality that B is positive-definite and thus a scalar product on S. We will henceforth

11In contradistinction with the case studied in [8] (where direct computation is prohibitive), some of the

examples discussed below can also be analyzed directly. However, we have used our implementation in order

to speed up and check some of the computations. Given the space limitations and the focus of the present

paper, we prefer to discuss the details of the implementation as well as other technical and mathematical

aspects in a separate publication.
12Such a construction was alluded to — though not implemented — in [10].
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denote the corresponding norm by || ||. The isotropy ιB is not defined, since no spin

projection exists in this case.

Choosing the pin representation γ with signature ǫγ = +1, we realize the Kähler-

Atiyah algebra (Ω+(M), ⋄) of (M, g) through the truncated model13 (Ω<(M),♦+), where

Ω<(M) = ⊕4
k=0Ω

k(M). We are interested in pinor bilinears:

Ě
(k) def.

=
1

k!
B(ξ, γa1...akξ

′)ea1...ak ∈ Ωk(M) , ∀k ∈ 0, 9 , (5.1)

where ξ, ξ′ ∈ Γ(M,S). From a single pinor ξ ∈ Γ(M,S) (which we normalize through

||ξ|| = 1) we can construct — up to twisted Hodge duality on (M, g) — the following

nontrivial bilinears (a scalar, a one-form and a four-form):

B(ξ, ξ) = 1 , V
def.
= Ě

(1)
= B(ξ, γaξ)e

a , Φ
def.
= Ě

(4)
=

1

24
B(ξ, γa1...a4ξ)e

a1...a4 , (5.2)

where we used identity (3.11) with ǫB = +1, which implies that B(ξ, γa1...akξ) and thus

Ě
(k)

vanish unless k(k − 1) ≡4 0 ⇔ k ≡4 0, 1 ⇔ k = 0, 1, 4, 5, 8, 9. We have also used the

identity γ(ν) = γ(9) = γ1 ◦ . . . ◦ γ8 = idS (which holds since ǫγ = +1), which implies the

relations Ě
(9−k)

= ∗̃Ě
(k)

for all k = 0, 1, 4, 5, 8, 9, where ∗̃ is the twisted Hodge operator.

This means that the inhomogeneous differential form:

Ě
def.
=

9∑

k=0

Ě
(k)

∈ Ω(M)

is twisted selfdual and thus belongs to the effective domain of definition Ωγ(M) = Ω+(M)

of the morphism of C∞(M,R)-algebras γ : Ω(M) → Γ(M,End(S)). The lower truncation

of Ě is the inhomogeneous differential form:

Ě<
def.
=

4∑

k=0

Ě
(k)

= 1 + V +Φ ∈ Ω<(M) .

The truncated model of the Fierz algebra14 admits a basis consisting of the single element:

Ě<
def.
=

N

2d
Ě< =

1

32
(1 + V +Φ) .

We remind the reader of the relations:

∗̃ω = ω ⋄ ν , ∗ ω = τ(ω) ⋄ ν , ∀ω ∈ Ω(M) ,

where ∗ is the ordinary Hodge operator. Since in this case the volume form ν is central

(i.e. ν ⋄ ω = ω ⋄ ν for any inhomogeneous differential form ω) and since ν ⋄ ν = +1M , the

13See [1] for a detailed description of truncated models. Here, ♦+ : Ω<(M) −→ Ω<(M) denotes the

reduced geometric product, defined through ω♦+η = 2P<(P+(ω) ⋄ P+(η)), for any inhomogeneous forms ω

and η, where P+(ω) =
1
2
(ω + ∗̃ω) and P<(ω) = ω<.

14See [1] for the definition and properties of the Fierz algebra. This applies here since we are in the

normal case.
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truncated Fierz identity (where — for simplicity of notation — we write ♦ instead of ♦+)

reads (see [1]):

Ě<♦Ě< =
1

2
Ě<

(
⇐⇒ Ě ⋄ Ě = Ě

)

and amounts to:

V ♦V +Φ♦Φ+ V ♦Φ+ Φ♦V = 15 + 14V + 14Φ . (5.3)

Expanding the ♦-product into generalized products (see [1] for the definition of the latter),

we find:

V ♦V = ||V ||2 , (5.4)

V ♦Φ = Φ♦V = ∗(V ∧ Φ) , (5.5)

Φ♦Φ = ||Φ||2 + ∗(Φ ∧ Φ)− Φ△2 Φ . (5.6)

Equality (5.5) holds since ιV Φ vanishes.15 Using relations (5.4)–(5.6) and separating (5.3)

into its rank components gives:

||V ||2 + ||Φ||2 = 15 , ∗ (Φ ∧ Φ) = 14V , 2 ∗ (V ∧ Φ)− Φ△2 Φ = 14Φ . (5.7)

Let us define non-negative real-valued functions a, c ∈ C∞(M,R) through:

a
def.
= ||V ||2 , c

def.
= ||Φ||2 . (5.8)

Since any expression quadrilinear in ξ expands into ξ-bilinears and since (5.2) and their

Hodge duals generate the C∞(M,R)-module of globally-defined inhomogeneous differential

forms on M which can be constructed as bilinears in ξ, there must exist functions b, f, e ∈

C∞(M,R) such that the following relations hold:

∗ (V ∧ Φ) = bΦ , (5.9)

∗(Φ ∧ Φ) = fV , (5.10)

Φ△2 Φ = eΦ . (5.11)

Using equations (5.8)–(5.11) in (5.7) gives:

a+ c = 15 , f = 14 , 2b− e = 14 . (5.12)

In what follows we shall use associativity of the geometric product. Multiplying (5.4) with

Φ from the right in the truncated model:

(V ♦V )♦Φ = ||V ||2Φ

and using (5.8) gives:

V ♦V ♦Φ = aΦ . (5.13)

15Indeed, the three-form ιV Φ should be a bilinear in ξ due to the Fierz relations but — as shown above

— one cannot construct any nontrivial three-form bilinear in ξ in this example.
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One the other hand, ♦-multiplying (5.5) with V from the left:

V ♦(V ♦Φ) = V ♦(∗(V ∧ Φ)) ,

and using (5.9) and then again (5.5) and (5.9) gives:

V ♦V ♦Φ = bV ♦Φ = b ∗ (V ∧ Φ) = b2Φ ,

which upon comparing with (5.13) lead to:

a = b2 . (5.14)

Finally, ♦-multiplying (5.5) with Φ from the right:

(V ♦Φ)♦Φ = ∗(V ∧ Φ)♦Φ

and comparing to the relation obtained through ♦-multiplication of (5.6) with V from

the left:

V ♦(Φ♦Φ) = ||Φ||2V + V ♦(∗(Φ ∧ Φ))− V ♦(Φ△2 Φ)

gives, upon using (5.8)–(5.11):

bf = c , bc = fa . (5.15)

Relations (5.12)–(5.15) imply a second order equation for b:

b2 + 14b− 15 = 0 ,

which has the solutions b = 1 and b = −15. The solution b = 1 further gives a = 1, e = −12

and c = 14, while the second solution b = −15 gives c = −210, which cannot be the case

since c is the square of the norm of Φ and hence must be non-negative. We conclude that

the Fierz relations (5.3) are equivalent with the following system of conditions on the forms

V and Φ:

||V ||2 = 1 , ||Φ||2 = 14 , (5.16)

ιV Φ = 0 , ∗(Φ ∧ Φ) = 14V , ∗ (V ∧ Φ) = Φ , Φ△2 Φ = −12Φ .

Via the cone formalism of [8], these relations provide a synthetic encoding of the Fierz

identities used in [10, 11].

5.2 One Majorana spinor in seven Euclidean dimensions (almost complex

case)

Consider a Riemannian seven-manifold (M, g) (d = p = 7, q = 0). Since p − q ≡8 7,

this belongs to the almost complex case, for which the properties of pinors were treated

in subsections 2.7 and 3.3. The case of a single pinor (more precisely, that of a Majorana

spinor) on a Riemannian seven-manifold arises, for example, in the well-studied case of

N = 1 compactifications of M -theory on 7-manifolds [12–14], which admit a geometric

description through reductions of the structure group of TM from O(7) to G2. In this
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case, the bundle morphism γ is fiberwise injective but not fiberwise surjective, having

image equal to EndC(S) ⊂ End(S). As an R-vector bundle, S has rank rkRS = N =

2[
d
2 ]+1 = 16, while as a C-vector bundle (with complex structure given by J = γ(ν), where

γ(ν) = γ(8) = γ1 ◦ . . .◦γ7) it has rank rkCS = ∆ = 2[
d
2 ] = 8. One has a spin endomorphism

given by R = D, which is a real structure (complex conjugation) on S when the latter is

viewed as a complex vector bundle. The D-real sections ξ of S (those satisfying D(ξ) = ξ)

are Majorana spinors, while D-imaginary sections can be obtained by applying J on such

spinors. Since S = S+ ⊕ S− = S+ ⊕ J(S+) (where S+ is the sub-bundle of Majorana

spinors), any section ξ ∈ Γ(M,S) decomposes uniquely as ξ = ξR + iξI = ξR + J(ξI), with

ξR = Reξ ∈ Γ(M,S+) and ξI = Imξ ∈ Γ(M,S+).

Up to rescaling by nowhere-vanishing smooth functions, there are four admissible bi-

linear pairings B0,B1,B2,B3 on S (see subsection 3.3) which can be used to construct

form-valued pinor bilinears. Since all these pairings are related through the action of J

and D, we choose to work with the basic pairing B0, which is symmetric (σ0 = +1) of

type ǫ0 = −1 and isotropy ι0 = +1. In the following, we consider only the particular case

when ξ ∈ Γ(M,S+) is a Majorana spinor — a case which was studied through less formal

methods in [12–14].

Form-valued bilinears constructed using γ and D. For ξ ∈ Γ(M,S+) a Majorana

spinor, (3.21) reduces to:16

B0(ξ, γa1...akξ) = 0 unless k = even ⇐⇒ Ě
(0,k)

= 0 unless k = even , (5.17)

where Ě
(0,k)

is defined as in (4.35)–(4.36). On the other hand, we have (γa)
t = −γa since

ǫ0 = −1. This implies:

(γa1...ak)
t = (−1)

k(k+1)
2 γa1...ak .

Together with the symmetry of B0, this shows Ě
(0,k)

vanishes unless (−1)
k(k+1)

2 = σ0 = +1

(cf. (3.18)), i.e. unless k(k + 1) ≡4 0 ⇔ k = 0, 3, 4, 7. Combining this with (5.17), we

conclude that — for ξ a Majorana spinor — the forms Ě
(0,k)

vanish unless k = 0, 4. When

ξ is normalized through B0(ξ, ξ) = 1, this gives Ě
(0,0)

= 1 and the form-valued ξ-bilinear:

φ
def.
= Ě

(0,4)
=

1

24
B0(ξ, γa1...a4ξ)e

a1...a4

which in turn form the components of the first generator Ě(0) of the Fierz algebra (cf.

expansions (4.35)):

Ě(0) =
1

16
(1 + φ) .

Notice that B0(ξ,D ◦ γa1...akξ) (which equals B2(ξ, γa1...akξ) by identity (3.24)) coincides

in this case with (−1)kB0(ξ, γa1...akξ) and hence leads to the same two bilinears written

above. Using (4.35), this shows that the second generator of the Fierz algebra coincides

with the first:

Ě(1) = Ě(0) .
16Indeed, the locally-defined endomorphisms γa ∈ Γ(U,End(S)) are D-imaginary, so γa1...ak

is D-real or

D-imaginary according to whether k is even or odd. Since ι0 = +1 and ξ is D-real, this implies that Ě
(k)

vanishes unless k is even (cf. subsection 3.3).
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The Fierz identities. Using the observations above, we find that the Fierz identi-

ties (4.34) are mutually-equivalent in our case and amount to the following relation:

Ě(0) ⋄ Ě(0) + π(Ě(0)) ⋄ Ě(0) = Ě(0) .

Since Ě(0) has only components of even rank, we have π(Ě(0)) = Ě(0) and hence the Fierz

relations further reduce to:

2Ě(0) ⋄ Ě(0) = Ě(0) ⇐⇒ (1 + φ) ⋄ (1 + φ) = 8(1 + φ) . (5.18)

Expanding the geometric product into generalized products, we find:

φ ⋄ φ = ||φ||2 − φ△2 φ , (5.19)

where we used the identity17 φ△4φ = ||φ||2. Substituting (5.19) into (5.18) and separarting

into rank components shows that the Fierz identities are equivalent with the following

two conditions:

||φ||2 = 7 and φ△2 φ = −6φ . (5.20)

Form-valued bilinears constructed using γ and J or J ◦D. As usual in the almost

complex case, one can construct further form-valued ξ-bilinears using both γ and either J

or J ◦D. As we shall see below, these bilinears contain no new information in our example,

but it is instructive to discuss them nonetheless.

Since ξ is a Majorana spinor, the ξ-bilinears B0(ξ, J ◦ γa1...akξ) (which equal

B1(ξ, γa1...akξ) by virtue of (3.24)) give the same differential forms as B0(ξ, J ◦D◦γa1...akξ)

(which equals −B3(ξ, γa1...akξ)), due to the ‘selection rule’:

B0(ξ, J ◦ γa1...akξ) = −B0(ξ, J ◦D ◦ γa1...akξ) = 0 unless k = odd . (5.21)

The first of identities (3.3) takes the form J t = J since d(d+1)
2 = 28 is even in our case.

Together with (3.11), this gives:

(J ◦ γa1...ak)
t = (−1)

k(k+1)
2 J ◦ γa1...ak , (5.22)

where we used ǫ0 = +1 and the fact that J commutes with γa. Relation (5.22) implies that

the differential form 1
k!B(ξ, J ◦γa1...akξ)e

a1...ak vanishes unless k(k+1) ≡4 0 ⇐⇒ k ≡4 0, 3.

Together with (5.21), this shows that the nontrivial homogeneous form-valued bilinears

constructed using J and γ have ranks k = 3 or k = 7 and can thus be written as follows,

up to multiplication by elements of C∞(M,R):

ψ
def.
=

1

3!
B0(ξ, J ◦ γa1...a3ξ)e

a1...a3 ,

η
def.
=

1

7!
B0(ξ, J ◦ γa1...a7ξ)e

a1...a7 .

Using the case d = 7 of the well-known formula:

γa1...ak =
(−1)

k(k−1)
2

(d− k)!
ǫa1...ak

ak+1...adγak+1...adγ
(d+1) (5.23)

17One has ω △k ω = ||ω||2 for all ω ∈ Ωk(M) and any k = 0 . . . d.
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and the fact that J = γ(8), we find:

γa1...a3 = −
1

4!
ǫa1...a3

b1...b4γb1...b4J ,

γa1...a7 = −ǫa1...a7γ
(8) = −ǫa1...a7J .

Since J commutes with γa and J2 = −idS , substitution of these relations into (5.23) gives:

ψ =
1

4!
B0(ξ, γb1...b4ξ)ǫa1...a3

b1...b4ea1...a3 =⇒ ψ = ∗̃φ = ∗φ ,

η = ǫa1...a7B0(ξ, ξ)e
a1...a7 =⇒ η = ν ,

where we noticed that ∗̃φ = ∗φ since rkφ = 4 implies τ(φ) = φ. This shows that the

ξ-bilinears constructed using γ and J or J ◦D contain no information beyond that already

contained in φ.

Some identities for φ and ψ = ∗φ. The identity || ∗ ω|| = ||ω|| (which holds for any

ω ∈ Ω(M)), implies that the norm of ψ equals that of φ:

||ψ|| = ||φ|| .

Since d = 7 and q = 0 in our example, we have:

∗ ◦ ∗ = (−1)qπd−1 = +idΩ(M) and ν ⋄ ν = (−1)q+[
d
2 ] = −1M .

This implies that relation ψ = ∗φ = φ ⋄ ν is equivalent with φ = ∗ψ = −ψ ⋄ ν. Since

rkφ = 4, we have π(φ) = φ, which implies ν ⋄ φ = φ ⋄ ν. Using these observations, we

compute: ψ⋄ψ = (∗φ)⋄(∗φ) = φ⋄ν⋄φ⋄ν = φ⋄φ⋄ν⋄ν = −φ⋄φ, which gives ψ⋄ψ = −φ⋄φ.

Combining this with (5.19) and the generalized product expansion:

ψ ⋄ ψ = −||ψ||2 + ψ△1 ψ (5.24)

gives:

ψ△1 ψ = φ△2 φ . (5.25)

Similarly, we have ψ ⋄ φ = −(ψ ⋄ ψ) ⋄ ν = ||ψ||2ν − ∗(ψ △1 ψ), where we noticed that

∗̃(ψ △1 ψ) = ∗(ψ △1 ψ) since (ψ △1 ψ) has rank 4. Comparing this with the generalized

product expansion:

ψ ⋄ φ = ψ ∧ φ+ ψ△1 φ− ψ△2 φ− ψ△3 φ (5.26)

and separating ranks gives:

ψ ∧ φ = ||ψ||2ν , ψ△1 φ = 0 , ψ△2 φ = ∗(ψ△1 ψ) , ψ△3 φ = 0 . (5.27)

Combining (5.25) and (5.27) with the Fierz identities (5.18) gives the following system of

relations for the four-form φ and its Hodge dual ψ = ∗φ:

||φ||2 = ||ψ||2 = 7 , ψ△1 ψ = φ△2 φ = −6φ , (5.28)

ψ ∧ φ = 7ν , ψ△1 φ = ψ△3 φ = 0 , ψ△2 φ = −6ψ . (5.29)

– 62 –



J
H
E
P
0
9
(
2
0
1
3
)
1
5
6

Comparison with the literature. As discussed at the end of subsection 3.3, the spinor

bilinears can also be written using the fiberwise C-bilinear paring β on S obtained by

complexification of the restriction B0|S+⊗S+ (cf. (3.33)):

β(ξ, ξ′) = B0(ξ, ξ
′)− iB0(ξ, Jξ

′) , ∀ξ, ξ′ ∈ Γ(M,S) .

For Jξ = iξ, this gives:18

β(ξ, ξ) = B0(ξ, ξ) ⇐⇒ ξ̂T ξ̂ = 1 ,

β(ξ, γa1...a3 ◦ Jξ) = B0(ξ, γa1...a3 ◦ Jξ) ⇐⇒ iξ̂T γ̂a1...a3 ξ̂ = ψa1...a3 ,

β(ξ, γa1...a4ξ) = B0(ξ, γa1...a4ξ) ⇐⇒ ξ̂T γ̂a1...a4 ξ̂ = φa1...a4 ,

β(ξ, γa1...a7 ◦ Jξ) = B0(ξ, γa1...a7 ◦ Jξ) ⇐⇒ iξ̂T γ̂a1...a7 ξ̂ = ηa1...a7 .

The authors of [12] use the bilinears ̟
def.
= −ψ,ϕ

def.
= −φ and ǫ

def.
= −η, i.e.:

̟a1...a3 = −iξ̂T γ̂a1...a3 ξ̂ = −iβ(ξ, γa1...a3ξ) ,

ϕa1...a4 = −ξ̂T γ̂a1...a4 ξ̂ = −β(ξ, γa1...a4ξ) ,

ǫa1...a7 = −iξ̂T γ̂a1...a7 ξ̂ = −iβ(ξ, γa1...a7ξ) .

The minus sign in the correspondence φ ↔ −ϕ, ψ ↔ −̟, η ↔ −ǫ arises from the fact

that [12] use the complex structure J ′ = −γ(ν) = −J on the bundle S, which is the

conjugate of the complex structure J = +γ(ν) on S used in the present paper. This

translates into the relation J ′γ(ν) = +idS and implies J ′ξ = −iξ if multiplication by i is

defined using J . Notice the Hodge duality relation:

̟a1...a3 =β

(
ξ,

1

4!
ǫa1...a3

a4...a7γa4...a7γ(ν)◦Jξ

)
=−

1

4!
β(ξ, ǫa1...a3

a4...a7γa4...a7ξ)
def.
= ∗(ϕa4...a7) .

The Fierz identities listed in [13, page 4]:

̟abe̟
ecd = −ϕab

cd + 2δcdab ,

̟abfϕfcde = −6δ
[a
[c̟

b]
de] ,

ϕabcgϕ
defg = 6δabcdef − 9ϕ[ab

[deδ
f ]
c] −̟abc̟

def (5.30)

imply the relations:

̟abe̟
ecd = −ϕab

cd + 2δcdab =⇒ ̟△1 ̟ = −6ϕ,

̟bfaϕfade = 4̟bde =⇒ ̟△2 ϕ = 6̟ ,

ϕabcgϕ
decg = 42δabde − 2ϕab

de =⇒ ϕ△2 ϕ = −6ϕ , (5.31)

which indeed agree with (5.28)–(5.29).

18The expressions in the right hand side hold in a local frame (ǫα, J(ǫα)) of S defined above an open

subset U of M , where (ǫα)α=1,...,∆ is a local frame of S+ — see subsection 3.3 for details.
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5.3 One real pinor in five dimensions with metric signature (p, q) = (1, 4)

(quaternionic case)

Consider one real pinor on a psedo-Riemannian five-manifold (M, g) with the mostly minus

signature (p, q) = (1, 4). We have p−q ≡8 5, which places this example in the quaternionic

non-simple case (see sections 2.8, 3.4). This situation occurs in the study of (gauged)N = 1

supergravity in five-dimensions (see, for example, [15–18]). The morphism γ : ∧T ∗M →

End(S) is neither injective nor surjective, having image equal to EndH(S). It satisfies

γ(ν) = ǫγ idS , where ǫγ ∈ {−1, 1} is the signature of γ. We choose to work with ǫγ = +1,

i.e. γ(ν) = idS , and with the basic admissible pairing B0 out of the four independent

admissible pairings (B0, B1, B2 and B3) which exist in this case. Notice that B0 is

symmetric (σ0 = +1) and has type ǫ0 = +1. The restriction γev is fiberwise irreducible, so

chiral projectors cannot be defined in this case.

Choosing the pin representation γ with signature ǫγ = +1, we realize the Kähler-

Atiyah algebra (Ω+(M), ⋄) through the truncated model (Ω<(M),♦+), where Ω<(M)
def.
=

⊕2
k=0Ω

k(M). In the case where there is only one globally-defined pinor ξ ∈ Γ(M,S), we

are interested in the following pinor bilinears:

Ě
(0,k) def.

=
1

k!
B0(ξ, γa1...akξ

′)ea1...ak ∈ Ωk(M) , ∀k ∈ 0, 2 ,

Ě
(i,p) def.

=
1

p!
B0(ξ, Ji ◦ γa1...apξ

′)ea1...ap ∈ Ωp(M) , ∀p ∈ 0, 2 , ∀i ∈ 1, 3 .

Form-valued bilinears constructed using only γ. The symmetry σ0 = 1 of B0

implies:

B0(ξ, γAξ) = B0(γAξ, ξ) .

Since B0 has type ǫ0 = 1, we also have:

B0(γAξ, ξ) = (−1)
|A|(|A|−1)

2 B0(ξ, γAξ) ,

which further implies that Ě
(0,k)

= 1
k!B0(ξ, γa1...akξ)e

a1...ak vanishes unless k satisfies k(k−

1) ≡4 0. The latter holds when k = 0, 1, 4, 5, which gives the non-trivial pinor bilinears:

f = B0(ξ, ξ) , V = B0(ξ, γaξ)e
a ,

W =
1

4!
B0(ξ, γa1...a4ξ)e

a1...a4 , ν =
1

5!
B0(ξ, γa1...a5ξ)e

a1...a5 . (5.32)

Form-valued bilinears constructed using γ and Ji. Since σ0 = +1 while Ji com-

mutes with γa, we have:

B0(ξ, Ji ◦ γAξ) = B0(Ji ◦ γAξ, ξ) = B0(γA ◦ Jiξ, ξ) .

Using the fact that the B0-transpose of Ji is given by J t
i = −Ji, we find:

B0(γA ◦ Jiξ, ξ) = (−1)
|A|(|A|−1)

2
+1

B0(ξ, Ji ◦ γAξ) .
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The last two identities imply that the bilinears Ě
(i,p)

vanish unless p(p − 1) + 2 ≡4 0, i.e

unless p = 2, 3. This gives the nontrivial bilinears:

Φi =
1

2!
B0(ξ, J

i ◦ γa1a2ξ)e
a1a2 , Ψi =

1

3!
B0(ξ, J

i ◦ γa1...a3ξ)e
a1...a3 , ∀i = 1, . . . , 3 .

Identity (5.23) and the relation ∗̃ = ∗ ◦ τ imply that the form-valued bilinears of rank

greater than two can be written as:

ν = ∗f = ∗̃f , W = ∗V = ∗̃V , Ψi = − ∗ Φi = ∗̃Φi

and are thus dual to the scalar, vector and two-forms respectively. As expected, this means

that the non-truncated inhomogeneous forms:

Ě(0) =
1

24
(f + V +W + ν) and Ě(i) =

1

24
(Φi +Ψi)

are twisted selfdual. The factor of 1
24

comes from the prefactor ∆
2d

in the general expressions

for the generators of the Fierz algebra, where we have substituted ∆ = 2 and d = 5.

Since for the truncated model we only need the form bilinears of rank less than or

equal to 2:

f = B0(ξ, ξ) , V = B0(ξ, γmξ)e
m ,

Φi = B0(ξ, J
i ◦ γmnξ)e

mn , ∀i = 1, . . . , 3 , ∀m,n = 1, . . . , 5, (5.33)

we build the truncated generators of the Fierz algebra as:

Ě
(0)
< =

1

24
(f + V ) and Ě

(i)
< =

1

24
Φi . (5.34)

Analysis of Fierz relations for the truncated algebra (Ω<(M), ♦+). In what

follows we shall omit the subscript ‘+’ of ♦+. Using the expression [1]:

Ě(0) = 2P+(Ě
(0)
< ) and Ě(i) = 2P+(Ě

(i)
< )

and the relation P+(ω♦η) = P+(ω) ⋄ P+(η) (where P+ = 1
2(1 + ∗̃)), the Fierz identities for

the truncated generators become:

Ě
(0)
< ♦Ě

(0)
< −

∑

i

Ě
(i)
< ♦Ě

(i)
< =

1

2
B0(ξ, ξ)Ě

(0)
< , ∀i = 1 . . . 3 ,

Ě
(0)
< ♦Ě

(i)
< + Ě

(i)
< ♦Ě

(0)
< +

3∑

j,k=1

ǫijkĚ
(j)
< ♦Ě

(k)
< =

1

2
B0(ξ, ξ)Ě

(i)
< ,

i.e.:

(f + V )♦(f + V )−
∑

i

Φi
♦Φi = 8f(f + V ) ,

(f + V )♦Φi +Φi
♦(f + V ) +

∑

j,k

ǫijkΦ
j
♦Φk = 8fΦi . (5.35)
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The latter simplify to:

V ♦V −
∑

i

Φi
♦Φi = 7f2 + 6fV , (5.36)

V ♦Φi +Φi
♦V +

∑

j,k

ǫijkΦ
j
♦Φk = 6fΦi . (5.37)

The various terms on the left hand side expand as:

V ♦V = ||V ||2 ,
∑

i

Φi
♦Φi =

∑

i

(
∗̃(Φi ∧ Φi)− ||Φi||2

)
,

V ♦Φi +Φi
♦V = 2∗̃(V ∧ Φi) , (5.38)

∑

j,k

ǫijkΦ
j
♦Φk =

∑

j,k

ǫijk

(
∗̃(Φj ∧ Φk)− Φj △1 Φ

k − Φj △2 Φ
k
)

.

We have ιV Φ
i = 0 since V is the only non-trivial pinor bilinear which can be constructed

at rank one and ιV Φ
i is a rank one bilinear, which must therefore be proportional to V :

ιV Φ
i = c1V ⇒ ιV ιV Φ

i = c1||V ||2

for some constant c1. However, we have:

ιV ιV Φ
i = ιV ∧V Φ

i = 0

since V ∧ V = 0, which implies that c1||V ||2 = 0 and thus c1 = 0, which means that ιV Φ
i

vanishes. This further leads to:

V ♦Φi = Φi
♦V = ∗̃(V ∧ Φi) . (5.39)

Let us introduce the following notations:

||V ||2 = a ,
∑

i

||Φi||2 = c ,
∑

i

∗̃(Φi ∧ Φi) = eV , ∗̃(V ∧ Φi) = bΦi ,

∑

j,k

ǫijk∗̃(Φ
j ∧ Φk) = wiV ,

∑

j,k

ǫijkΦ
j △1 Φ

k = uΦi ,
∑

j,k

ǫijkΦ
j △2 Φ

k = li ,

(5.40)

where a, b, c, e, u, li, wi are non-negative smooth real-valued functions on M . Using rela-

tions (5.38) in (5.36)–(5.37), we find:

a+ c = 7f2 , e = −6f , 2b− u = 6f , wi = li = 0 . (5.41)

With (5.39)–(5.41), the system (5.38) simplifies to:

V ♦V = ||V ||2 = a , (5.42)
∑

i

Φi
♦Φi = −6fV − c , (5.43)

V ♦Φi = Φi
♦V = bΦi , (5.44)

∑

j,k

ǫijkΦ
j
♦Φk = −(6f − 2b)Φi . (5.45)
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In what follows we use associativity of the reduced geometric product ♦. First notice that

♦-multipling (5.44) with Φi from the right and summing the result over i = 1 . . . 3 gives:

∑

i

(V ♦Φi)♦Φi = b
∑

i

Φi
♦Φi ,

which upon using (5.43) leads to:

∑

i

V ♦Φi
♦Φi = −6bfV − 6bc . (5.46)

Furthermore, ♦-multiplying (5.43) with V from the left gives:

V ♦

(∑

i

Φi
♦Φi

)
= −6fV ♦V − 6cV

which takes the following form upon using (5.42):

V ♦

∑

i

Φi
♦Φi = −6fa− 6cV . (5.47)

Subtracting (5.47) from (5.46) gives:

c = 6bf , a = b2 . (5.48)

From (5.48) and the first relation in (5.41), we find a second order equation for b:

b2 + 6bf − 7f2 = 0 ,

which has the solutions b = f and b = −7f . The solution b = f further gives a = f2,

c = 6f2 and u = −4f , while the second solution b = −7f gives c = −42f2, which cannot

hold since c =
∑

i ||Φ
i||2 must be non-negative. We conclude that the Fierz relations (5.36)–

(5.37) are equivalent with the following system of conditions on the forms V and Φi:

||V ||2 = f2 ,

3∑

i=1

||Φi||2 = 6f2 , ιV Φ
i = 0 ,

∗̃(V ∧ Φi) = fΦi =⇒ ιV ∗̃Φ
i = fΦi ⇐⇒ ιV ∗ Φi = −fΦi ,

3∑

i=1

∗̃(Φi ∧ Φi) = −6fV =⇒
3∑

i=1

(Φi ∧ Φi) = −6f ∗̃V = −6f ∗ V , (5.49)

∑

j,k

ǫijk∗̃(Φ
j ∧ Φk) = 0 =⇒ Φj ∧ Φk = 0 , ∀j, k = 1 . . . 3 , j 6= k ,

∑

j,k

ǫijkΦ
j △2 Φ

k = 0 =⇒ ιΦjΦk = 0 , ∀j, k = 1 . . . 3 , j 6= k ,

∑

j,k

ǫijkΦ
j △1 Φ

k = −4fΦi =⇒ Φj △1 Φ
k = −2fǫijkΦi , ∀i, j, k = 1 . . . 3 .

To arrive at the equations above, we made use of the definitions:

∗̃ω = ω ⋄ ν , ∗ ω = τ(ω) ⋄ ν = ιων

– 67 –



J
H
E
P
0
9
(
2
0
1
3
)
1
5
6

and of the properties ∗̃ ◦ ∗̃ = ∗ ◦ ∗ = idΩ(M) as well as of the following identities (see [19])

which hold for homogeneous forms ω ∈ Ωr(M) and η ∈ Ωs(M):

ω ∧ ∗η = (−1)r(s−1) ∗ ιτ(ω)η , when r ≤ s ,

ιω(∗η) = (−1)rs ∗ (τ(ω) ∧ η) , when r + s ≤ d . (5.50)

Comparison with the literature. Using one ‘generalized symplectic-Majorana spinor’

(see below), which appears in the literature as a pair of spinors of real dimension N =

2[
d
2 ] = 4, the authors of [15–18] construct a scalar, a vector and three two-forms as spinor

bilinears. Specifically, writing the symplectic Majorana spinor as the spinor-pair (ξ1, ξ2),

these bilinears are written in [18] as:

s = iξ̄jξ
j , vm = iξ̄jΓmξ

j , φrmn = ξ̄j(σ
r)k

jΓmnξ
k ,

for all j, k ∈ 1, 2 , m,n ∈ 0, . . . , 4 , r ∈ 1, . . . , 3 and where σr are the Pauli matrices.

Using the biquaternion formalism of subsection 2.8 for the case p = 1, q = 4, we have

(Γ4)2 = −idS+
C

and Γ4 is a complex structure on S+
C
. Furthermore, one can choose Γ4 such

that [Z0,Γ
4]−,◦ = 0, where the endomorphism Z0 ∈ Γ(M,EndR(S

+
C
)) was defined in sub-

section 2.8, and hence the endomorphism ρ ∈ Γ(M,EndC(SC)), which has the matrix form:

ρ̂
def.
= iσ2Γ

4 =

[
0 Γ4

−Γ4 0

]

satisfies [Z, ρ]−,◦ = 0. Recall the notation of subsection 2.8: Z is a natural real structure on

SC, R is a C-linear product structure anticommuting with Z and J2 is the complexification

of the endomorphism J2 ∈ Γ(U,EndC(SC)). It is easy to check that ρ satisfies:

ρ2 = idSC
, [ρ,R]+,◦ = 0 , [ρ, J2]−,◦ = 0 .

We can thus define another real structure ∗ on S through:

ξ∗
def.
= ρ ◦ Z(ξ) ,

since the properties listed above insure that ∗ is antilinear and that it squares to +idSC
.

We have:

ξ∗ = Γ4 ◦ Z0(ξ) ⇐⇒ Z0(ξ) = −Γ4(ξ∗) , ∀ξ ∈ Γ(M,S+
C
) .

Condition [Z, ρ]−,◦ = 0 is equivalent with (Γ4)∗ = Γ4, i.e. (Γ4 ◦ T ∗)∗ = Γ4 ◦ T for any

T ∈ Γ(M,End(S+
C
)). Since Z anticommutes with R and commutes with J2, it follows that

the real structure ∗ commutes with R and with J2 and hence it satisfies:

(ξ∗)1 = (ξ1)∗ , (ξ∗)2 = (ξ2)∗ =⇒ ξ̂∗ =

[
(ξ1)∗

(ξ2)∗

]
, ∀ξ ∈ Γ(M,S) .

The restriction of ∗ to S+ is a real structure on S+
C
. It follows that Z can be expressed as:

Z(ξ) = ρ(ξ∗) =⇒ Ẑ(ξ) =

[
0 Γ4

−Γ4 0

][
(ξ1)∗

(ξ2)∗

]
.
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The reality condition ξ ∈ Γ(M,S) ⇐⇒ Z(ξ) = ξ can be written as:

ρ(ξ∗) = ξ ⇐⇒ (ξ1)∗ = Γ4ξ2 ⇐⇒ (ξ2)∗ = −Γ4ξ1 . (5.51)

Condition (5.51) is sometimes called the ‘(generalized) symplectic Majorana condition’ in

the literature on supergravities in five dimensions (see, for example, [15–18]). In those

references, one also chooses the morphism Γ : ∧T ∗M → EndC(S
+
C
) such that Γ0, . . . ,Γ3

are purely imaginary with respect to the complex conjugation ∗ on S+
C
, i.e. :

(Γ0)∗ = −Γ0 , (Γ1)∗ = −Γ1 , (Γ2)∗ = −Γ2 , (Γ3)∗ = −Γ3 , (Γ4)∗ = +Γ4 .

The matrices of Γm with respect to a local frame of S+
C
are the (complex) ‘gamma matrices’

used in [15–18].

The ‘generalized symplectic Majorana’ pinors (ξ1, ξ2) therefore correspond to those

denoted by (ξ+, ξ−) in [15–18], where ξ± ∈ Γ(M,S±
C
). Using the correspondence between

the endomorphisms Jk ∈ Γ(U,EndC(SC)) and the Pauli matrices:

J1 → iσ3 , J2 → iσ2 , J3 → iσ1 ,

the fact that [15–18] defines the Majorana conjugate (using the charge conjugation matrix

C = iΓ0Γ4) through the relation ξ̄i = ξiTC and expressing B0(ξ, ξ
′) as ξTCξ′ = ξ̄ξ′, we can

re-write the definitions of s, v and φr as:

s = iB(ξ̂, ξ̂) = is′ ,

v = iB0(ξ̂,Γmξ̂)e
m = iv′ ,

φ1 = −iB(ξ̂, Ĵ3 ⊗ Γmnξ̂)e
mn = −iφ′3 ,

φ2 = iB(ξ̂, Ĵ2 ⊗ Γmnξ̂)e
mn = iφ′2 , (5.52)

φ3 = −iB(ξ̂, Ĵ1 ⊗ Γmnξ̂)e
mn = −iφ′1

for all m,n ∈ 1, 5. For future reference, we identify the form-valued bilinears corresponding

to our notations by decorating them with primes.

One can compare (5.49) with the Fierz identities given in [15, 16, 18], in particular

with those of [17, page 35], which read:

vav
a = s2 , vaφrab = 0 , va(∗φr)abc = −sφrbc ,

φra
cφscb = −δrs(ηabs

2 − vavb)− ǫrstsφtab ,

φr [abφ
s
cd] = −

1

4
sδrsǫabcdev

e .

The latter can be written as follows in terms of the redefined forms s′, v′ and φ′r:

v′av
′a = −s′2 =⇒ ||v′||2 = −s′2 ,

v′aφ′rab = 0 =⇒ ιv′Φ
′r = 0 , (5.53)

v′a(∗φ′r)abc = −s′φ′rbc =⇒ ιv′ ∗ Φ
′r = −s′φ′r ,
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φ′ra
cφ′scb = −δrs(ηabs

′2 − v′av
′
b) + ǫrsts′φ′tab =⇒ φ′r △1 φ

′s = −2ǫrsts′φ′t ,

||Φ′r||2 = 6s′2 ,

φ′r [abφ
′s
cd] = −

1

4
s′δrsǫabcdev

′e =⇒ φ′r ∧ φ′s = −2s′δrs(∗v′) .

These agree with (5.49) (which was derived through geometric algebra techniques) upon

identifying f ↔ s′, V ↔ v′ and Φi ↔ φ′i.

6 Conclusions and further directions

We gave a geometric algebra reformulation of Fierz identities for form-valued pinor bilin-

ears in arbitrary dimensions and signatures, which displays the underlying Schur algebra

structure in a conceptually transparent manner. This approach to Fierz identities uncovers

the underlying reason for phenomena which occur in various applications and allows for a

unified and efficient treatment of Fierz identities in various problems of interest in super-

gravity and string theory. In particular, this formulation opens the way for unified studies

of flux vacua and of other questions arising in string and M-theory compactifications. Our

approach is highly-amenable to implementation in various symbolic computation systems

such as Ricci[20] (and we have carried out such implementations as illustrated in our

previous papers [1, 8] and briefly touched upon in section 5). Using this implementation,

we illustrated our approach by recovering certain well-known results within our formalism.

Further applications of our methods will be discussed in forthcoming publications.
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A Systematics of pin bundles for Riemannian and Lorentzian manifolds

of dimension up to eleven

In table 10 and table 11, we systematize the properties of real pinors for pseudo-

Riemannian manifolds (M, g) of dimension up to 11 and such that g has Euclidean or

Minkowskian signature.

For the name of (s)pinors we used here the following abbreviations: M=Majorana,

MW=Majorana-Weyl, SM=symplectic Majorana, SMW=symplectic Majorana-Weyl,

DM=double Majorana.
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d d mod 8 S ∆ N Cl(p, q)
Irrep.

image

No. of

R−irreps.
Injective ?

Chirality

operator

R

γ(d+1)

Name of

pinors

(spinors)

1 1 R 1 1 Mat(1,R)⊕2 Mat(1,R) 2 no N/A ±1l M

2 2 R 2 2 Mat(2,R) Mat(2,R) 1 yes N/A γ(3) M

3 3 C 2 4 Mat(2,C) Mat(2,C) 1 yes N/A ±J M

4 4 H 2 8 Mat(2,H) Mat(2,H) 1 yes γ(ν) γ(5) SM (SMW)

5 5 H 2 8 Mat(2,H)⊕2 Mat(2,H) 2 no N/A ±1l SM

6 6 H 4 16 Mat(4,H) Mat(4,H) 1 yes γ(ν) ◦ J γ(7) DM (M)

7 7 C 8 16 Mat(8,C) Mat(8,C) 1 yes D ±J DM (M)

8 0 R 16 16 Mat(16,R) Mat(16,R) 1 yes γ(ν) γ(9) M (MW)

9 1 R 16 16 Mat(16,R)⊕2 Mat(16,R) 2 no N/A ±1l M

10 2 R 32 32 Mat(32,R) Mat(32,R) 1 yes N/A γ(11) M

Table 10. Clifford algebras, representations and character of (s)pinors for Riemannian manifolds.

In this case, one has q = 0 and d = p.

d
d − 2

mod 8
S ∆ N Cl(p, q)

Irrep.

image

No. of

R−irreps.
Injectve ?

Chirality

operator

R

γ(d+1)

Name of

pinors

(spinors)

1 7 C 1 2 Mat(1,C) Mat(1,C) 1 yes D ±J DM (M)

2 0 R 2 2 Mat(2,R) Mat(2,R) 1 yes γ(ν) γ(3) M (MW)

3 1 R 2 2 Mat(2,R)⊕2 Mat(2,R) 2 no N/A ±1l M

4 2 R 4 4 Mat(4,R) Mat(4,R) 1 yes N/A γ(5) M

5 3 C 4 8 Mat(4,C) Mat(4,C) 1 yes N/A ±J SM

6 4 H 4 16 Mat(4,H) Mat(4,H) 1 yes γ(ν) ◦ J γ(7) SM (SMW)

7 5 H 4 16 Mat(4,H)⊕2 Mat(4,H) 2 no N/A ±1l SM

8 6 H 8 32 Mat(8,H) Mat(8,H) 1 yes γ(ν) ◦ J γ(9) DM (M)

9 7 C 16 32 Mat(16,C) Mat(16,C) 1 yes D ±J DM (M)

10 0 R 32 32 Mat(32,R) Mat(32,R) 1 yes γ(ν) γ(11) M (MW)

11 1 R 32 32 Mat(32,R)⊕2 Mat(32,C) 2 no N/A ±1l M

Table 11. Clifford algebras, representations and character of (s)pinors for Lorentzian manifolds.

In this case, one has p = d− 1, q = 1 and p− q = d− 2.
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