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1 Introduction

Neutrinoless double beta decay (0νββ) is a lepton number violating process, which, if

observed, would prove that neutrinos are Majorana particles [1]. New physics beyond

the standard model is required to make the process observable [2], and there are several

different theoretical frameworks that could provide the necessary operators (see the review

in ref. [3]). One of those theories is the left-right symmetric model (LRSM) [4–8], in which

parity is restored at high energies and right-handed neutrinos are naturally included as

part of an SU(2) doublet of the extended gauge symmetry. In that case there are a number

of new physics contributions to 0νββ, either from right-handed neutrinos or Higgs triplets,

with the rate for double beta decay linked to neutrino mass. This connection can be both
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indirect, through the couplings to and/or mixing with right-handed neutrinos, as well as

direct, via the standard light neutrino contribution (see refs. [7, 9, 10] for some of the first

discussions of 0νββ in the LRSM).

In the simplest version of the LRSM one expects the scale of parity restoration to

be rather high, i.e., around the GUT scale of 1015GeV. Indeed, if all couplings in the

scalar potential of the theory are of order one then this conclusion follows naturally [8].

Nevertheless, there is still enough freedom in parameter space to allow one to consider

TeV-scale left-right symmetry, which leads to several distinct and observable signatures in

present-day experiments probing leptonic processes. On the other hand, the quark sector

of the TeV-scale model is severely constrained, due to the presence of flavour changing

neutral currents (FCNCs) induced by the neutral components of Higgs bidoublets that are

introduced to break electroweak symmetry. These affect meson mixing, CP violation in

meson decay and the neutron electric dipole moment, and one needs the neutral component

of the Higgs bidoublet to be heavier than about 15TeV [11] to avoid conflict with exper-

iment. The mass of the right-handed W -boson (WR) can however still be around 3TeV,

and current LHC data is already beginning to probe WR masses of this order [12, 13]. In-

deed, the latest limits from the CMS experiment are roughly mWR
>∼ 2.5TeV (see figure 6).

With right-handed neutrinos of similar mass or lighter there are observable effects in 0νββ

and lepton flavour violation (LFV). The connection between double beta decay, LHC and

lepton flavour violation has recently been studied by several authors [14–20].

From the theoretical point of view, the LRSM provides a natural framework for both

the type I [9, 21–24] and type II [7, 25–29] seesaw mechanisms, mediated by right-handed

neutrinos and Higgs triplets, respectively. In this way the smallness of neutrino mass is

connected to the restoration of parity at high energies, and the 0νββ process can proceed

via the same mediators that lead to neutrino mass. It is however rather difficult to pin

down the mechanism by which the process occurs. A simplified case that has already been

studied in the literature is that of type II seesaw dominance for mν [14], which restricts

the number of parameters by making the right- and left-handed Majorana mass terms

proportional to each other. We perform a detailed investigation of this case including

LFV constraints explicitly in the calculation of the 0νββ half-life, and show that there are

indeed places in parameter space where the triplet contribution can be significant and can

interfere with the other contributions.

The case of type I seesaw dominance is more complicated: there are some contributions

to 0νββ that involve the left- and right-handed sectors individually as well as others that

involve both sectors, through “left-right mixing”. A simplified version was studied in

ref. [17], and a useful formula relating the various mass matrices of the theory was presented

in ref. [18], for the case of symmetric Dirac coupling. Since the left-right mixing is always a

ratio of the Dirac and Majorana mass scales, 0νββ processes involving left-right mixing can

be enhanced for specific Dirac mass matrices. This enhancement [30, 31] is also required for

collider signatures of the TeV-scale type I seesaw mechanism with left-handed currents (see

the review in ref. [32]), and there have been several studies of related phenomenology [33–

36].1 In the LRSM case both the so-called λ- and η-diagrams could give large contributions,

1In the LRSM one can produce right-handed neutrinos at the LHC via right-handed currents [37], as

will be discussed in section 3.3.
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although the latter is further suppressed by the mixing between left- and right-handed gauge

bosons. This idea has also been discussed in the context of the inverse process e−e− →
W−

L W
−
R [38], was further emphasized in extended seesaw versions of the LRSM [19, 20]

and a recent analysis of mixed diagrams at the LHC can be found in ref. [39]. We perform

a thorough analysis of the type I seesaw scenario, paying attention to the correct nuclear

matrix elements for the different diagrams as well as the often severe constraints from

lepton flavour violating phenomena.

The paper is outlined as follows: in section 2 we briefly summarize the theoretical

details of the left-right symmetric model (the reader familiar with the LRSM may skip this

section), and in section 3 we provide a detailed discussion of the 0νββ and LFV processes

in the model. Section 4 is a quantitative analysis of the various 0νββ amplitudes in the

limit of type I or type II seesaw dominance; we summarize and conclude in section 5. A

brief comment on the correlation between 0νββ half-lives is given in appendix A. Details

of decay widths and loop functions for LFV processes can be found in appendix B, which

the reader may skip as well; an explicit numerical example demonstrating large left-right

mixing is given in appendix C.

2 The left-right symmetric model

In the left-right symmetric model, the Standard Model is extended to include the gauge

group SU(2)R (with gauge coupling gR 6= gL), and right-handed fermions are grouped into

doublets under this group. Thus we have the following fermion particle content under

SU(2)L × SU(2)R ×U(1)B−L:

L′
Li =

(

ν ′L
ℓ′L

)

i

∼ (2,1,−1) , L′
Ri =

(

ν ′R
ℓ′R

)

i

∼ (1,2,−1) , (2.1)

Q′
Li =

(

u′R
d′R

)

i

∼ (2,1, 1
3
) , Q′

Ri =

(

u′R
d′R

)

i

∼ (1,2,
1

3
) , (2.2)

with the electric charge given by Q = T 3
L + T 3

R + B−L
2 and i = 1, 2, 3. The subscripts L

and R are associated with the projection PL,R = 1
2(1 ∓ γ5). In order to break the gauge

symmetry and allow Majorana mass terms for neutrinos one introduces the Higgs triplets

∆L,R ≡
(

δ+L,R/
√
2 δ++

L,R

δ0L,R −δ+L,R/
√
2

)

, (2.3)

with ∆L ∼ (3,1,2) and ∆R ∼ (1,3,2); the electroweak symmetry is broken by the bi-

doublet scalar

φ ≡
(

φ01 φ+2
φ−1 φ02

)

∼ (2,2,0) . (2.4)

The relevant Lagrangian in the lepton sector is

Lℓ
Y =− L

′
L(fφ+ f̃ φ̃)L′

R − L
′c
Liσ2∆LhLL

′
L − L

′c
Riσ2∆RhRL

′
R + h.c., (2.5)
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where φ̃ ≡ σ2φ
∗σ2; f, g and hL,R are matrices of Yukawa couplings and charge conjugation

is defined as

(ψL,R)
c ≡ CψT

L,R = (ψc)R,L , C ≡ iγ2γ0 . (2.6)

If one assumes a discrete LR symmetry in addition to the additional gauge symmetry,

the gauge couplings become equal (gL = gR = g) and one obtains relations between the

Yukawa coupling matrices in the model. With a discrete parity symmetry (LL ↔ LR,

φ ↔ φ†, ∆L ↔ ∆∗
R) it follows that hL = h∗R, f = f †, f̃ = f̃ †; with a charge conjugation

symmetry (LL ↔ (LR)
c, φ ↔ φT , ∆L ↔ ∆R) we have h ≡ hL = hR, f = fT , f̃ = f̃T .

Applying these symmetries simplifies various expressions in the model, as will be discussed

later.

Making use of the gauge symmetry to eliminate complex phases, the most general

vacuum is

〈φ〉 =
(

κ1/
√
2 0

0 κ2e
iα/

√
2

)

, 〈∆L〉 =
(

0 0

vLe
iθL/

√
2 0

)

, 〈∆R〉 =
(

0 0

vR/
√
2 0

)

. (2.7)

After spontaneous symmetry breaking, the mass term for the charged leptons is

Lℓ
mass = −ℓ′LMℓℓ

′
R + h.c., (2.8)

where the mass matrix

Mℓ =
1√
2
(κ2e

iαf + κ1f̃) (2.9)

can be diagonalized by the bi-unitary transformation

ℓ′L,R ≡ V ℓ
L,RℓL,R , V ℓ†

L MℓV
ℓ
R = diag(me,mµ,mτ ) . (2.10)

With a discrete parity (charge conjugation) symmetry,Mℓ becomes hermitian (symmetric),

so that the condition V ℓ
L = V ℓ

R (V ℓ
L = V ℓ

R
∗
) holds. In the neutrino sector we have a

type I + II seesaw scenario,

Lν
mass = −1

2
n′LMνn

′c
L + h.c. = −1

2

(

ν ′L ν ′R
c
)

(

ML MD

MT
D MR

)(

ν ′L
c

ν ′R

)

+ h.c., (2.11)

with

MD =
1√
2
(κ1f + κ2e

−iαf̃) , ML =
√
2vLe

iθLhL , MR =
√
2vRhR . (2.12)

Again, with a parity (charge conjugation) symmetry we have MD = M †
D (MD = MT

D). In

the most general case the phase θL cannot be set to zero, but in the type II dominance case

we will study it is simply an overall phase and has no effect on the resulting neutrino mass

matrix (in the type I dominance case it plays no role since vL = 0). Due to the presence of

the so-called “VEV seesaw” relation relating the various VEVs, one expects x ≡ vLvR/κ
2
+ =

O(1), since x is a function of (order one) couplings in the scalar potential [8]. However,

from a purely phenomenological point of view, x can take any value between 0 and 1014 [40].
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Assuming that ML ≪MD ≪MR, the light neutrino mass matrix can be written in terms

of the model parameters as

mν =ML −MDM
−1
R MT

D =
√
2vLe

iθLhL − κ2+√
2vR

hDh
−1
R hTD , (2.13)

where

hD ≡ 1√
2

κ1f + κ2e
−iαf̃

κ+
, κ2+ ≡ |κ1|2 + |κ2|2 . (2.14)

The symmetric 6× 6 neutrino mass matrix Mν in eq. (2.11) is diagonalized by the unitary

6× 6 matrix [41–43]

W ≡
(

V ν
L

V ν
R

)

=

(

U S

T V

)

≃
(

1 − 1
2RR

† R

−R†
1 − 1

2R
†R

)(

Vν 0

0 VR

)

(2.15)

to W †MνW
∗ = diag(m1,m2,m3,M1,M2,M3), where the unitary matrices Vν and VR are

defined by

ML −MDM
−1
R MT

D = Vν diag(m1,m2,m3)V
T
ν ,

MR = VR diag(M1,M2,M3)V
T
R ,

(2.16)

and the matrix R =MDM
−1
R +O(M3

D(M
−1
R )3) describes the left-right mixing. The neutrino

mass eigenstates n = nL + ncL = nc are defined by

n′L =

(

ν ′L
ν ′R

c

)

=WnL =

(

U S

T V

)(

νL
N c

R

)

,

n′cL =

(

ν ′L
c

ν ′R

)

=W ∗ncL =

(

U∗ S∗

T ∗ V ∗

)(

νcL
NR

)

.

(2.17)

Note that the unitarity of W leads to the useful relations

V ν
LV

ν†
L = UU †+SS† = 1 = V ν

RV
ν†
R = TT †+V V † and V ν

LV
ν†
R = UT †+SV † = 0 , (2.18)

with the unitary 3× 6 matrices V ν
L = (U S) and V ν

R = (T V ) defined in eq. (2.15).

The leptonic charged current interaction in the flavour basis is

Llep
CC =

g√
2

[

ℓ′γµPLν
′W−

Lµ + ℓ′γµPRν
′W−

Rµ

]

+ h.c., (2.19)

where
(

W±
L

W±
R

)

=

(

cos ξ sin ξ eiα

− sin ξ e−iα cos ξ

)(

W±
1

W±
2

)

(2.20)

characterizes the mixing between left- and right-handed gauge bosons, with tan 2ξ =

− 2κ1κ2

v2R−v2L
. With negligible mixing the gauge boson masses become

mWL
≃ mW1 ≃ g

2
κ+ , and mWR

≃ mW2 ≃ g√
2
vR , (2.21)
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and assuming that2 κ2 < κ1, it follows that

ξ ≃ −κ1κ2/v2R ≃ −2
κ2
κ1

(

mWL

mWR

)2

, (2.22)

so that the mixing angle ξ is at most3 the square of the ratio of left and right scales (L/R)2.

Here we assume L ≃ 102GeV corresponds to the electroweak scale and R ≃TeV to the

scale of parity restoration, vR. For small ξ the charged current in the mass basis becomes

Llep
CC =

g√
2

[

ℓLγ
µKLnL(W

−
1µ + ξeiαW−

2µ) + ℓRγ
µKRn

c
L(−ξe−iαW−

1µ +W−
2µ)
]

+ h.c. (2.23)

Here KL and KR are 3× 6 mixing matrices

KL ≡ V ℓ†
L V ν

L , and KR ≡ V ℓ†
R V ν∗

R , (2.24)

connecting the three charged lepton mass eigenstates ℓi to the six neutrino mass eigenstates

(νi, Ni)
T , (i = 1, 2, 3), with [using eq. (2.18)] KLK

†
L = KRK

†
R = 1 and KLK

T
R = 0. The

standard neutrino mixing matrix is just the left half of KL, i.e., UPMNS = V ℓ†
L U .

In this model one also expects a new neutral gauge boson, Z ′, which mixes with the

standard model Z boson. The mass eigenstates Z1,2 have the masses

mZ1 ≃ g

2 cos θW
κ+ ≃ mW1

cos θW
, and mZ2 ≃ g cos θW√

cos 2θW
vR ≃

√

2 cos2 θW
cos 2θW

mW2 , (2.25)

where g = e/ sin θW and the U(1) coupling constant is g′ ≡ e/
√
cos 2θW . Again one expects

the mixing to be of order (L/R)2, i.e.,

φ = −1

2
sin−1 g2κ2+

√
cos 2θW

2c2W (m2
Z2

−m2
Z1
)
≃ −

m2
Z1

√
cos 2θW

m2
Z2

−m2
Z1

≃ −
√

cos 2θW

(

mZ1

mZ2

)2

. (2.26)

Eqs. (2.21) and (2.25) imply that mZ2 ≃ 1.7mW2 . The current limits [45, 48] on the

neutral gauge boson parameters are mZ′ > 1.162TeV and |φ| < 1.2 × 10−3. In addition,

the current limits on the doubly charged triplet masses are [49] mδ±±

L
> 409GeV and

mδ±±

R
> 322GeV. The theory predicts mδ±±

L,R
≃ vR, assuming order one coupling constants

in the scalar potential.

3 0νββ, lepton flavor violation and collider physics

3.1 Neutrinoless double beta decay

3.1.1 Particle physics amplitudes

Here we summarize the various possible diagrams for 0νββ in left-right symmetric models

(for one of the first analyses on this topic, see ref. [10]). The Lagrangian in eq. (2.23) can

2This is justified if one assumes no cancellations in generating quark masses [44].
3Although the experimental limit is ξ < 10−2 [45], for mWR

= O(TeV) one has ξ <∼ 10−3 [46]; supernova

bounds for right-handed neutrinos lighter than 1MeV are even more stringent (ξ < 3× 10−5) [46, 47].

– 6 –
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be written as

Llep
CC =

g√
2

6
∑

i=1

[

e γµ(KL)eiPLni(W
−
1µ + ξeiαW−

2µ)

+e γµ(KR)eiPRni(−ξe−iαW−
1µ +W−

2µ)
]

+ h.c.

=
g√
2

3
∑

i=1

[

eLγ
µ(UeiνLi + SeiN

c
Ri)(W

−
1µ + ξeiαW−

2µ)

+ eRγ
µ(T ∗

eiν
c
Li + V ∗

eiNRi)(−ξe−iαW−
1µ +W−

2µ)
]

+ h.c.,

(3.1)

where in the second line we have assumed a basis where the charged leptons are diagonal

(we will use this basis from now on, thus expressing all processes in terms of the matrices

U , S, T and V ). 0νββ amplitudes arise from second order terms in perturbation theory: it

is clear that one can combine either two left-handed currents, two right-handed currents or

one left- and one right-handed current. The relevant mixing matrix element also depends

on whether light or heavy neutrinos are exchanged in the process; the matrices U , V , S

and T are (to second order in MD/MR)

U ≡
[

1 − 1

2
MDM

−1
R (MDM

−1
R )†

]

Vν , V ≡
[

1 − 1

2
(MDM

−1
R )†MDM

−1
R

]

VR,

S ≡MDM
−1
R VR, T ≡ −(MDM

−1
R )†Vν ,

(3.2)

as defined in eq. (2.15), showing that light neutrino mixing is no longer unitary. The

additional possibility of WL −WR mixing allows for diagrams with, for instance, two left-

handed hadronic currents but one left- and one right-handed leptonic current [see figure 4b],

with the corresponding suppression factor of tan ξ [eq. (2.22)].

Neutrinoless double beta decay processes in the LR model can be categorized in terms

of their topology and the helicity of the final state electrons; the most relevant diagrams

that will be discussed in detail in what follows are shown in figures 1, 3 and 4 (see refs. [50]

for a complete list). Table 1 contains a summary of the relevant amplitudes as well as limits

on the particle physics parameters calculated using the recent KamLAND-Zen limit [51]4

and the matrix elements in table 2. Note that the chiral structure of the matrix element

means that the neutrino propagator becomes [53]

PL,R
/q +mi

q2 −m2
i

PL,R =
mi

q2 −m2
i

or PL,R
/q +mi

q2 −m2
i

PR,L =
/q

q2 −m2
i

, (3.3)

leading to mass or momentum dependence when the leptonic vertices have the same or

opposite chirality, respectively, and providing a useful way to categorize the different pos-

sible mechanisms. In order to give a very rough estimate of the relative magnitudes we

denote the masses of all particles belonging to the right-handed sector (Mi, WR and δR)

as R ≃TeV, and those from the left-handed sector as L ≃ 102GeV (corresponding to the

weak scale, or the mass of the WL). The matrices T and S describing left-right mixing can

4The recent GERDA limit [52] on the half-life (see table 3) does not improve on the limits given here.

– 7 –



J
H
E
P
0
9
(
2
0
1
3
)
1
5
3

WL

νLi

νLi

WL

dL

dL

uL

e−
L

e−
L

uL

Uei

q

Uei

(a) Aν

WR

WR

dR

dR

uR

e−
R

e−
R

uR

V ∗

ei

NRi

V ∗

ei

(b) AR
NR

Figure 1. Feynman diagrams of 0νββ in the left-right symmetric model, mediated by (a) light

neutrinos (the standard mechanism Aν) and by (b) heavy neutrinos in the presence of right-handed

currents (AR
NR

). The diagram with heavy neutrino exchange and left-handed currents (AL
NR

) is the

same as diagram (b), with all particles left-handed and the replacement V ∗

ei ↔ Sei. Diagrams with

light neutrino exchange and right-handed currents are negligible.

be written as L/R, and the gauge boson mixing angle ξ is of order (L/R)2. Note that with

this definition the order of magnitude of the type I seesaw contribution is mν ≃ L2/R,

which is far too large in the naive case (without cancellations), but the estimates made

above are still reliable. The typical scale of momentum transfer is |q| ≃ 100MeV.

Mass-dependent mechanisms

In this case the emitted electrons have the same chirality and there are either light or heavy

neutrinos exchanged, with mass denoted by mi and Mi. With both electrons left-handed

the amplitude is proportional to

ALL ≃ G2
F

(

1 + 2 tan ξ + tan2ξ
)

∑

i

(

U2
eimi

q2
− S2

ei

Mi

)

, (3.4)

whereas if both are right-handed it becomes

ARR ≃ G2
F

(

m4
WL

m4
WR

+ 2
m2

WL

m2
WR

tan ξ + tan2ξ

)

∑

i

(

T ∗
ei
2mi

q2
− V ∗

ei
2

Mi

)

. (3.5)

Here we have taken into account diagrams with gauge boson mixing at one or both vertices,

but the most relevant diagrams are:

• Figure 1a, the “standard” diagram, with an amplitude proportional to

Aν ≃ G2
F

〈mee〉
q2

, (3.6)

where |q2| ≃ (100MeV)2 is the typical momentum exchange of the process. The

particle physics parameter |〈mee〉| ≡
∣

∣

∑

U2
eimi

∣

∣ is called the effective mass, and the

– 8 –



J
H
E
P
0
9
(
2
0
1
3
)
1
5
3

0.001 0.01 0.1

m
light

 (eV)

10
-4

10
-3

10
-2

10
-1

10
0

<
m

e
e
>

 (
e
V

)

Normal

<m
ee

> = 0.4 eV

m
β
 =

 0
.2

 e
V

Σ
 =

 1
 e

V

Σ
 =

 0
.2

 e
V

Σ
 =

 0
.1

 e
V

Σ
 =

 0
.5

 e
V

m
β
 =

 0
.3

5
 e

V

CPV
(+,+)

(+,-)

(-,+)

(-,-)

0.001 0.01 0.1

Inverted

<m
ee

> = 0.4 eV

Σ
 =

 0
.2

 e
V

Σ
 =

 0
.1

 e
V

Σ
 =

 0
.5

 e
V

Σ
 =

 1
 e

V

m
β
 =

 0
.2

 e
V

m
β
 =
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Figure 2. The effective mass 〈mee〉 as a function of the lightest neutrino mass in both the normal

and inverted ordering, with the oscillation parameters varied in their 3σ ranges [54]. CP conserving

(violating) areas are indicated by black lines (blue hashes), and prospective values of
∑

mi and mβ

are shown.

suitably normalized dimensionless parameter that describes lepton number viola-

tion is

|ην | =
|〈mee〉|
me

=

∣

∣

∑

U2
eimi

∣

∣

me

<∼ 7.1× 10−7 , (3.7)

with Uei the (PMNS) mixing matrix of light neutrinos and mi the light neutrino

masses. Here and in what follows we give limits on the particle physics parameters

ηk; they are explicitly defined in section 3.1.2. The currently allowed [54] regions of

the effective mass are plotted against the lightest mass in figure 2. We will translate

this plot into half-life in the following section;

• Figure 1b, which is the analogous diagram with purely right-handed currents, medi-

ated by right-handed neutrinos. The amplitude is proportional to

AR
NR

≃ G2
F

(

mWL

mWR

)4
∑

i

V ∗
ei
2

Mi
∝ L4

R5
, (3.8)

where mWR
(mWL

) is the mass of the right-handed WR (left-handed WL), Mi the

mass of the heavy neutrinos and V the right-handed analogue of the PMNS matrix

U . The dimensionless particle physics parameter is

∣

∣ηRNR

∣

∣ = mp

(

mWL

mWR

)4
∣

∣

∣

∣

∣

∑

i

V ∗
ei
2

Mi

∣

∣

∣

∣

∣

<∼ 7.0× 10−9 . (3.9)

• A diagram not shown in which heavy neutrinos are exchanged with purely left-handed

currents. The amplitude is proportional to

AL
NR

≃ G2
F

∑

i

S2
ei

Mi
∝ L2

R3
, (3.10)
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R
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uR

√

2g2vR hee

(a) AδR

WL

WL

δ−−

L

dL

dL

uL

e−
L

e−
L

uL

√

2g2vL hee

(b) AδL

Figure 3. Feynman diagrams of double beta decay in the left-right symmetric model, mediated

by doubly charged triplets: (a) triplet of SU(2)R and (b) triplet of SU(2)L.

with S ≃ L/R describing the mixing of the heavy neutrinos with left-handed currents.

The limit is
∣

∣ηLNR

∣

∣ = mp

∣

∣

∣

∣

∣

∑

i

S2
ei

Mi

∣

∣

∣

∣

∣

<∼ 7.0× 10−9 . (3.11)

Note that the sum in eq. (3.10) can be written as

∑

i

S2
ei

Mi
=
[

MDM
−1
R M−1

R

∗
M−1

R MT
D

]

ee
, (3.12)

which vanishes for negligible Dirac Yukawa couplings. It is also possible to have

light neutrino exchange with right-handed currents [the term proportional to T in

eq. (3.5)], but this diagram is highly suppressed.

Triplet exchange mechanisms

• Figure 3a is a diagram with different topology, mediated by the triplet of SU(2)R.

The amplitude is given by

AδR ≃ G2
F

(

mWL

mWR

)4
∑

i

V 2
eiMi

m2
δ−−

R

∝ L4

R5
, (3.13)

and the dimensionless particle physics parameter is

|ηδR | =
∣

∣

∑

i V
2
eiMi

∣

∣

m2
δ−−

R

m4
WR

mp

G2
F

<∼ 7.0× 10−9 . (3.14)

Here we have used the fact that the term
√
2vRhee is nothing but the ee element of the

right-handed Majorana neutrino mass matrix MR diagonalized by V [cf. eq. (2.12)],

with vR the VEV of the triplet δR and hee the coupling of the triplet with right-

handed electrons, so that this diagram still indirectly depends on the heavy neutrino

mass;
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WR

NR

NR

νL

WL

dR

dL

uR

e−
R

e−
L

uL

(a) Aλ

WL

WR

NR

NR

νL

WL

dL

dL

uL

e−
R

e−
L

uL

(b) Aη

Figure 4. Feynman diagrams of double beta decay in the left-right symmetric model with final

state electrons of different helicity: (a) the λ-mechanism and (b) the η-mechanism due to gauge

boson mixing.

• Figure 3b is a diagram mediated by the triplet of SU(2)L, also present in the usual

type II seesaw model (without left-right symmetry). The amplitude is given by

AδL ≃ G2
F

heevL
m2

δ−−

L

, (3.15)

which is suppressed with respect to the standard light neutrino exchange by at least

a factor q2/m2
δ−−

L

.

Momentum dependent mechanisms

In this case the emitted electrons have opposite helicity, and the amplitude is propor-

tional to

ALR ≃ G2
F

(

m2
WL

m2
WR

+ tan ξ +
m2

WL

m2
WR

tan ξ + tan2ξ

)

∑

i

(

UeiT
∗
ei

1

q
− SeiV

∗
ei

q

M2
i

)

; (3.16)

the most important diagrams are those involving light neutrinos and two powers of the

left-right mixing in the prefactor, i.e.,

• The so-called λ-diagram in figure 4a, with an amplitude

Aλ ≃ G2
F

(

mWL

mWR

)2
∑

i

UeiT
∗
ei

1

q
∝ L3

R3q
, (3.17)

and particle physics parameter

|ηλ| =
(

mWL

mWR

)2
∣

∣

∣

∣

∣

∑

i

UeiT
∗
ei

∣

∣

∣

∣

∣

<∼ 5.7× 10−7 . (3.18)

Note that this is a long-range diagram with light neutrinos exchanged, with the

matrix T ∗
ei = O(MD/MR) quantifying the mixing of light neutrinos with right-handed

currents.
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• The η-diagram in figure 4b, which also has mixed helicity and light neutrino exchange

(long-range diagram). This is only possible due to WL −WR mixing, described by

the parameter tan ξ [see eq. (2.20)]. The amplitude is

Aη ≃ G2
F tan ξ

∑

i

UeiT
∗
ei

1

q
∝ L3

R3q
, (3.19)

with particle physics parameter

|ηη| = tan ξ

∣

∣

∣

∣

∣

∑

i

UeiT
∗
ei

∣

∣

∣

∣

∣

<∼ 3.0× 10−9 . (3.20)

Ref. [55] gives a detailed explanation of how a complicated cancellation of different

nuclear physics amplitudes leads to a limit on the η-diagram that is much stronger

than the one on the λ-diagram. The heavy neutrino contributions to both the λ-

and η diagrams are further suppressed, being proportional to
∑

i SeiV
∗
eiq/M

2
i [see

eq. (3.16)]. Using the mixing matrices in eq. (3.2), the relevant sums become

∑

i

UeiT
∗
ei =

[(

1− 1

2
MDM

−1
R (MDM

−1
R )†

)

Vν
(

−(M−1
R )TMT

DV
∗
ν

)T
]

ee

≃−
[

MDM
−1
R

]

ee
,

∑

i

SeiV
∗
ei =

[

MDM
−1
R VR

((

1− 1

2
(MDM

−1
R )T (MDM

−1
R )∗

)

V ∗
R

)T
]

ee

≃
[

MDM
−1
R

]

ee
,

(3.21)

where we have omitted third order terms. This again shows that the left-right mixing

is a ratio of two scales, MD and MR.

Using our rough estimates (in terms of L ≃ 102GeV and R ≃TeV) of the scale of each

diagram we can now make a naive guess at their expected relative magnitudes. Since the

mixed λ- and η-diagrams in figure 4 are of order (L/R)3/q and the purely right-handed

short-range diagrams in figures 1b (heavy neutrino exchange and right-handed currents)

and 3a (SU(2)R triplet exchange and right-handed currents) are of order L4/R5, we expect

the mixed diagrams to dominate by a factor R2/(Lq) ∼ 105. In the same sense, the

amplitudes of the mixed diagrams are also larger than the one for heavy neutrino exchange

with left-handed currents, proportional to L2/R3. However, these simple estimates are

rather optimistic since the smallness of neutrino masses means that the left-right mixing

should be much smaller than L/R ≃ 0.1. In the absence of cancellations the mixing is

bounded as

|Sαi| ≃ |T T
αi| ≃

√

mν

Mi

<∼ 10−7

(

TeV

Mi

)1/2

, (α = e, µ, τ) , (3.22)

so that it is obvious that the light neutrino mass from type I seesaw,mν ≃M2
D/MR ≃ L2/R

cannot be small enough without special matrix structures. The crucial point is that the

left-right mixing MD/MR ≃ L/R can still be large in some cases, which means that mixed

diagrams should be examined more thoroughly, as has been done in the context of inverse

– 12 –



J
H
E
P
0
9
(
2
0
1
3
)
1
5
3

neutrinoless double beta decay [38] and inverse/extended seesaw [19, 20]. Note that the

limits on the difference of the diagonal elements of the product ǫα ≡ [SS†]αα ≃ [T †T ]αα
from lepton universality [56] are

ǫe − ǫµ <∼ 0.0022 , ǫµ − ǫτ <∼ 0.0017 , ǫe − ǫτ <∼ 0.0039 , (3.23)

which give a rather weak bound on the left-right mixing.

The reliability of the rough approximations in terms of L and R can be tested by

normalising the amplitudes to the standard contribution, using known bounds on the left-

right mixing. We use the bound in eq. (3.22) in the estimates that follow, along with

the light neutrino mass scale mν ≃ 0.05 eV and momentum exchange |q| ≃ 100MeV. It

turns out that the mixed helicity diagrams Aλ and Aη can still compete with the standard

light neutrino diagram, even with the stringent limit on T in eq. (3.22) that connects the

left-right mixing to light neutrino mass. For heavy neutrino exchange with right-handed

currents [figure 1b] we have

AR
NR

Aν
≃
(

mWL

mWR

)4
∑

i

V ∗
ei
2

Mi

q2

mν
≃ 8.36

(

TeV

mWR

)4(TeV

Mi

)

, (3.24)

whereas for heavy neutrino exchange with left-handed currents [eq. (3.10)] the ratio is

AL
NR

Aν
≃
∑

i

S2
ei

Mi

q2

mν

<∼
q2

M2
i

≃ 10−8

(

TeV

MR

)2

. (3.25)

One sees immediately that this process requires cancellations to be enhanced.5 However,

for the λ- and η-diagrams [figure 4] we have

Aη

Aν

<∼
Aλ

Aν
≃
(

mWL

mWR

)2
∑

i

UeiT
∗
ei

q

mν

<∼
(

mWL

mWR

)2 q√
mνMi

≃ 2.89

(

TeV

mWR

)2(TeV

MR

)1/2

,

(3.26)

where the first inequality comes from the upper limit |ξ| <∼
(

mWL

mWR

)2
. Depending on the

relative magnitude of the bidoublet VEVs κ1 and κ2, the amplitude Aη may be further

suppressed [see eq. (2.22)], but this could be compensated for by the fact that M0ν
η ≃

102M0ν
λ (cf. table 2). The main point is that with mWR

and MR around the TeV scale the

amplitudes AR
NR

, Aλ and Aη turn out to be quite close in magnitude, whereas the small

value for AL
NR

could still be enhanced by cancellations. Note that in order to arrange for

this the Yukawa matrices f and f̃ need to have non-trivial flavour structure so that the

correct light neutrino mass [see eq. (2.12)] can be obtained, since with O(1) couplings,

MD ∝ κi, so that MD would be near the electroweak scale of 102GeV. Assuming that

κ2 ≪ κ1 (see also ref. [44]) means that MD ≃ κ1f/
√
2 and Mℓ ≃ κ2f̃/

√
2, so that one has

the freedom to choose f without affecting the charged leptons.

5This case was also studied in refs. [33, 35, 36, 57].
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mechanism amplitude current limit

light neutrino exchange (Aν)
G2

F

q2

∣

∣U2

ei
mi

∣

∣ 0.36 eV

heavy neutrino exchange (AL
NR

) G2
F

∣

∣

∣

S2

ei

Mi

∣

∣

∣
7.4× 10−9 GeV−1

heavy neutrino exchange (AR
NR

) G2
Fm

4
WL

∣

∣

∣

∣

V ∗

ei

2

Mim
4

WR

∣

∣

∣

∣

1.7× 10−16 GeV−5

Higgs triplet exchange (AδR) G2
Fm

4
WL

∣

∣

∣

∣

∣

V 2

ei
Mi

m2

δ
−−

R

m4

WR

∣

∣

∣

∣

∣

1.7× 10−16 GeV−5

λ-mechanism (Aλ) G2
F

m2
WL

q

∣

∣

∣

∣

UeiT
∗

ei

m2

WR

∣

∣

∣

∣

8.8× 10−11 GeV−2

η-mechanism (Aη) G2
F

1
q

∣

∣tan ξ
∑

i
UeiT

∗

ei

∣

∣ 3.0× 10−9

Table 1. Summary of relevant mechanisms for 0νββ in the left-right symmetric model, with limits

on new physics parameters (written in bold face) in each case (see also ref. [3]).

3.1.2 Nuclear matrix elements and lifetime

In order to translate the dimensionless particle physics parameters ηk into actual lifetimes

of 0νββ processes for different isotopes one needs the relevant nuclear matrix elements and

phase space factors. There are various different methods to calculate those quantities and

most previous studies have focussed on the standard light neutrino exchange mechanism;

here we attempt to compile a list of the most recently calculated matrix elements relevant

to 0νββ in the LR model, combining the calculations of various groups.

We use the QRPA calculation of the matrix elements for the mixed diagrams in ref. [58]

(see also refs. [59, 60]). In their notation, the lifetime of 0νββ can be written as

[

T 0ν
1/2

]−1
= G0ν

01 |M0ν
GT|2

{

|XL|2 + |XR|2 + C̃2|ηλ||XL| cosψ1 + C̃3|ηη||XL| cosψ2

+ C̃4|ηλ|2 + C̃5|ηη|2 + C̃6|ηλ||ηη| cos(ψ1 − ψ2) + Re
[

C̃2XRηλ + C̃3XRηη

]}

,

(3.27)

where the coefficients C̃i are combinations of matrix elements and integrated kinematical

factors, G0ν
01 is the usual phase space factor and ψi are complex phases. The parameters

XL (XR) include all processes in which the final state electrons are both left-handed (right-

handed), i.e.

XL ≡ M′0ν
ν ην +M′0ν

N η
L
NR

+M′0ν
N ηδL , and XR ≡ M′0ν

N η
R
NR

+M′0ν
N ηδR , (3.28)

with ηδL the LNV parameter associated with eq. (3.15). In eq. (3.27) we have omitted the

interference term XLXR, which is suppressed due to the different electron helicities (e−Le
−
L

vs e−Re
−
R); interference terms with final states in which at least one of the electrons has the

same helicity have been included. The matrix elements M′0ν
ν and M′0ν

N include Fermi and

Gamow-Teller contributions.
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Isotope
G0ν

01 [10−14 yrs−1] G0ν
01 [10−14 yrs−1] M0ν

ν M0ν
N M0ν

λ M0ν
η(old [58]) (new [61])

76Ge 0.793 0.686 2.58–6.64 233–412 1.75–3.76 235–637
82Se 3.53 2.95 2.42–5.92 226–408 2.54–3.69 209–234
130Te 5.54 4.13 2.43–5.04 234–385 2.85–3.67 414–540
136Xe 5.91 4.24 1.57–3.85 164–172 1.96–2.49 370–419

Table 2. The phase-space factor G0ν
01 [58, 61] and the matrix elements for light (M0ν

ν ) [66] and

heavy (M0ν
N ) [50, 64, 65, 67] neutrino exchange, and for the λ- and η-diagrams [58, 60], for different

isotopes, for gA = 1.25 and r0 = 1.1 fm, corresponding to eq. (3.30).

Ref. [61] presents an improved calculation of the phase space factor G0ν
01 for the light

neutrino exchange mechanism, taking into account the finite nuclear size of the Dirac wave

function as well as electron screening effects and angular correlations. The factor is slightly

lower, with the difference becoming more marked for heavier nuclei. The coefficients C̃i

(i = 2, 3, 4, 5, 6) depend on different phase space factors [58, 62]; here we assume those

factors are reduced by the same percentage as G0ν
01 . More recent calculations [63–65] of

light and heavy neutrino matrix elements include the Gamow-Teller factor M0ν
GT in the

relevant matrix elementsM0ν
ν andM0ν

N . For consistency of notation, we make the following

definitions

M0ν
ν ≡ M0ν

GTM′0ν
ν , M0ν

N ≡ M0ν
GTM′0ν

N ,

M0ν
λ ≡

√

|M0ν
GT|2C̃4 , M0ν

η ≡
√

|M0ν
GT|2C̃5 ,

(3.29)

which allow us to write the lifetime in eq. (3.27) as

[

T 0ν
1/2

]−1
= G0ν

01

{

|M0ν
ν |2|ην |2 + |M0ν

N |2|ηLNR
|2 + |M0ν

N |2|ηRNR
+ ηδR |2

+|M0ν
λ |2|ηλ|2 + |M0ν

η |2|ηη|2
}

+ interference terms. (3.30)

The corresponding matrix elements are reported in table 2 and will be used in the analysis

that follows. The range of values comes from the fact that different calculations have been

used. Note that we have used the new phase space numbers to calculate limits.

In the limit of type II seesaw dominance, the expression in eq. (3.30) will simplify

considerably, whereas with type I seesaw dominance all six terms should be considered

[we neglect the contribution stemming from the left-handed triplet δL, which is sup-

pressed by light neutrino mass and mδ−−

L
= O(TeV)]. We use the notation [T 0ν

1/2]k (k =

ν,N
(R)
R , N

(L)
R , δR, λ, η) to refer to the lifetime stemming from one particular diagram. Fig-

ure 5 illustrates the variation of the lifetime [T 0ν
1/2]ν with lightest neutrino mass, for the

0νββ of 76Ge and using both the smallest and largest matrix element (M0ν
ν = 2.58); com-

parison with figure 2 shows that the lifetime is obviously just the inverse of the effective

mass, with various numerical prefactors. The variation in M0ν
ν can bring the minimum

allowed lifetime down by roughly one order of magnitude.
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Figure 5. The standard light neutrino contribution to the 0νββ half-life of 76Ge plotted against

the lightest light neutrino mass, using 3σ ranges of the oscillation data from ref. [68]. Shaded regions

(dotted lines) are for the smallest (largest) NMEs from table 2. The grey shaded region is excluded

by the KamLAND-Zen experiment, the horizontal dashed (dashed-dotted) lines show the planned

sensitivities of the GERDA [69] experiment, with 40 kg (1 ton) of isotope. The Heidelberg-Moscow

limit [70] is indicated by a horizontal (red) dotted line. The variation in the KamLAND-Zen limit

due to the NMEs for 76Ge and 136Xe is shown by the dotted black horizontal line, which is the

minimum value this limit can take.

3.2 Charged lepton flavor violation and dipole moments

Although small active neutrino masses “GIM suppress” charged lepton flavor violating

processes by a factor of (∆m2
A/m

2
WL

)2 <∼ 10−50 (∆m2
A is the atmospheric mass squared

difference), the existence of heavy right-handed neutrinos and Higgs scalars allow the LFV

decays µ→ eγ and µ→ 3e as well as µ→ e conversion in nuclei to occur at rates observable

in current experiments. Those decay rates will be proportional to similar combinations

of mass and mixing parameters as the 0νββ amplitudes, thus providing complementary

constraints. Defining

Γν ≡ Γ(µ− → e−νµν̄e) and Γcapt ≡ Γ(µ− +A(Z,N) → νµ +A(Z− 1,N+ 1)), (3.31)

the relevant branching ratios

BRµ→eγ ≡ Γ(µ+ → e+γ)

Γν
,

RA
µ→e ≡

Γ(µ− +A(N,Z) → e− +A(N,Z))

Γcapt
, (3.32)

BRµ→3e ≡
Γ(µ+ → e+e−e+)

Γν
,

are constrained at 90% C.L. to

BRµ→eγ < 5.7× 10−13 [71], RAu
µ→e < 7.0× 10−13 [72] and BRµ→3e < 1.0× 10−12 [73]

by experiment.
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The amplitudes for LFV decays in the LRSM receive contributions from (i) right-

handed gauge bosons and Higgs triplets, suppressed by (mWL
/mWR

)2; (ii) left-handed

gauge bosons, suppressed by ≃ |MDM
−1
R |2 and (iii) processes with WL−WR mixing, sup-

pressed by ξMDM
−1
R . Terms proportional to ξ2 are expected to be small and are neglected

here. All of the possible channels are in some way related to the right-handed neutrino

mass, either directly as a virtual particle in the loop or indirectly since the couplings of

the triplets to leptons are proportional to MR.
6

A detailed calculation of the LFV decay widths and branching ratios in the LRSM has

been performed in ref. [74], where the results have been obtained by expanding to leading

order in the ratios MD/MR and κ+/vR, and thus ignore any effects of left-right mixing.

The results are (see also refs. [75, 76])

BRtriplet
µ→3e =

1

8

∣

∣

∣h̃µeh̃
∗
ee

∣

∣

∣

2





m4
WL

m4
δ++
L

+
m4

WL

m4
δ++
R



 , (3.33)

for the tree-level process µ→ 3e and

BRµ→eγ ≃ 1.5× 10−7 |glfv|2
(

1 TeV

mWR

)4

, (3.34)

RAu
µ→e ≃ 8× 10−8 |glfv|2

(

1 TeV

mδ++
L,R

)4

α



log
m2

δ++
L,R

m2
µ





2

, (3.35)

for the loop-suppressed decays µ → eγ and µ → e conversion, where the expressions are

simplified by assuming the “commensurate mass spectrum”Mi ≃ mWR
≃ mδ++

L
≃ mδ++

R
≃

mδ+
R
. The parameters h̃ and glfv are defined to leading order in the ratio MD/MR by

h̃αβ ≡
3
∑

i=1

VαiVβi
Mi

mWR

=
[MR]αβ
mWR

and glfv ≡
3
∑

i=1

VµiV
∗
ei

(

Mi

mWR

)2

=
[MRM

∗
R]µe

m2
WR

,

(3.36)

assuming manifest left-right symmetry (i.e., a discrete parity symmetry, see the appendix).

If one assumes that logarithmic terms [see eq. (B.14)] from doubly charged Higgs diagrams

dominate and that no cancellations occur amongst the LFV parameters (|glfv| ≃ |h̃µeh̃∗ee|),
one expects BRµ→3e to be roughly two orders of magnitude larger than RA

µ→e for O(TeV)

Higgs triplet masses [74]. Thus in this simplified case the limits on µ→ 3e will confine the

model parameter space the most.

However, with right-handed neutrinos around the TeV scale the left-right mixing could

be enhanced, so that the usual type I seesaw contribution to LFV processes should also be

considered. Those have been calculated in refs. [35, 77–84]. Since the LRSM is effectively a

type I + II seesaw model one needs to take into account LFV processes mediated by both

heavy neutrinos and Higgs triplets, effectively allowing for interference between different

6The assumption of a discrete left-right symmetry means that the exchange of left-handed triplets is

also related to right-handed neutrino mass, see eq. (B.5).
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amplitudes. Ref. [84] has presented the full expressions for µ→ eγ; we include type I seesaw

terms in the expressions for µ → 3e and µ → e conversion, in the former case including

possible interference between loop and tree level diagrams. Detailed expressions for the

decay widths including form factors and loop functions can be found in the appendix; we

summarize the most constraining processes here. In our parameter scans in the type I

dominance case we take into account all relevant contributions.

It turns out that the most important constraints on the mixing S ≃ MD/MR come

from µ→ eγ and µ→ e conversion. In both cases the constraint is roughly

S∗
µiSeiF(xi) ≃ S∗

µiSei <∼ 10−5 , (3.37)

where we take the loop function F(xi) to be of order one. This approximation is not always

valid for very large right-handed neutrino masses, in which case F(xi) ≃ ln(M2
i /m

2
WL

), but

since the mixing scales with 1/Mi the rate will vanish in the decoupling limit [83]. The

loop-suppressed decay rate of µ → 3e (with heavy neutrinos exchanged) depends on the

same parameters as µ → e conversion, but the limits are weaker in this case: the bound

BRµ→3e < 1.0×10−12 can be roughly translated into S∗
µiSei <∼ 10−3. These constraints come

from diagrams with left-handed currents and left-right mixing, i.e. the terms proportional

to S2 in eqs. (B.9), (B.14), (B.15) and (B.17), so that there is no other dependence on

the heavy particle masses besides from the loop functions. Another interesting constraint

comes from µ → eγ diagrams in which gauge bosons mix: the chirality flip occurs within

the loop, leading to a direct dependence on the Dirac mass matrix instead of the muon mass

[eq. (B.9)], in a similar way to the mixed diagrams in 0νββ (see also refs. [81, 84, 85]). This

enhances the contribution of mixed diagrams to µ→ eγ by a factor SMR/mµ ≃MD/mµ,

so that the product of the mixing angle ξ and the µe element of the Dirac mass matrix is

constrained to be

|M∗
D|µe

(

ξ

10−5

)

<∼ 0.2 GeV . (3.38)

In addition, the experimental limit of |de| < 10−27 e cm [86] on the electric dipole moment

of the electron [see eq. (B.10)] constrains the ee element to be roughly

Im
{

[MD]eee
iα
}

(

ξ

10−5

)

<∼ 0.02 GeV , (3.39)

which also depends on the phase α. These limits effectively constrain the η-diagram in

figure 4b.

One might also expect large left-right mixing to allow loop-suppressed (type I) contri-

butions to µ → 3e to compete with the tree level triplet (type II) contribution. The full

expression is given in eq. (B.12), and the condition for comparable magnitudes of type I

and type II contributions is roughly

S∗
µiSei ≃ 0.1

(

5 TeV

mδ++

)2
(
∣

∣MµeM
∗
ee

∣

∣

m2
WR

)

, (3.40)

assuming mδ++
L

= mδ++
R

≡ mδ++ . Thus for TeV-scale WR the bound on S2 in eq. (3.37)

means that one needs right-handed neutrinos around the electroweak scale for the type I

loop contribution to be competitive in µ→ 3e decay.
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3.3 Collider physics

Before concentrating on the 0νββ amplitudes we briefly discuss the role of collider physics

in studying the LRSM. Collider searches provide a complementary probe of the parameter

space of the LRSM: the right-handedW boson and right-handed neutrinos can be produced

in pp collisions at the LHC via [37]

pp→WR +X → Nℓ + ℓ+X , (ℓ = e, µ), (3.41)

followed by the decay into like-sign dileptons and two jets, i.e.

WR → ℓ1Nℓ → ℓ1ℓ2W
∗
R → ℓ1ℓ2qq

′ → ℓ1ℓ2jj , (3.42)

which for the ℓ = e case is equivalent to the 0νββ diagram in figure 1b. The CMS

collaboration looked for this signature in both 7TeV [13] and 8TeV [87] data, where the

integrated luminosity was 5.0 fb−1 and 3.6 fb−1, respectively. Their analysis was simplified

by assuming negligible mixing (ξ ≃ 0) between gauge bosons and between heavy neutrino

mass eigenstates (V ≃ 1), so that the final states are either both electrons or both muons.

ATLAS studied the same process with 2.1 fb−1 of data from 7TeV collisions [12], and in

addition examined the case of maximal mixing between the first two heavy neutrino mass

eigenstates.

As a simple illustration of the complementarity of the different data sets we plot the

limits from the latest CMS data as well as from the KamLAND-Zen 0νββ experiment [51]

in the MNe −mWR
parameter space in figure 6, using two different values for the mixing

Ve1. Here one assumes that only one heavy neutrino flavour Ne ≃ N1 is accessible, so that

the LNV parameter in eq. (3.9) simply becomes |ηRNR
| = mp(mWL

/mWR
)4|V ∗

e1|2/M1.

It is also possible to probe the couplings hαβ of Higgs triplets to leptons [see eq. (2.5)]

with collider searches. The latest results from ATLAS [49] give the exclusion limitsmδ±±

L
>

409GeV andmδ±±

R
> 322GeV for e±e± final states and assuming a branching ratio of 100%

to each final state. In order to compare these results to the 0νββ bounds one needs to

take into account the other decay modes of doubly-charged Higgs scalars into gauge bosons

and singly-charged scalars. An analysis in this direction was performed in ref. [88], and

the results depend largely on the mass spectrum of the different components of the Higgs

triplets ∆L,R.

4 0νββ amplitudes in the seesaw limits

In the most general case the light neutrino mass matrix

mν =ML −MDM
−1
R MT

D , (4.1)

receives contributions from [see eq. (2.13)] both the left-handed triplet (type II seesaw)

and the heavy right-handed neutrinos (type I seesaw), making quantitative studies of the

0νββ amplitudes difficult. Here we focus on the two extreme cases of type II and type I

dominance; a complete study is beyond the scope of this work. In the former case one

sets the Dirac Yukawa couplings to zero, in the latter one assumes that the triplet VEV

vanishes, i.e., vL = 0. The simpler case of type II seesaw dominance is dealt with first; this

was first studied in ref. [14] and further examined in ref. [17].
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Figure 6. Comparison of the limits in MNe
− mWR

parameter space from CMS and from the

KamLAND-Zen limit on 0νββ. The limit of 1.9 × 1025 yrs on the 0νββ half-life of 136Xe means

that all points to the left of the solid black line (dashed red line) are excluded, for |Vei|2 = 1

(|Vei|2 = 2/3), where we assume only heavy neutrinos contribute to 0νββ, i.e. only [T 0ν
1/2]N(R)

R

. The

shaded region is excluded by CMS at 95% C.L. [87].

4.1 Type II seesaw dominance

With the approximations mentioned above, the lifetime in the limit of type II dominance is
[

T 0ν
1/2

]−1

type II
= G0ν

01

{

∣

∣M0ν
ν

∣

∣

2 |ην |2 +
∣

∣M0ν
N

∣

∣

2 |ηRNR
+ ηδR |2

}

; (4.2)

by neglecting all Dirac Yukawa couplings we drop all terms proportional to MD, i.e., those

with left-right mixing. We are left with only heavy neutrino [figure 1b] and triplet exchange

[figure 3a] in addition to the standard diagram [figure 1a] (the amplitude AL
NR

also vanishes,

being proportional to MD). As discussed above, the interference term is suppressed, since

the final state electrons in figure 1a are left-handed whereas those in figure 1b are right-

handed.

In the case of type II dominance, the right-handed neutrino mass matrix can be ex-

panded as [40]

M type II
R ≃ vR

vLeiθL
mν+κ

2
+hDm

−1
ν hTD−κ4+

vLe
iθL

vR
(hDm

−1
ν hD)m

−1
ν (hDm

−1
ν hD)

T+. . . , (4.3)

and since we neglect Yukawa couplings (hD ≈ 0),

MR =
vR

vLeiθL
mν , (4.4)

which simplifies the analysis considerably: the light and heavy neutrino spectra are pro-

portional to each other, and V = U , up to an overall complex phase. In addition, both U

and V become unitary in the limit that MD = 0 [cf. eq. (3.2)]. These assumptions were
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Figure 7. Same as figure 5, with the grey shaded areas forbidden by the LFV constraint BRµ→3e
<∼

10−12, for different values of the Higgs triplet mass, with mWR
= 3.5TeV and the heaviest right-

handed neutrino Mheavy = 500GeV.

used in ref. [14] to quantify the heavy neutrino contribution to neutrinoless double beta

decay; the triplet contribution to 0νββ was neglected since the constraint from µ → 3e

leads toMR/mδR ≪ 1 over a large part of parameter space. It is however useful to consider

the different contributions in more detail, since there are areas of parameter space where

the triplet contribution gives interesting effects (see also ref. [17]). Here we calculate the

relevant lifetimes in each case and show explicit regions in parameter space where the limit

from BRµ→3e comes into play. Replacing V with U in eq. (3.9), the dimensionless LNV pa-

rameter corresponding to heavy neutrino exchange with right-handed currents (∝ [M−1
R ]ee)

can now be written as

[ηRNR
]NO = mp

(

mWL

mWR

)4(m3

m1
|Ue1|2 +

m3

m2
|Ue2|2e−iα + |Ue3|2e−iβ

)

1

M3
, (4.5)

[ηRNR
]IO = mp

(

mWL

mWR

)4(m2

m1
|Ue1|2 + |Ue2|2e−iα +

m2

m3
|Ue3|2e−iβ

)

1

M2
, (4.6)

for normal and inverted ordering, respectively, where α and β are Majorana phases. Sim-

ilarly, the branching ratio for µ → 3e in eq. (3.33) depends on the product of the ee and

µe elements of h̃ =MR/mWR
, with

[MR]
NO
σρ =

(

m1

m3
Uσ1Uρ1 +

m2

m3
Uσ2Uρ2e

iα + Uσ3Uρ3e
iβ

)

M3 , (4.7)

[MR]
IO
σρ =

(

m1

m2
Uσ1Uρ1 + Uσ2Uρ2e

iα +
m3

m2
Uσ3Uρ3e

iβ

)

M2 . (4.8)

We assume mδ++
L

= mδ++
R

in what follows.
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Figure 8. The contribution to the 0νββ half-life of 76Ge from (a) heavy right-handed neutrinos

and (b), right-handed Higgs triplets, plotted against the lightest light neutrino mass, with mWR
=

3.5TeV andMheavy = 500GeV. In plot (a) the grey shaded regions are excluded by LFV constraints,

for different values of mδ++
R

, in plot (b) mδ++
R

= mWR
= 3.5TeV. Experimental limits are explained

in the caption of figure 5.

Following ref. [14], by fixing mWR
= 3.5TeV and the heaviest right-handed neutrino

mass Mheaviest = 500GeV, the three contributions can be plotted against the lightest

light neutrino mass (see figures 7 and 8). It is clear that the right-handed contribution

[T1/2]
−1

N
(R)
R

(figure 8a) is proportional to the inverse of MR, whereas the triplet contribution

[T1/2]
−1
δR

(figure 8b) is proportional toMR, and looks similar to the standard lifetime [T1/2]
−1
ν

(figure 7), since mν ∝ MR in the type II limit. For [T1/2]
−1

N
(R)
R

, the inverted ordering can

have infinite lifetime (zero effective mass), whereas the normal ordering cannot, so that the

roles are reversed with respective to the standard case. In each plot we indicate the regions
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Figure 9. The total 0νββ half-life of 76Ge including light neutrino, heavy neutrino and triplet

contributions, plotted against the lightest light neutrino mass, with mWR
= 3.5TeV and Mheavy =

500GeV. The solid, dashed and dashed-dotted lines show the allowed regions that satisfy BRµ→3e ≤
10−12 for mδ++

R

equal to 1, 2 and 3.5TeV respectively; the black dotted lines enclose the regions

allowed if one neglects the triplet contribution and LFV constraints. Experimental limits are

explained in the caption of figure 5.

excluded by the limit on µ → 3e for different values of mδ++
R

: in the normal hierarchy

the constraint only comes into play when the lightest mass is larger than about 0.01 eV,

whereas in the inverted hierarchy the whole parameter space is affected.7 In the case of

the light neutrino and triplet contributions, the only areas still allowed correspond to the

largest possible value of 〈mee〉, i.e., when both Majorana phases are close to zero.

Figure 9 shows the total half-life, with all three contributions included. The chosen

value of mδ++
R

affects not only the LFV constraint but also the resulting half-life, due to the

dependence of the triplet contribution on this quantity [eq. (3.13)]. The black dotted lines

show the half-life without the triplet contribution, and it is evident that the addition of

the triplet part can shorten the half-life by several orders of magnitude, bringing it within

reach of the GERDA experiment. There also exist regions where the lifetime can be longer,

due to cancellations between the ηRNR
and ηδR contributions. The key point here is that

the triplet contribution can still be allowed for certain values of the Majorana phases, even

with the LFV constraint, thus enhancing the total amplitude for 0νββ. This enhancement

obviously depends on the triplet mass, so that if mδ++
R

>∼ 5TeV we recover the results of

ref. [14].

7Our results agree with figure 2 of ref. [14], which shows that Mheavy/mδ
++
R

<∼ 0.1 in the inverted ordering

for all light neutrino masses, which in our case would correspond to m
δ
++
R

= 5TeV.
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4.2 Type I seesaw dominance

In the limit of type I seesaw dominance all the terms in eq. (3.30) must be considered

(we neglect the small contribution from ηδL , as discussed above). This leaves us with

six contributing diagrams: (i) “standard” light neutrino exchange (ην); (ii) heavy neutrino

exchange with left-handed currents (ηLNR
); (iii) heavy neutrino exchange with right-handed

currents (ηRNR
); (iv) light neutrino exchange via the λ-diagram (ηλ); (v) light neutrino

exchange via the η-diagram (ηη) and (vi) right-handed triplet exchange (ηδR). There

are also interference terms [see eq. (3.27)], and distinguishing the different contribution

becomes difficult. Although most studies focus on the standard diagram and those with

heavy neutrinos, the contributions (iv) and (v) can actually be significant, as we have

shown in the rough estimates above. These have been studied in for example refs. [10, 53].

4.2.1 Parameterizing the relative magnitudes

In order to quantify the six contributions one needs more information about the right-

handed sector, specifically the right-handed mixing matrix VR and the mass spectrum Mi

(i = 1, 2, 3) of right-handed neutrinos. The right-handed mass matrix MR appears in the

amplitudes AL
NR

, AR
NR

, AδR , Aλ and Aη, and in the case of type I seesaw dominance can

be expanded as

M type I
R = κ2+h

T
Dm

−1
ν hD + κ4+

vLe
iθL

vR
(hDm

−1
ν hD)

Tm−1
ν (hDm

−1
ν hD) + . . . (4.9)

The leading term is a matrix product containing the unknown Dirac mass matrix, so that

the simple relations in eq. (4.4) no longer hold and one needs a different approach. The

authors of ref. [17] simplify the analysis by assuming that (i) the Dirac mass matrix is

diagonalized by VR and (ii) the three Dirac Yukawas are equal. This scenario is very

restrictive; another approach would be to insert an ansatz for the matrix of Dirac Yukawa

couplings hD. Often one uses the condition Mu ≃ MD = κ+hD, which holds at the GUT

scale in SO(10) models [89].

More generally, the Dirac mass matrix can be parameterized using the so called top-

down or “VL-parameterization”

MD = U †
LM̃DUR , (4.10)

where UL and UR are arbitrary unitary matrices and M̃D = κ+ diag(h1, h2, h3). In the

LRSM type I case, MD has 18 parameters and MR has 12 parameters, so that the left-

right mixingMDM
−1
R depends on 30 parameters, making it difficult to learn anything from

a parameter scan. If we assume a discrete parity (charged conjugation) symmetry, thenMD

becomes hermitian (symmetric) thus reducing the number of parameters by 6. However,

it is still numerically difficult to find Dirac mass matrix structures that give large enough

left-right mixing. One way is to start from a specific matrix structure in MD that gives

zero neutrino masses, and introduce small perturbations (see refs. [31, 90]).

An alternative method is to go to the basis where MD is “diagonal”, so that the light

neutrino mass matrix is given by

m′
ν = −M̃DM

′
R
−1
M̃D , (4.11)
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with M ′
R
−1 = URM

−1
R UT

R . In essence one has rotated the left-handed neutrino fields by

UL [cf. eq. (4.10)]. After diagonalizing m′
ν by the unitary matrix XL, i.e. m

′
ν = XLm̃νX

T
L ,

the neutrino mass matrix in the flavour basis is

mν = −VνX†
L

(

M̃DM
′
R
−1
M̃D

)

X∗
LV

T
ν ≡ −U †

L

(

M̃DM
′
R
−1
M̃D

)

U∗
L , (4.12)

where Vν is the light neutrino mixing matrix [eq. (2.16)] defined by Vν ≡ U †
LXL. Numer-

ically, this means one needs only fit the mass eigenvalues after diagonalizing eq. (4.11),

decoupling the PMNS mixing parameters.8 The authors of ref. [57] used this approach to

find matrix structures that could enhance the amplitude for double beta decay mediated by

heavy sterile neutrinos (AL
NR

), albeit without right-handed currents. In our case those same

structures will also enhance the amplitudes for the λ- and η-diagrams and influence the

LFV branching ratios. However, one cannot recover the non-trivial mixing VR in the right-

handed sector simply by diagonalizing M ′
R
−1. Defining M ′

R
−1 = X∗

RM̃
−1
R X†

R means that

VR = UT
RXR , (4.13)

so that the only way to find VR is to invoke the symmetry (hermiticity) ofMD, which gives

UR = U∗
L (UR = UL). The right-handed mixing is then

VR = U †
LXR = VνX

†
LXR or VR = UT

LXR = V ∗
ν X

T
LXR , (4.14)

whereas the left-right mixing (in the flavour basis) is

MDM
−1
R = U †

LM̃DM
′
R
−1
UL or MDM

−1
R = U †

LM̃DM
′
R
−1
U∗
L , (4.15)

for symmetric or hermitian MD, respectively. The expression [cf. eq.(3.12)] characterizing

the diagram with heavy neutrinos and left-handed currents is

MDM
−1
R M−1

R

∗
M−1

R MT
D = U †

LM̃DM
′
R
−1
M ′

R
−1∗

M ′
R
−1
M̃DU

∗
L . (4.16)

The corrected forms of U and V used for calculating 0νββ amplitudes and LFV branching

ratios can be found from eq. (3.2), but in our case the terms second order in R ≃MDM
−1
R

make little difference.

The main point is that there are certain regions of parameter space which allow for

large left-right mixing while still keeping the light neutrino masses small enough, since the

matrix structures allow for cancellations. One could regard this as a fine-tuned scenario;

on the other hand it is obvious that there is enough freedom in parameter space to allow

for it. For completeness we note that it is possible to scan the entire allowed parameter

space using the orthogonal parameterization [92], where the Dirac mass matrix is written

as9 MD = i Vνm̃
1/2
ν OM̃

1/2
R V T

R , with OOT = OTO = 1 and the diagonal matrices m̃ν =

diag(m1,m2,m3) and M̃R = diag(M1,M2,M3).

8This approach is discussed in ref. [91].
9Note that in the left-right model we cannot rotate to a basis where MR is diagonal without affecting

the right-handed charged current.
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It has also been shown [18] that if the Dirac mass matrix is symmetric, there

are only 23 = 8 discrete solutions to the seesaw equation, given by MD =

i
√

mνM
−1
R MR, so that the O matrix in the orthogonal parameterization is given by

O = m̃
−1/2
ν V †

ν

(

mνM
−1
R

)1/2
VRM̃

1/2
R . However, one still has a large number of unknown

parameters in the right-handed sector, and the O-matrix approach does not allow one to

define a symmetric or hermitian Dirac mass matrix in a simple way. We have checked

that it is possible to use the method of ref. [57] (described above) to obtain large left-right

mixing solutions that are consistent with this formalism. In that case half of the eight

solutions give large mixing, whereas the other half give small mixing.

4.2.2 Numerical example

In the most general case, one should solve the condition MDM
−1
R MT

D = 0 in order to find

solutions with large mixing, and it turns out that in the basis in eq. (4.11) this equates

to [57]

M̃D ∝ diag(0, 0, 1) and M ′
R ∝







0 0 1

0 1 1

1 1 1






. (4.17)

Inserting small parameters instead of zeros leads to non-zero light neutrino masses, with

the spectrum depending on any hierarchies introduced in M̃D and MR. One particular

example (from ref. [57]) is

M̃D = κ+diag(aǫ2, bǫ, c), M ′
R
−1 ≃M−1







d e f

· g hǫ

· · jǫ2






, (4.18)

which leads to nonzero lightest neutrino mass. With all coefficients a, b, c etc. of order

one one needs |ǫ| = O(10−6) in order to get the correct mass for active neutrinos with

the matrix textures in eq. (4.18). Inverting M ′
R
−1 would give a matrix with small (1, 1),

(1, 2) and (2, 1) entries, but since M ′
R
−1 =

(

URM
−1
R UT

R

)

, the matrix MR can have large

entries everywhere, which can enhance the LFV amplitudes. This is simply a manifestation

of the fact that one cannot go to a basis where the right-handed neutrinos are diagonal

without affecting the right-handed current, which is different to the conventional case. For

our parameter scans we set mWR
= 3.5TeV and mδ++

R
= 5TeV and vary the gauge boson

mixing angle in the range 10−8 ≤ ξ ≤ 10−6 , otherwise it would be difficult to evade the

constraints from µ→ eγ. The magnitudes of the complex parameters a, b, c etc. are varied

in the range [0.1, 1.0], and |ǫ| in the range [10−12, 10−5]. The phases are taken to be between

0 and 2π, and κ+ = 174GeV and M = 1TeV are fixed. From eqs. (2.12) and (2.21) the

relation MR = 2
gmWR

h ≃ 3mWR
h holds, which we used to check perturbativity of the

coupling h. An explicit numerical example is given in appendix C.

One expects the different half-life contributions to have similar orders of magnitude,

since we are exploring the fine-tuned region, so that the amplitudes AL
NR

, Aλ and Aη, which

all depend on the left-right mixing, are enhanced. We plot the halflives for the amplitudes

Aλ and Aη in figure 10 and the halflives corresponding to heavy neutrino exchange, i.e. the

amplitudes AL
NR

, AR
NR

and AδR in figure 11, in both cases for a symmetric Dirac mass
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Figure 10. Contribution to the 0νββ half-life of 76Ge from the λ- and η-diagrams plotted against

the lightest light neutrino mass, for symmetric MD. The standard contribution is indicated by the

region outlined in black, and the dashed and dotted horizontal line correspond to the limits from

eqs. (3.18) and eq. (3.20).
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Figure 11. Contribution to the 0νββ half-life of 76Ge from heavy right-handed neutrinos, with left-

and right-handed currents (AL,R
NR

), for symmetric MD. The standard contribution is indicated by

the region outlined in black, and the dashed horizontal line corresponds to the limit from eq. (3.11).
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matrix. In each case the usual light neutrino contribution is shown for comparison, and

one can see that there are regions of parameter space in which the λ and η contributions

dominate over the light neutrino contribution. Remarkably the η contribution can still be

sizeable, even with such small values of ξ: this is largely due to the larger value of the

matrix element M0ν
η (cf. table 2). The lightest mass could be smaller if the parameters a,

b, c were allowed to be smaller than 0.1, although in the normal ordering case the LFV

constraints in general favour larger values of mlight. In addition, it turns out that b and

c need to be small in order to keep the left-right mixing small enough, since the rotation

matrices in eq. (4.15) can lead to large entries in the (1, 1), (1, 2) and (2, 1) positions of

MDM
−1
R , which enhance LFV processes.

In order to ascertain whether one diagram might dominate over another it is interesting

to look at the ratios of different halflives, which has the added advantage that uncertainties

in NMEs will drop out. In figure 12 we show the ratios of various halflives to the standard

half-life, calculated for the example texture. Here it is obvious that the λ-contribution can

be larger than the light neutrino contribution.

5 Conclusion

In this paper we have investigated the interplay of neutrinoless double beta decay and

charged lepton flavour violation in the context of the left-right symmetric model, paying

particular attention to those 0νββ diagrams usually neglected in the literature. In the case

of pure type II seesaw we have shown that the triplet contribution to 0νββ should not

be neglected for all light neutrino masses. For pure type I seesaw there exist regions of

parameter space in which all diagrams can have similar orders of magnitude, which makes
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Experiment Limit [1025 yrs]

HM 1.9

GERDA 2.1

Combined 76Ge 3.0

EXO 1.6

KamLAND-Zen 1.9

Combined 136Xe 3.4

Table 3. Limits on the half-life of 0νββ from different experiments.

Isotope NSM (UCOM) [93] QRPA (CCM) [94] IBM (Jastrow) [95]

76Ge 2.58 4.07–6.64 4.25–5.07
136Xe 2.00 1.57–3.24 3.07

Table 4. 76Ge and 136Xe matrix elements for light neutrino exchange (M0ν
ν ) rescaled for gA = 1.25

and r0 = 1.1 fm.

distinguishing the leading contribution difficult. In particular, the momentum-dependent

λ-diagram can be larger than expected. As we have shown, the bounds from lepton flavour

violating decays complement the study of lepton number violation, and can be used to

further restrict the parameter space. A comprehensive study should include the type I+II

case, which we leave for future work.
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A Correlation between half-lives for 0νββ in 76Ge and 136Xe

After the recent release of results from the GERDA experiment [52] it is interesting to

study the correlation between the 0νββ half-lives in 76Ge and 136Xe, for different matrix

element calculations (see also ref. [51]). The current limits from the different experiments

are given in table 3. We have plotted the correlations for light and heavy neutrino exchange

as well as the λ- and η-diagrams in figure 13, using the matrix elements from tables 4, 5

and 6 together with the (new) phase space factor from the third column of table 2. The

diagonal lines allow one to translate a half-life measured in 76Ge to one measured in 136Xe,

and vice versa; the bands indicate the uncertainty in the NMEs.
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Figure 13. Correlations between the 0νββ half-lives in 76Ge and 136Xe for different matrix element

calculations and particle physics contributions. The relevant limits from table 3 are indicated by

horizontal and vertical lines.

Isotope IBM (M-S) [96] QRPA (CCM) [65]

76Ge 48.1 233–412
136Xe 35.1 164–172

Table 5. Same as table 4, for heavy neutrino exchange (M0ν
N ).
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Isotope M0ν
λ M0ν

η

QRPA (CCM) [58] QRPA (HD) [16] QRPA (CCM) [58] QRPA (HD) [16]

76Ge 1.75–3.76 4.47 235–637 791
136Xe 1.96–2.49 2.17 370–419 434

Table 6. Same as table 4, for the λ- and η-diagrams. The matrix elements “QRPA (HD)” were

extracted from the limits given in ref. [16].

B Details of lepton flavour violating expressions

Here we give details of the different contributions to lepton flavour violating processes.

B.1 Lagrangians & couplings

LFV decays proceed via the charged current in eq. (2.23), which we repeat here for con-

venience, as well as the couplings of the charged components of Higgs triplets to lepton

doublets in eq. (2.5); the relevant terms are (with hL = hR = h)

Llep
CC =

g√
2

[

ℓ′γµPLν
′W−

Lµ + ℓ′γµPRν
′W−

Rµ

]

+ h.c. ,

Lδ±
L
=
δ+L√
2

[

ν ′L
chℓ′L + ℓ′L

chν ′L

]

+ h.c. , (B.1)

Lδ±±

L,R
= δ++

L,Rℓ
′chPL,Rℓ

′ + δ−−
L,Rℓ

′h†PR,Lℓ
′c .

Rotating the fields to the physical basis gives

Llep
CC =

g√
2

[

ℓLγ
µKLnL(W

−
1µ + ξeiαW−

2µ) + ℓRγ
µKRn

c
L(−ξe−iαW−

1µ +W−
2µ)
]

+ h.c. ,

LH1 =
g√
2

[

H+
1 n

c
L

(

KT
L h̃L

)

ℓL +H−
1 ℓL

(

h̃†LK
∗
L

)

ncL

]

, (B.2)

Lδ±±

L,R
=
g

2

[

δ++
L,Rℓ

ch̃L,RPL,Rℓ+ δ−−
L,Rℓh̃

†
L,RPR,Lℓ

c
]

,

where we have used eqs. (2.12), (2.17), (2.20) and (2.21), with

h̃L,R ≡ (V ℓ
L,R)

TV ν
R

M̃ν

mWR

V ν
R
TV ℓ

L,R = (V ℓ
L,R)

T MR

mWR

V ℓ
L,R , (B.3)

and M̃ν = diag(m1,m2,m3,M1,M2,M3). The LFV parameter is

gL,Rlfv ≡
[

h̃†L,Rh̃L,R

]

eµ
=



V ℓ†
L,RV

ν
R
∗

(

M̃ν

mWR

)2

V ν
R
TV ℓ

L,R





eµ

=

[

V ℓ†
L,R

M∗
RMR

m2
WR

V ℓ
L,R

]

eµ

. (B.4)

In the manifest left-right symmetry case (discrete parity symmetry), V ℓ
L = V ℓ

R, so that

these expressions become [74]

h̃ ≡ h̃L = h̃R = K∗
R

M̃ν

mWR

K†
R , and glfv ≡ gLlfv = gRlfv =



KR

(

M̃ν

mWR

)2

K†
R





eµ

. (B.5)

– 31 –



J
H
E
P
0
9
(
2
0
1
3
)
1
5
3

In our case we take the charged lepton mixing matrices to be diagonal so that all processes

depend on a combination of the mixing matrices S and V [see eq. (3.36)], depending on

the helicity of the different particles.

B.2 Decay widths and branching ratios

The effective Lagrangian for µ to e conversion can be written as

Lµ→e =− eg2

4(4π)2m2
WL

mµeσµν(G
γ
LPL +Gγ

RPR)µF
µν

− α2
W

2m2
WL

∑

q

{

eγµ
[

W q
LPL +W q

RPR

]

µ qγµq
}

+ h.c.,

(B.6)

with σµν ≡ i
2 [γµ, γν ] and the form factors Gγ

L,R and W u,d
L,R. The full matrix element for

µ→ eγ is given by

iM(µ→ eγ) =
eαW

8πm2
WL

ǫµγe
[(

q2γµ − qµ/q
) (

F γ
LPL + F γ

RPR

)

−imµσµνq
ν
(

Gγ
LPL +Gγ

RPR

)]

µ,

(B.7)

with the anapole and dipole form factors F γ
L,R and Gγ

L,R defined in eqs. (B.14) and (B.9).

The on-shell decay µ → eγ only receives contributions from the Gγ
L,R terms, the

branching ratio turns out to be

BRµ→eγ =
α3
W s

2
Wm

5
µ

256π2m4
WL

Γν

(

|Gγ
L|2 + |Gγ

R|2
)

=
3αem

2π

(

|Gγ
L|2 + |Gγ

R|2
)

, (B.8)

where

Gγ
L =

3
∑

i=1







VµiV
∗
ei|ξ|2Gγ

1(xi)− S∗
µiV

∗
eiξe

−iαGγ
2(xi)

Mi

mµ

+ VµiV
∗
ei





m2
WL

m2
WR

Gγ
1(yi) +

2yi
3

m2
WL

m2
δ++
R











,

Gγ
R =

3
∑

i=1







S∗
µiSeiG

γ
1(xi)− VµiSeiξe

iαGγ
2(xi)

Mi

mµ

+ VµiV
∗
ei yi





2

3

m2
WL

m2
δ++
L

+
1

12

m2
WL

m2
H+

1











,

(B.9)

with xi ≡ (Mi/mWL
)2, yi ≡ (Mi/mWR

)2 and the loop functions Gγ
1,2(x) defined in

eq. (B.26). In addition, the electric dipole moment of charged lepton ℓα (α = e, µ, τ)

is given by [18, 84, 97]

dα =
e αW

8πm2
WL

Im

[

3
∑

i=1

SαiVαiξe
iαGγ

2(xi)Mi

]

, (B.10)

which is similar to the mixed diagram contribution in µ→ eγ.
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The tree level contribution to µ→ 3e in eq. (3.33) can be rewritten as

BRtriplet
µ→3e =

α4
Wm

5
µ

24576π3m4
WL

Γµ

(4π)2

2α2
W

∣

∣

∣
h̃µeh̃

∗
ee

∣

∣

∣

2





m4
WL

m4
δ++
L

+
m4

WL

m4
δ++
R



 , (B.11)

to be compared with the loop-suppressed type I seesaw contribution given by [79, 98]

BRtype I
µ→3e =

α4
Wm

5
µ

24576π3m4
WL

Γµ

{

2

[

∣

∣

∣

∣

1

2
Bµeee

LL + FZ1
L − 2s2W (FZ1

L − F γ
L)

∣

∣

∣

∣

2

+

∣

∣

∣

∣

1

2
Bµeee

RR − 2s2W (FZ1
R − F γ

R)

∣

∣

∣

∣

2
]

+
∣

∣

∣2s2W (FZ1
L − F γ

L)−Bµeee
LR

∣

∣

∣

2
+
∣

∣

∣2s2W (FZ1
R − F γ

R)− (FZ1
R +Bµeee

RL )
∣

∣

∣

2

+8s2W

[

Re
(

(2FZ1
L +Bµeee

LL +Bµeee
LR )Gγ

R
∗
)

+Re
(

(FZ1
R +Bµeee

RR +Bµeee
RL )Gγ

L
∗
)]

−48s4W

[

Re
(

(FZ1
L − F γ

L)G
γ
R
∗
)

+Re
(

(FZ1
R − F γ

R)G
γ
L
∗
)]

+32s4W

(

∣

∣Gγ
L

∣

∣

2
+
∣

∣Gγ
R

∣

∣

2
)

[

ln
m2

µ

m2
e

− 11

4

]}

.

(B.12)

The interference terms between triplet exchange and gauge boson mediated loop and box

diagrams are

BRtriplet+type I
µ→3e =

α4
Wm

5
µ

24576π3m4
WL

Γµ

2(4π)

αW
×







m2
WL

m2
δ++
L

Re
[

2s2WT
∗F γ

L+4s2WT
∗Gγ

R+T
∗Bµeee

LL +T ∗FZ1
L (1−2s2W )

]

+
m2

WL

m2
δ++
R

Re
[

2s2WT
∗F γ

R+4s2WT
∗Gγ

L+T
∗Bµeee

RR −2s2WT
∗FZ1

R

]







,

(B.13)

where T ≡ h̃µeh̃
∗
ee and h̃αβ is defined in eq. (3.36). Note that the triplet term effectively

has the same structure as the box contribution (after Fierz transformations, see ref. [99]),

so we expect it to interfere with the other amplitudes in the same way.

The form factors for off-shell photon exchange are

F γ
L =

3
∑

i=1







S∗
µiSeiFγ(xi)− VµiV

∗
ei yi





2

3

m2
WL

m2
δ++
L

ln
m2

µ

m2
δ++
L

+
1

18

m2
WL

m2
H+

1











,

F γ
R =

3
∑

i=1

VµiV
∗
ei



|ξ|2Fγ(xi) +
m2

WL

m2
WR

Fγ(yi)− yi
2

3

m2
WL

m2
δ++
R

ln
m2

µ

m2
δ++
R



 ,

(B.14)

where the logarithmic term is a simplified version of the usual triplet loop function [100],

since we take the doubly charged scalar mass to be much larger than the charged lepton
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masses (mδL,R
≫ me,µ,τ ). The Z1-boson exchange terms10 can be expressed as

FZ1
L =

3
∑

i,j=1

S∗
µiSej

{

δij (FZ(xi) + 2GZ(0, xi))

+ (STS∗)ij [GZ(xi, xj)−GZ(0, xi)−GZ(0, xj)] + (S†S)ijHZ(xi, xj)
}

,

FZ1
R ≃

3
∑

i=1

VµiV
∗
ei

[

1− 2s2W
2c2W

m2
WL

m2
WR

(

FZ(yi) + 2GZ(0, yi)−
yi
2

)

+
m2

WL

m2
WR

DZ(yi, xi) +
m2

WL

m2
WR

DZ(yi, zi)

]

.

(B.15)

where zi = (Mi/mH2)
2; the box diagram form factors are11

Bµeee
LL = −2

3
∑

i=1

{

S∗
µiSei [FXbox(0, xi)− FXbox(0, 0)]

}

+
3
∑

i,j=1

S∗
µiSej

{

−2S∗
ejSei [FXbox(xi, xj)− FXbox(0, xj)− FXbox(0, xi) + FXbox(0, 0)]

+ S∗
eiSejGbox(xi, xj , 1)

}

,

(B.16)

Bµeee
RR = −2

m2
WL

m2
WR

3
∑

i=1

{

VµiV
∗
ei [FXbox(0, yi)− FXbox(0, 0)]

}

+
3
∑

i,j=1

VµiV
∗
ej

{

−2VejV
∗
ei [FXbox(yi, yj)− FXbox(0, yj)− FXbox(0, yi) + FXbox(0, 0)]

+ VeiV
∗
ejGbox(yi, yj , 1)

}

,

(B.17)

for purely left- and right-handed contributions and

Bµeee
LR =

1

2

m2
WL

m2
WR

3
∑

i,j=1

S∗
µiSejVeiV

∗
ejGbox

(

xi, xj ,
m2

WL

m2
WR

)

, (B.18)

Bµeee
RL =

1

2

m2
WL

m2
WR

3
∑

i,j=1

VµiV
∗
ejS

∗
eiSejGbox

(

xi, xj ,
m2

WL

m2
WR

)

, (B.19)

for diagrams with mixed helicity. The loop-suppressed amplitudes with right-handed cur-

rents contain the O(1) mixing matrix V as well as the additional suppression factor of

(mWL
/mWR

)2; without the enhancement from large left-right mixing (in S), we expect

those contributions to be much smaller than the tree level one in eq. (3.33). The mixed

left-right box contributions come from an effective four fermion operator, as is the case in

10We ignore terms from the exchange of the heavier Z2 boson.
11We neglect terms proportional to |ξ|2.
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kaon mixing [11, 44, 101], with a factor of 1/2 coming from the Fierz transformation of a

scalar to vector contribution (see ref. [98]).

µ → e conversion in nuclei is similar to µ → 3e and receives contributions from the

same loop and box diagrams.12 The µ→ e conversion rate is given by [74, 82, 83, 98]

RA(N,Z)
µ→e =

α3
emα

4
Wm

5
µ

16π2m4
WL

Γcapt

Z4
eff

Z

∣

∣F (−m2
µ)
∣

∣

2 (|QW
L |2 + |QW

R |2
)

, (B.20)

where

QW
L,R = (2Z +N)

[

W u
L,R − 2

3
s2WG

γ
R,L

]

+ (Z + 2N)

[

W d
L,R +

1

3
s2WG

γ
R,L

]

, (B.21)

and

W u
L,R =

2

3
s2WF

γ
L,R +

(

−1

4
+

2

3
s2W

)

FZ1
L,R +

1

4

(

Bµeuu
LL,RR +Bµeuu

LR,RL

)

,

W d
L,R = −1

3
s2WF

γ
L,R +

(

1

4
− 1

3
s2W

)

FZ1
L,R +

1

4

(

Bµedd
LL,RR +Bµedd

LR,RL

)

,

(B.22)

are composite form factors. Note that the expression in eq. (B.20) is derived by approxi-

mating all interactions to be point-like and taking the proton and neutron densities to be

equal. In this case the wavefunction overlap integrals D and V (p,n) calculated in ref. [102]

can be replaced by the quantities Zeff and the form factor F (−m2
µ), where

V (p)

√
Z

=
Z2
effF (−m2

µ)α
3
2
em

4π
, (B.23)

and V (p)/Z ≃ V (n)/N . The relevant box diagram form factors are

Bµeuu
LL =

3
∑

i=1

S∗
µiSei [Fbox(0, xi)− Fbox(0, 0)] ,

Bµedd
LL ≃

3
∑

i=1

S∗
µiSei {FXbox(0, xi)− FXbox(0, 0)

+|Vtd|2 [FXbox(xt, xi)− FXbox(0, xi)− FXbox(0, xt) + FXbox(0, 0)]
}

,

Bµeqq
RR =

m2
WL

m2
WR

Bµeqq
LL (S ↔ V ∗ ; xi ↔ yi ; xt ↔ yt) ,

(B.24)

where xt = m2
t /m

2
WL

and yt = m2
t /m

2
WR

.

Finally we note that the presence of non-unitary mixing in the light neutrino sector

(due to the matrix S ≃ MDM
−1
R ) also affects the standard muon decay width, Γµ (and

thus the determination of GF ), as well as the capture rate for muons on the nucleus, Γcapt.

Explicitly, one has

Γµ ≃ Γ(0)
µ

(

1 − [SS†]ee − [SS†]µµ

)

and Γcapt ≃ Γ
(0)
capt

(

1 − [SS†]µµ

)

, (B.25)

12Although the process can also be mediated at tree-level by neutral Higgs bosons, these particles have

to be very heavy due to constraints from K0-K
0
mixing.
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where Γ
(0)
µ and Γ

(0)
capt are the SM values and we have omitted terms of order S4. These

expressions occur in the denominators of the branching ratio formulae in eq. (3.32), and

since the numerators are in general proportional to O(S4) the effect will be negligible; in

our analysis we use the standard value Γµ = G2
Fm

5
µ/(192π

3).

B.3 Loop functions

The relevant loop functions are

Fγ(x) =
7x3 − x2 − 12x

12(1− x)3
− x4 − 10x3 + 12x2

6(1− x)4
lnx,

Gγ
1(x) = −2x3 + 5x2 − x

4(1− x)3
− 3x3

2(1− x)4
lnx,

Gγ
2(x) =

x2 − 11x+ 4

2(1− x)2
− 3x2

(1− x)3
lnx,

FZ(x) = − 5x

2(1− x)
− 5x2

2(1− x)2
lnx ,

GZ(x, y) = − 1

2(x− y)

[

x2(1− y)

1− x
lnx− y2(1− x)

1− y
ln y

]

,

HZ(x, y) =

√
xy

4(x− y)

[

x2 − 4x

1− x
lnx− y2 − 4y

1− y
ln y

]

,

DZ(x, y) = x
(

2− ln
y

x

)

+
(−8x+ 9x2 − x3) + (−8x2 + x3) lnx

(1− x)2
+
x(y − y2 + y2 ln y)

(1− y)2

+
2xy(4− x) lnx

(1− x)(1− y)
+

2x(x− 4y) ln y
x

(1− y)(x− y)
,

Fbox =
(

4 +
xy

4

)

I2(x, y, 1)− 2xyI1(x, y, 1),

FXbox(x, y) = −
(

1 +
xy

4

)

I2(x, y, 1)− 2xyI1(x, y, 1),

Gbox(x, y, η) = −√
xy [(4 + xyη)I1(x, y, η)− (1 + η)I2(x, y, η)] , (B.26)

where

I1(x, y, η) =

[

x lnx

(1− x)(1− ηx)(x− y)
+ (x↔ y)

]

− η ln η

(1− η)(1− ηx)(1− ηy)
,

I2(x, y, η) =

[

x2 lnx

(1− x)(1− ηx)(x− y)
+ (x↔ y)

]

− ln η

(1− η)(1− ηx)(1− ηy)
,

Ii(x, y, 1) ≡ lim
η→1

Ii(x, y, η) ,

(B.27)

and the limiting values are

GZ(0, x) = − x lnx

2(1− x)
,

Fbox(0, x) =
4

1− x
+

4x

(1− x)2
lnx ,

FXbox(0, x) = − 1

1− x
− x lnx

(1− x)2
.

(B.28)
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C Explicit numerical example

Here we give an explicit numerical example for the case of type I dominance and normal neutrino mass ordering, following the ansatz

of ref. [57] and fulfilling the bounds from LFV experiments (see section 3.2). All dimensionful parameters are given in eV, unless

otherwise indicated. From eq. (4.18), the parameters

a = 9.53381960582404819× 10−2 + 0.11713054331122945i, b = 0.21843620328064534− 0.22040775144734739i,

c = 4.31908935642526456× 10−2 − 2.92388739170286211× 10−4i, d = −9.05724681558278330× 10−3 + 0.12019026634023072i,

e = 0.28217599917126424− 0.17450535348840202i, f = 0.84027958230331323 + 0.40461526271813769i, (C.1)

g = 0.30944075406011140 + 0.29546133055037482i, h = 0.33205857612068856 + 0.82492777937530726i,

j = 0.63203076828617810− 0.72194951521080608i, ǫ = −4.25119854705781844× 10−6 − 2.87020754827289911× 10−6i,

κ+ = 173.99999692800000 GeV, M = 676.84091139837646 GeV,

lead to the matrices

M̃D = diag(−0.334219074474 + 0.605264418163i,−271654.304377 + 53946.936992i, 7.51521534750× 109 − 5.087563972× 107i) eV, (C.2)

M ′
R

−1
=





−1.33816479812× 10−14 + 1.77575356803× 10−13i 4.16901511743× 10−13 − 2.57823294292× 10−13i 1.24147280129× 10−12 + 5.97799654105× 10−13i

4.16901511743× 10−13 − 2.57823294292× 10−13i 4.57183880065× 10−13 + 4.36529951979× 10−13i 1.41254316443× 10−18 − 6.58944920978× 10−18i

1.24147280129× 10−12 + 5.97799654105× 10−13i 1.41254316443× 10−18 − 6.58944920978× 10−18i 3.52135444737× 10−23 + 1.22979726454× 10−23i



 eV,

(C.3)

which give the neutrino mass matrix

m′

ν =







−7.52513003231× 10−14 + 3.98042836036× 10−14i 2.28019692342× 10−8 + 9.10546573825× 10−8i +0.00580938497446− 0.00418508532318i

+2.28019692342× 10−8 + 9.10546573825× 10−8i −0.0452024610799− 0.0175437858823i 0.000117304047425− 0.0140267422225i

0.00580938497446− 0.00418508532318i 0.000117304047425− 0.0140267422225i −0.00199811972713− 0.000667611555085i






eV

(C.4)

via eq. (4.11). After diagonalizing m′
ν and rotating by Vν [see eq. (4.12)], the neutrino mass matrix in the flavour basis is

mν =







0.00140944908669 + 0.00384187592338i −0.00347531018948 + 0.00895104270924i 0.00385457629281 + 0.00345336242992i

−0.00347531018948 + 0.00895104270924i −0.00226255970351 + 0.0301706233567i 0.000129801864554 + 0.0224710709065i

0.00385457629281 + 0.00345336242992i 0.000129801864554 + 0.0224710709065i −0.00433575002153 + 0.0255482257202i






eV, (C.5)

–
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with the eigenvalues

m1 = 0.00467695990924 eV, m2 = 0.010179233482 eV, m3 = 0.0522115758358 eV, (C.6)

The modified Dirac mass matrix is

MD =







−1.32139207855× 108 + 3.41289155506× 107i −4.59076639803× 107 − 7.24799214279× 108i 4.00927912892× 108 + 5.64722783204× 108i

−4.59076639803× 107 − 7.24799214279× 108i 3.8343013446× 109 + 4.86201875611× 108i −3.35280821262× 109 + 1.52965177159× 109i

4.00927912892× 108 + 5.64722783204× 108i −3.35280821262× 109 + 1.52965177159× 109i 1.95139172515× 109 − 2.92228131465× 109i






eV,

(C.7)

and the final right-handed neutrino mass matrix is

MR =







−6.89802539588× 1010 + 1.95517241581× 1011i −8.25178556559× 1011 − 1.6454840933× 1011i 2.17944743926× 1011 − 2.70953080859× 1011i

−8.25178556559× 1011 − 1.6454840933× 1011i −7.72367515685× 1011 − 8.54394798711× 1011i −5.59927219536× 1011 − 4.48664481584× 1011i

2.17944743926× 1011 − 2.70953080859× 1011i −5.59927219536× 1011 − 4.48664481584× 1011i −4.59009131535× 1011 + 7.48335978813× 1010i






eV,

(C.8)

with the eigenvalues

M1 = 651.474530033 GeV, M2 = 697.492992124 GeV, M3 = 1833.67403677 GeV. (C.9)

The left-right mixing is given by

MDM−1
R =







0.000149644130868 + 0.00133067594536i −0.000237728149067− 0.000173576087253i 0.000139285740058− 0.000220000171375i

−0.00710439002177− 0.000550859287664i 0.0011451580917− 0.00106845293524i 0.00101008111999 + 0.000948346776121i

0.00603697434636− 0.00311752861487i −0.000392690432293 + 0.00144086921243i −0.00129494996783− 0.000262316931666i






,

(C.10)

which is also one of the solutions of the equation MDM
−1
R = i

√

mνM
−1
R .
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