
J
H
E
P
0
9
(
2
0
1
3
)
1
2
7

Published for SISSA by Springer

Received: June 29, 2013

Accepted: August 27, 2013

Published: September 24, 2013

Monopoles in 2 + 1-dimensional conformal field

theories with global U(1) symmetry

Silviu S. Pufua and Subir Sachdevb

aCenter for Theoretical Physics, Massachusetts Institute of Technology,

Cambridge, MA 02139, U.S.A.
bDepartment of Physics, Harvard University,

Cambridge, MA 02138, U.S.A.

E-mail: spufu@mit.edu, sachdev@g.harvard.edu

Abstract: In 2 + 1-dimensional conformal field theories with a global U(1) symmetry,

monopoles can be introduced through a background gauge field that couples to the U(1)

conserved current. We use the state-operator correspondence to calculate scaling dimen-

sions of such monopole insertions. We obtain the next-to-leading term in the 1/Nb expan-

sion of the Wilson-Fisher fixed point in the theory of Nb complex bosons.

Keywords: Solitons Monopoles and Instantons, Field Theories in Higher Dimensions,

Global Symmetries

ArXiv ePrint: 1303.3006

c© SISSA 2013 doi:10.1007/JHEP09(2013)127

mailto:spufu@mit.edu
mailto:sachdev@g.harvard.edu
http://arxiv.org/abs/1303.3006
http://dx.doi.org/10.1007/JHEP09(2013)127


J
H
E
P
0
9
(
2
0
1
3
)
1
2
7

Contents

1 Introduction 1

2 Method 5

3 Nb = ∞ theory 6

4 1/Nb corrections 7

4.1 General structure 7

4.2 The kernel of fluctuations at q = 0 9

4.3 The kernel of fluctuations for general q 10

4.4 Numerics 11

5 Discussion 12

A Free scalar theory 13

B Monopole harmonics 14

C Calculation of δF0 14

1 Introduction

Polyakov [1] introduced monopoles in 2+1 dimensions as instanton tunneling events in

compact gauge theories. The proliferation of these monopoles leads to confinement and to

the absence of a Coulomb phase in such gauge theories, provided there are no gapless matter

fields that can suppress the monopoles. In condensed matter physics, two-dimensional

lattice quantum antiferromagnets can be written as compact U(1) gauge theories at strong

coupling [2]: here, monopole events are accompanied by Berry phases [3, 4], which are

responsible for valence bond solid order in the confining phase [4, 5].

We can also consider monopole operators at conformal fixed points of 2+1-dimensional

gauge theories [6–13]. These are gauge-invariant primary operators that determine impor-

tant aspects of the structure of the conformal field theory (CFT). In the application to an-

tiferromagnets, the scaling dimension of the monopole operator determines the power-law

decay of the valence bond solid order at “deconfined” quantum critical points [9, 10, 14, 15].

This paper will consider a different class of monopoles in 2+1 dimensions. We consider

CFTs with a global U(1) symmetry. The CFT may also have fluctuating gauge fields,

but these play no role in the construction of such monopoles. Instead, the monopole is

introduced by a background U(1) gauge field that couples to the CFT conserved current.
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A monopole insertion with charge q at r = r0, which we henceforth denote by Mq(r0),

corresponds to a background gauge field configuration whose field strength1

fµν = ∂µαν − ∂ναµ (1.1)

integrates to 2πq over any small two-sphere surrounding the insertion point:∫
S2

f = 2πq . (1.2)

As we will see explicitly in section 2, each such background monopole comes associated

with a Dirac string that starts at r = r0. If the matter fields have integer U(1) charges,

the Dirac string is not observable provided that q is an integer.

Such monopole insertions appear to not have been considered until recently [16, 17].

They do not correspond to operators in the CFT in a strict sense; instead, they should be

rather thought of as non-local background sources to which we couple our CFT. Studying

the response of the CFT to such background sources provides useful information about

the CFT, which can be used, for instance, to test various dualities [16]. In addition,

these monopole insertions have been argued to play a crucial role in the structure of the

compressible quantum phases that are obtained when a non-zero chemical potential is

applied to the global U(1) charge [17, 18]. Specifically, they serve to quantize the U(1)

charge and to determine the lattice spacing of Wigner crystal states such that there are

an integer number of particles per unit cell; they are also important in determining the

period of Friedel oscillations [18, 19] of compressible states that do not break translational

symmetries and may have “hidden” Fermi surfaces [17, 20–22]. In this paper we will restrict

our attention to CFTs to which no external chemical potential has been applied.

The definition of Mq presented above is imprecise, partly because the condition (1.2)

does not specify f uniquely, and partly because we have not specified the allowed behavior

of the charged matter fields close to the singularity at r = r0. Just as in the case of

monopole operators in gauge theories [7], a precise definition can be given through the

state-operator correspondence, or, more precisely, through an extension thereof to the

present case. According to the state-operator correspondence, any local operator of a CFT

inserted at the origin of R3 corresponds to a normalizable state of the CFT on S2 × R,

where the R coordinate is interpreted as Euclidean time. A monopole insertionMq is by no

means a local operator, but it can nevertheless be defined as corresponding to the vacuum

on S2 (as opposed to any other excited state) in the presence of q units of background

magnetic flux (as in (1.2)) that is uniformly distributed throughout the S2.

The monopole insertion defined above is a Lorentz scalar. It also has a well-defined

scaling dimension ∆q in the following sense. If we consider a background gauge field

configuration αµ corresponding to a monopole of strength q at r = r1 and one of strength

−q at r = r2, the partition function in the presence of these two monopole insertions has

1In standard vector notation, instead of f we would use the magnetic field β = ∗f , which can be also

written as ~β = ~∇× ~α. Eq. (1.2) becomes
∫
S2
~β · d ~A = 2πq, where d ~A is the oriented area element.
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power-law decay with the relative distance |r1 − r2|, namely

〈Mq(r1)M−q(r2)〉 =

∫
Dφ exp

(
−
∫
d3xL[α]

)∫
Dφ exp

(
−
∫
d3xL

) ∝ 1

|r1 − r2|2∆q
, (1.3)

where we denoted by L[α] the Lagrangian of the CFT coupled to αµ. One can extract ∆q

from the exponent in (1.3). Equivalently, in view of the definition ofMq through the state-

operator correspondence described above, one can also map a single monopole insertion on

R3 to S2×R and identify ∆q with the ground state energy on S2 in the presence of q units

of background magnetic flux. Explicitly, we have

∆q = Fq ≡ − logZq , (1.4)

where Zq is the partition function on S2 × R, and Fq the corresponding free energy.

The question that we will address in this paper concerns the scaling dimensions ∆q

of the monopole insertions Mq in simple CFTs. To calculate these scaling dimensions, we

will use (1.4). For certain free CFTs with global U(1) symmetry, one can infer ∆q from

existing results in the literature. A simple example is the free CFT of Nf complex fermions.

The Lagrangian

Lf =

Nf∑
a=1

ψ†a(i/∂)ψa (1.5)

is invariant under a U(Nf ) global symmetry under which ψa transforms as a fundamental

vector with Nf components. We can consider the diagonal U(1) subgroup of U(Nf ), which

we couple to a U(1) background gauge field such that the modified Lagrangian is

Lf [α] =

Nf∑
a=1

ψ†a(i/∂ + /α)ψa . (1.6)

As above, we consider monopole insertions of q units of background magnetic flux. Us-

ing (1.4), ∆q can be computed from the partition function on S2 × R, which is now a

Gaussian integral because the Lagrangian (1.6) is quadratic in ψa and there are no inter-

actions. The same Gaussian integral was calculated in ref. [7] as part of a slightly different

problem: The authors of ref. [7] were interested in computing the scaling dimensions of

monopole operators in three-dimensional QED with Nf flavors, which is the same theory

as (1.6), with the exception that the gauge field αµ would be dynamical. While the leading

large Nf result of ref. [7] is only approximate for QED (because there are corrections com-

ing from the fluctuations of the gauge field), in the free fermion theory (1.6) one obtains

an exact result that holds at all Nf .2 We reproduce the dimensions ∆q for the first few

lowest values of q in table 1. Similar results for a non-supersymmetric free theory of Nb

complex scalars are presented in appendix A.

In this paper we are interested in the more complicated case of an interacting CFT

with global U(1) symmetry. The simplest such CFT is the XY model, described by the

2We should restrict to Nf even in order to avoid a parity anomaly.
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q ∆q/Nf

0 0

1 0.265

2 0.673

3 1.186

4 1.786

5 2.462

Table 1. The scaling dimensions of the monopole insertions Mq in the free theory of Nf fermions

corresponding to the diagonal U(1) subgroup of the global U(Nf ) symmetry group. These results

are exact in Nf .

Wilson-Fisher fixed point of the φ4 field theory of a complex scalar field φ. Starting with

the Lagrangian

LXY = |∂µφ|2 + s|φ|2 + u|φ|4 , (1.7)

the Wilson-Fisher fixed point is reached in the infrared provided that the coefficient s is

tuned to zero. This theory has a global U(1) symmetry under which φ is rotated by a

phase, and it is this U(1) symmetry that we couple to a background gauge field αµ. The

Lagrangian in the presence of αµ is

LXY [α] = |(∂µ − iαµ)φ|2 + s|φ|2 + u|φ|4 . (1.8)

As in the previous examples, we can consider a monopole configuration with q units of

background magnetic flux as defining the insertion Mq.

Unfortunately, the Wilson-Fisher fixed point of a single complex scalar cannot be

accessed perturbatively, so we will compute the dimensions ∆q by first generalizing LXY [α]

to a theory with Nb complex scalars with Lagrangian

L[α] =

Nb∑
a=1

|(∂µ − iαµ)φa|2 + s|~φ|2 + u
(
|~φ|2

)2
, |~φ|2 ≡

Nb∑
a=1

|φa|2 , (1.9)

and then performing a 1/Nb expansion. Our goal in this paper is to find the first two terms

in this expansion. The CFT (obtained by setting α = 0 in (1.9) and tuning s to zero) is the

Wilson-Fisher fixed point with O(2Nb) symmetry. The U(1) symmetry that we consider is

a subgroup of O(2Nb) that acts by rotating each complex scalar by the same phase.

The rest of this paper is organized as follows. In section 2 we set up our conventions

and explain the method we use to compute ∆q in the model (1.9) in more detail. In

section 3 we perform the leading order calculation in Nb. To this order, we find agreement

with the results of refs. [6, 11] on the leading large Nb dependence of the dimensions of

monopole operators in the CPNb−1 model. Indeed, to leading order in Nb, one can ignore

the contribution to the S2 ground state energy coming from the gauge field fluctuations in

the CPNb−1 model, so the scale dimensions of the monopole operators in that model should

agree with those in the ungauged theory (1.9). In section 4 we compute the leading 1/Nb

corrections to ∆q. We end with a discussion of our results in section 5.
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2 Method

We consider the O(2Nb) scalar field theory defined on an arbitrary conformally flat manifold

by the action

S =

Nb∑
a=1

∫
d3r
√
g

[
gµν [(∂µ + iαµ)φ∗a] [(∂ν − iαν)φa] +

(
iλ+

R
8

)
|φa|2

]
, (2.1)

where R is the Ricci scalar of the background metric gµν , and αµ is a background gauge

field. The only dynamical fields are the complex scalars φa and the Lagrange multiplier field

λ. It can be checked explicitly that this action is invariant under the Weyl transformations

gµν → f(r)2gµν , αµ → αµ , φa → f(r)−1/2φa , λ→ f(r)−2λ , (2.2)

for which f can be taken to be an arbitrary real-valued function. We will be interested in

the action (2.1) on two conformally flat backgrounds: R3 and S2 × R, which have R = 0

and R = 2, respectively.

On R3, in the case where and αµ = 0, the action (2.1) describes the Wilson-Fisher

fixed point of 2Nb real scalars. Indeed, one can add the term
∫
d3r λ2/(4u) to this action

without changing the IR fixed point, because u flows to infinity; integrating out λ produces

the interacting theory (1.9) with αµ = s = 0, which represents the more conventional

description of the Wilson-Fisher fixed point. The monopole background 〈αµ〉 = Aqµ that

corresponds to an insertion of Mq at the origin of R3 satisfies, in spherical coordinates,3

dAq =
q

2
sin θdθ ∧ dφ , (2.3)

which follows from (1.2). We can work in a gauge where

Aq(r) =
q

2
(1− cos θ)dφ . (2.4)

This background gauge field is well-defined everywhere away from θ = π where there is a

Dirac string. This Dirac string is not observable provided that q is taken to be an integer.

Starting with the theory on R3 in the monopole background (2.4), the theory on S2×R
can be obtained from a Weyl transformation as in (2.2). Indeed, writing the flat metric on

R3 in spherical coordinates as

ds2 = dr2 + r2dΩ2 , (2.5)

and defining r = eτ , we obtain a metric conformal to S2 × R:

ds2 = e2τ
(
dτ2 + dΩ2

)
. (2.6)

So if we send gR
3

µν → e−2τgR
3

µν = gS
2×R

µν and at the same time rescale φa → eτ/2φa, λ→ e2τλ,

αµ → αµ as dictated by (2.2), we obtain the action on S2 × R. The monopole back-

ground (2.4) now corresponds to a constant magnetic field uniformly distributed over S2.

3In standard vector notation, we would write ~∇ × ~Aq = qêr/(2 |r|2) instead of (2.3), and ~Aq = q
2
(1 −

cos θ)/(r sin θ)êφ instead of (2.4) in flat space. On S2 × R, we have ~Aq = q
2
(1− cos θ)/(sin θ)êφ.
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As explained in the introduction, we identify the scaling dimensions ∆q of the monopole

insertionsMq with the ground state energy Fq on S2. We expand this ground state energy

at large Nb as follows:

Fq = NbF∞q + δFq +O(1/Nb) . (2.7)

When q = 0 the operatorMq is just the identity operator and it corresponds to the ground

state on S2 in the absence of any magnetic flux. We expect this operator to have vanishing

scaling dimension. Indeed, we will check explicitly that F0 = 0 in our regularization scheme.

We now turn to the evaluation of F∞q in the next section and of δFq in section 4. We

will work solely on S2 × R whose coordinates we denote collectively by r ≡ (τ, θ, φ).

3 Nb = ∞ theory

In computing the leading large Nb contribution to the ground state energy on S2, one can

evaluate the partition function corresponding to (2.1) in the saddle point approximation

where the fluctuations of the Lagrange multiplier field λ can be ignored. However, λ should

be adjusted such that the ground state energy is minimized. We thus expand the Lagrange

multiplier about its saddle point value as4

iλ = a2
q +

q2

4
+ iλ̃ , (3.1)

where a2
q will be determined shortly by the saddle-point condition, and λ̃ is a fluctuation

that we will consider in the next section.

We expand the field φa in terms of the monopole harmonics defined in ref. [23]:5

φa(r) =

∞∑
`=q/2

∑
m

∫
dω

2π
Z`m,a(ω)Yq/2,`m(θ, φ)e−iωτ . (3.2)

The quadratic action for the φa then takes the diagonal form

S =

Nb∑
a=1

∞∑
`=q/2

∑̀
m=−`

∫
dω

2π

[
ω2 + (`+ 1/2)2 + a2

q

]
|Z`m,a(ω)|2 , (3.3)

where we have used the fact that the eigenvalues of the gauge-covariant Laplacian on S2

are `(` + 1) − (q/2)2 [23]. From (3.3), it is easy to read off the leading approximation to

the ground state energy at large Nb, which comes from performing the Gaussian integral

over the scalar fields φa, or equivalently over the coefficients Z`m,a. The coefficient F∞q
appearing in (2.7) is then [11]

F∞q =

∫
dω

2π

∞∑
`=q/2

(2`+ 1) log
[
ω2 + (`+ 1/2)2 + a2

q

]
. (3.4)

4This notation has been chosen to be compatible with ref. [11] that studied the CPNb−1 model.
5Note that our definition of q differs from that of ref. [23] by a factor of two.
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This expression is divergent, but it can be evaluated, for instance, using zeta function

regularization. First we write formally logA = −dA−s/ds
∣∣
s=0

in all the terms of (3.4),

then we evaluate the sum and integral at values of s where they are absolutely convergent,

and at the end we set s = 0. Performing the ω integral, we obtain

F∞q =

∞∑
`=q/2

(2`+ 1)
[
(`+ 1/2)2 + a2

q

] 1
2
−s
∣∣∣∣∣
s=0

, (3.5)

which still diverges when evaluated at s = 0. We then use the identity

2
∞∑

`=q/2

[
(`+ 1/2)2(1−s) +

(
1

2
− s
)
a2
q(`+ 1/2)2s

]∣∣∣∣∣
s=0

=
q(1− q2)

12
−
qa2
q

2
. (3.6)

This identity can be derived by writing the sums on the left-hand side in terms of the

Hurwitz zeta function ζ(s, a) =
∑∞

n=0 1/(n+a)s and analytically continuing to s = 0. The

terms on the left-hand side of (3.6) are nothing but the large ` expansion of the terms

in (3.5), so subtracting (3.6) from (3.5) yields a finite result when s = 0. Adding and

subtracting (3.6) from (3.5), we therefore find

F∞q = 2

∞∑
`=q/2

[
(`+ 1/2)

[
(`+ 1/2)2 + a2

q

]1/2 − (`+ 1/2)2 − 1

2
a2
q

]
− 2

[
q(q2 − 1)

24
+
qa2
q

4

]
,

(3.7)

which involves a convergent sum over ` that can easily be evaluated numerically.

The value of a2
q is not arbitrary, but should be chosen so that the saddle point condition

∂F∞q
∂a2

q

= 0 (3.8)

is satisfied. In our case, where F∞q is given by (3.7), we therefore have

∞∑
`=q/2

 `+ 1/2√
(`+ 1/2)2 + a2

q

− 1

 =
q

2
. (3.9)

For the first few small values of q, we give in table 2 the solutions of this equation as well

as the corresponding values of F∞q obtained after plugging these solutions back into (3.7).

The values of F∞q agree precisely with those obtained in ref. [6] in the large Nb limit of the

CPNb−1 model.

The q = 0 case of these results is notable. The value a2
0 = 0 is just that expected

from the conformal mapping between R3 and S2 ×R. Also F∞0 = 0, a result that was not

evident at intermediate stages.

4 1/Nb corrections

4.1 General structure

The leading 1/Nb correction to the result of the previous sections comes from the con-

tribution to the S2 ground state energy coming from the fluctuations λ̃ of the Lagrange

multiplier. Let us begin by discussing the general structure of this correction.

– 7 –
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q a2
q F∞q

0 0 0

1 −0.4498063 0.1245922

2 −1.3978298 0.3110952

3 −2.8454565 0.5440693

4 −4.7929356 0.8157878

5 −7.2403441 1.1214167

Table 2. The values of a2q that solve (3.9) and the corresponding coefficients F∞q that enter the

large Nb expansion of the ground state energy (2.7) on S2.

After integrating out φa, the effective action for the fluctuations takes the form

Seff =
1

2

∫
d3 rd3r′

√
g(r)

√
g(r′)λ̃(r)Dq(r, r′)λ̃(r′) + . . . , (4.1)

where we omitted higher order terms in λ̃. The kernel Dq(r, r′) appearing in eq. (4.1) is

nothing but the two-point correlator of |φa|2:

Dq(r, r′) = 〈|φa(r)|2
∣∣φa(r′)∣∣2〉 = NbG(r, r′)G∗(r, r′) , (4.2)

where we introduced the Green’s function G(r, r′) = 〈φ∗(r)φ(r′)〉 for a single complex field

φ in the background monopole flux Aµ. We will compute this Green’s function shortly.

Because of the explicit factor of Nb in (4.2), at large Nb we can ignore the higher order

terms in (4.1), and evaluate the contribution from λ̃ to the partition function in the saddle

point approximation. The coefficient δFq appearing in eq. (2.7) can then be obtained by

performing a Gaussian integral, which yields

δFq =
1

2
log detDq . (4.3)

To calculate log detDq, we should diagonalize the kernel Dq. This diagonalization is

accomplished by expanding λ̃ and Dq in terms of the appropriate spherical harmonics.

These quantities do not experience a net monopole flux, because they are neutral, and so

we (fortunately) do not need the monopole spherical harmonics here. The expansions

λ̃(r) =

∫
dω

2π
eiωτY`m(θ, φ)Λ`m(ω) ,

Dq(r, r′) =

∫
dω

2π

∑
`m

Dq
` (ω)Y`m(θ, φ)Y ∗`m(θ′, φ′)eiω(τ−τ ′)

(4.4)

yield a diagonal effective action

Seff =
1

2

∫
dω

2π

∑
`m

Dq
` (ω)|Λ`m(ω)|2 . (4.5)

– 8 –
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Eq. (4.3) then gives

δFq =
1

2

∫
dω

2π

∞∑
`=0

(2`+ 1) logDq
` (ω) . (4.6)

In the following subsections we present expressions for the kernel in (4.5): We first present

the simpler kernel at q = 0, and then the kernels at general q. We will check explicitly that

δF0 = 0, as required by conformal invariance in the absence of any monopole insertions.

4.2 The kernel of fluctuations at q = 0

At q = 0, it is not hard to obtain the Green’s function on S2 × R starting from the

Green’s function on R3, 1/(4π|~r−~r′|), and using the conformal mapping explained around

equation (2.6). The result is

G(r, r′) =
1

4π
√

2(cosh(τ − τ ′)− cos γ)
, (4.7)

where γ is the relative angle between the two points on S2 defined through

cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′) . (4.8)

Using (4.2), (4.4), and (4.7), we obtain

D0
` (ω) =

1

16π

∫ ∞
−∞

dτ

∫ π

0
sin θdθ

eiωτP`(cos θ)

(cosh τ − cos θ)
. (4.9)

We performed these integrals analytically for a number of small values of `; from the

structure of these answers we deduced the general result:

D0
` (ω) =

∣∣∣∣ Γ ((`+ 1 + iω) /2)

4Γ ((`+ 2 + iω) /2)

∣∣∣∣2 , (4.10)

which can be written more explicitly as

D0
2`(ω) =

[
tanh(πω/2)

8ω

] ∏̀
n=1

(ω2 + (2n− 1)2)

(ω2 + 4n2)
,

D0
2`+1(ω) =

[
ω coth(πω/2)

8(ω2 + 1)

] ∏̀
n=1

(ω2 + 4n2)

(ω2 + (2n+ 1)2)
.

(4.11)

In the limit of large ω and ` we expect the λ̃ self-energy to be given by the flat

space limit ∫
d3p′

8π3

1

p′2(p+ p′)2
=

1

8p
. (4.12)

Indeed, expanding (4.10) with the help of the Stirling approximation, we find

D0
` (ω) =

1

8
√
ω2 + `(`+ 1)

− `(`+ 1)

32 (ω2 + `(`+ 1))5/2
+O

(
1

(ω2 + `(`+ 1))5/2

)
, (4.13)

which agrees with (4.12) upon using the identification p ∼
√
ω2 + `(`+ 1).

– 9 –
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4.3 The kernel of fluctuations for general q

Now we turn to the much harder case of non-vanishing q. In this case we don’t have

a simple closed form expression for the scalar Green’s function, so we turn to the mode

expansion (3.2). From the action (3.3) we deduce that the Green’s function for a single

φa is

G(r, r′) =
∞∑

`=q/2

∫
dω

2π
eiω(τ−τ ′)

[ ∑̀
m=−`

Y ∗q/2,`m(θ, φ)Yq/2,`m(θ′, φ′)

]
1

ω2 + (`+ 1/2)2 + a2
q

=
∞∑

`=q/2

eiqΘFq,`(γ)
e−Eq`|τ−τ

′|

2Eq`
. (4.14)

In writing the second line we defined the energy

Eq` ≡
√

(`+ 1/2)2 + a2
q , (4.15)

and performed the ω integral; we also performed the sum over m, which, up to the

phase factor

eiΘ =
1

cos(γ/2)

[
cos(θ/2) cos(θ′/2) + e−i(φ−φ

′) sin(θ/2) sin(θ′/2)
]

(4.16)

discussed in ref. [24], yields a polynomial in cos γ that can also be written in terms of the

monopole harmonics as

Fq,`(γ) ≡
√

2`+ 1

4π
Yq/2,`,−q/2(γ, 0) . (4.17)

(See appendix B for more explicit expressions for Fq,`(γ).) Here, γ is the relative angle of

the two points on S2 defined in (4.8).

From (4.2) and (4.14), we can now determine Dq(r, r′). Further extracting Dq
` (ω)

using (4.4) we obtain

Dq
` (ω)(2π)δ(ω + ω′) =

1

(2`+ 1)

∞∑
`′,`′′=q/2

∫
d3rd3r′

√
g(r)

√
g(r′)F0,`(γ)Fq,`′(γ)Fq,`′′(γ)

× e−(Eq`′+Eq`′′ )|τ−τ ′|−iωτ−iω′τ ′

4Eq`Eq`′
. (4.18)

We can simplify this expression to

Dq
` (ω) =

8π2

(2`+ 1)

∞∑
`′`′′=q/2

[
Eq`′ + Eq`′′

2Eq`′Eq`′′(ω2 + (Eq`′ + Eq`′′)2)

]
ID(`, `′, `′′) , (4.19)

where

ID(`, `′, `′′) =

∫ π

0
sin θdθF0,`(θ)Fq,`′(θ)Fq,`′′(θ) . (4.20)

– 10 –
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This is an integral of three monopole harmonics and can be expressed in terms of the

Wigner 3-j symbols as

ID(`, `′, `′′) =

[
(2`+ 1)(2`′ + 1)(2`′′ + 1)

32π3

](
` `′ `′′

0 −q/2 q/2

)2

. (4.21)

We can check, for instance, that this result equals (4.9) for q = 0 and ` = 0

D0
0(ω) =

1

2π

∞∑
`=0

1

ω2 + (2`+ 1)2
=

tanh(πω/2)

8ω
. (4.22)

4.4 Numerics

The results of the previous sections are all we need for calculating numerically the correc-

tion δFq to the scaling dimensions of the monopole operators. Unfortunately, the expres-

sion (4.6) is formally divergent, as can be seen for instance in the case q = 0 where we

know D0
` (ω) explicitly, and hence eq. (4.6) is not suitable for numerical evaluation in its

current form. However, we expect the divergences to be independent of q, so the differences

δFq1−δFq2 should be finite and shouldn’t require regularization. Moreover, it must be true

that δF0 = 0, because the case q = 0 corresponds to an insertion of the identity operator,

which should have vanishing scaling dimension. (See appendix C for an explicit check that

δF0 = 0.) Subtracting δF0 from (4.6), we can then also write δFq as

δFq =
1

2

∫
dω

2π

∞∑
`=1

(2`+ 1) log
Dq
` (ω)

D0
` (ω)

, (4.23)

which we evaluate numerically for the first few lowest values of q.

In evaluating (4.23), one has to perform three sums (two when calculating Dq
` (ω)

using (4.19) and one in (4.23)) and one integral over ω. Let us first comment on the two

sums in (4.19). For fixed `′, the sum over `′′ in (4.19) has only finitely many non-zero terms

because the 3-j symbols in (4.21) vanish unless `, `′ and `′′ satisfy the triangle inequality. To

see whether or not the remaining sum over `′ is convergent, one should find an asymptotic

expansion at large `′ for the terms in this sum. While for general ` it may seem hard to

do so, it is easier to first fix ` to a small value for which the sum over `′′ has 2`+ 1 terms

that can be written down explicitly, and the large `′ asymptotics can be easily computed.

Repeating this procedure for several values of `, one can infer the large `′ asymptotics for

all ` by noticing that all the expressions involved are polynomials in `(`+ 1). The first few

terms are

1

8π`′2
− 1

8π`′3
+

3− 6a2
q + 2`(`+ 1)− ω2

32π`′4
+ . . . . (4.24)

This expression shows that the sum over `′ is absolutely convergent. To save computational

resources, one can use a mix of numerical and analytical techniques in evaluating Dq
` (ω):

the terms with low `′ should be summed up explicitly, while for the terms with large

`′ one can sum up analytically the approximate expression (4.24) developed to a higher

– 11 –



J
H
E
P
0
9
(
2
0
1
3
)
1
2
7

0.02 0.04 0.06 0.08 0.10 1êL-0.0575

-0.0574

-0.0573

-0.0572

-0.0571

dF

Figure 1. The coefficient δF1 evaluated numerically from (4.23) using the relativistic cutoff (4.25)

as a function of the inverse cutoff scale 1/L. The solid line is a quadratic fit from which we extract

the value δF1 ≈ −0.057 as we take L→∞.

order of accuracy. (In our computations, we developed the large `′ approximation up to

order 1/`′13.)

Lastly, in calculating (4.23) one should be wary that there could still be divergences.

We find that imposing a relativistic cutoff6

ω2 + `(`+ 1) ≤ L(L+ 1) , (4.25)

yields a finite answer as we take L→∞. The absence of divergences relies heavily not only

on the choice of cutoff (4.25), but also on choosing the value of a2
q that solves eq. (3.9); for

other values of a2
q there would be divergences. See figure 1 for a plot of δFq in terms of

1/L in the case q = 1, where from the large L extrapolation we obtain δF1 ≈ −0.057. In

this case we therefore conclude that the scaling dimension of the monopole operatorM1 is

∆1 = 0.125Nb − 0.057 +O(1/Nb) , (4.26)

where we included the leading large Nb behavior that was also given in table 2. Repeating

this procedure for the first few small values of q, we obtain the results in table 3. This is

the main result of this paper.

5 Discussion

Following recent work [16, 17], in this paper we considered monopole insertions in 2 + 1-

dimensional CFTs that have a global U(1) symmetry. A simple example of such a CFT

is the Wilson-Fisher fixed point of the XY model. Critical exponents of this CFT have

long been the focus of much study, and are among the most accurately known non-trivial

exponents of higher dimensional CFTs [25]. Associated with the monopole insertions, we

6At high energies the Lorentzian theory has SO(2, 1) symmetry that is also obeyed by the cutoff (4.25),

so the speed of light is not renormalized. If one chooses a cutoff that breaks the SO(2, 1) symmetry, then

there are finite corrections to the speed of light in the IR that have to be accounted for.

– 12 –
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q ∆q = Fq
0 0

1 0.125Nb − 0.057 +O(1/Nb)

2 0.311Nb − 0.152 +O(1/Nb)

3 0.544Nb − 0.272 +O(1/Nb)

4 0.816Nb − 0.414 +O(1/Nb)

5 1.121Nb − 0.575 +O(1/Nb)

Table 3. The scaling dimensions of the first few monopole operators Mq in the Wilson-Fisher

CFT of Nb complex scalars in the large Nb expansion (2.7). The leading large Nb behavior was

computed in section 3, and agrees with results from the CPNb−1 model [6]. The O(N0
b ) term was

computed numerically using (4.23).

have a new set of critical exponents of this venerable CFT. We computed these exponents

(i.e. monopole scaling dimensions) to next-to-leading order in the 1/Nb expansion of a

theory with Nb complex bosons. Our results for the scaling dimensions are summarized in

table 3.

The numerical series in table 3 appear to be reasonable even when evaluated at Nb = 1.

It would be interesting to also compute the monopole scaling dimensions in Monte Carlo

simulations or series expansions, such as those in ref. [25].
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A Free scalar theory

We can also calculate the scaling dimensions ∆q in the free theory of Nb complex scalars.

The only difference from the Wilson-Fisher CFT is that the action for the free theory does

not have a Lagrange multiplier λ, but there is a conformal coupling R|φ|2 in the action,

as in (2.1). The ground state energy on S2 in the presence of q units of magnetic flux that

we obtain by integrating out the scalars is NbF∞q , where F∞q can be computed from (3.7)

with a2
q = −q2/4, as appropriate for conformally coupled scalars. See table 4 for a few

particular cases. These results are exact.
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q ∆q/Nb

0 0

1 0.097

2 0.226

3 0.384

4 0.567

5 0.770

Table 4. The first few scaling dimensions ∆q of the monopole insertions Mq in the free CFT of

Nb scalars.

B Monopole harmonics

We start with the relation

∑̀
m=−`

Y ∗q/2,`m(θ, φ)Yq/2,`m(θ′, φ′) = Fq,`(γ)eiqΘ , (B.1)

where F is defined in eq. (4.17) and the angles γ and Θ are defined in eq. (4.8).

Above, we have used the functions

Fq,`(θ) ≡
√

(2`+ 1)

4π
Yq/2,`,−q/2(θ, 0)

= 2−q/2
(

2`+ 1

4π

)
(1 + cos θ)q/2P 0,q

`−q/2(cos θ)

= 2−q/2
(

2`+ 1

4π

)
(1 + cos θ)q/2−1×

×

[
(`+ q/2)P 0,q−1

`−q/2(cos θ) + (`− q/2 + 1)P 0,q−1
`−q/2+1(cos θ)

(`+ 1/2)

]
.

(B.2)

The special values are

Fq,`(θ) =



(
2`+ 1

4π

)
P`(cos θ) if q = 0 ,

1√
2

(
2`+ 1

4π

)
(1 + cos θ)−1/2

[
P`−1/2(cos θ) + P`+1/2(cos θ)

]
if q = 1 ,

(B.3)

etc.

C Calculation of δF0

We now show that using zeta-function regularization we find δF0 = 0. Using the infi-

nite product representation for the hyperbolic tangent and cotangent in (4.11), one can
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show that

logD0
` (ω) =

∞∑
k=`+1

(−1)k+` log(ω2 + k2) + (ω-independent terms) . (C.1)

The ω-independent terms do not contribute to δF0 in our regularization scheme. With the

help of ∫
dω

2π
log(ω2 + a2) = |a| , (C.2)

which can be derived, for instance, by rewriting (C.2) as

− d

ds

∫
dω

2π

1

(ω2 + a2)s

∣∣∣∣∣
s=0

= − d

ds

√
πΓ(s− 1/2) |a|1−2s

2πΓ(s)

∣∣∣∣∣
s=0

= |a| , (C.3)

we can perform the ω integral in (4.6) and we obtain

δF0 =
1

2

∞∑
`=0

(−1)`(2`+ 1)
∞∑

k=`+1

(−1)kk . (C.4)

The sum over k can be written in terms of the Hurwitz zeta function ζ(s, a) =
∑∞

n=0 1/(n+

a)s as

∞∑
k=`+1

(−1)kk = 2(−1)`
[
ζ

(
−1,

`+ 2

2

)
− ζ

(
−1,

`+ 1

2

)]
=

(−1)`+1

4
(2`+ 1) , (C.5)

so then

δF0 = −1

2

∞∑
`=0

(
`+

1

2

)2

= −1

2
ζ

(
−2,

1

2

)
= 0 . (C.6)
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