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1 Introduction

In Noncommutative Geometry (NCG) [1–4], one of the guiding ideas is to generalize the

duality, existing in Riemannian geometry, between spaces and associative algebras in a

way that the structural properties of the space, for instance topological, metric, differential

properties, can be given an algebraic description. It turns out that many of the building

blocks of modern physics fit well with the basic concepts of NCG which may ultimately lead

to a better understanding of spacetime at short distance. For instance, NCG provides a way

to resolve the physical objections, emerging from the concurrency of General Relativity and

QuantumMechanics [5], to the existence of continuous space-time at Planck scale. Once the

noncommutative nature of space(-time) is assumed, it is natural to consider field theories on

noncommutative spaces, called Noncommutative Field Theories (NCFT). NCFT emerged

around 1986 in String field theory [6], followed a few years later by the first NCFT’s on

the fuzzy sphere, a finite dimensional NCG, [7–9]. NCFT on the Moyal space were singled

out as effective regimes of String theory [10, 11] around 1998 and as underlying structures

in quantum Hall physics [12–14]. For reviews on Moyal NCFT, see e.g [15–17].

The renormalization of NCFT is difficult, unless the underlying NCG is finite. In Moyal

geometry, this is due to the ultraviolet/infrared (UV/IR) mixing, appearing already in the

real-valued ϕ4 model on the 4-d Moyal space [18, 19]. It comes from UV finite nonplanar

diagrams which exhibit IR singularities generating new divergences when inserted into
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higher order diagrams that cannot be cured. A first solution to the mixing in the scalar

field theory amounts to add to the initial action a harmonic oscillator term. This yields

the Grosse-Wulkenhaar model, perturbatively renormalizable to all orders [20–22]. Various

related properties have been studied, among which classical and/or geometrical ones, 2-

d fermionic extensions [23, 24]–[30, 31]. The Grosse-Wulkenhaar model has vanishing

of the β-function to all orders [32, 33] when it is self-dual under the Langmann-Szabo

duality [34], and is very likely to be non-perturbatively solvable [35]. Scalar field theories

on the noncommutative space R
3
λ, a deformation of R3, which are free of UV/IR mixing

have been built recently in [36]. Whether this simply comes from the low “dimension” of

the space or reflects a specific property of the underlying NCG remains to be seen.1

The UV/IR mixing also occurs in gauge models on 4-d Moyal space [39, 40]. For

early studies, see e.g [41, 42] and references therein. The mixing appears in the naive

noncommutative version of the Yang-Mills action given by S0 = 1
4

∫
d4x(Fµν ⋆ Fµν)(x),

showing up at one-loop order as a hard IR transverse singularity in the vacuum polarization

tensor. Attempts to extend the Grosse-Wulkenhaar harmonic solution to a gauge theoretic

framework have singled out [44, 45] a gauge invariant action expressed as2

SΩ =

∫
d4x

(
1

4
Fµν ⋆ Fµν +

Ω2

4
{Aµ,Aν}2⋆ + κAµ ⋆Aµ

)
. (1.1)

where Ω and κ are real parameters, while Aµ = Aµ + 1
2 x̃µ is a gauge covariant one-form

given by the difference of the gauge connection and the natural gauge invariant connection

induced by the minimal (e.g. based on the derivations ∂µ) Moyal differential calculus [43]

(see section 2). The corresponding mathematical framework has been developed in [46–

48]. Eq. (1.1) can also be viewed as a spectral action related to a so called finite volume

spectral triple [49], whose Dirac operator is a square root of the kinetic operator of the

4-dimensional Grosse-Wulkenhaar model. The related noncommutative (metric) geometry

is rigidly linked to the Moyal (metric) geometries, as shown in [50–52]. Unfortunately, the

action (1.1) is hard to deal with when it is viewed as a functional of the gauge potential

Aµ, SΩ[Aµ]. This is mainly due to its complicated vacuum structure explored in [53] which

excludes the use of any standard perturbative treatment. Other attempts to control the

UV/IR mixing have been considered in [54, 55] -[60]. However, showing that any of these

models is renormalizable is still an open problem.

When expressed as a functional of the covariant one-form Aµ, the action (1.1) bears

some similarity with a matrix model, where the field Aµ can be represented as an infinite

matrix in the Moyal matrix base (see appendix B). To our knowledge this interpretation

has not been explored so far for the action (1.1), although the matrix model formulation

of NC gauge theory has been known since many years [61–67]. Keeping in mind that Aµ

is a natural variable of the Moyal geometry [46, 47], a sensible question is to explore the

properties of the action as a functional of the field Aµ, in order to determine to what extent

SΩ[Aµ] may give rise to a meaningful quantum theory.

1A discussion on the origin of the mixing for translation-invariant products can be found in [37, 38].
2Notations and conventions are collected in the section 2.

– 2 –



J
H
E
P
0
9
(
2
0
1
3
)
0
5
1

This requires at least to choose a vacuum, expand the action around it, and perform

the difficult but mandatory computation of the propagator. In the 4-d Moyal case, an

additional complication comes from the need to control the UV/IR mixing behavior of the

ghost sector coupled to the gauge sector. This can be easily overcome in the 2-d Moyal

case, that we will consider in this paper, thanks to a suitable gauge choice, akin to the

temporal gauge, for which the ghosts decouple from the gauge sector.

The purpose of this paper is to perform a first exploration of the gauge theory on

2-dimensional Moyal space described by the action SΩ[Aµ] of eq. (1.1), at Ω 6= 0, viewed

as a matrix model as explained above. The expansion of the action around the non-trivial

symmetric vacua determined in [53], to which we restrict in this paper, and a BRST further

gauge-fixing give rise generically to a non local matrix model with a complicated kinetic

operator together with cubic and quartic polynomial interaction terms. For a particular

symmetric vacuum corresponding to Ω = 1
3 , we show that the kinetic operator is a Jacobi

operator. The computation of the propagator can then be carried out. The resulting

propagator can be expressed in terms of Chebyschev polynomials of second kind. We

show that non vanishing correlations exist at large separations. The quantum stability of

the vacuum is briefly discussed in the particular situation. A divergent 1-point function

appears signaling likely a loss of symmetry at the quantum level.

Extending our analysis to general considerations on the kinetic operators stemming

from the other vacua found in [53], we single out a particular class of symmetric vacua that

should lead to fast decaying propagators at large separation, reminiscent of a quasi-local

behaviour for the corresponding matrix models.

In section 2 we collect relevant properties of Moyal geometry that we will need together

with specific features of the action (1.1) at Ω = 0, such as the absence of UV/IR mixing and

additional cancellation between IR singularities specific to 2 dimensions. The case Ω 6= 0

is considered in section 3 which involves the general expansion and gauge fixing together

with the computation of the propagator. We finally discuss the results and conclude.

2 Yang-Mills type theory on R
2

θ
: the Ω = 0 case

2.1 Basics on Moyal algebra and gauge invariant actions

In this subsection we collect useful properties of the Moyal algebra. For more details, see

e.g [68, 69]. Let S(R2) ≡ S and S ′(R2) ≡ S ′ be respectively the space of complex-valued

Schwartz functions and the dual space of tempered distributions on R
2. The associative

Moyal ⋆-product is defined for all f, g in S by the map: ⋆ : S × S → S

(f ⋆ g)(x) =
1

(πθ)2

∫
d2y d2z f(x+ y)g(x+ z)e−i 2yµ Θ−1

µν z
ν

, Θµν = θ

(
0 1

−1 0

)
(2.1)

where θ ∈ R, θ > 0.3 The integral is a faithful trace:
∫
d2x (f ⋆ g)(x) =

∫
d2x (g ⋆ f)(x) =∫

d2x f(x)g(x). The Leibniz rule holds: ∂µ(f ⋆ g) = ∂µf ⋆ g + f ⋆ ∂µg, ∀f, g ∈ S. The

complex conjugation in S, a 7→ a†, ∀a ∈ S, defines an involution in S. It extends to S ′

3 We will use the notation yΘ−1z ≡ yµΘ
−1
µν z

ν and Einstein summation convention.
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by using duality of vector spaces. The ⋆-product (2.1) can be extended to S ′ × S → S ′

using again duality (〈T ⋆ a, b〉 = 〈T, a ⋆ b〉, ∀T ∈ S ′, ∀a, b ∈ S) and continuity of (2.1). In

a similar way, (2.1) extends to S × S ′ → S ′, via 〈a ⋆ T, b〉 = 〈T, b ⋆ a〉, ∀T ∈ S ′, ∀a, b ∈ S.
Here, the Moyal algebra denoted by R

2
θ is the multiplier algebra of (S, ⋆), R2

θ := ML∩MR

where ML = {T ∈ S ′ / a ⋆ T ∈ S, ∀a ∈ S} and MR = {T ∈ S ′ / T ⋆ a ∈ S, ∀a ∈ S}
are respectively the left and right multiplier algebras of (S, ⋆) [68, 69]. We set [a, b]⋆ :=

a ⋆ b− b ⋆ a. For any a, b ∈ R
2
θ, the following relations hold true:

∂µ(a ⋆ b) = ∂µa ⋆ b+ a ⋆ ∂µb, (a ⋆ b)† = b† ⋆ a†, (2.2)

xµ ⋆ a = (xµ · a) + i

2
Θµν∂νa, a ⋆ xµ = (xµ · a)− i

2
Θµν∂νa. (2.3)

Note that eq. (2.3) implies the celebrated relation [xµ, xν ]⋆ = iΘµν among the coordinate

functions of R2
θ. In section 3, we will use the matrix base of R2

θ [68, 69]. The relevant

material is given in appendix B.

As shown in [46, 47], the algebraic properties of classical gauge invariant actions on the

Moyal plane are described by a simple version of the derivation-based differential calculus.

Here, the unital algebra itself , R2
θ, plays the role of the right R

2
θ-module while the Lie

algebra of derivations is the Abelian algebra generated by the derivatives ∂µ, µ = 1, 2. The

map ∇X : R2
θ → R

2
θ, X = (∂µ), µ = 1, 2 given by

∇∂µ(a) = ∇µ(a) = ∂µa− iAµ ⋆ a, ; Aµ = i∇µ(IR2
θ
), ∀a ∈ R

2
θ (2.4)

with A∗
µ = Aµ defines a hermitian connection, ∇, for the hermitian structure h : R2

θ×R
2
θ →

R
2
θ, h(m1,m2) = m∗

1 ⋆ m2, ∀m1,m2 ∈ R
2
θ. The curvature of ∇ is

R(X,Y ) : R2
θ → R

2
θ, R(X,Y )m = ([∇X ,∇Y ]−∇[X,Y ])m, ∀m ∈ R

2
θ (2.5)

for any derivations X and Y and in the present case yields

Rµν := R(∂µ, ∂ν) = −i(∂µAν − ∂νAµ − i[Aµ, Aν ]⋆). (2.6)

To make contact with usual notation, we set from now on Rµν = −iFµν . The unitary

gauge group U(R2
θ) acts as ∇

g
X = g† ◦ ∇X ◦ g. This yields

Ag
µ = g† ⋆ Aµ ⋆ g + ig† ⋆ ∂µg, F g

µν = g† ⋆ Fµν ⋆ g, ∀g ∈ U(R2
θ). (2.7)

We define x̃µ := 2Θ−1
µν xν . Recall [46, 47] that the one-form components Aµ = −1

2 x̃µ :=

Ainv
µ , define a gauge invariant connection one-form so that the map (2.4) becomes:

∇inv
µ (a) = ∂µa+

i

2
x̃µ ⋆ a =

i

2
a ⋆ x̃µ, ∀a ∈ R

2
θ, (2.8)

where gauge invariance (∇inv
X )g = g† ◦ ∇inv

X ◦ g = ∇inv
X follows from the second equality in

eq. (2.8). The corresponding curvature is F inv
µν = −iΘ−1

µν . Thanks to the existence of the

gauge invariant connection, a natural covariant one-form can be defined as

Aµ := i(∇µ −∇inv
µ ) = Aµ +

1

2
x̃µ, Ag

µ = g† ⋆Aµ ⋆ g, ∀g ∈ U(R2
θ). (2.9)
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Aµ are formally the “covariant coordinates” introduced in [70] on Moyal space-time in the

presence of a local symmetry, although here they play a different role, namely that of the

dynamical gauge variables. From eq. (2.9) and the first of eqs. (2.3), one obtains

Fµν = −i[Aµ,Aν ]⋆ +Θ−1
µν . (2.10)

The extension to R
2n
θ , n ∈ N is straightforward. For n = 2, the above framework underlies

the action (1.1) which can be expressed solely in terms of Aµ [44, 45], namely:

SΩ =

∫
d4x

(
− 1

4
[Aµ,Aν ]

2
⋆ +

Ω2

4
{Aµ,Aν}2⋆ + κAµ ⋆Aµ

)
. (2.11)

The gauge invariance is obvious in view of the tracial property of the integral and the 2nd

relation in (2.9). Note that this action can be obtained from a spectral triple of a specific

type introduced in [49] and shown, in the sense of noncommutative metric spaces, to be

homothetic [50] to the standard Moyal spectral triple.

2.2 The Ω = 0 case

When the real parameters Ω and κ are set to zero, the action (2.11), expressed as a

functional of Aµ, exhibits UV/IR mixing which shows up at the one-loop level as a hard

IR singularity in the vacuum polarization tensor. The situation is more favorable for the

2-d version of (2.11). The corresponding model on R
2
θ at Ω = κ = 0 is known to be

UV/IR mixing free. Only the sector of planar diagrams actually matters and this latter

is similar to the perturbative expansion of a commutative 2-d Yang-Mills theory. In fact,

by using a “temporal-like” gauge, e.g A2 = 0, the gauge fixed action is purely quadratic

and separates into a gauge potential Aµ part and a ghost part, as for commutative 2-d

Yang-Mills theories. Alternatively, one may use the popular “covariant” Landau gauge for

which the gauge fixed theory “does not look free”. By standard calculation, it can be easily

realized that the hard as well as logarithmic IR singularities in the vacuum polarization

tensor responsible for the UV/IR mixing are proportional to (2 − d) [46, 47, 58]. This

cancellation propagates to other higher order correlation functions as a consequence of

Slavnov-Taylor identities [59]. We close this section by recalling that massless 2-d theories

are known to exhibit additional IR singularities. In the case of 2-d commutative Yang-Mills

theories, these depend of the gauge function. It is instructive to examine more closely the

fate of these additional singularities within SΩ=0[Aµ] by using the Landau gauge. The

gauge fixed action is Stot = SΩ=0[Aµ] + SGF with

SGF = s

∫
d2x
(
C̄∂µAµ

)
=

∫
d2x
(
b∂µAµ − C̄∂µ(∂µC − i[Aµ, C]⋆)

)
(2.12)

where the Slavnov operation s is defined by sAµ = ∂µC− i[Aµ, C]⋆, sC = iC ⋆C, sC̄ =

b, sb = 0. Here, C, C̄ and b are respectively the ghost, the antighost and the Stückelberg

field with ghost number equal to +1, −1 and 0. s acts as a graded derivation with grading

defined by the sum of the degree of forms and ghost number (modulo 2) and s2 = 0.

– 5 –
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Standard calculation using (A.2) and (A.3) leads to the planar (ωP
g (p)) and non planar

(ωNP
g (p)) 1-loop contributions to the ghost 2-point function:

ωP
g (p) =

21−
D
2

(2π)D/2(p2)
D
2
−1

(
Γ(D2 )Γ(

D
2 − 1)

Γ(D − 1)

)
Γ

(
2− D

2

)
, (2.13)

ωNP
g (p) = −2p2

∫ 1

0
dxx

1

(2π)D/2
(M2)

D
2
−2

(
1

2
(
√
p̃2M2)2−

D
2 K2−D

2

(
√
p̃2M2)

)
, (2.14)

where M2 := p2x(1 − x). For D = 2, the UV finite planar contribution (2.13) has an

extra(2-d) IR singularity coming from the factor Γ(D2 − 1). Now, the UV finite non planar

contribution (2.14) has an IR singularity coming from (M2)
D
2
−2 = (M2)−1, while the factor

(
√
p̃2M2)2−

D
2 K2−D

2

(
√

p̃2M2) is IR finite. UsingK1(z) ∼ 1
z+(az+bz3+. . .)+ z2

2 log(z)+. . .

where a, b ∈ R, one checks that only the first term combines with (M2)−1 to give an IR

singularity. Therefore, the small |p| behaviour of (2.14) is

ωNP
g (p) ∼ − 1

2π

∫ 1

0
dxx

1

x(1− x)
+ IR regular, p ∼ 0, (2.15)

This IR singular term is exactly cancelled by the planar contribution (2.13) at D = 2:

ωP
g (p) =

1

2π

∫ 1

0
dxx

1

x(1− x)
. (2.16)

Hence the small p limit of ωg(p) is finite:

lim
p→0

ωg(p) = lim
p→0

(ωP
g (p) + ωNP

g (p)) = finite. (2.17)

Similarly, the planar and non planar 1-loop contributions to the polarization tensor

ωµν(p) are

ωP
µν(p) =

1

π

∫ 1

0
dx

1

p2x(1− x)
(p2δµν − pµpν), (2.18)

ωNP
µν (p) = −2

∫
dDk

(2π)D
cos(p ∧ k)

k2(k + p)2

(
(2−D)[k2δµν − 2kµkν ] + 2p2δµν −

(D + 2)

2
pµpν

)

(2.19)

Setting4 D = 2 and using (A.3), we obtain

ωNP
µν (p) = − 1

π

∫ 1

0
dx

1

p2x(1− x)

(√
M2p̃2K1(

√
M2p̃2)

)
(p2δµν − pµpν). (2.20)

As above, by using the asymptotics given in the appendix A, it can be checked that the

extra IR singularity in (2.20) exactly cancels the planar contribution ωP
µν (2.18). Hence

ωµν(p) = π(p2)(p2δµν − pµpν), lim
p→0

π(p2) = finite (2.21)

4From (A.4), the 1st two terms between brackets in (2.19) behave respectively as log |p̃| and
p̃µp̃ν

p̃2
,

signaling UV/IR mixing unless D = 2.

– 6 –
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From (2.17) and (2.21), one concludes that IR singularities of 2-dimensional origin occurring

in the 1-loop planar parts of ghost and gauge 2-point functions are exactly compensated by

their non planar counterparts. This cancellation extends to the 3- and 4-point functions as

can be seen by using the Slavnov-Taylor identities [59]. On general grounds, one can expect

that these 2-d IR singularities depend on the gauge choice. This can be easily exemplified

by considering the case of 1-loop 2-point functions for a commutative 2-d pure Yang-Mills

theory, for instance either in the Landau gauge or in the temporal gauge, whose behavior

is the same as the planar part of the above 2-point functions: IR singularities appear in

the first gauge while they are simply absent in the other gauge. Notice that the present

situation is slightly different since there are no such IR singularities for both gauge choice.

It suggests that the absence of these 2-d IR singularities does not depend on the gauge

choice. The coupling to a fermion has been discussed in [59] and gives rise, as expected, to

a dynamical mass generation mechanism as in the Schwinger model.

3 Noncommutative gauge theory as a matrix model

Many attempts to deal with the induced gauge theory on Moyal space have tried to interpret

it as a Yang-Mills type theory. Indeed, the action (1.1) was assumed to depend functionally

on the gauge potential Aµ: S = S[Aµ]. Promoting this interpretation beyond the classical

level is still unsolved. In this section, we will change the above viewpoint and use the

covariant field Aµ defined in eq. (2.9) as the fundamental variable entering the action.

Doing this, we will therefore formulate the induced gauge theory (2.11) as a matrix model

S = S[Aµ] and examine if such a matrix model invariant under Aµ → Ag
µ = g†⋆Aµ⋆g, ∀g ∈

U(R2
θ) can have a consistent interpretation beyond the classical order. To our knowledge

this interpretation has not been explored so far, despite the formal similarity between the

first term of the action (2.11) and the (bosonic part of) the action for some type IIB matrix

models, such as the IKKT matrix model [71] , already considered in the noncommutative

context in [72].

The relation of matrix models to NCYM models with Moyal non commutativity is not

new. For the IKKT model such relation is derived in [61]. We give here a short summary

of the derivation. The IKKT model reads

S = kTr[Xµ, Xν ][X
µ, Xν ] (3.1)

with k some constant, Xµ N × N Hermitian matrices. The Hermitian matrix X is thus

expanded around a classical vacuum, p̂µ, which, in the large N limit, has twisted commu-

tation relations

[p̂µ, p̂ν ] = iBµν (3.2)

with B a constant invertible matrix. This relation is rigorously satisfied only in the limit

of infinite matrices. Then

Xµ = p̂µ + Âµ (3.3)

The perturbation Âµ is thus expanded in the noncommuting p̂µ

Â =
∑

k

Ã(k) exp(i(B−1)µνkµp̂ν). (3.4)

– 7 –
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Then, a kind of Wigner dequantization map is introduced which maps the operator Â into

a function A(x) (indeed it can be made exactly into the Wigner map in the limit of infinite

matrices, where the finite sum tends towards a Fourier series and is finally replaced by a

Fourier transform with usual techniques)

Â → A(x) =
∑

k

Ã(k) exp(ikµx
µ) (3.5)

The algebra of functions obtained in this way is a noncommutative algebra with induced

star product

ÂĜ → A ⋆ G(x) =
∑

k

ÃG(k)(ikµx
ν) (3.6)

with ÃG(k) the Fourier coefficient of the product ÂĜ. This star product can be seen to

coincide with the asymptotic form of the Moyal product (2.1) with the noncommutative

parameter represented by the inverse matrix B−1.

It is then easy to verify that through the Wigner map (3.5) the operator com-

mutator [p̂µ, Âν ] is mapped to −i∂µAν(x) via Fourier transform while the commutator

[Xµ, Xν ] of the twisted matrix model goes into the kinetic term of the Yang-Mills action,

Fµν=[Dµ, Dν ], with Dµ the covariant derivative and Aµ(x) the gauge connection. The

newly emerged coordinate space is interpreted as the semiclassical limit of the coordinate

operators x̂µ = (B−1)µν p̂ν .

To conclude this paragraph let us stress that the relation between matrix models such

as the IKKT model and noncommutative field theory relies on the choice of a specific star

product, the Moyal product, which mimics the kind of noncommutativity of the classical

solutions of the IKKT action (3.2).

In the coming subsection we shall not follow this path. First of all, we shall consider

the deformed Yang-Mills action (1.1). This coincides with the noncommutative Yang-Mills

action considered in [61] only for Ω and κ equal to zero. Moreover, as we already stressed,

this shall be regarded as a functional of A as opposed to A. Finally, we shall restrict to

two dimensions. These three conditions together will make the model into a matrix model

which is different from the IKKT.

3.1 A family of gauge matrix models

We will focus on the 2 dimensional version of (2.11). We set

A =
A1 + iA2√

2
, A† =

A1 − iA2√
2

. (3.7)

Then, one obtains

SΩ[A] =

∫
d2x
(
(1 + Ω2)A ⋆A† ⋆A ⋆A† + (3Ω2 − 1)A ⋆A ⋆A† ⋆A† + 2κA ⋆A†

)
. (3.8)

This action shares some similarities with the 6-vertex model5 although, as we shall see in

the following, the entire analysis relies on the choice of a vacuum around which we shall

perform fluctuations. We will come back to this issue in a while.

5We thank H. Steinacker for this remark.
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It will be convenient to use the matrix base whose properties relevant for the ensuing

analysis are recalled in appendix B. For more details, see [68, 69].

The strategy used in this section is standard, akin to the machinery of background

field method used e.g in [72]: we choose a particular vacuum (the background), expand the

action around it, fix the background symmetry of the expanded action. The equation of

motion stemming from (3.8) is

(3Ω2 − 1)(A† ⋆A ⋆A+A ⋆A ⋆A†) + 2(1 + Ω2)A ⋆A† ⋆A+ 2κA = 0. (3.9)

From now on, any solution of (3.9) will be denoted by Z(x). In the following, we will

consider solutions which respect the symmetries of the classical action (symmetric solutions

from now on), which were derived in [53]. They have the generic form

Zµ(x) = Φ1(x
2)xµ +Φ2(x

2)x̃µ (3.10)

where Φ1 and Φ2 are suitable functions that have to satisfy eq. (3.9). Passing to the matrix

base, one can write equivalently

Z(x) =
Z1 + iZ2√

2
=
∑

m,n∈N

Zmnfmn(x) (3.11)

where Zmn can be expressed in terms of Φ1 and Φ2. This yields [53]

Zmn = −iamδm+1,n, ∀m,n ∈ N (3.12)

where the sequence of complex numbers {am,m ∈ N} satisfies

am
[
(3Ω2 − 1)(|am+1|2 + |am−1|2) + 2(1 + Ω2)|am|2 + 2κ

]
= 0, (3.13)

in view of (3.9).

This implies, ∀m ∈ N , a−1 = 0,

• i) am = 0

• ii) (3Ω2 − 1)(|am+1|2 + |am−1|2) + 2(1 + Ω2)|am|2 + 2κ = 0

The first solution corresponds to a trivial vacuum, whereas the second one engenders a

whole family of symmetric vacua which depend on the range of values of the parameters

Ω and κ.

Setting formally A = Z + φ, A† = Z† + φ† in (3.8), where φ can be interpreted as a

fluctuation around Z, we obtain from the expansion of the Lagrangian, up to an unessential

constant (we drop from now on the Moyal product symbol ⋆)

S[φ, φ†] = S2 + S3 + S4 (3.14)
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with

S2 =

∫
d2x
[
φ†
(
2(1 + Ω2)ZZ† + (3Ω2 − 1)Z†Z

)
φ+ φ

(
2(1 + Ω2)Z†Z + (3Ω2 − 1)ZZ†

)
φ†

+φ†
(
(3Ω2 − 1)ZZ

)
φ† + φ

(
(3Ω2 − 1)Z†Z†

)
φ (3.15)

+(3Ω2 − 1)(Zφ†Z†φ+ Z†φ†Zφ) + (1 + Ω2)(Zφ†Zφ† + Z†φZ†φ) + 2κφ†φ
]
,

S3 =

∫
d2x
[
(1 + Ω2)

(
Zφ†φφ† + Z†φφ†φ+ Zφ†φφ† + Z†φφ†φ

)

+(3Ω2 − 1)(Zφ†φ†φ+ Z†φ†φφ† + Z†φφφ† + Zφφ†φ†
]

(3.16)

S4 =

∫
d2x
[
(1 + Ω2)φφ†φφ† + (3Ω2 − 1)φφ†φ†φ

]
. (3.17)

Notice that, when expanding around the trivial vacuum, the action (3.14) simplifies

considerably

S(Z=0)[φ, φ†] =

∫
d2x [2κφ†φ+ (1 + Ω2)φφ†φφ† + (3Ω2 − 1)φφ†φ†φ] (3.18)

This is the action of a local matrix model, the so-called 6-vertex model [75] (also see [76]

where the model has been solved). In the following we shall concentrate on the non-trivial

symmetric vacua which give rise to non-local models.

The action S[φ, φ†] in eq. (3.14) is invariant under a background transformation, that

can be expressed through a nilpotent BRST-like operation, δZ , with structure equations

given by (star Moyal product is understood):

δZφ = −i[Z + φ,C], δZφ
† = −i[Z† + φ†, C], δZZ = 0, δZC = iCC. (3.19)

The background gauge symmetry can be fixed by adding to (3.14) the following gauge-

fixing action

SGF = δZ

∫
d2x C̄G(φ) =

∫
d2x (bG(φ))− C̄δZG(φ)), (3.20)

where the structure equations (3.19) have been supplemented with δZC̄ = b, δZb = 0

and G(φ) is the gauge function. The grading and ghost number assignments are as in the

section 2.

We find convenient to choose G(φ) = (φ− φ†) so that

SGF =

∫
d2x (b(φ− φ†) + iC̄[Z − Z† + φ− φ†, C]). (3.21)

In order to simplify slightly the situation, we now integrate over the b field. In the BRST

language, this amounts to consider a “on-shell” situation (for which now the nilpotency

of the δZ operation is fulfilled modulo the ghost equation of motion together with the

δZ-invariance of the gauge-fixed action6). Doing this generates the constraint φ = φ†

into (3.21) and (3.14). Then, (3.21) becomes

SGF =

∫
d2x iC̄[Z − Z†, C] (3.22)

6For a general discussion, see [73, 74].
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so that the ghosts decouple as expected. The action (3.14) simplifies to a functional

of φ only

S[φ] = S2 + S3 + S4 (3.23)

with

S2 =

∫
d2x

[
φ((1 + 5Ω2)(ZZ† + Z†Z) + (3Ω2 − 1)(ZZ + Z†Z†)φ)

+2(3Ω2 − 1)ZφZ†φ+ (1 + Ω2)(ZφZφ+ Z†φZ†φ) + 2κφφ
]
, (3.24)

S3 = 8Ω2

∫
d2x (Z + Z†)φφφ; S4 = 4Ω2

∫
d2x φφφφ. (3.25)

Plugging the expansion of φ in the matrix base, φ(x) =
∑

m,n φmnfmn(x), into (3.23) gives

rise to a matrix model of the form

S[φ] =
∑

m,n,k,l∈N

φmnφklGmn;kl + Sint (3.26)

where the kinetic operator is given by

Gmn;kl = (1 + 5Ω2)
∑

t∈N

δml(ZntZ
†
tk + Z†

ntZtk) + (3Ω2 − 1)
∑

t∈N

δml(ZntZtk + Z†
ntZ

†
tk)

+2(3Ω2 − 1)Z†
nkZlm + (1 + Ω2)(ZnkZlm + Z†

nkZ
†
lm) + 2κδmlδnk, (3.27)

with Zmn given by (3.12), Z†
mn = ia∗mδn+1,m and the cubic and quartic interaction terms are

Sint = 8Ω2
∑

m,p,q,r∈N

iφpqφqrφmp(a
∗
rδm+1,r − arδr+1,m) + 4Ω2

∑

m,n,k,r∈N

φmnφnkφkrφrm. (3.28)

Notice that the interaction terms both vanish whenever Ω2 = 0, as it should be with our

gauge choice, akin to the commutative situation for 2-d QCD in the axial gauge. Note also

the occurrence of a cubic interaction term.

The kinetic operator (3.27) can be rewriten as

Gmn;kl = (1 + 5Ω2)δmlδnk(ana
∗
n+1 + a∗nan−1)

−(3Ω2 − 1)(δmlδn+1,k−1anan+1 + δmlδn−1,k+1a
∗
na

∗
n−1 − 2δm,l+1δk+1,na

∗
nal)

−(1 + Ω2)(δk,n+1δm,l+1anal + δn,k+1δl,m+1a
∗
na

∗
l ) + 2κδmlδnk (3.29)

where the am’s are constrained by (3.13). It can be observed that it involves 2 types of

terms. The terms proportional to (3Ω2 − 1) are non vanishing when m + n = l + k ± 2

while the remaining terms do not vanish whenever m + n = l + k which is similar to

the so called conservation law for indices that occurs in the matrix formulation of the

Grosse-Wulkenhaar model [22].

3.2 The propagator at the special value Ω2 = 1

3

The propagator denoted by Pmn;kl is defined by
∑

k,l

Gmn;klPlk;sr = δmrδns,
∑

k,l

Pnm;lkGkl;rs = δmrδns. (3.30)
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It depends on the background which corresponds in each case to some solution of (3.13).

To simplify the ensuing discussion, we now assume that the am’s are real.7 We also

assume κ 6= 0. The computation can be easily done when the terms proportional to

(3Ω2 − 1) are absent, i.e when Ω2 = 1
3 . The corresponding solution of (3.13), determined

in [53] is given by:

Ω2 =
1

3
, κ < 0, am =

1

2

√
−3κ, ∀m ∈ N. (3.31)

Then, (3.29) becomes

G
(1/3)
mn;kl = (−κ)

(
2δmlδnk − δk,n+1δm,l+1 − δn,k+1δl,m+1

)
, (3.32)

and satisfies

G
(1/3)
mn;kl 6= 0 ⇐⇒ m+ n = k + l. (3.33)

This conservation law acting on the indices implies that eq. (3.32) depends only on 2

indices. Indeed, setting n = α−m, k = α− l, with α = m+ n = k + l into (3.32) yields

G
(1/3)
m,α−m;α−l,l := Gα

m,l = µ2(2δml − δm,l+1 − δl,m+1), ∀m, l ∈ N (3.34)

where µ2 := −κ. Notice that it does not depend on α. Therefore, we set Gα
m,l = Gml to

simplify the notations.

One observes that Gml is an infinite real symmetric tridiagonal matrix which can be

related to a Jacobi operator. Therefore, the diagonalization of (3.34) can be achieved by

using a suitable family of Jacobi orthogonal polynomials. Note that a similar situation

arises within the scalar Grosse-Wulkenhaar model [22] as well as in noncommutative scalar

field theory on R
3
λ constructed in [36]. It is useful to recall here some technical points that

will clarify the computation. For more mathematical details, see e.g [77].

3.2.1 Jacobi operators

A Jacobi operator J acting on the Hilbert space ℓ2(N) with canonical orthonormal basis

{ek}k∈N can be defined as

(Je)k = akek+1 + bkek + ak−1ek−1, k ≥ 1;

(Je)0 = a0e1 + b0e0, (3.35)

where {ak}k∈Nand {bk}k∈N are infinite sequences of real numbers, with ak ≥ 0, ∀k ∈ N. It

therefore can be represented as an infinite real symmetric tridiagonal matrix. Denoting by

D(ℓ2(N)) the dense subset of ℓ2(N) involving all finite linear combinations of the ek’s, one

can verify that 〈JX, Y 〉ℓ2 = 〈X, JY 〉ℓ2 , ∀X,Y ∈ D(ℓ2(N)) where 〈, 〉ℓ2 is the usual scalar

product on ℓ2(N). Then, J extends to a densely defined symmetric operator on ℓ2(N).

If in addition J is a bounded operator on D(ℓ2(N)), it extends by continuity to a

self-adjoint (bounded) operator on D(ℓ2(N)). This occurs whenever

sup
k
(|ak|) + sup

k
(|bk|) < ∞ (3.36)

7therefore setting the arbitrary phases ξm to zero, in the notation of [53].
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which is clearly verified by the operator defined by Jml = −Gml from (3.34). Then, as a

corollary of the spectral theorem, the so called Favard theorem [78] (see also [77]) guaranties

the existence of a set of (real) polynomials {pk(x)}k∈N orthogonal with respect to a unique

compactly supported measure dµ(x), namely

〈pm, pn〉 :=
∫

R

dµ(x)pm(x)pn(x) = δmn, (3.37)

and verifying the following 3-term recurrence relation:

xpk(x) = akpk+1(x) + bkpk(x) + ak−1pk−1(x), k ≥ 1

xp0(x) = a0p1(x) + b0p0(x). (3.38)

Finally, provided some assumptions are verified [78], which will be the case below, the

above scalar product (3.37) can be expressed as the limit of a particular discrete inner

product, namely

〈pm, pn〉 = lim
N→∞

(
N∑

j=1

w2
jpm(tj)pn(tj)

)
(3.39)

where the tj ’s and wj are respectively called the nodes and the weights. For more details

see e.g [78].

In the following, we will apply this formalism to the diagonalization of the kinetic

operator in eq. (3.34) through the determination of the relevant polynomials and related

measure of integration.

3.2.2 Diagonalization of the kinetic operator

Denoting generically by λk, k ∈ N the eigenvalues of Gmn (3.34), we write it as

Gml = µ2
∑

p∈N

RmpλpR†
pl (3.40)

with ∑

p∈N

RmpR†
pl =

∑

p∈N

R†
mpRpl = δml, (3.41)

where R†
mn = Rnm. Then, the combination of eqs. (3.32), (3.40) and (3.41) gives rise to

the following 3-term recurrence relation

Rm+1,q +Rm−1,q − (2− λq)Rmq = 0, ∀m, q ∈ N, (3.42)

completed with

R−1,q = 0, R0,q = 1, ∀q ∈ N. (3.43)

For further convenience, we set

ρq = −λq, Rm(ρq) := Rmq =, ∀q ∈ N. (3.44)

Then (3.42) translates into

Rm+1(ρq) +Rm−1(ρq) = (2 + ρq)Rm(ρq), ∀m, q ∈ N (3.45)
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with R−1(ρq) = 0 and R0(ρq) = 1 which stems from the following 3-term recurrence

equation:8

Rm+1(x) +Rm−1(x) = (2 + x)Rm(x), ∀m ≥ 1

R1(x) = (2 + x)R0(x) (3.46)

with R0(x) = 1 (R−1(x) = 0), evaluated at x = ρq, q ∈ N.

Eq. (3.46) is of the type given by (3.38). Now, we restrict ourselves to N × N sub-

matrices, therefore we impose a cut-off on the indices, namely 0 ≤ m, l, . . . ≤ N − 1 and

define JN
ml := (−GN

ml) in order to make contact with the notation in 3.2.1. Then eq. (3.46)

can be cast into the matrix form (matrix product understood)

JN ·




R0(x)

R1(x)

· · ·
· · ·

RN−1(x)




+




0

0

· · ·
0

RN (x)




= x




R0(x)

R1(x)

· · ·
· · ·

RN−1(x)




(3.47)

Eq. (3.47) readily implies that the eigenvalues of JN are exactly given by the roots of

RN (x). Finally, setting 2t = 2 + x in (3.46) yields

Um+1(t) + Um−1(t) = 2tUm(t), ∀m ∈ N
∗, U−1 = 0, U0(x) = 1 (3.48)

This defines the recurrence equation for the Chebyschev polynomials of 2nd kind [79]:

Um(t) := (m+ 1)2F1(−m, m+ 2;
3

2
;
1− t

2
), ∀m ∈ N, (3.49)

where 2F1 denotes the hypergeometric function. Note that the Um(x)’s are a particular

family of Jacobi polynomials [79] Pα,β
n (x), Um(t) = P

1
2
, 1
2

m (t)

P
1
2
, 1
2

m (1)
.

Putting all together, we can write

Rm(x) = f(x)Um

(
2 + x

2

)
, ∀m ∈ N, (3.50)

where the overall function f(x) will be determined in a while so that (3.41) holds true.

The eigenvalues of JN
ml and therefore GN

ml are now entirely determined by the roots of

UN (t). These9 are given by tNk = cos( (k+1)π
N+1 ), k = 0, 2, . . . , N − 1. Then, the eigenvalues

for the kinetic operator GN
ml are

µ2λN
k = 2µ2

(
1− cos

(
(k + 1)π

N + 1

))
, k ∈ {0, 2, . . . , N − 1}, (3.51)

8One more intuitive way to obtain the recurrence equation is to compute the secular equation for the

matrix Gml (3.34) when m = 0, m ≤ 1, m ≤ 2,. . . Calling DN (x), N = m + 1, the secular equation,

one observes by induction that DN+1(x) + DN−1(x) = 2xDN (x) and in particular D1 = 2 − x, D2(x) =

(2− x)D1(x)− 1, D3(x) = (2− x)D2(x)−D1 with D0 = 1.
9 Recall first that, for any N ∈ N, a Chebyshev polynomial of 2nd kind UN (t) has N different simple

roots in [−1, 1].
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and satisfy for finite N

0 < µ2λk
N < 4µ2. (3.52)

Summarizing our results, we have obtained:

RN
mq = f(N, q)Um(tNq ) = f(N, q)

sin[π(m+1)(q+1)
N+1 ]

sin[π(q+1)
N+1 ]

, 0 ≤ m, q ≤ N − 1 (3.53)

where we used Um(cos θ) = sin((m+1)θ)
sin θ .

To determine the normalization function f(N, q), we first obtain from eq. (3.41)

N−1∑

p=0

RN
pmRN

pl = f(m,N)f(l, N)

N−1∑

p=0

Up(t
N
m)Up(t

N
l ). (3.54)

The sum in the r.h.s. of (3.54) can be computed by adapting the Christoffel-Darboux

formula [78] to the present situation. Indeed, multiplying the recurrence equation (3.38)

for pm(x) by pm(y) as well as the recurence equation (3.38) for pm(y) by pm(x) and summing

both, we obtain for any x, y ∈ [−1, 1].

(x− y)

N−1∑

k=0

pk(x)pk(y) = pN (x)pN−1(y)− pN−1(x)pN (y), x 6= y, (3.55)

N−1∑

k=0

(pk(x))
2 = p′N (x)pN−1(x)− p′N−1(x)pN (x), (3.56)

where f ′(x) denotes the derivative w.r.t. x. Applying these relations to the Um’s, (3.55)

implies that (3.54) automatically vanishes whenever m 6= l in view of UN (tNq ) = 0. When

m = l, we compute

N−1∑

p=0

(Up(t
N
m))2 = U ′

N (tNm)UN−1(t
N
m) =

N + 1

((tNm)2 − 1)
(TN+1(t

N
m)UN−1(t

N
m)), (3.57)

where the second equality in (3.57) stems from the relation

U ′
N (x) =

(N + 1)TN+1(x)− xUN (x)

x2 − 1
, (3.58)

and TN (x) denotes the N -th order Chebyshev polynomial of first kind [79]. By further

using TN (cos θ) = cos(Nθ) in (3.57), we finally arrive at

N−1∑

p=0

(Up(t
N
m))2 = (−1)m(N + 1)

sin[N(m+1)π
N+1 ]

sin3[ (m+1)π
N+1 ]

. (3.59)

One easily verifies that the r.h.s. of (3.59) is actually positive for any value of m ∈ N.

We finally obtain

RN
pm = f(N,m)Up(t

N
m), (3.60)

f(N,m) =

(
(−1)m(N + 1)

sin[N(m+1)π
N+1 ]

sin3[ (m+1)π
N+1 ]

)− 1

2

, 0 ≤ p,m ≤ N − 1. (3.61)
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Once we have the polynomials which diagonalize the kinetic term we can invert for the

propagator. Keeping in mind eqs. (3.30) and (3.34), we set Pmn := Pm,α−n;α−l,l where

α = m+ n = k + l. It follows from the above that for fixed N the inverse of GN
mn denoted

by PN
mn can be written as

PN
mn =

1

2µ2

N−1∑

p=0

f(N, p)2Um(tNp )
1

1− tNp
Un(t

N
p ). (3.62)

Taking the limit N → ∞, the comparison of the relation δml =
∑

pRN
mpRN

lp where the

RN
mn’s are given by (3.60), (3.61) to the orthogonality relation among the Chebyshev poly-

nomials Un ∫ 1

−1
dµ(x) Um(x)Un(x) =

π

2
δmn, dµ(x) = dx

√
1− x2 (3.63)

permits one to trade the factor f(N, p)2 (see (3.61)) in PN
mn (3.62) for the compactly

supported integration measure dµ(x) (3.63) in (3.62).

To conclude this paragraph, we obtain the following rather simple expression for the

inverse of the kinetic operator (3.34)

Pmn;kl = δm+n,k+lPml,

Pml =
1

πµ2

∫ 1

−1
dx

√
1 + x

1− x
Um(x)Ul(x). (3.64)

It can be easily checked that (3.30) is verified by combining (3.64) with (3.32) and using

the orthogonality relation (3.63). Notice that the integral in (3.64) is well-defined leading

to finite Pml when m and l are finite.

3.2.3 Computation of the 1-point function

Finally, let us consider briefly the 1-point function generated by the cubic vertex. The

computation is standard. Supplementing S[φ] (3.26) by a source term
∑

m,n φmnJnm, the

perturbative expansion can be obtained from the generating functional of the connected

correlation functions W [J ] where

Z[J ] =

∫ ∏

m,n

dφmne
−S[φ]−

∑
m,n φmnJnm = eW [J ] (3.65)

W [J ] = lnZ(0) +W0[J ] + ln
(
1 + e−W0[J ](e−Sint(

δ
δJ

) − 1)eW0[J ]
)

(3.66)

W0[J ] =
1

2

∑

m,n,k,l

JmnPmn;klJkl (3.67)

and Sint[φ] collects the interaction terms of the action, which can be read off from eq. (3.28),

evaluated at Ω2 = 1
3 . The propagator Pmn;kl is given by eq. (3.64) and the Jnm’s are

sources. Expanding the logarithm as a formal series yields all the connected diagrams

while the effective action Γ[φ] is obtained from W [J ] by Legendre transform

Γ[φ] =
∑

m,n

φmnJnm −W [J ], φmn =
δW [J ]

δJnm
|J=0. (3.68)

– 16 –



J
H
E
P
0
9
(
2
0
1
3
)
0
5
1

From the formal expansion of (3.66) we obtain

W 1[J ] =
∑

vmn

(
(Plm;kl + Pkl;lm)(Pnk;cdJcd + JabPab;nk)

+(Plm;nk + Pnk;lm)(Pkl;cdJcd + JabPab;kl)

+(Pkl;nk + Pnk;kl)(Plm;cdJcd + JabPab;lm)
)
, (3.69)

with σ = i23
√
3µ2 and

vmn = δm+1,n − δm,n+1. (3.70)

Combining (3.69) with the relevant term in the expansion solving the 2nd equation in (3.68)

given by

Jmn =
∑

k,l

Gnm;klφkl + . . . . (3.71)

where Gnm;kl is given by (3.32), we obtain

Γ1[φ] :=
∑

r,s

Γ1
rsφrs =

σ

2

∑
vmn

(
(Plm;kl + Pkl;lm)(Pnk;cdGdc;rs +Gba;rsPab;nk)

+(Plm;nk + Pnk;lm)(Pkl;cdGdc;rs +Gba;rsPab;kl) (3.72)

+(Pkl;nk + Pnk;kl)(Plm;cdGdc;rs +Gba;rsPab;lm)

)
φrs.

Now combining (3.73) with (3.64) and

(Plm;cdGdc;rs +Gba;rsPab;lm)φrs = 2φml (3.73)

we can write Γ1[φ] into the form

Γ1[φ] = σ
∑

m,n,k,l

vmn

(
δmk(Pll + Pkm)φkn + δnl(Pkk + Pnl)φml

+(δm+l,n+kPlk + δn+k,m+lPnm)φlk

)
. (3.74)

By using the Kronecker delta symbols, Γ1[φ] can be cast into the form

Γ1[φ] = σ
∑

(2Pll − Pl,l+1 + Pkk + Pk+1,k+1 − Pk,k+1)(φk,k+1 − φk+1,k) (3.75)

It is divergent, with typical divergence

Γ1
k,k+1 ∼

∑

l

(2Pll − Pl,l+1). (3.76)

This signals likely that the vacuum (3.31) is not stable against quantum fluctuations.

Indeed, from the structure of Γ1[φ] as in eq. (3.75), it seems difficult (if possible at all)

to absorb the divergences by the natural set of counterterms depending on two arbitrary

parameters that are generated from the action (3.8) (when Ω2 = 1
3) and further expanded

around the vacuum, akin to the linear-sigma model.
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4 Discussion and conclusion

A lot of information can be extracted from the propagator whose fate, and consequently the

fate of the corresponding matrix model, is completely determined by the chosen vacuum.

The UV and IR region can be identified from the spectrum of the kinetic operator. First,

by taking the limit N → ∞ of the spectrum given in (3.51), one observes that

lim
N→∞

µ2λN
k=0 = 0, lim

N→∞
µ2λN

k=N−1 = 4µ2. (4.1)

Then, from an overall rescaling of the initial action by a factor g−2 with mass dimension

[g] = 1 so that [µ2] = 2 (and [A] = 1), it is natural to define the UV region as the one

corresponding to large indices while the IR domain corresponds naturally to low indices,

say, m = 0, 1.

Next, we observe that the operator on ℓ2(N) defined by the matrix elements Pml leads to

a propagator which does not decay at large separation |m− l|. This can be already realized

by expressing the matrix model in the field variables diagonalizing the kinetic operator, i.e

the propagation base in the physics language. From (3.51) and taking the large N limit, one

readily finds that the eigenvalues of the propagator µ−2λ∞
k increase as the index k increases

which can be interpreted as signaling a lack of UV decay for the propagator. This can be

verified directly on (3.64) by computing numerically Pml. Unsuppressed correlations Pml

may exist at large separation |m − l|. This is to be compared with the situation for the

Grosse-Wulkenhaar model for which there is a suppression of the correlations at large

separation which then mimics a kind a quasi-locality, and was one of the main ingredients

leading to the renormalizability of the model. Such a behaviour indicates that the matrix

model under consideration, at the value Ω = 1
3 is highly non local.

We note that the interpretation of the action for the matrix model as the spectral

action related to a finite volume spectral triple is not obvious, if possible at all. Such

a triple, as introduced in [49], is characterized by a self-adjoint Dirac operator D with

compact resolvent operator whereas the defining algebra of the triple is not unital. In the

present case, one should have D2 = G (G being the kinetic operator) from the spectral

action computation. But G is bounded, so that G+ I is also bounded. But then, (G+ I)−1

is not compact. Hence, the resolvent operator is not compact.

The lesson to be drawn is that requiring the propagator to decay at large indices, i.e

in the UV, singles out one specific family of vacua among those symmetric vacua classified

in [53]. Let us analyze this point in some detail. In [53] the symmetric vacua have been

classified according to

0 < Ω2 <
1

3
, u1m = α(rm − r−m)− κ

4Ω2
(1− r−m), α ≥ 0, r > 1 (4.2)

1

3
< Ω2 < 1 , u2m = − κ

4Ω2
(1− r−m), κ ≤ 0, r ≤ −1 (4.3)

Ω2 = 1 , u3m = −κ

4
(1− (−1)−m), κ ≤ 0 (4.4)

with

r =
1 + Ω2 +

√
8Ω2(1− Ω2)

1− 3Ω2
, (4.5)
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(am =
√
um and t the arbitrary phase set to zero as in the previous section), besides the

solution (3.31) for Ω2 = 1
3 that we have analyzed in detail, which leads to a propagator

with an unsuitable decay. A similar conclusion applies to the solutions (4.3) and (4.4).

Indeed, one observes that limm→∞ |u2m| = |κ|
4Ω2 and limm→∞ |u3m| ≤ |κ|

2 . In view of (3.29),

this corresponds to a bounded self-adjoint operator. Thus, the real spectrum, Spec(G),

is a compact subset of [−||G||, ||G||]. This should not give rise to a decaying propagator.

This observation does not apply to (4.2) for which the kinetic operator is unbounded, in

view of √
u1m = a1m ∼ r

m
2 , m → ∞. (4.6)

Then, the corresponding propagator is likely to have a suitable decay behaviour. This

altogether singles out the family of symmetric vacua defined by (4.2). However, eq. (4.6)

indicates that the vacuum defined by eq. (4.2) does not belong to the Moyal algebra, i.e

the multiplier algebra recalled in subsection 2.1. This would exclude the vacuum solution

eq. (4.2) if one insists to preserve the present definition of R2
θ. Thus, one should conclude

that the interpretation of Moyal gauge theory as a matrix model is problematic, at least

when using symmetric vacua. However, enlarging R
2
θ to a new set including the solu-

tion (4.2) provides a way to overcome this obstruction. We think that this is an interesting

possibility that deserves further investigations.

We notice that there is a formal similarity between the classical action (3.8) and the

action describing the 6-vertex model [75]. However, expanding (3.8) around a non-zero

vacuum gives rise to a different model (the 6-vertex model corresponds to a zero vacuum).

Once the vacuum (background) is chosen, here among the symmetric non-trivial vacua of

the classical action, the kinetic part is entirely determined, up to gauge fixing, by the part

of the expanded action which is quadratic in the fluctuations. The kinetic part therefore

depends on the vacuum solution chosen, e.g. (3.12).

We have studied a class of noncommutative gauge theories elaborated in [44, 45] on

2-d Moyal space from the viewpoint of matrix models. We have explored some related

properties beyond the classical order. Expanding the action around symmetric vacua clas-

sified in [53] generates non local matrix models with polynomial interaction terms. For a

particular symmetric vacuum, we have shown that the kinetic operator is a Jacobi oper-

ator. The computation of the propagator has been carried out. The resulting propagator

can be expressed in terms of Chebyschev polynomials of second kind. We have shown

that non vanishing correlations exist at large separations. For such particular vacuum a

divergent 1-point function appears that seems difficult to absorb by the set of symmetric

counterterms, signaling possibly a loss of symmetry at the quantum level. The quantum

stability of the vacuum is briefly discussed.

From general spectral considerations on the kinetic operators stemming from the other

classes of vacua determined in [53], we have singled out a particular class of symmetric

vacua that should lead to fast decaying propagators at large separation corresponding

to quasi-local matrix models. The latter class of vacua is an interesting possibility to

obtain consistent (quantum) matrix models from the present scheme and deserves further

investigations. In particular, one should determine whether or not these vacuum solutions
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can be reconciled reasonably with algebraic structures related to Moyal noncommutative

geometry and compute the propagator from a non Jacobi kinetic operator.
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A Vertex functions at Ω = 0

It is convenient to define p ∧ k ≡ pµΘµνkν and p̃µ = Θµνpν . We list below the vertex

functions10 for the Yang-Mills theory R
2
θ (Ω = 0) in the Landau gauge. The propagator

for the Aµ is Gµν(p) = δµν/p
2. The ghost propagator is Gcc(p) = 1/p2.

V 3
αβγ(k1, k2, k3) = −i2 sin

(
k1 ∧ k2

2

)[
(k2 − k1)γδαβ + (k1 − k3)βδαγ + (k3 − k2)αδβγ

]
,

(A.1)

V 4
αβγδ(k1, k2, k3, k4) = −4

[
(δαγδβδ − δαδδβγ) sin

(
k1 ∧ k2

2

)
sin

(
k3 ∧ k4

2

)

+(δαβδγδ − δαγδβδ) sin

(
k1 ∧ k4

2

)
sin

(
k2 ∧ k3

2

)

+
(
δαδδβγ − δαβδγδ

)
sin

(
k3 ∧ k1

2

)
sin

(
k2 ∧ k4

2

)]
,

Vccµ(k1, k2, k3) = i2k1µ sin

(
k2 ∧ k3

2

)
. (A.2)

The IR behaviour of the correlation functions can be conveniently controled by using the

integrals given in [46, 47]:

JN (p̃) ≡
∫

dDk

(2π)D
eikp̃

(k2 +m2)N
= aN,DMN−D

2

(m|p̃|), (A.3)

JN,µν(p̃) ≡
∫

dDk

(2π)D
kµkνe

ikp̃

(k2 +m2)N
= aN,D

(
δµνMN−1−D

2

(m|p̃|)− p̃µp̃νMN−2−D
2

(m|p̃|)
)

, (A.4)

where

aN,D =
2−(D

2
+N−1)

Γ(N)π
D
2

; MQ(m|p̃|) = 1

(m2)Q
(m|p̃|)QKQ(m|p̃|) (A.5)

in which KQ(z) is the modified second kind Bessel function of order Q ∈ Z. Recall that

one has

K−Q(z) = KQ(z); lim
z→0

zνKν(z) = 2ν−1Γ(ν), ν > 0 (A.6)

10Momentum conservation is understood. All the momenta are incoming.
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so that the following asymptotic expansion holds true:

M−Q(m|p̃|) ∼ 2Q−1Γ(Q)

p̃2Q
, Q > 0. (A.7)

B The matrix base

The matrix base used in the section 3 is the family of Wigner transition eigenfunctions of

the harmonic oscillator [68, 69] {fmn(x)}m,n∈N ⊂ S which can be expressed as

fmn =
1

(m!n!θm+n)
1

2

z̄⋆m ⋆ f00 ⋆ z
⋆n (B.1)

with f00 = 2e−
1

θ
zz̄ and a⋆n := a ⋆ a ⋆ a ⋆ . . . ⋆ a (n times). Computing the star product we

get the explicit expression

fmn = 2(−1)n
√
n!m!z̄m−ne−

zz̄
2 L(m−n)

n (zz̄) (B.2)

with L
(m−n)
n the generalized Laguerre polynomials.

The following relations hold true

(fmn ⋆ fpq)(x) = δnpfmq(x),

∫
d2xfmn(x) = 2πθδmn, f †

mn(x) = fnm(x), ∀m,n, p, q ∈ N

(B.3)

Any element of the R
2
θ can be written as a =

∑
m,n amnfmn so that the ⋆-product between

2 elements of R2
θ is mapped into a product of two (infinite) matrices, namely (a ⋆ b)(x) =∑

m,n cmnfmn(x), cmn =
∑

p ampbpn. Further useful formulas are

z ⋆ z̄⋆n ⋆ f00 = nθz̄⋆(n−1) ⋆ f00, f00 ⋆ z
⋆n ⋆ z̄ = nθf00 ⋆ z

⋆(n−1), n ≥ 1 (B.4)

while both r.h.s. are zero for n = 0.
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