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Abstract: We show that the inconsistency between the spectral Standard Model and

the experimental value of the Higgs mass is resolved by the presence of a real scalar field

strongly coupled to the Higgs field. This scalar field was already present in the spectral

model and we wrongly neglected it in our previous computations. It was shown recently

by several authors, independently of the spectral approach, that such a strongly coupled

scalar field stabilizes the Standard Model up to unification scale in spite of the low value of

the Higgs mass. In this letter we show that the noncommutative neutral singlet modifies

substantially the RG analysis, invalidates our previous prediction of Higgs mass in the

range 160–180 Gev, and restores the consistency of the noncommutative geometric model

with the low Higgs mass.
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1 Introduction

The noncommutative geometry framework representing space-time as a product of a con-

tinuous four-dimensional manifold by a finite discrete space has provided a geometric ex-

planation [1] for the intricate complexity of the standard model of particle physics coupled

to gravity, including all its fine features such as the full Higgs sector whose geometric origin

then becomes obvious. Despite the many successes of this noncommutative model, one of

its predictions coming from using the spectral action at unification scale concerning the

Higgs mass, turns out to be contradicted by recent experimental results. At some time,

it was indeed claimed that the Higgs mass must lie in the range of 160 to 180 Gev. Now

that experimental evidence shows that the Higgs mass is of the order of 125GeV, there

are two difficulties that the spectral model needs to resolve in order to survive as a model

of gravity unified with the Standard model in its actual experimentally validated form.

The above discrepancy between 125 and 160− 180 Gev could be brushed away due to the

enormous extrapolation involved in running down from unification scale of 1017 Gev to the

electroweak scale, arguing that the order of magnitude of the mass is correct while getting

the precise value was too much to ask. But a second difficulty is much more problematic:

since such a low mass of the Higgs creates an instability in the Higgs potential (where the

quartic coupling of the Higgs becomes negative at high energy) thus ruling out the “big

desert” hypothesis which we were using, and invalidating the positivity of the coupling at

unification which is an essential prediction of the spectral action.

The main result of this paper is that the full spectral action as computed in our previous

paper [2], published in 2010, in fact already contains the solution to this second difficulty

and at the same time shows the compatibility of the spectral model with the above low

experimental Higgs mass. The fact is that in our previous prediction of the Higgs mass,

we assumed, incorrectly, that the additional real singlet field σ responsible for the neutrino

Majorana masses [2] would not interfere much with the Higgs mass prediction and could

be ignored. We became aware of the non-trivial role played by such a scalar field when we

realized that it has the same structure of couplings as in the papers by various authors [3–7]

who proposed to solve the above instability problem of the Standard Model precisely by
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adding a new scalar field strongly coupled to the Higgs. Their result shows that, adding

this new scalar field, everything would be fine, with a Higgs of 125 Gev, for SM at high

energies. It turns out that by miracle their proposed couplings are exactly the same as the

ones which were delivered before by the spectral action in [2].

2 Higgs-singlet scalar potential

The spectral action for Standard Model was calculated for a cutoff function starting with

the Dirac operator of the corresponding noncommutative space, using heat kernel methods.

The part involving the Higgs and singlet fields is given by [2]

− 2

π2
f2Λ

2

∫

d4x
√
g

(

1

2
aHH +

1

4
c σ2

)

+
1

2π2
f0

∫

d4x
√
g

(

b
(

HH
)2

+ a |∇µHa|2 + 2eHH σ2 +
1

2
d σ4 +

1

2
c (∂µσ)

2

)

(2.1)

where H is the Higgs doublet and σ the real scalar singlet associated with the Majorana

mass of the right-handed neutrino. The coefficients f0 and f2 are related to the spectral

function by the relations f0 = f (0) and f2 =

∫

∞

0

f (u) du. The coefficients a, b, c, d and

e are related to the fermionic Yukawa couplings and Majorana mass matrix. To simplify

the analysis, we shall work in the rough approximation where the Yukawa couplings of the

top quark ku and the neutrino (both Dirac kν and Majorana kνR ) are dominant and in

addition we introduce the dimensionless constant n defined by the relation

kν =
√
nku (2.2)

In this approximation we have

a = |ku|2 (n+ 3) (2.3)

b = |ku|4 (n2 + 3) (2.4)

c = |kνR |2 (2.5)

d = |kνR |4 (2.6)

e = n |kνR |2 |ku|2 (2.7)

It should be clear that there is some remaining flexibility especially in the Majorana matrix

kνR for the general treatment involving in full the three families of fermions. We work in

the unitary gauge where three scalars of the complex Higgs doublet H are gauged away

allowing us to set the field H =

(

0

h

)

where h is real. It is more transparent to work with

the rescaled fields

h = |ku|h, σ = |kνR |σ (2.8)

so that the action for scalar fields reduces to the form
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(2.9)
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The gauge fields kinetic terms are normalized by setting the coefficient f0 to be f0
2π2 = 1

4g2
.

The scalar fields kinetic terms are then normalized by rescaling

h → h

√

2

n+ 3
g (2.10)

σ → 2σg (2.11)

so that the Higgs-singlet potential reduces to

V =
1

4

(

λhh
4
+ 2λhσh

2
σ2 + λσσ

4
)

− 2g2

π2
f2Λ

2
(

h
2
+ σ2

)

(2.12)

where

λh =
n2 + 3

(n+ 3)2
(

4g2
)

(2.13)

λhσ =
2n

n+ 3

(

4g2
)

(2.14)

λσ = 2
(

4g2
)

(2.15)

The singlet has a strong coupling λσ = 8g2. The coupling λhσ vanishes for n = 0 and

increases to 8g2 as n → ∞. The coupling λh decreases from 4
3
g2 to g2 for n varying from

0 to 1 and increases again to 4g2 for n → ∞.

3 Running the initial conditions for the model with cutoff function

Writing the RG equations for the top quark, neutrino, Higgs and singlet quartic couplings

we have [8–12]

dkt

dt
=
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32π2
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dλσ

dt
=

1

16π2

(

8λ2
hσ + 18λ2

σ

)

(3.5)

To run these equations, we have to run first the gauge couplings α1, α2 and α3

βgi = (4π)−2 bi g
3
i , with b = (

41

6
,−19

6
,−7),
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so that the inverse couplings are linear functions of u = log Λ
MZ

as follows

α−1
1 (Λ) = α−1

1 (MZ)−
41

12π
log

Λ

MZ

α−1
2 (Λ) = α−1

2 (MZ) +
19

12π
log

Λ

MZ

α−1
3 (Λ) = α−1

3 (MZ) +
42

12π
log

Λ

MZ

where MZ is the mass of the Z0 vector boson.

It is known that the predicted unification of the coupling constants does not hold

exactly. The non meeting of the three gauge couplings, to within few percents, is an

indication that there is some missing ingredient in our considerations, which may be related

to the use of the cutoff function in the asymptotic heat kernel expansion of the spectral

action [14]. There are some indications that a slight deviation from the cutoff function

would alter the relation
5

3
g21 = g22 = g23 (3.6)

which gets modified to depend on the slope of the derivative of the spectral function.

We will not pursue this issue in what follows, and assume that there is some uncertainty

in the actual value of the unification scale, so that the variable uunif = log Λunif

MZ
will be

tested in the range (25, 35) corresponding to unification scale s in the range mZe
25 ∼

6.55245× 1012GeV to mZe
35 ∼ 1.44327× 1017GeV .

The RG equations are run down with initial conditions at unification scale for the top

quark coupling kt, the neutrino coupling kν =
√
nkt, the gauge couplings, and the quartic

scalar couplings as prescribed by equations (2.13), (2.14), (2.15).

The effective top quark Yukawa coupling is given at unification scale by (compare

with [13])

kt(uunif) =

√

4

n+ 3
g (3.7)

so the top quark mass at low scale is

mt (MZ) = kt (0)
246√
2
= 173.94 kt (0) Gev (3.8)

which should be compared to the experimental value which is reached for kt (MZ) = 0.99.

We know that the quartic couplings λh, λhσ and λσ all run, and since they are di-

mensionless we can trust their running and obtain their value at low scale (u = 0) from

the initial condition at unification scale uunif . On the other hand, the mass terms give

quadratic divergences, and their running cannot be trusted. We write the potential in

the form

V = −1

2

(

µ2h
2
+ ν2σ2

)

+
1

4

(

h
4
λh + 2h

2
σ2λhσ + σ4λσ

)

(3.9)

The minimum is obtained for
〈

h
2
〉

= v2,
〈

σ2
〉

= w2 where

− µ2 + v̄2λh + w̄2λhσ = 0, −ν2 + v̄2λhσ + w̄2λσ = 0. (3.10)

– 4 –



J
H
E
P
0
9
(
2
0
1
2
)
1
0
4

5 10 15 20 25 30

0.5

1.0

1.5

2.0

ΛΣ

ΛhΣ

Λh

Couplings

Figure 1. Running of the three parameters λh, λhσ and λσ.

We determine the mass terms µ2 and ν2 at low scale using this equation so that v2 is of

order 102 Gev and w2 is of order 1011 Gev. We will not worry about this fine tuning, which

is related to the problem of quadratic divergencies, but note that the dilaton field [16]

which replaces the scale Λ could be used to technically solve this problem as it connects

the different subalgebras of the discrete space. We use the approximation v2 ≪ w2 which

is also made use of to get the see-saw mechanism. To find the masses, we expand the scalar

fields around the vev’s

h = v + φ, σ = w + τ (3.11)

and use (3.10) to expand the potential (3.9) up to terms of third order in φ̄, τ̄ as

V ∼
(

−1

4
v̄4λh −

1

2
v̄2w̄2λhσ − 1

4
w̄4λσ

)

+ v̄2φ̄2λh + 2v̄w̄τ̄ φ̄λhσ + w̄2τ̄2λσ (3.12)

This expansion gives the mass terms for the fields φ and τ in the form of the mass matrix

1

2

(

φ τ
)

M2

(

φ

τ

)

(3.13)

where

M2 = 2

(

λhv
2 λhσvw

λhσvw λσw
2

)

(3.14)

The eigenvalues of the mass matrix are

m2
± = λhv

2 + λσw
2 ±

√

(

λhv
2 − λσw

2
)2

+ 4λ2
hσv

2w2 (3.15)
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With the approximation v2 ≪ w2 we have

m2
+ ≃ 2λσw

2 + 2
λ2
hσ

λσ
v2 (3.16)

m2
− ≃ 2λhv

2

(

1− λ2
hσ

λhλσ

)

(3.17)

Thus the Higgs mass is reduced by a factor of

√

(

1− λ2

hσ

λhλσ

)

. This factor will be of the

order .78 (at low scale) as shown in figure 3.

The condition to have a stable Higgs mass at 125 Gev is that the determinant of the

mass matrix is positive

λ2
hσ < λhλσ (3.18)

and we check numerically that it holds at low scale as can be seen in figure 3. The

physical states are mixtures of the fields h and σ but with very small mixing of

order of v
w
= O

(

10−9
)

.

Thus, we vary the parameter n and the unification scale uunif . The physical masses

of the top and Higgs fields are then determined from the values of the couplings at low

energies (for u = 0) by the formulas

mt (0) = kt (0)
246√
2

(3.19)

mh (0) = 246

√

2λh (0)

(

1− λ2
hσ(0)

λh(0)λσ(0)

)

(3.20)

Numerical studies of this system of one loop RG equations in the parameter space (n, u)

reveal that a Higgs mass of around 125.5 Gev is reached on an almost straight curve as

shown as the thick dotted line in figure 2. This shows that one can find a suitable value

n(u) of the free parameter n for any unification scale u in the range u ∈ (25, 35) (which

corresponds to the interval 6.5 × 1012 − 1.4 × 1017GeV ) such that the Higgs mass has

the correct experimental value. We thus obtain a one parameter family, parameterized by

u ∈ (25, 35) of consistent theories. One can check numerically that for all of them the three

couplings λh, λhσ, λσ remain positive in the running from the unification scale to the low

scale and that moreover the inequality (3.18) holds at low scale (figure 3).

The numerical study also shows that the top quark mass obtained is a few percents

lower than the experimental value. It is known, however, for the two loop equations of the

standard model, without the singlet, that at the two loop level the quartic Higgs coupling

gets a very small correction, while the top quark gets a sizable correction which is 16% of

the one loop QCD corrections, which are not negligible, and which pushes the top quark

mass to be higher at low energies [4, 15]. We thus expect, once the two loop RG equations

are worked out in the presence of a singlet, to improve the agreement of our theory with

the experimental values for both the top quark mass and the Higgs mass.

– 6 –
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Figure 2. Higgs mass as a function of n and of the unification scale u ∈ (25, 35), the thick doted line

is where mH = 125.5 Gev. The thin dotted lines correspond to constant values of mH as indicated.

4 Conclusions

Now that the Brout-Englert-Higgs [17–20] field has been discovered experimentally, it begs

for a conceptual explanation of the Lagrangian of the Standard Model coupled to gravity,

which would unify its juxtaposed fragmented pieces. The spectral model provides such an

explanation based on two ingredients:

• An extension of the geometric paradigm treating the continuum and the discrete on

the same footing.

• A principle of utmost simplicity, the spectral action principle, asserting that the

action functional is a spectral function of the line element.

The model of space-time given by the product of a continuous four dimensional manifold

times a noncommutative discrete space has many advantages. It allowed us to obtain the

Standard Model with the correct representation for the 16 fermions, the correct gauge fields
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Figure 3. Correction factor at scale u = 0 as a function of the parameter of the theory.

and a Higgs doublet associated with the discrete dimension, thus providing a geometric

origin for the Higgs field as a gauge field associated to the finite space. While in the

first stage of development of the model, the finite space was introduced by hand, we later

classified [1] these finite spaces. We found that there are severe restrictions on its form,

singling out, almost uniquely, the symmetries of the standard model [1]. A classification of

finite spaces consistent with the axioms of noncommutative geometry and which avoids the

fermion doubling problem in Euclidean spaces showed that the dimension of the Hilbert

space of Fermions is the square of an even integer. Among very few choices for the lowest

dimensional case we obtained the algebra A = M2(H)⊕M4(C) where H is the skew field of

quaternions. This determines the number of fermions to be 42 = 16, and thus confirms the

existence of the right-handed neutrino. In addition to the Higgs field, there exists a neutral

singlet field, whose vev gives Majorana mass to the right-handed neutrino. The existence

of the singlet is responsible for the breakdown of the symmetry of the discrete space from

H⊕H ⊕ M4 (C) to C⊕H ⊕ M3 (C) and thus plays a central role. The noncommutative

approach predicts all the fermionic and bosonic spectrum of the standard model, and

the correct representations. One can also take as a prediction that there are no other

particles to be discovered, except for the three scalar fields: the Higgs field, the singlet

field and the dilaton field [16]. The dynamics of the fields are governed by the interactions

obtained from the spectral action principle, which is based on using a function of the Dirac

operator defining the metric of the noncommutative space. Despite the many successes of

the noncommutative model, one of the predictions concerning the Higgs mass turned out

to be problematic. At some time, it was claimed that the Higgs mass must lie in the range

of 160 to 180 Gev. This claim was made under the assumption that the singlet field was

– 8 –



J
H
E
P
0
9
(
2
0
1
2
)
1
0
4

integrated out, and replaced by its vev. This assumption turns out to be simplistic. In

fact the singlet responsible for the right-handed neutrino mass gets mixed in a non-trivial

way with the Higgs field. The potential was derived and given in full detail in our earlier

work [2]. Recently and in more than one work [3–6], it was shown that adding a singlet

(real or complex) scalar field, whose potential mixes with the Higgs field, has important

consequences. It turned out that the RG equations of the combined Higgs-singlet system

solves the stabilization problem faced with a light Higgs field of the order of 125 Gev

avoiding making the Higgs quartic coupling negative at very high energies. Remarkably,

the form of the Higgs-singlet potential proposed recently agree with the one we derived

before from the spectral action [2]. The quartic couplings are determined at unification

scale in terms of the gauge and Yukawa couplings. Running these relations down with the

scale, give values consistent with the present data for the Higgs and top quark mass.

In this note we have analyzed the Higgs-singlet potential resulting from the spectral

action with a cutoff function. We have shown that the quartic Higgs couplings of the Higgs

doublet and singlet get mixed, resulting in shifting the masses of these two fields. One

field, mostly composed of the Higgs get shifted down, and the one mostly made of sigma

get shifted up. We have shown that it is possible to have a choice of initial conditions,

consistent with the low value of around 125 Gev for the Higgs mass and 170 Gev for the

top quark mass.

The lesson we learned from this analysis is that we have to take all the fields of

the noncommutative spectral model seriously, without making assumptions not backed

up by valid analysis, especially because of the almost uniqueness of the Standard Model

in the noncommutative setting. In this respect this should motivate us to address the

remaining questions in the noncommutative Standard Model. In particular it is important

to resolve the issue of providing a way to make the three gauge couplings meet at some

unification scale. There are other important questions to study in order to provide a

geometric framework for the Yukawa couplings for all fermions, as well as an explanation

for the number of families.
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