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1 Introduction

A promising method for studying the Higgs meson at the LHC involves exclusive dou-

ble diffractive Higgs production in forward proton-proton scattering. The protons scatter

through very small angles with large rapidity gaps separating the Higgs in the central

region,

p(k1) + p(k2) → p(k3) +H(q) + p(k4) . (1.1)

The Higgs subsequently decays into large transverse momentum fragments. Although this

represents a small fraction of the total cross section, the exclusive channel should provide

an exceptional signal to background discrimination by constraining the Higgs mass both

to the energy of decay fragments and to the energy lost to the forward protons [1]. Relax-

ing the kinematics to allow for inclusive double diffraction may also be useful, where one

or both of the nucleons are diffractively excited; we will defer these extensions to future

studies. While double diffraction is very unlikely to be a discovery channel, it may play a

useful role in determining properties of the Higgs when and if it is found.1

1On July 4, 2012, after this paper was originally posted, both CMS [2] and ATLAS [3] announced that

a particle with the apparent properties of the Higgs has been discovered at the LHC.
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Current phenomenological estimates of the diffractive Higgs production cross section

have generally followed two approaches: perturbative (weak coupling) vs confining (strong

coupling), or equivalently, in the Regge literature, often referred to as the “hard Pomeron”

vs “soft Pomeron” methods. Previous works on diffractive Higgs production include [1, 4–

12] (see for example [6] for additional related references). The Regge approach to high

energy scattering, although well motivated phenomenologically, has suffered in the past by

the lack of a precise theoretical underpinning. The advent of AdS/CFT has changed the

situation. In a holographic approach, the Pomeron is a well-defined theoretical concept.

The bare Pomeron is the leading planar term in the 1/Nc expansion at fixed ’t Hooft cou-

pling (λ ≡ g2Nc) which is then identified as the “AdS graviton” in the strong coupling [13]

limit (λ→ ∞).

In this paper, we apply String/Gauge Duality to double diffractive Higgs production

at central rapidity, formulated in terms of the fusion of two gravitons/Pomerons, first in-

troduced by Brower, Polchinski, Strassler and Tan (BPST) in [13]. High energy diffractive

collisions already have a rather extensive AdS/CFT literature to draw on. A key ob-

servation is AdS-transverse factorization that emerges at high energy as a universal

feature, applicable to scattering involving both particles and currents. This leads to an

AdS/Reggeon formulation with a few crucial phenomenological parameters which need to

be fixed experimentally. Consequently using the AdS factorization and by comparing dif-

ferent processes the parameters are overconstrained allowing one both to test the accuracy

of the framework and to give confidence to prediction when extended to new cross sections

such as diffractive Higgs production. A seminal paper by Strassler and Polchinski on deep

inelastic scattering [14] already introduced some of the results later elaborated in ref. [13]

for elastic scattering. For instance, for elastic scattering, the amplitude can be represented

schematically in a factorizable form (see eq. (2.5)),

A(s, t) = Φ13(t) ∗ K̃P (s, t) ∗ Φ24(t) , (1.2)

where the impact factors Φ13 and Φ24 represent two elastic vertex couplings to the exter-

nal particles, and K̃P is an universal BPST Pomeron kernel,2 with a characteristic power

behavior at large s≫ |t|,
K̃P ∼ sj0 . (1.3)

This “Pomeron intercept”, j0, lies in the range 1 < j0 < 2 and is a function of the ’t

Hooft coupling, g2Nc. The ∗-operator is defined explicitly by eq. (2.5) in section 2 below,

with the kernel expressed more explicitly as K̃P (s, t, z, z
′). It represents a convolution in

the radial coordinate in AdS or more generally, in geometric terms, a 3-d convolution in

transverse space, (x⊥, z), combining the conventional impact parameter x⊥, conjugate to

k⊥, and a 3rd radial coordinate, r ∼ 1/z of AdS5. There is also an extensive literature

on eikonal sum in AdS space [15–20]. In a recent paper by Brower, Djurić, Sarčević and

Tan, this approach is applied to give a reasonable account of the small-x contribution to

deep inelastic scattering [21]. Here one makes use of the universality property, eq. (1.2).

2Unlike the case of a graviton exchange in AdS, this Pomeron kernel contains both real and imaginary

parts.
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In moving from elastic to DIS, one simply replaces Φ13 in (1.2) by appropriate product of

propagators for external currents [14, 21]. The same formalism can be applied as well to

deeply virtual Compton scattering at small-x, as done recently by Costa and Djurić [22].3

By virtue of factorization in AdS space, the extension to double diffractive Higgs pro-

duction amplitude takes the form of

A(s, s1, s2, t1, t2) = Φ13(t1) ∗ K̃P (t1, s1) ∗ VH(s1s2/s, t1, t2) ∗ K̃P (s2, t2) ∗ Φ24(t2) . (1.4)

where we introduce the vertex VH for the Pomeron fusion to Higgs processes. (See eq. (3.16)

for the explicit form.) Thus diffractive Higgs production requires three building blocks:

Two from elastic scattering, the proton impact factors, Φij and the Pomeron kernel (or

Reggeon propagators), K̃P and a new one for Pomeron-Pomeron-Higgs vertex VH . Again

in a self consistent holographic approach to high energy scattering, one must work at large

but finite λ where the Pomeron intercept is of the order j0 ≃ 1.3. As in the case of elastic

scattering, the vertices will be evaluated at λ = ∞, unchanged from that calculated in the

supergravity limit. An explicit form for this amplitude will be given in section 4.3. Here

we focus on understanding the new vertex for Pomeron-Pomeron-Higgs fusion. However a

critical issue not addressed is the proton impact factors coupling to the Pomeron kernel.

Instead we assume a crude phenomenological modification of AdS wave function for a typ-

ical glueball state as discussed in section 5. For example we have found a surprisingly good

fits to HERA data for DIS at small x by approximating the proton as fixed wave-function

at the IR boundary. We anticipate the need to study this more seriously in the context of

global fits to many diffractive processes that are more sensitive probes of this AdS proton-

proton-Pomeron vertex but it may well be that to a first approximation that the proton

as seen by the Pomeron at large Nc does appear to be very much like a spherical glueball.

The key to our diffractive Higgs analysis is the recognition that, after integrating out

the heavy quark loop, an external Higgs field couples effectively to the gluon Lagrangian

density, Tr[F 2], which by the AdS/CFT correspondence is the source of the dilaton field at

the boundary of AdS space. Two particularly useful papers for our diffractive Higgs analy-

sis are one by Herzog, Paik, Strassler and Thompson [25] on holographic double diffractive

production of the scalar glueball and a second by Hong, Yoon and Strassler [26, 27] on the

AdS/CFT vector form factor. We will show that the double-diffractive Higgs production

vertex, VH , essentially involves Pomeron-Pomeron fusion producing a dilaton in the bulk

of AdS which propagates to the boundary via time-like AdS scalar form factor. However

for this mechanism to work an important new feature in double diffractive Higgs produc-

tion, not emphasized in [25], is the need for conformal breaking in the bulk of the AdS

space. Without this conformal breaking in the bulk, the leading order Pomeron-Pomeron

dilaton vertex would vanish. Of course QCD is not a scale invariant theory so any model

of AdS/QCD must include some deformation of the AdS geometry. When scale invari-

ance is broken, one expects a non-vanishing vev for the gluon Lagrangian density, F 2.

More generally, we will be interested in correlators involving a single F 2, together with

3The factorized form of the amplitude in AdS, but without the explicit form of the Pomeron kernel, has

also been applied to a subset of DIS data in [23, 24].
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any number of stress-energy tensor Tµν , e.g., 〈F 2(x)Tµν(y)Tµ′ν′(y
′) · · · 〉. These correlators

can be evaluated at strong coupling through the use of Witten diagrams involving the

graviton-graviton-dilaton coupling in the bulk. In a strictly conformal theory, scale in-

variance holds and all these correlators would vanish, corresponding to having a vanishing

graviton-graviton-dilaton vertex in the bulk. This would in turn lead to a vanishing Higgs

production vertex, VH = 0. That is, under such a scenario, central double-diffractive Higgs

production would be suppressed at high energy.

Symmetry breaking effect in AdS/CFT correspondence has been studied in the past

mostly using a near-boundary analysis [28–34]. For our present purpose, it is more prof-

itable to address scale invariance breaking in terms of Witten diagrams in the bulk. The

simplest model, which we will use as a first approximation, is to terminate the space in

the IR (small radial co-ordinate r) at a hardwall for confinement. The normalizable modes

are now discrete, giving rise to a glueball spectrum [35]. However since the bulk metric is

unaffected, scale breaking effect resides on the IR wall only; for a non-vanishing graviton-

graviton-dilaton coupling in the bulk, a second ad hoc conformal breaking mass parameter

must be introduced. This is not completely surprising due to the lack of a self-consistent

string dual for Nc = ∞ QCD. Fortunately it is possible to fix the overall Pomeron-Pomeron-

dilaton coupling by appealing to the AdS/CFT dictionary. In the gauge description, it is

fixed in terms of glueball matrix element of the trace of the energy momentum tensor,

following the argument of Kharzeev and Levin [1] as explained in section 5.2 and also in

appendix A. This matching condition between strong coupling and weak coupling is the

best we can do in lieu of solution to long sought dual string to large Nc QCD.

With the advent of the AdS/CFT correspondence, we are now able to understand

diffractive Higgs production starting from the extreme strong coupling limit. In a sense

our approach is closer to production by the soft Pomeron, which is also an intrinsically

non-perturbative treatment, used extensively by Donnachie and Landshoff and others to

parametrize high energy diffractive hadronic process [36–38]. However holographic dual

picture has the advantage of a unified soft and hard diffractive mechanism. In the extreme

strong coupling limit the AdS/CFT dictionary maps gauge theory into classical gravity in

Anti-de Sitter space. The leading correction to the strong coupling singularity [13, 15, 16]

for the the N = 4 Super Yang Mills is at

j0(λ) = 2− 2/
√
g2Nc , (1.5)

moving down from the bare graviton at J = 2, figure 1(b), where λ = g2Nc. Compar-

ing with weak coupling, we note that in weak coupling it starts instead as the two gluon

exchange at J = 2− 1 = 0 at λ = 0, figure 1(a), and summing the BFKL ladder moves to

j0(λ) = 1 + (ln 2/π2) g2Nc (1.6)

to first order [39–42]. To this order both weak and strong calculation are consequences of a

leading order in 1/Nc and conformal approximation to Yang Mills theory. Phenomenology

for high energy cross sections suggest j0 ≃ 1.3 for the bare Pomeron intercept, squarely in

the cross over region suggesting both weak and strong coupling method may be useful to

developing a reliable phenomenological ansatz for diffractive scattering in QCD.

– 4 –
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Figure 1. Comparison between the extreme weak and strong coupling Pomerons: (a) the 2 gluon

exchange Low-Nussinov Pomeron at g2Nc = 0 with intercept j0 = 1 and (b) the extreme strong

coupling Witten diagram of AdS-graviton “Pomeron” at g2Nc = ∞ with intercept j0 = 2.

We restrict ourselves in this paper primarily to the formulation of the holographic am-

plitude with a detailed analysis of the Pomeron-Pomeron Higgs production vertex in a dual

approach with scale invariance breaking. We discuss methods for developing a phenomenol-

ogy which allows the inclusion of the eikonal corrections as well as the calibration by other

diffractive processes for elastic scattering, deep inelastic scattering and tt̄ production. This

is not a full phenomenological analysis but a first critical ingredient. Although we present

how eikonal corrections can be incorporated, we will not provide here a full calculation.

Its evaluation requires new representations of the Pomeron kernel and numerical methods

that are under current development. In a subsequent paper, we will use this formalism to

perform a self-consistent analysis of elastic diffractive scattering, deep inelastic scattering

and central diffractive heavy quark jets. As in the weak coupling approach, this is crucial

to testing the AdS framework and fixing the strength of Pomeron interaction vertices [43].

Although encouraging studies of baryons in holographic QCD have been carried out [44–

48], reliable calculations for meson- and nucleon-Pomeron vertex functions remain elusive.

Full ab initio calculations are simply not possible at present even in the 1/Nc expansion

due to the lack of precise AdS dual to QCD. Instead we must model properties of QCD by

deforming the AdS5 background metric to model the non-conformal consequences of con-

finement and asymptotic freedom. Nonetheless consistency with a full range of diffractive

amplitudes is expected to lead to increasingly useful predictions.

This paper is organized as follows. In section 2, we give a narrative for diffractive scat-

tering and double diffractive Higgs production from the AdS/CFT strong coupling view

point. The goal is to itemize the assumptions leading to our analysis. In section 3, we

review the kinematics in the diffractive high energy limit and give details on the build-

ing blocks required to develop a model for holographic description of diffractive Higgs

production. Section 4 deals with the kinematic aspects of the new vertex VH for Pomeron-

Pomeron fusion into the dilaton, while leaving to appendix A a more detailed discussion on

– 5 –
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models with confinement deformation required for scale invariance breaking and for double-

diffractive Higgs production. Section 5 presents the normalization of double Pomeron Higgs

production amplitude by extrapolation to the tensor glueball on the Pomeron trajectory.

This in principle completes the specification of the Higgs production amplitude, (4.25).

In section 5.4, we provide a phenomenological treatment under a simple-pole approxima-

tion, leading to an estimate for the central diffraction Higgs production cross section of

.8 ∼ 1.2 pbarn. This is an over-estimate since it is arrived at without taking into account

the absorptive correction, e.g., “survival probability”, which can lead to a central produc-

tion cross section in the femtobarn range. In section 6, we conclude with comments on this

and further corrections needed to make a more reliable prediction.

2 Holographic model for diffractive Higgs production

Diffractive scattering and the notion of a Pomeron has always been an elusive object in

QCD, often defined in a circular fashion as that which dominates high energy hadronic

scattering. In the large Nc limit, there is a more precise definition of the “bare Pomeron”.

In leading order of the 1/Nc expansion at fixed ’t Hooft coupling λ = g2Nc, diffraction is

given peturbatively by the exchange of a network of gluons with the topology of a cylinder,

corresponding in a confining theory to the t-channel exchange of closed strings for glueball

states. Unitarity imposes correction to the “bare Pomeron” in higher order in 1/Nc: (i) by

adding closed quark loops to the cylinder, leading to qq pairs or multi-hadron production

via the optical theorem dominated by low mass pions, kaon etc and (ii) by multiple ex-

change of the Pomeron which includes the eikonal corrections (or survival probability) and

triple-Pomeron and higher order corrections in a Reggeon calculus etc. As discussed in the

Introduction, the advent of the AdS/CFT correspondence has provided a firm framework

for a non-perturbative treatment.

To arrive at a picture of the bare Pomeron it is useful to consider its form in both

weak and strong coupling. Diffractive scattering in QCD has been explored extensively in

the past from a perturbative approach, where, in the lowest order, it can be modeled as

color singlet two-gluon exchange (or Low-Nussinov Pomeron) given in figure 1a and later

as a two Reggeized gluon ladder diagram (or the BFKL Pomeron) to first order in the ’t

Hooft coupling g2Nc and all orders g2Nc log(s), with a BFKL intercept j0 above unity given

by (1.6). An elastic amplitude A(s, t) now grows with a non-integer power as sj0 , at t fixed.

While the use of Regge poles to model the Pomeron of non-perturbative QCD has a

long history, a more mathematically explicit picture arises with the conjecture by Malda-

cena of an exact equivalence between IIB super string theory on AdS5 × S5 and N = 4

SUSY Yang Mills theory that holds true for all Nc at fixed λ. The 1/Nc expansion is

string perturbation theory. We presume (or hope) that this string/gauge duality also holds

for pure Yang Mills theory (i.e. QCD) although no construction has been found. Thus

the bare Pomeron is the cylinder or closed string of the dual string. In practice detailed

calculation are based leading order at large Nc and fixed ’t Hooft coupling λ = g2Nc which

maps planar Yang Mills theory to a free closed string theory, followed by a strong coupling

– 6 –
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Figure 2. In N = 4 Yang-Mills theory, the weak- and strong-coupling calculations of the position

j0 of the leading singularity for t ≤ 0, as a function of αN = g2Nc/4π. Shown are the leading-order

BFKL calculation (dotted), the next-to-leading-order calculation (dashed), and the strong-coupling

calculation of this paper (solid). Note the latter two can be reasonably interpolated.

expansion λ → ∞ which reduces the strings to point like object for the classical solution

of supergravity in an AdS like background.

It is instructive to plot the Pomeron intercept j0(λ) for both strong and weak coupling

as we have in figure 2 below. Perhaps it is an accident but the intersection of the strong

coupling curve in figure 2 and the BFKL intercept to second order occurs near to the phe-

nomenological estimates, j0 ≃ 1.3, of the intercept for QCD, suggesting that the physics of

diffractive scattering is roughly in the cross over region between strong and weak coupling.

We conclude this section with a few remarks on the framework we are using to develop

our strong coupling AdS/QCD model of diffraction. Readers familiar with holographic

QCD models may wish to skip this recapitulation.

• AdS gravity and confinement.

In order to provide a particle interpretation, the basic framework for us is the holo-

graphic approximation to dual QCD with confinement deformation [49–54]. At in-

finitely strong ’t Hooft coupling, g2Nc → ∞, the dual description,

S =
1

2κ2

∫
d5x

√
g

[
−R− V (φ) +

1

2
gMN∂Mφ∂Nφ+ · · ·

]
, (2.1)

is assumed to be 5d gravity coupled to dilaton field with a classical vacuum approxi-

mated by AdS5 × Y5 geometry in the bulk. In principle we should solve the classical

equation to define the background metric,

ds2 = e2A(z)[−dx+dx− + dx⊥dx⊥ + dzdz] + ds2(Y 5) (2.2)

– 7 –
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Once the background geometry is known, expanding the action S to quadratic order

in metric fluctuation hMN , the graviton kernel, K̃G, can be found, (see (3.3) for an

explicit representation).

Of course there is no completely satisfactory example for such a background for QCD

even at large Nc. Fortunately for high energy Higgs production the dominant fluc-

tuations are the graviton/Pomeron field and dilaton that couples to the Higgs at the

boundary which are less sensitive to the details of confinement deformation. The el-

lipsis in (2.1) represents other fields or branes from unknown short distances physics

that survive the strong coupling limit. For example, for the N = 4 Super Yang

Mills, the pure AdS5 × S5, background ( exp[2A(z)] = R2/z2) , requires a 5-form

Ramond-Ramond flux in order to introduce the cosmological constant

V (φ) = − 12

R2
. (2.3)

At lower energy additional fields are needed, e.g., the Kalb-Ramond Bµν field is

required for the C = −1 odderon as noted in ref. [35].

With confinement deformation, the AdS space is effectively cutoff in the interior. Be-

cause of the “cavity effect”, both dilaton and the transverse-traceless metric become

massive, leading to an infinite set of massive scalar and tensor glueballs respectively.

In particular, each glueball state can be described by a normalizable wave function

Φ(z) in AdS. The weight factor Φij in the respective factorized representation for the

elastic and Higgs amplitudes, (1.2) and (1.4), is given by Φij(z) = e−2A(z)Φi(z)Φj(z).

In contrast, for amplitudes involving external currents, e.g., for DIS [14, 21], non-

normalizable wave-functions will be used.

• Correction to strong coupling in 1/
√
λ.

As pointed out earlier, taking into account O(1/
√
λ) correction to the Graviton ker-

nel, K̃G, one arrives at (1.2) and (1.4) for elastic and diffractive Higgs production

respectively. Here the Pomeron kernel, K̃P , given explicitly in a J-plane representa-

tion, (3.3), has hard components due to near conformality in the UV and soft Regge

behavior in the IR. We stress that this first order strong coupling correction corre-

sponds to a stringy effect, as has been demonstrated in [13] by introducing a Pomeron

world-sheet vertex operator VP while enforcing the on-shell condition,

(L0 − 1)VP = (L̄0 − 1)VP = 0 . (2.4)

As discussed in ref. [35], this can also be carried out for the anti-symmetric field Bµν ,

leading to a description for Odderon in the strong coupling limit.

It is worth repeating that the importance of this stringy correction enters most im-

portantly in the modification of the s-dependence of the Pomeron kernel, K̃P , with j0
moving from 2 to a phenomenological value close to 1.3. However, for wave-function

in (1.2) and (1.4), stringy corrections can be ignored. With this understanding, the

– 8 –
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Figure 3. (a) Higgs production by gluon fusion in the 2 gluon exchange Low-Nussinov Pomeron at

g2Nc → 0 vs (b) The Witten diagram for Higgs production by AdS graviton fusion at 1/g2Nc → 0.

The graviton fusion is a source of a bulk to boundary scalar the propagator for the heavy quark

loop at the boundary.

2-to-2 glueball scattering amplitude, (1.2), written in terms of AdS radial coordinate,

becomes

A(s, t) =

∫
dzdz′

√
−g(z)

√
−g(z′) Φ13(t, z)K̃P (s, t, z, z

′)Φ24(t, z
′) , (2.5)

A more explicit form for the Pomeron kernel will be given in appendix A.

• Weak coupling Higgs production.

In a perturbative approach, often dubbed as “hard Pomeron”, Higgs production can

be viewed as gluon fusion in the central rapidity region [55]. A Higgs can be pro-

duced at central rapidity by the double Regge Higgs vertex through a heavy quark

loop which in lowest order is a simple gluon fusion process as illustrated in fig-

ure 3a dominant for large parton x for the colliding gluons. A more elaborate picture

emerges as one tries to go to the region of the softer (wee gluons) building up double

Regge regime. In addition to the Pomeron exchange contribution in these models

must subsequently be reduced by large Sudakov correction at the Higgs vertex and

by so-called survival probability estimates for soft gluon emission, not inconsistent

with the view of some that double diffractive Higgs production should be intrinsically

non-perturbative.

• Strong coupling Higgs production.

In the large Nc there are no quark loop in the bulk of AdS space and since the Higgs in

the Standard Model only couples to quarks via the Yukawa interactions there appears

to be a problem with strong coupling Higgs production in leading 1/Nc. Fortunately

the solution to this is to follow the standard procedure in Higgs phenomenology,

which is to integrate out the quark field replacing the Higgs coupling to the gauge

operator Tr[F 2].

Consider the Higgs coupling to quarks via a Yukawa coupling, and, for simplicity

we will assume it is dominated by the top quark. We will be more explicit in

– 9 –
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Figure 4. Cylinder Diagram for large Nc Higgs Production.

the next section, and simply note here that, after taking advantage of the scale

separations between the QCD scale, i.e., the Higgs mass and the top quark mass,

ΛQCD ≪ mH ≪ 2mt, heavy quark decoupling allows one to replace the Yukawa

coupling by an effective interaction,

L =
αsg

24πMW
F a
µνF

aµνφH (2.6)

by evaluating the two gluon Higgs triangle graph in leading order O(MH/mt). Now

the AdS/CFT dictionary simply requires that this be the source in the UV of the

AdS dilaton field. It follows, effectively, for Higgs production, we are required to

work with a five-point amplitude, one of the external leg involves a scalar dilaton

current coupling to Tr[F 2]. For diffractive Higgs production, in the supergravity

limit, the Higgs vertex VH is given by a two-graviton-dilaton coupling, figure 3b.

After taking into account finite λ correction, the leading order diagram at large Nc

can be schematically represented in figure 4, with each of the left- and right-cylinders

representing a BPST Pomeron.

• Conformal symmetry breaking.

Of course QCD, even at Nc = ∞, is not a conformal theory. Conformal symmetry

breaking (or “dimensional transmutation” in the colorful language of Sidney Cole-

man) is ultimately tied to confinement in the IR and asymptotic freedom in the

UV. A true QCD dual (or QCD string theory) would require an infinite number of

(higher spin) fields in the bulk representation to correspond to fluctuations in the

yet undiscovered world-sheet string theory for QCD. All mass scales (for quarkless

large Nc QCD) are related and the coupling λ = g2Nc is not a free parameter. Fortu-

nately at high energy, these details are non-essential. For our purposes an adequate

phenomenological AdS dual to QCD requires only two features: (1) an IR defor-

mation, which for simplicity we take as hard-wall cut-off beyond z = 1/ΛQCD, to

– 10 –
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give confinement and a linear static quark potential at large distances and (2) a slow

deformation in the UV (z → 0) to model the logarithmic running for asymptotic free-

dom. Moreover scale breaking plays an even more essential role in the application to

diffractive Higgs production. In leading order in strong coupling, Pomeron-Pomeron

fusion proceeds through a graviton-graviton-dilaton vertex, which is lacking in AdS

gravity action (2.1) if scale invariance is maintained. This is demonstrated more

explicitly in appendix A. This vertex, M2φhµνh
µν , itself requires a scale breaking

mass parameter. However we will show, based on the AdS/CFT dictionary, that this

new mass parameter can be fixed by computing a matrix element of the trace of the

energy momentum tensor for the tensor glueball on the Pomeron trajectory following

the argument of Kharzeev and Levin [1]. The overall rate of Higgs production is not

a free parameter of our AdS/QCD model. Still all strong coupling QCD duals to

date fail to relate the IR confinement scale to the UV scale (or to λ) so a least one

extra mass needs to be fixed phenomenologically.

3 Kinematics and Regge analysis of building blocks

The natural coordinates for high energy scattering in warped AdS5 space are given in the

Poincare patch in lightcone coordinates,

ds2 = e2A(z)[−dx+dx− + dx⊥dx⊥ + dzdz] , (3.1)

where the incoming particles are directed near to the light cones x± = x0 ± xz ≃ 0 and

the transverse impact parameters are extended to 3-dimensions, b = (x⊥, z) = (x1, x2, z),

the traditional 2-d transverse space, x⊥ = (x1, x2), plus the “radial” coordinate z = R2/r.

Here we relate this picture to the standard Mandelstam coordinates for 2-to-2 and 2-to-3

amplitudes in the Regge limit. We also introduce the analytic J-plane where the AdS

Pomeron kernels take their simplest form.

3.1 Elastic diffractive scattering

For high energy elastic (nucleon) scattering,

p(k1) + p(k2) → p(k3) + p(k4) , (3.2)

the exact connection between light-cone coordinates and Mandelstam invariants are sim-

plest in the brick-wall frame where k1⊥ = −k3⊥ = q⊥/2. In terms of the total rapidity y,

the invariants are s = (k1+k2)
2 ≡ 4m2

⊥ cosh y, m2
⊥ = m2+q⊥

2 and t = (k1−k3)2 = −q⊥
2.

The two component transverse momentum vector q⊥ = (q1, q2) is the Fourier transform of

the impact co-ordinates x1, x2. In the super-gravity limit where λ → ∞, the one-graviton

diagram grows as s2, (see (A.8)), and the one-graviton kernel is given by

K̃G(s, t, z, z
′) = s2(zz′/R2)2G̃2(z, z

′, t) (3.3)

where

G̃2(z, z
′, t = −q2

⊥) =

∫
d2x⊥
4π2

eiq⊥·(x⊥−x′
⊥)G2(z, z

′,x⊥ − x′
⊥) (3.4)
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In the conformal limit, G̃2 is simply the “massless” AdS5 propagator in a momentum

representation, satisfying a simply differential equation

(
−z∂zz∂z + 4− z2t

)
G̃2(z, z

′; t) = z δ(z − z′) (3.5)

At finite λ, it has been shown in ref. [13] that, due to curvature of AdS, the effective spin of

a graviton exchange is lowered from 2 to j0 = 2− 2/
√
λ. As such it is necessary to adopt a

J-plane formalism where the Pomeron kernel K̃P is given by an inverse Mellin transform,4

K̃P (s, t, z, z
′) = −

∫ i∞

−i∞

dj

2πi
(α′ŝ)j

1 + e−iπj

sinπj
G̃j(t, z, z

′) . (3.6)

with ŝ = zz′s/R2. When conformal invariance is maintained, G̃j(t, z, z
′) satisfies a J-

dependent “massive” AdS5 differential equation

(
−z∂zz∂z + (2

√
λ)(j − j0)− z2t

)
G̃j(z, z

′; t) = z δ(z − z′) (3.7)

We remind the reader that the Regge J-plane is the conjugate variable to the light-cone

boost operator: Ĥ =M+− which in principle provides an exact one to one map for ampli-

tudes using the Laplace/Mellin transform. To accomplish this one must transform sepa-

rately contributions from exchanges of definite charge conjugation, C = ±1, or, more pre-

cisely, Regge contributions with a definite signature. The leading singularities for C = ±1

are referred to as the Pomeron and Odderon [35] respectively. For the closed string theory

these exchanges are associated with the graviton and Kalb-Ramond fields respectively [35].

Applying this analysis to the AdS Pomeron amplitude, as detailed in ref. [13], the elas-

tic amplitude at high energy can again be represented schematically in a factorized form,

eq. (1.2).

The salient new element of the Regge formulation in the AdS/CFT description is the

extra radial (or 5th) coordinate (z = R2/r). The variable conjugate to log(z/R) is ν, which,

up to a constant shift, is the conformal dimension, which in turns allows an inverse-Mellin

representation [13]. It follows from eq. (3.7) above that conformal Pomeron at t = 0, in a

double-Mellin representation, is a simple pole in the J − ν plane,

G̃j(ν, t = 0) ∼ 1

(2
√
λ)(j − j0) + ν2

(3.8)

For non-zero t the full expression is given eq. (A.12) of appendix A. The coordinate z

plays the role of “virtuality” in the partonic language of Yang Mills theory. As explained

in [15–20], in the conformal limit, in an impact representation at high energy, it leads to a

transverse AdS3 (or 3-d Hyperbolic space H3), and a corresponding simpler expression for

the Pomeron kernel, (5.23).

4For ease of writing, we have introduced K̃P in this paper, which is simply related to KP used in

refs. [13, 15, 16, 21] by an AdS factor K̃P = e(2A(z)+2A(z′))KP . This notation is more convenient in order

to accommodate the use of impact factor Φij = e−2AΦiΦj . For simplicity, we have also used through out,

for this purpose, e−2A = (z/R)2.
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3.2 Double Regge analysis

The Regge analysis for 2-to-3 amplitude follows the same path as for the elastic ampli-

tude but is considerably more subtle. The double diffractive Higgs production amplitude,

A(s, s1, s2, t1, t2),

p(k1) + p(k2) → p(k3) +H(q) + p(k4) (3.9)

has 5 Mandelstam invariants. Again we can express the invariants, s = (k1 + k2)
2,

s1 = (k3 + q)2, t1 = (k1 − k3)
2, s2 = (k4 − q)2, t2 = (k2 − k4)

2 in terms of light cone

coordinates by choosing an appropriate frame:

k1 = (m1e
y/2,m1e

−y/2, 0⊥) , k2 = (m2e
−y/2,m2e

y/2, 0⊥)

k3 = (m3⊥e
y3 ,m3⊥e

−y3 ,−q1⊥) , k4 = (m4⊥e
−y4 ,m4⊥e

y4 ,−q2⊥) (3.10)

where the transverse mass is m⊥ = m2 + k2⊥ for any on shell state k2i = m2. The

momentum for the central particle, q = k1 + k2 − k3 − k4 be parametrized by q =

(mH⊥e
yH ,mH⊥e

−yH , qH⊥) with transverse mass mH⊥,

m2
H⊥ = m2

H + q2⊥ . (3.11)

The double Regge limit is |y3 − yH | ∼ log(s1) → ∞, |y4 + yH | ∼ log(s2) → ∞ at fixed

momentum transfers ti ≃ −k2i⊥ and q2
⊥. In this limit, one also has y3 ≃ −y4 ≃ y/2. The

Higgs momentum components are fixed by energy-momentum conservation, e.g.,

yH =
1

2
[log(s1/s2)− log(m3⊥/m4⊥)] . (3.12)

The transverse mass is specified by the relation,

κ =
s1s2
s

≃ m2
H + q2⊥ = m2

H⊥ , (3.13)

referred to as the “kappa” variable for the Regge-Regge particle vertex, V (tt, t2, κ). It is

natural to introduce the two outgoing rapidity gaps separating the Higgs as

∆y1 = y3 − yH , ∆y2 = y4 + yH . (3.14)

The light-cone parametrization provides exact change of coordinates: s, si, ti → ∆yi, q
2
i⊥.

The double diffractive production limit is characterized by small transverse momenta, ti ≃
−q2i⊥ and large rapidity gaps, ∆y1 ≃ log(s1/(m3⊥mH⊥)) and ∆y2 ≃ log(s2/(m4⊥mH⊥)).

In the double Regge limit the only “κ” dependence occurs in the Regge-Regge Higgs

vertex, V (tt, t2, κ). Note also since κ = m2
H + q21⊥ + q22⊥ +2q1⊥ · q2⊥, κ is solely responsible

for the so-called Toller angular dependence in q1⊥ · q2⊥ between the two protons scattering

planes (see figure 5). The key to a double-Regge expansion is factorization in the J-plane.

It is possible to obtain the full amplitude via a double-inverse-Mellin transform. We refer

to the literature for further discussion of this formalism for some of the subtleties in-

volved [56]. Most of these can be neglected due to the high mass of the Higgs at the central

vertex. Consequently, with this proviso, we arrive at the amplitude for Higgs production

expressed in terms of two Pomeron kernels, K̃P (s1, t1, z1, z
′
1) and K̃P (s2, t2, z

′
2, z2), together
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s 1 s 2

k 2k 1

t 2

k 4qk 3

t 1

s

x2

x1

k_4q

k_1
k_2

k_3

Figure 5. On the left the double Regge kinematics for p(k1)+p(k2) → p(k3)+H(q)+p(k4). At fixed

center of mass energy
√
s, the final state configuration determined by 4 invariants t1, s1, t2, s2. On

the right, the impact parameter picture with the Higgs at xH⊥ at a separations ∆xi⊥ = xH⊥−xi⊥
of the two incoming particles. External momenta are for the ± light-cone components only.

with a Higgs vertex, VH(t1, t2, κ, z
′
1, z

′
2). Finally we are able to give an explicit form to the

symbolic expression for the double-Pomeron amplitude in eq. (1.4) of the Introduction:

A(s, s1, s2, t1, t2) ≃
∫
dz1dz

′
1dz

′
2dz2

√
−g(z1)

√
−g(z′1)

√
−g(z′2)

√
−g(z2) (3.15)

×Φ13(t1, z1)K̃P (s1, t1, z1, z
′
1)VH(t1, t2, κ, z

′
1, z

′
2)K̃P (s2, t2, z

′
2, z2)Φ24(t2, z2) .

In the above expression, impact factors, Φ13(t1, z1) and Φ24(t2, z2) are identical to those

entering the elastic amplitude (2.5). This represents a generalization of eq. (2.5) for elastic

scattering to central diffractive Higgs production. The only new component is the Pomeron-

Pomeron-Higgs vertex, VH(t1, t2, κ, z
′
1, z

′
2), which in general allows non-local interaction in

AdS3, e.g., its dependence on z′1 and z′2.

Just as the case of 2-to-2 scattering, it is often simpler to think of scattering in terms of

transverse coordinates b = (x⊥, z). Instead of the vertex VH(t1, t2, κ, z
′
1, z

′
2) in momentum

space, one can work directly with VH(x′1⊥−xH⊥, z
′
1;x

′
2⊥−xH⊥, z

′
2). The κ-dependence en-

ters through the possible dependence on the angular correlation between the two proton’s

scattering planes, x′1⊥−xH⊥ and x′2⊥−xH⊥ or the scalar product: (x′1⊥−xH⊥)·(x′2⊥−xH⊥).

As we will see, for Higgs production, due to its large mass, this dependence is suppressed

and we will choose to drop it. Indeed, (3.16) would take on a more complicated form if

non-trivial O(1/m2
H) dependence on κ turns out to be important. We will not address this

issue here.

4 Pomeron-Pomeron fusion vertex

We now turn to a detailed discussion of the double diffractive Higgs vertex, VH . So far

our discussion of double-Pomeron exchange (1.4) applies equally well both to diffractive

glueball production and to Higgs production. The situation is similar to how we converted

the amplitude for proton-proton (p-p) elastic scattering to electron-proton deep-inelastic
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p H

F 2

1/(q 2  − m 2
n

Figure 6. Factorization of double diffractive vertex in strong coupling: From right to left: F 2(x)-

Higgs vertex the boundary of AdS (zH = 0), the boundary to scalar propagator saturated by

glueballs and, finally, the double Pomeron to scalar vertex in the interior of AdS (z0).

scattering (e-p DIS). For DIS, we simply replaced the normalizable proton wave-functions

in (2.5) with non-normalizable counterparts appropriate for conserved external vector cur-

rents. For glueball production, the vertex is proportional to a normalizable AdS glueball

wave-function, whereas for Higgs production, the vertex, VH , requires a non-normalizable

bulk-to-boundary propagator, K(q2, z), appropriate for a scalar external current. This

section will explain how this transformation is done in detail.

4.1 Higgs vertex

A Higgs scalar in the standard model [57–61] couples exclusively to the quarks via Yukawa

coupling, which for simplicity we will assume is dominated by the top quark,

L = − g

2MW
mt t̄(x)t(x)φH(x) . (4.1)

If we assume a mass for Higgs that obeys

ΛQCD ≪ mH ≪ 2mt , (4.2)

we can use the conventional heavy quark approximation [62] by integrating out the top

quark loop replacing the Yukawa coupling by the effective coupling of Higgs field to the

gluon operator,

L = L(q2)F a
µνF

aµνφH , (4.3)

where

LH ≡ L(−m2
H) ≃ αsg

24πMW
, (4.4)

to leading order O(mH/mt). In the dual AdS description at leading order in 1/Nc heavy

quarks are external sources near to the boundary of AdS so this procedure just replaces the

source t̄(x)t(x) by F 2(x) at the boundary. Consequently the vertex VH(x′1⊥−xH⊥, z
′
1;x

′
2⊥−

xH⊥, z
′
2) is now given by the product of a Pomeron-Pomeron-dilaton vertex in the bulk

and a scalar bulk-to-boundary propagator, K(x′H − xH , z) from the interior of AdS3 at

bH = (x′H , z) to the source F a
µνF

a
µν(x) at z0 → 0. In the most general form, the Pomeron-

Pomeron-dilaton vertex can be non-local where the two Pomerons “fuse” at z′1, z
′
2 into a
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dilaton at z. So our vertex would take the form,

VH(t1, t2, κ, z
′
1, z

′
2) = LH

∫
dzV(t1, t2, κ, z′1, z′2, z)K(q2, z) , (4.5)

evaluated on shell at q2 = −M2
H . However in the spirit of strong coupling, we impose

locality on the Pomeron-Pomeron scalar vertex in the bulk,

V(t1, t2, κ, z′1, z′2, z) = (1/
√−g)δ(z′1 − z)δ(z′2 − z)VL(t1, t2, κ, z) (4.6)

Therefore, the overall central Higgs vertex VH can be written as a product of several factors,

VH(t1, t2, κ, z, z
′
2) = (1/

√−g)δ(z − z′2)LHVL(t1, t2, κ, z)K(q2, z) (4.7)

Of course this first step, taking the heavy quark limit, mH ≪ mt, is simply the standard

approximation often used in Higgs production for both soft and hard gluon fusion. We can

achieve further simplifications by taking advantage of the fact that ΛQCD ≪ mH . Before

doing so, it is instructive to first re-consider the case of production of scalar glueballs.

4.2 Pomeron-Pomeron-glueball vertex

In a treatment with confinement deformation, the bulk-to-boundary propagator can be sat-

urated by a set of scalar glueballs with increasing masses. The factorized structure, (4.7),

can then be schematically represented by figure 6. It is therefore useful to first con-

sider double diffraction vertex for scalar production of a massive glueball of mass mn,

Vn(t1, t2, κ, z
′
1, z

′
2). Here κ is a standard double-Regge invariant, κ = s1s2/s, which we will

return to shortly. In momentum space, this vertex can be expressed as

Vn(t1, t2, κ, z
′
1, z

′
2) =

∫
dz Vn(t1, t2, κ, z

′
1, z

′
2, z) φn(z) (4.8)

where we have labeled scalar glueballs by n, with a wave-function φn(z) in AdS and a

coupling fn to two Pomerons. As noted above, the coupling V is in general non-local in

AdS, depending on z′1, z
′
2, z. However, in the super-gravity limit, scattering becomes local,

as schematically represented by the Witten diagram, figure 3b, i.e., z′1 = z′2 = z. In fact,

in this limit, Vn(t1, t2, κ, z
′
1, z

′
2, z

′) → constant, leading to

Vn(t1, t2, κ, z
′
1, z

′
2) = δ(z′1 − z′2) Vn

∫
dz δ(z′1 − z) φn(z) (4.9)

However for λ finite, we should entertain non-trivial dependence on its arguments, at least

consistent with that which is seen in flat-space string theory. But we can still assume

locality in the AdS radial co-ordinate as advocated in ref. [26], leading to

Vn(t1, t2, κ, z
′
1, z

′
2) ≃ δ(z′1 − z′2)

∫
dzδ(z′1 − z)Vn(t1, t2, κ, z) φn(z). (4.10)

In a double-Regge limit, κ is kinematically given by the transverse momentum by κ =

m2
n + q2⊥. In a frame where incoming particles 1 and 2 are longitudinal, translation invari-

ance leads to q⊥ = −(q3⊥+q4⊥) and rotational invariance then allows the vertex to depend
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only on magnitudes of q3⊥ and q4⊥, and on the relative angle between them, e.g., |q3⊥|,
|q4⊥|, and their vector dot-product q3⊥ ·q4⊥. Equivalently, since κ = m2

n+q
2
⊥, the vertex can

also be considered as a functions of t1 = −q23⊥, t2 = −q24⊥, and q2⊥. Therefore, V(t1, t2, κ, z′)
provides the most general information appropriate for local Pomeron fusion in AdS.

In flat space the dependence of V(t1, t2, κ, z) on t1, t2, κ has been studied extensively.

For an arbitrary external particle with spin, the vertex will also have additional spin depen-

dence. However, for our present purpose, we only need to consider scalar production, with

its massm2
n allowed to take on large values. Let us focus on the dependence of Vflat(t1, t2, κ)

on the variable κ. The general analytic structure in κ is robust. For open-string, it is real

for κ < 0, with branch cut along the positive real axis, κ ≥ 0. At κ = 0, one has

Vflat(t1, t2, κ) ≃ (−κ−1)α1G1 + (−κ−1)α2G2 (4.11)

where G1 and G2 are regular at κ = 0. This analytic structure,5 (or Steimann relations),

is required to avoid overlapping discontinuities not present in planar diagrams on the one

hand and in the Regge limit of open strings on the other. For closed strings, a similar

analysis can also be carried out, with branch points at κ = 0 and at κ = ∞, extending to

the entire real axis. Returning to the case of AdS, this singularity structure can play an

important role for light glueball production, and this has been addressed in [26]. In partic-

ular, with κ−1 large, each of the two terms leads to separate “diffusion” effects. However,

for our present purpose, this turns out to be less important. Indeed, from flat-space string

theory, one finds that, in the limit κ =→ ∞

Vflat(t1, t2, κ) → κ−2β0(t1)β0(t2) (4.12)

thus leading to a simplified structure. Furthermore, since κ = q2⊥ + m2
n for high-mass

κ≫ q2⊥, the dependence on q
2
⊥ is effectively lost up to O(q2⊥/m

2
n) corrections. In moving to

impact space, we find that the vertex depends only on x2 = |x2⊥−x⊥| and x4 = |x4⊥−x⊥|,
and is independent of x24 = |x2⊥ − x4⊥|. That is, for production of a heavy object, an-

gular correlation between the left- and right-moving systems decouple, leading to a much

simplified analytic structure. In what follows, for Higgs production, due to ΛQCD ≪ mH ,

we drop the dependence on κ entirely.

With these considerations, we are led to a parametrization of the amplitude for a

diffractive high-mass glueball production

A(s, s1, s2, t1, t2) = Φ13 ∗ K̃P ∗ Vn ∗ K̃P ∗ Φ24 . (4.13)

where the production vertex, Vn, is local in AdS-radius, i.e.,

A(s, s1, s2, t1, t2) ≃
∫
dz1dzdz2

√−g1
√−g√−g2 Φ13(t1, z1) K̃P (s1, t1, z1, z)

×Vn(t1, t2, z) K̃P (s2, t2, z, z2) Φ24(t2, z2) . (4.14)

5For related recent studies, see [63] and references therein.
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4.3 Higgs production and bulk to boundary propagator

Returning to the original problem, we now consider the coupling for the Pomeron fusion to

an external source F 2 through the bulk to boundary propagator K(x⊥−x′⊥, z). That is, we
are calculating an amplitude involving a nonnormalizable wave function for the leg associ-

ated with the Higgs. Therefore, the amplitude involves one factor of the bulk-to-boundary

propagator K(q2, z), in a momentum representation. Using ΛQCD ≪ mH we will show that

the dominant contribution to the resulting integration over the AdS radius comes from

z ≃ O(1/MH). (4.15)

To see how this comes about, we need to evaluate the bulk to boundary propagator at q2 =

−m2
H . This issue was studied in some detail by Hong, Yoon and Strassler [27] focused on the

vector current coupling to the tower of AdS glueballs. Here we are considering the scalar

term in the energy-momentum current which is essentially a trivial modification. More

difficult is understanding the analytic continuation to time-like momentum q2 = −m2
H .

Consider the hard wall model for a confining AdS/CFT for clarity at first. Following

ref. [27] the bulk to boundary propagator can be viewed as the non-normalizable wave

function excited by the current (F 2 in our case) at the boundary:

ψ(q2, z) =
∑

n

fnφn(z)

q2 +m2
n

(4.16)

where the “decay constant” for the n-th glueball state, fn, is

fn = 〈0|F 2(x = 0)|n, p〉 ∼ m3
n (4.17)

for the nth scalar glueball with on-shell eigen solution, exp[ipx]φn(z) for p
2 = −m2

n. Since

the bulk-to-boundary propagator is determined by the background geometry, the relative

strengths of fn are fixed.

In the conformal limit, scalar bulk-to-boundary propagator in a momentum presenta-

tion can be expressed explicitly is

K(z, q) = (qz)2K2(qz) = z2
∫ ∞

0

dmm3J2(mz)

q2 +m2
=

∫ ∞

0

dxx3J2(x)

z2q2 + x2
. (4.18)

where Kν is the modified Bessel function. Note (qz/2)νKν(qz) ≃ Γ(ν)/2 for small qz and

Kν(qz) ≃
√
π/(qz)e−qz for large qz > 0. It follows that, when averaged over smooth

functions of z, integrals such as

I(q) =

∫ ∞

0
dz T (z) K(z, q) ∼ T (1/q) (4.19)

are dominated by the end-point region where z = O(1/q) as was also the case for DIS ([21]).

In our current application to Higgs production, we also need to analytically continue

to the region where q is time-like. Numerically we find this is a good approximation after

analytical continuation to −q2 = (mH + iΓ)2 or q = imH + Γ . We note that we need to
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convolute this bulk-to-boundary propagator over products of two Pomeron Green’s func-

tions, which will be smooth in z. For example at t1 = t2 = 0, the explicit expression, up

to smooth logarithmic corrections, can be expressed as

V (mH) ∼ π(z1z2)
2

∫ ∞

0

dz

z
e−izmH−zΓ

×ej0(τ1+τ2)−ln2(z/z1)/(2−j0)τ1−ln2(z/z2)/(2−j0)τ2 (4.20)

with τi = ln(zzisi). Note the dominant rapid oscillations due to the factor e−izMH and also

a convergence factor e−zΓ. (For confining situation, e.g., hard-wall, the z-integral is cutoff

at large z.) It can be shown that the dominant contribution to the integral for large MH

comes again from z ∼ 1/mH . This can be seen by writing the integral as

(z1z2)
2

∫ ∞

0
dz exp[−F (z)] (4.21)

where

F (z) = izmH + zΓ− (2j0 − 1) ln(z)

+ln2(z/z1)/((j0 − 2) ln(zz1s1)) + ln2(z/z2)/((j0 − 2) ln(zz2s2)) . (4.22)

For s1 = s2 = O(
√
s) large, the saddle point z∗ is essentially determined by the first two

terms on the right of (4.22), leading to

z∗ ≃ (2j0 − 1)/(imH + Γ) (4.23)

The validity of this approximation can also be verified numerically. Therefore as an ap-

proximate treatment, one can represent the bulk-to-boundary propagator by

K(x′H − xH , z
′) ∼ δ(x′H − xH) δ(mHz

′ − c) (4.24)

where c = O(1). We can further rescale z so that c = 1.

We are finally in the position to put all the pieces together. Although we eventually

want to go to a coordinate representation in order to perform eikonal unitarization, certain

simplification can be achieved more easily in working with the momentum representation.

The Higgs production amplitude, schematically given by (1.4), can be written explicitly as

A(s, s1, s2, t1, t2) ≃
∫
dz1dzdz2

√−g1
√−g√−g2 Φ13(z1)

×K̃P (s1, t1, z1, z) VH(q2, z) K̃P (s2, t2, z, z2) Φ24(z2) . (4.25)

where q2 = −m2
H . For the production vertex, however, we will keep it simple by expressing

it more generally as

VH(q2, z) = VPPφK(q2, z)LH (4.26)

where K(q2, z) is the conventionally normalized bulk to boundary propagator, VPPφ serves

as an overall coupling from two-Pomeron to F 2, and LH is the conversion factor from F 2 to

Higgs. Treating the central vertex VPPφ as a constant, which follows from the super-gravity

limit, we have ignored possible additional dependence on κ, as well as that on t1 and t2.

This approximation gives an explicit factorizable form for Higgs production.
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5 Strategy for phenomenological estimates

While the goal of this paper is simply to extend holographic diffraction to Higgs production,

it is useful to outline the phenomenological approach we plan to pursue to confront experi-

mental data. There should be a strong warning however that details will necessarily change

as we discover which parametrization are critical to a global analysis of data. Our current

version for the holographic Higgs amplitude involves 3 parameters: (1) the hardwall IR cut-

off determined by the glueball mass, (2) the leading singularity in the J-plane determined6

by the ’t Hooft parameter g2Nc and (3) the strength of the central vertex parametrized by

the string coupling or Planck mass. A strategy must be provided for fixing these parame-

ters. The glueball mass at large Nc can in principle be fixed by lattice QCD methods and

the leading J-plane singularity from total cross section data. Finally the central vertex, VH ,

or equivalently, VPPφ, via (4.26), can be normalized, following the approach of Kharzeev

and Levin [1] based on the analysis of the trace anomaly. Since one can in principle use

elastic scattering to normalize the bare BPST Pomeron coupling to external protons, once

VPPφ is known, the central Higgs production amplitude, (4.26), is completely determined.

This procedure for determining this crucial overall scale deserves further explanation.

5.1 Continuation to tensor glueball pole and on-shell Higgs coupling

Confinement deformation in AdS will lead to glueball states, e.g., the lowest tensor glueball

state lying on the leading Pomeron trajectory [64]. There will also be scalar glueballs

associated with the dilaton. With scalar invariance broken, this will also lead to non-

vanishing couplings between a pair of tensor glueballs and scalar glueballs. When translated

into a Witten diagrammatic description in the bulk, as we have also pointed out earlier, this

leads to a non-vanishing graviton-graviton-dilaton coupling and in turn leads to VH 6= 0.

Consider first the elastic amplitude. With confinement, each Pomeron kernel will con-

tain a tensor glueball pole when t goes on-shell. Indeed, the propagator for our Pomeron

kernel can be expressed as a discrete sum over pole contributions, i.e., eq. (5.21). That is,

when t ≃ m2
0, where m0 is the mass of the lightest tensor glueball, which lies on the leading

Pomeron trajectory, i.e., m2
0 = m2

0(j = 2), we need only to keep the lowest term in (5.21),

and the kernel takes on a factorizable form.

It follows that the elastic amplitude, eq. (2.5), when approaching the t-channel pole at

t = m2
0, is pole-dominated,

A(s, t) ≃ g13
s2

m2
0 − t

g24 (5.1)

with vertex gij given by an overlapping integral:

gij(m
2
0) = α′

∫
dz
√
−g(z)e−4A(z) β(m2

0)Φi(z)Φj(z) φG(z) . (5.2)

The tensor glueball wave function, for hard-wall model, is given by φG(z) = φ̃0(x, j = 2).

Here, we have generalized Φij as the product of two external wave functions, together with

6Note that in a true dual to QCD at Nc = ∞ the only free parameter is a single mass scale that by

“dimensional transmutation”, replaces the coupling constant and all dimensionless ratios. So only the first

parameter would be needed phenomenologically.
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an extra factor β(t), i.e., Φij(t, z) = β(t)e−2A(z)Φi(z)Φj(z), for phenomenological reasons.

That is, the external coupling gij is given by an overlap-integral over a product of three

wave functions, Φi(z), Φj(z) and φG(z), consistent with the discussion in [26, 27]. With the

standard normalization, A(s, t) is dimensionless, thus gij(m
2
0) has the dimension of length.

Let us next turn to the Higgs production amplitude, eq. (4.25). Note that the Pomeron

kernel now appears twice, K̃P (s1, t1, z1, z) and K̃P (s2, t2, z2, z). When nearing the respec-

tive tensor poles at t1 ≃ m2
0 and t2 ≃ m2

0, we can again use the leading-pole approximation

for the kernel, (5.28). The amplitude can now be expressed as

A(s, s1, s2, t1, t2) ≃ g13
ΓGGH s2

(t1 −m2
0)(t2 −m2

0)
g24 (5.3)

We have performed the z1 and z2 integrations as done for the elastic amplitude, leading to

external coupling g13 and g24 respectively, given by (5.2), and also have made use of the

fact that s1s2 ≃ κ s ≃ m2
Hs. Here ΓGGH is the effective on-shell glueball-glueball-Higgs

coupling, which can be written in terms of the central vertex, VPPφ.

Recall that, after integrating out the top quark, the effective on-shell glueball-glueball-

Higgs coupling can be expressed as ΓGGH = LHF (−m2
H), with LH given by (4.4) and

F (q2) = (α′m2
H)2VPPφ

∫
dz
√

−g(z)e−4A(z)φG(z)K(q, z)φG(z) (5.4)

This follows from (4.25) and (4.26). Observe that, by going one shell, F can be considered

as a scalar form factor, where

F (q2) = 〈G,++, q1|F a
µνF

a
µν(0)|G,−−, q2〉 (5.5)

That is, in the high energy Regge limit, the dominant contribution comes from the maxi-

mum helicity glueball state [13], with λ = 2. Note that (5.4) is in the form of an integral

over a product of the bulk-boundary propagator with other smooth functions, (4.19). In

the large mH limit, the dominant contribution comes from z = O(m−1
H ). What remains to

be specified is the overall normalization, F (0), or equivalently the coupling VPPφ.

We also note in passing that the expression for this form factor is precisely what is

expected from eq. (A.6) since we are considering a situation with a constant Witten vertex,

assuming no running.7 Conformal scaling determines the large Q2 = |q2| behavior to be

FGG(q
2) ∼ (1/Q)∆1+∆2−4 = 1/Q4 with ∆1 = ∆2 = ∆G = 4, as can be readily checked.

This form factor can also be written, using (4.16), as

FGG(q
2) = (α′q2)2

∑

n

gGGϕn fn
q2 +m2

n

, (5.6)

which follows when we express the bulk-to-boundary propagator K(q, z) in a dispersion

sum over the dilaton scalars, with the coupling constants given by

gGGϕn = VPPφ

∫
dz
√
−g(z)e−4A(z) φG(z)φn(z)φG(z) (5.7)

7Amore consistent treatment would be to adopt the precise coupling given by the model, (A.6). However,

we will not follow this path in what follows.
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5.2 Normalization of the glueball form factor

From the gauge theory view, we recognize that F (q2) at q2 = 0, is a matrix element of the

trace of the energy momentum tensor. So we can follow D. Kharzeev and E. M. Levin [1],

who considered the matrix elements of the trace-anomaly between two states, |α(p)〉 and

|α′(p′)〉, with four-momentum transfer q = p− p′. In particular, for a single particle state

of a tensor glueball |G(p)〉, this leads to 〈G(p)|Θα
α|G(p′)〉 = β̃

2g 〈G(p)|F a
µνF

aµν |G(p′)〉. At

q = 0, the forward matrix element of the trace of the energy-momentum tensor is given

simply by the mass of the relevant tensor glueball, with 〈G|Θα
α|G〉 =M2

G, this directly yields

F (0) = 〈G|F a
µνF

aµν |G〉 = −4πM2
G

3β̃
(5.8)

where β̃ = −bαs/(2π), b = 11 − 2nf/3, for Nc = 3. In what follows, we will use nf = 3.

Note that heavy quark contribution is not included in this limit. Since the conformal scale

breaking is due to the running coupling constant in QCD, there is apparently a mapping

between QCD scale breaking and breaking of the AdS background in the IR, which gives

a finite mass to the glueball and to give a non-zero contribution to the gauge condensate.

We are now in the position to provide the proper normalization for VPPφ. It is conve-

nient to formally define

ΓGGH(q2) ≡ αsg

24πMW
F (q2) (5.9)

It follows that the normalization at q2 = 0 is given by

ΓGGH(q2 = 0) =
αsg

24πMW
F (0) =

2M2
G

3vb
= 21/4G

1/2
F

2M2
G

27
(5.10)

More explicitly, from (4.25) and (4.26), we have

VPPφ = C−1L−1
H (α′m2

H)−2ΓGGH(0) (5.11)

where C is given by a finite integral

C =

∫
dz
√
−g(z)e−4A(z)φG(z)K(0, z)φG(z) (5.12)

and is O(1).

It is worth recapitulating the key discussion in [1], which makes essential use of the

scale anomaly. More generally, when quarks are massive, trace anomaly can be expressed as

Θα
α =

β̃

2g
FαβaFαβa +

∑

l=u,d,s

mlq̄lql +
∑

h=c,b,t

mhq̄hqh (5.13)

where we have separated quarks into light and heavy. In (5.13), β̃ now includes contribu-

tions from all quarks, both light and heavy. In this case, scale invariance is broken explicitly

by quark masses. In the heavy quark decoupling limit, it has been shown that the explicit

contribution from the last term cancels the corresponding heavy quark contribution to
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the beta-function. For simplicity, consider also the situation where light quarks are mass-

less. In this limit, β̃ receives contributions from gluons and light quarks only. Therefore,

a proper heavy quark decoupling in (5.13) allows an identification of matrix element of

mhq̄hqh in the heavy quark limit with that of the corresponding matrix element of F 2.

This equivalence corresponds precisely to the mechanism for a central Higgs production

discussed in section 4.

Recall that Higgs couples directly to quark-antiquark pairs, eq. (4.1), with a strength

proportional to the quark mass. In practice, we will keep only the tt̄ pair. In our earlier

treatment, after taking into account the triangle graph, it converts this coupling to an effec-

tive local interaction directly with gluons through the combined effective Higgs production

coupling where Higgs now couples directly to F 2, going from (4.1) to (4.3). This conver-

sion is achieved in the limit |q|/mt → 0 with MW related to the vev8 by 2MW = gv. This

limit corresponds to the “decoupling limit” where heavy quarks contribution to the QCD

beta-function disappears, consistent with the discussion above for decoupling in the trace

relation, (5.13). The effective on-shell glueball-glueball-Higgs coupling, ΓGGH , can now be

obtained in this limit from (4.3) by taking the matrix element, ΓGGH ≃ 〈0|
∫
L|φHGG〉.

This corresponds to an effective replacement of 〈G|tt̄|G〉 by 〈G|F 2|G〉. To be more precise,

we have

ΓGGH(q2) ≃ gmt

2MW
〈G|tt̄|G〉 ≃ αsg

24πMW
〈G|F a

µνF
aµν(0)|G〉

=
αsg

24πMW
FGG(q

2) (5.14)

with q2 = −m2
H . Eq. (5.10) serves to provide a normalization and continuation to phys-

ical q2 can be done through (5.4). With m2
H large, this integral can be estimated by the

ultra-local approximation discussed in section (4.3). Observe that ΓGGH has the dimension

O(E), as expected. Even more importantly, the only relevant mass scales are M2
G and the

vev; the mass of Higgs does not enter. For more discussion on this point, see [1].

Since (5.8) plays a key role for our estimate for diffractive Higgs production, we provide

below a more direct but equivalent derivation using Feynman-Hellman Theorem, without

explicitly invoking trace-anomaly. All dimensionful quantities can be written in terms of

ΛQCD, or equivalently the glueball mass,

MG(αs(µ), µ) = coΛQCD = coµe
−

∫ αs(µ) dαs

αsβ̃ (5.15)

where9
µ

αs

∂αs

∂µ
= 2β(αs)/gs ≡ β̃(g) (5.16)

Since masses must be independent of the choice of renormalization scheme, one has

0 = µ
d

dµ
MG =MG − ∂MG

∂αs
µ
∂αs

∂µ
=MG − MG

β̃(αs)αs

µ
∂αs

∂µ
(5.17)

8Instead of v−1, this can also be expressed in term of the Fermi coupling, GF , where
√
2GF ≡

(g/2MW )2 = (1/v)2.
9The standard definition of the beta function give ∂g

∂µ
= g3

16π2 [11Nc/3− 2nf/3] → g3

16π2 b, with b = 9 for

Nc = 3, nf = 3. Here we use β̃(g) = 2β(g)/g.
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This is of course equivalent to

αs
∂

∂αs
MG = − MG

β̃(αs)
. (5.18)

Now we also can apply the Feynman-Hellman theorem to compute the derivative

1/β̃(αs) = −αs
∂ logMG

∂αs
= − 1

16παs

〈G|Ga
µνG

aµν(0)|G〉
MG

× V3
〈G|G〉 (5.19)

where the Hamiltonian has been taken in the form: H = −(1/16παs)
∫
V3
d3xGa

µνG
aµν+· · · .

Taking the infinite volume limit V3 → ∞ and going back to the conventional normalization

for the gauge field, one arrives at

〈G|F a
µνF

aµν(0)|G〉 = −4πM2
G/3β̃(αs) (5.20)

as expected.

5.3 Near-forward limit

With the Higgs production vertex fixed by (5.11), all factors for the Higgs production am-

plitude, (4.26), are in principle determined, and we are now in the position to turn to the

physical region where t1 ≤ 0 and t2 ≤ 0. To complete the discussion, let us examine here

more closely the Pomeron kernel, leaving the phenomenological question of elastic vertex

to the next section.

Consider first the elastic amplitude. In a strict supergravity limit, the kernel follows

from a simple pole-dominance ansatz, eq. (5.1), which is clearly inadequate at t = 0 since

the amplitude remains real. However, with λ finite, as one moves from t ≃ m2
0 to t ≃ 0, the

amplitude becomes complex, with the leading s-dependence slowing down from s2 to an

non-integral power. To carry out this analysis, as we have explained earlier, it is necessary

to revert to the J-plane representation, eq. (3.6), for the Pomeron kernel K̃P (s, t, z, z
′).

When confinement deformation is implemented, the J-plane propagator G̃j(t, z, z
′) can

be expressed generally in a spectral representation, (A.13). Equivalently, it can also be

expressed as a sum of J-dependent poles in t, e.g., for hardwall model,

G̃j(z, z
′; t) =

∑

n

φ̃n(z, j)φ̃n(z
′, j)

m2
n(j)− t

. (5.21)

with φ̃n(z, j) given in terms of Bessel functions. As one moves away from region near the

tensor pole, the leading J-plane structure initially remains a Regge pole, As we move close

to the t = 0 boundary, the J-plane structure is highly model-dependent. If asymptotic

freedom is implemented, the amplitude remains meromorphic in J , and a leading pole ap-

proximation can remain meaningful. Realistically, due to diminishing trajectory spacings, a

superposition of a large number of poles will be required. (See appendix-A for more details.)

In what follows, we shall use the hardwall model as a guide. One finds the amplitude is

dominated by a Regge pole initially in a region m2
1 < t < m2

0, where m
2
1 is the point where

the leading pole disappears through the BPST cut at j0 = 2 − 2/
√
λ, i.e., m0(j0) = m1.
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As one further continues to the physical region where t ≤ 0, the amplitude will now be

dominated by the contribution from the BPST cut, with the inverse Mellin transform in

J turning into an integral over the discontinuity across the cut. This leads to an explicit

AdS representation for the Pomeron kernel in the near-forward limit,

K̃P (s, t, z, z
′) =

∫ j0

−∞

dj

2πi
ξ(j)(α′ŝ)j Discj G̃j(t, z, z

′) . (5.22)

Given the Pomeron kernel, both the elastic amplitude (2.5) and the diffractive central Higgs

production amplitude, (4.25), are now completely specified, as promised.

For completeness, we note that analytic expression for the Pomeron kernel for the

hardwall model can be found in [13, 21], and it takes on a relatively simple form in the

forward limit, i.e., at t = 0. For illustrative purpose, it is useful to exhibit its form in

the conformal limit in an impact-representation. In this representation, one finds, for the

imaginary part of the kernel [16],

Im K̃P =
1

π

1

zz′
ξ

sinh ξ
(
√
λ/32π)1/2 ej0 τ

e−
√
λξ2/2τ

τ3/2
, (5.23)

where τ = log(α′ŝ), eξ = 1 + v +
√
v(2 + v), and v is the AdS3 chordal distance squared,

v = (x⊥
2 + (z − z′)2)/2zz′. While the above equation is given in impact parameter space,

we can perform a Fourier transform to go to momentum space. This has a particularly

simple form at t = 0, where the b-space integral can be performed explicitly to obtain

Im K̃P (s, 0, z, z
′) =

(
1

8π
√
λ

)1/2

ej0τ
exp

[
−

√
λ

2τ (log z − log z′)2
]

τ1/2
, (5.24)

which corresponds to a diffusion kernel in the AdS-radius. The imaginary part of the

Pomeron kernel in the hardwall model similarly has a simple closed form expression at t = 0

Im K̃HW (s, 0, z, z′) =

(
1

8π
√
λ

)1/2

ej0τ

(
e−

√
λ

2τ
log2(z/z′)

τ1/2
+ F (z, z, τ)

e−
√

λ
2τ

log2(zz′/z20)

τ1/2

)
.

(5.25)

The function

F (z, z′, τ) = 1− 2
√
ρπτeη

2
erfc(η) , η =

− log zz′/z20 + 2τ/
√
λ√

2τ/
√
λ

, (5.26)

is fixed by the boundary conditions at z0, and it displays the relative strength of confine-

ment. For a discussion, see [13, 21]. The real part of the kernel does not have a simple

closed form expression, however it was shown in [16] that in the limit of large ŝ with λ

large and fixed, so that
√
λ/ log(α′ŝ) ≪ 1, the relationship between the real and imaginary

parts takes on a simple form

Re K̃P = cot

(
π√
λ

)
Im K̃P . (5.27)
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5.4 First estimate for double-Pomeron contribution

We now turn to a qualitative discussion for estimating the convolution over the AdS/QCD

building blocks that determine Higgs production in our model. We emphasize however

that in fact all the kernels are defined precisely through the differential equations and

therefore with sufficient numerical effort can be computed directly once the explicit model

AdS background is chosen and the proton impact factor is fixed. This numerical step is

premature and is postponed to a future phenomenological analysis.

Even to provide a rough phenomenological estimate for the central Higgs production

cross section, we cannot avoid dealing with the coupling of Pomeron to the external protons.

At present we are using a very naive model of the AdS proton. Below we treat the proton

as a glueball wavefunction modified by a form factor for non-zero t. It is worth noting that

an even simpler wave function, treating the proton as a “heavy” point like object at the

IR cut-off, has already provided surprisingly good fits to the HERA DIS and DVCS data

at small x. We anticipate the need to improve this in self-consistent fits. Indeed modeling

the proton in the AdS context is an interesting topic in itself [44–48], as mentioned in the

Introduction. As in the case of elastic scattering, it is also pedagogically reasonable to

begin by first treating the simplest case of double-Pomeron exchange for Higgs production,

i.e., without absorptive correction. Here, we discuss how phenomenologically reasonable

simplifications can be made. This is followed by treating eikonal corrections in the next

section, which provides a means of estimating the all-important survival probability.

It is often useful to make use of the conformal kernel at t = 0 [13, 16] where diffusion in

the AdS radius is evident. The confinement can also be treated at t = 0, leading to (5.25).

The structure of the kernel at t < 0, can in principle be obtained by solving the appropriate

DE for the j-plane propagator. It can also be treated approximately, e.g., iteratively in an

expansion about the known solution at t = 0. Alternatively, it is more useful to assume

pole-dominance, e.g., keeping the contribution coming from a leading trajectory, even for

t negative,

G̃j(z, z
′; t) ≃ φ̃eff(z, j)

1

m2
eff(j)− t

φ̃eff(z
′, j) . (5.28)

where we approximate the BPST-cut contribution by that of an effective leading pole, with

the Pomeron kernel behaving as sjeff(t), where jeff(t), the trajectory function, determined

by m2
eff(j(t)) = t. That is, we assume jeff(t) remains real in the physical region where

t < 0. By performing the inverse Mellin transform, (3.6), the large s-behavior of the BPST

kernel can easily be obtained, leading to

A(s, t) ≃ g13(t)

(
ξ(jeff(t)) (α

′s)jeff(t)

α′2m̃2(t)

)
g24(t) (5.29)

where m̃2 is the inverse of trajectory slope, m̃2(t) ≡ dm2
eff(j(t))/dj, and ξ(j) is the signature

factor. For the elastic amplitude, the coupling

gij(t) = α′
∫
dz
√
−g(z) Φij(t, z)e

−jeff(t)A(z)φ̃0(z, jeff(t)) (5.30)
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is again in the form of an overlapping integral over the product of three wave functions,

with φ̃eff = φ̃0(z, jeff(t)). This serves as a continuation away from the on-shell spin-2 ex-

change by replacing the spin-2 wave function φG(z) = φ̃0(z, 2) by a corresponding wave

function for a Pomeron, φ̃0(z, jeff(t)), with spin shifted from 2 to jeff(t). Although this shift

is of the order O(1/
√
λ), it is important to note that φ̃0(z, j(t)) ∼ z∆(j(t))−2, for z → 0, in

contrast to φ̃0(z, 2) ∼ z2. Note that we have continued with the convention where gij(t)

has the dimension of length. It is also easy to check10 that (5.29) reduces to (5.1) as one

approaches the tensor pole, t→ m2
0.

Focusing next on the forward limit t = 0, we denote the effective intercept by j̄0 and

inverse slope by m̃2. Together with the forward coupling gij(0), they will be determined

phenomenologically. We note that m̃2 can be chosen to be of the order of the tensor glue-

ball mass, m2
0. For consistency, we also assume that j̄0 ≃ j0. In the high energy limit, ξ(j̄0)

provides the phase for the amplitude, with

|ξ|2 = 1 + ρ2 = 1 +

(
Re A(s, 0)

Im A(s, 0)

)2

(5.31)

A corresponding treatment at t1 ≃ t2 ≃ 0 for the Higgs production amplitude,

eq. (4.25), can lead to a similar simplification. It follows, after a bit of algebra,

A(s, s1, s2, t1 ≃ 0, t2 ≃ 0) ≃ g13(0)
ξ(j̄0)

2ΓPPH (α′s)j̄0

(α′m̃2)2
g24(0) (5.32)

with an effective central vertex, related to VPPφ, (5.11), by

ΓPPH ≃ αsg

24πMW
VPPφ

(
α′m2

H

)j̄0 C(j̄0) (5.33)

where

C(j̄0) =

∫
dz

√−ge−4A(z)φ̃0(z, j̄0)K(−m2
H , z)φ̃0(z, j̄0) (5.34)

and we have dropped terms lower order inO(1/
√
λ). We point out that (5.34) is finite due to

the wave-function normalizability. For hard-wall, it is logarithmically divergent as j̄0 → j0
which corresponds to the onset of a Regge cut. In a proper treatment when the leading

singularity is a cut, this apparent divergence will be absent. In order to avoid complicating

the discussion, we proceed with the understanding that C(j̄0) is of the order unity.

Let us turn next to the non-forward limit. We accept the fact that, in the physi-

cal region where t < 0 and small, the cross sections typically have an exponential form,

with a logarithmic slope which is mildly energy-dependent. We therefore approximate all

amplitudes in the near forward region where t < 0 and small,

A(s, t) ≃ eBeff(s) t/2 A(s, 0) (5.35)

10The tensor pole at t = m2
0 is contained in the signature factor, and, in order to match (5.29) with (5.1)

near t = m2
0, a factor of 2/π has to be supplied. This can easily be absorbed, e.g., by a re-definition for the

signature factor. We will not be concerned with such a re-definition for our present purpose.

– 27 –



J
H
E
P
0
9
(
2
0
1
2
)
0
9
7

where Beff(s) is a smoothly slowly increasing function of s, (we expect it to be logarith-

mic). We also assume, for t1 < 0, t2 < 0 and small, the Higgs production amplitude is also

strongly damped so that

A(s, s1, s2, t1, t2) ≃ eB
′
eff(s1) t1/2eB

′
eff(s2) t2/2 A(s, s1, s2, t1 ≃ 0, t2 ≃ 0) (5.36)

We also assume B′
eff(s) ≃ Beff(s) + b. With these, both the elastic, the total pp cross

sections and the Higgs production cross section can now be evaluated. Various cross sec-

tions will of course depend on the unknown slope parameter, Beff , which can at best be

estimated based on prior experience with diffractive estimates.

The phase space for diffractive Higgs production can be specified by the rapidity of

Higgs yH , and two-dimensional transverse momenta qi,⊥, i = 3, 4, 5, with q5,⊥ = qH,⊥,

in a frame where the incoming momenta k1 and k2 are longitudinal. Alternatively, due

to momentum conservation, we can use instead yH , t1, t2, cosφ as four independent vari-

ables where t1 ≃ −q23,⊥, t2 ≃ −q24,⊥, and cosφ = q̂3,⊥ · q̂4,⊥. However, the amplitude

is effectively independent of φ since its dependence enters through the κ variable where

κ ≃ m2
H + q2H,⊥ = m2

H + (q2,⊥ + q4,⊥)
2. As discussed earlier, for Higgs production, we can

replace κ by κeff ≃ m2
H .

Following the earlier analysis, section 5.4, it is now possible to provide a first estimate

for the double-diffractive Higgs production. It is possible to adopt an approach advocated

by Kharzeev and Levin where the dependence on Beff can be re-expressed in terms of other

physical observables. Under our approximation, it is easy to show that the ratio σel/σ
2
total

can be expressed as

σel
σ2total

=
1 + ρ2

16πBeff(s)
(5.37)

where ρ = ReA(s, 0)/ImA(s, 0). Upon squaring the amplitude, A(s, s1, s2, t1, t2), (5.36),

the double-differential cross section for Higgs production can now be obtained. After inte-

grating over t1 and t2 and using the fact that, for m2
H large s ≃ s1s2/m

2
H , one finds

dσ

dyH
≃ (1/π)× C ′ × |ΓGGH(0)/m̃2|2 × σ(s)

σ(m2
H)

×R2
el(mH

√
s) (5.38)

where C ′ = (C(j̄0)/C)
2. In this expression above, both C ′ and m̃2, like m2

0, are model

dependent. It is nevertheless interesting to note that, since ΓGGH(0) ∼ m2
0, the glueball

mass scale also drops out, leaving a model-dependent ratio of order unity. In deriving the

result above, we have replaced B′
eff by Beff where the difference is unimportant at high

energy. With mH in the range of 100GeV , Rel can be taken to be in the range 0.1 to 0.2.

For C ′ ≃ 1, m̃ ≃ m0, we find
dσ

dyH
≃ .8 ∼ 1.2 pbarn. (5.39)

This is of the same order as estimated in [1]. However, as also pointed in [1], this should be

considered as an over-estimate. The major source of suppression will come from absorptive

correction, which can lead to a central production cross section in the femtobarn range.
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6 Summary and discussion

There is of course already a growing literature with long historical roots applying both

gluon perturbation theory and/or Regge parametrization to analyze diffractive processes.

By extensive calibration with data, these are converging on estimates for double diffrac-

tive Higgs production [1, 4–12]. While there are still many areas of controversy in these

models, a general agreement is the need to combine aspects of hard and soft scattering.

These approaches can help us to gain further insight into the strong coupling approach

and to guide future attempts to extract phenomenological constraints. The chief advan-

tage of our holographic approach is the ability to unify both soft (Regge) and hard (BFKL)

diffraction. When supplemented with the confinement deformation in AdS space, e.g., a

hard-wall cutoff, our approach not only provides a description for the high energy near-

forward scattering, but also allows one to analytically continue the amplitudes to tensor

glueball pole to normalize the amplitude using the trace anomaly. Of course, as empha-

sized in the Introduction, we have but taken the first step in applying the BPST diffractive

model for central Higgs production. What we have achieved so far is clearly not the final

story, e.g., as for elastic amplitudes, it is well known that higher order contribution must

be taken into account in order to restore the unitarity constraint.

There are also other considerations which we have glossed over in this initial effort. As

stressed in the Introduction, the “bare-bone” double-Pomeron contribution to diffractive

Higgs production requires three building blocks: the proton impact factors, Φij and the

Pomeron kernel (or Reggeon propagators), K̃P and the Pomeron-Pomeron-Higgs vertex

VH . In this paper, we have treated the impact factors phenomenologically. In this con-

cluding section, we focus on discussing how consideration of higher order contributions via

an eikonal treatment leads to corrections for the central Higgs production. Following by

now established usage, the resulting production cross section can be expressed in terms of

a “survival probability” [12, 65–71]. In a more traditional usage, this eikonal sum can also

be referred to as the “Good-Walker” sum [72], with contributions due to triple-Pomeron

effect as coming from “enhanced diagrams”. For now, we shall ignore these complications

and focus on the most important aspect which can be thought of as “local saturation” in

the Euclidean AdS3.

The importance of eikonal correction can be seen as follows. One of the most im-

portant findings from String/Gauge duality is the fact that, at strong coupling, the single

“Graviton” (Pomeron) exchange leads to an elastic amplitude which grows too fast, ∼ sj0 ,

with j0 ≃ 2−O(1/
√
λ). With the elastic amplitude growing as a power, it follows that that

the dimensionless ratio Rel also grows asymptotically as sj0−1 thus violating the constraint

Rel < 1 and unitarity correction must be taken into account. Although the “bare Pomeron”

approximation dominates in the largeNc expansion, it is clear that higher order summations

are necessary in order to restore unitarity. To go beyond the single-Pomeron approximation

we must consider the high energy limit of lower order terms in the 1/Nc expansion. In flat

space Veneziano has shown that higher closed string loops for graviton scattering eikonalize.

Indeed in refs. [15, 16] it was shown that the same sum leads to an eikonal expansion that ex-

ponentiates for each string bit frozen in impact parameter during the collision. To be more
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explicit, the resulting eikonal sum leads to an impact representation for the 2-to-2 amplitude

A(s, x⊥ − x′⊥) = −2is

∫
dz dz′ P13(z)P24(z

′)
[
eiχ(s,x

⊥−x′⊥,z,z′) − 1
]

(6.1)

The eikonal χ, as a function of x⊥−x′⊥, z, z′ and s, can be determined by matching the first

order term in χ to the single-Pomeron contribution, (2.5). In impact space representation,

and one finds χ(s, x⊥ − x′⊥, z, z
′) =

g20
2s K̃P (s, x⊥ − x′⊥, z, z

′)

This eikonal analysis can be extended directly to Higgs production. To simplify the

discussion, we shall adopt a slightly formal treatment. Since Higgs is not part of the QCD

dynamics, one can formally treat our eikonal as a functional of a weakly coupled exter-

nal background Higgs field, φH(q±, x⊥H , zH), that is, in (6.1), we replace A(s, x⊥, x
′
⊥) and

χ(s, x⊥−x′⊥, z, z′) by A(s, x⊥, x′⊥;φH) and χ(s, x⊥−x′⊥, z, z′;φH), with the understanding

that they reduce to A(s, x⊥, x
′
⊥) and χ(s, x

⊥ − x′⊥, z, z′) respectively in the limit φH → 0.

Since Higgs production is a small effect, by expanding to first order in the Higgs background

field, we find the leading order Higgs production amplitude, to all order in χ, becomes

AH(s1, s2, x
⊥ − x⊥H , x

′⊥ − x⊥H , zH) = 2s

∫
dz dz′ P13(z)P24(z

′)

×χH(s1, s2, x
⊥ − x⊥H , x

′⊥ − x⊥H , z, z
′, zH) eiχ(s,x

⊥−x′⊥,z,z′) (6.2)

where χH is given by the Higgs production amplitude, (4.25), due to double-Pomeron ex-

change in an impact representation.11 The net effect of eikonal sum is to introduce a phase

factor

eiχ(s,x⊥−x′
⊥,z,z′) = ei Re χR(s,x⊥−x′

⊥,z,z′)e−Im χ(s,x⊥−x′
⊥,z,z′) (6.3)

into the production amplitude. Due to its absorptive part, Im χ, this eikonal factor provides

a strong suppression for central Higgs production.

The effect of this suppression is often expressed in terms of a “Survival Probability”,

〈S2〉. In a momentum representation, the cross section for Higgs production per unit of

rapidity in the central region is

dσH(s, yH)

dyH
=

1

π3(16π)2s2

∫
d2q1⊥d

2q2⊥|AH(s, yH , q1⊥, q2⊥)|2 (6.4)

where yH is the rapidity of the produced Higgs, q1⊥ and q2⊥ are transverse momenta of

two outgoing fast leading particles in the frame where the momenta of incoming particles

are longitudinal. “Survival Probability” is conventionally defined by the ratio

〈S2〉 ≡
∫
d2q1⊥d

2q2⊥|AH(s, yH , q1⊥, q2⊥)|2∫
d2q1⊥d2q2⊥|A(0)

H (s, yH , q1⊥, q2⊥)|2
(6.5)

where A
(0)
H is the corresponding amplitude before eikonal suppression, e.g., given by

eq. (4.25). For simplicity, we shall also focus on the mid-rapidity production, i.e., yH ≃ 0

11To be more precise, up to a factor of 2s, χH is given by matching AH(s, x⊥, x
′
⊥, φH) at |χ| ≪ 1 with

the integrand of (4.25) in an impact representation. We also note that here s1s2/s ≃ m2
H . The kinematics

of transverse AdS3 coordinates are represented schematically in figure 5.
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in the overall CM frame. In this case, 〈S2〉 is a function of overall CM energy squared,

s, or the equivalent total rapidity, Y ≃ log s. Evaluating the survival probability as given

by (6.5), though straight forward, is often tedious. The structure for both the numerator

and the denominator is the same. For numerator factor, one has

∫
dx⊥dz dz̄ P13(z)P13(z̄)

∫
dx′⊥dz

′ dz̄′ P24(z)P24(z
′)

∫
ei(χ(s,x⊥−x′

⊥,z,z′)−χ∗(s,x⊥−x′
⊥,z̄,z̄′))

×χH(s, s1, s2, x
⊥ − x⊥H , x

′⊥ − x⊥H , z, z
′)χ∗

H(s, s1, s2, x
⊥ − x⊥H , x

′⊥ − x⊥H , z̄, z̄
′) (6.6)

where we have made use of that fact that zH ≃ 1/mH . To obtain the denominator, one

simply removes the phase factor, ei(χ(s,x⊥,x′
⊥,z,z′)−χ∗(s,x⊥,x′

⊥,z̄,z̄′)). It is now clear that it is

this extra factor which controls the strength of suppression.

To gain a qualitative estimate, let us consider the local limit where z ≃ z̄ ≃ z0 and

z′ ≃ z̄′ ≃ z′0, with z0 ≃ z′0 ≃ 1/ΛQCD. In this limit, one finds that this suppression factor

reduces to

e−2 Im χ(s,x⊥,x′
⊥,z0,z′0) (6.7)

where Im χ > 0 by unitarity. If follows that, in a super-gravity limit of strong coupling

where the eikonal is strictly real, there will be no suppression and the survival probability

is 1. Conversely, the fact that phenomenologically a small survival probability is required

is another evidence that we need to work in an intermediate region where 1 < j0 < 2. In

this more realistic limit, Im χ is large and cannot be neglected. In particular, it follows

that the dominant region for diffractive Higgs production in pp scattering comes from the

region where

Im χ(s, x⊥ − x′⊥, z, z
′) = O(1), (6.8)

with z ≃ z′ = O(1/ΛQCD). Note that this is precisely the edge of the “disk region” for

p-p scattering. In order to carry out a quantitative analysis, it is imperative that one

can accurately evaluate χ(s,~b, z, z′) for |~b| large. From our experience with pp scattering,

DIS at HERA, etc., we know that confinement will play a crucial role. In pp scattering,

since z ≃ z′ = O(1/ΛQCD), we expect this condition is reached at relatively low energy,

as is the case for total cross section. It therefore plays a dominant role in determining

the magnitude of diffractive Higgs production at LHC. The importance of confinement

in achieving saturation in DIS as well as in approaching Froissart bound for total cross

sections has been stressed in ref. [21]. In particular, it has been pointed out that, due to

confinement, the J-plane amplitude falls exponentially with the impact parameter, instead

of a power as in the conformal limit. With confinement the Pomeron kernel is dominated

at large x⊥ by the nearest pole in t at m2
0(j) ,

G̃j(z, z
′;x⊥) → φ̃0(z, j)φ̃0(z

′, j)√
m0(j)x⊥

e−m0(j)x⊥ .

This in turn can be shown to lead to diffusion in impact parameter, ~b, [16], and a

corresponding shrinkage in elastic peak which, as pointed out recently [73, 74], is an

important phenomenological feature observed at LHC. We will not discuss this issue

– 31 –



J
H
E
P
0
9
(
2
0
1
2
)
0
9
7

here further; more pertinent discussions on how to determine χ(s, x⊥ − x′⊥, z, z
′) when

confinement is important can be found in ref. [21].

Lastly, it is worth contrasting our AdS strong coupling treatment with the more

conventional diffractive Higgs production by “nonforward gluon density functions.” In

our approach, the graviton/Pomeron is a color singlet so the corresponding distribution

functions must also be gauge invariant. By introducing a confining deformation, no

infrared and/or collinear singularities are present. Thus we avoid many issues which have

played an important role in the weak coupling approach, such as Sudakov suppression,

infrared safety, etc. In the AdS formulation, we believe the dominant source of higher

order suppression comes from eikonalization. While in the supergravity limit the triple

Pomeron, which contributes to high-mass diffractive dissociation, is absent [73, 75], we

anticipate this vertex is non-zero due to conformal symmetry breaking analogous to our

earlier discussion on the source of the non-vanishing graviton-graviton-dilaton coupling.

We end by re-iterating the importance of AdS factorization (1.4) for the Reggeized

Witten diagrams. Traditional Regge factorization requires pure powers (or J-plane poles)

but here factorization is extended to the pole in AdS space that gives rise to the Pomeron

cut in the J-plane. This property is more in the spirit of the factorization properties

for parton distribution functions in hard QCD processes. Note that each separate factor

in (1.4), up to a proportionality constant, can also be related to the amplitude of proton

scattering off a heavy ”onium” state, with a mass O(mH), or, equivalently, that for an

off-shell Compton amplitude, e.g.,

γ∗ (q1) + proton (k2) → γ∗ (q3) + proton (k4) (6.9)

with q21 ≃ q22 ≃ −m2
H . In this case, with t small, the photon is highly virtual and

the amplitude can be thought of as a generalized DIS structure function, analogous to

the “skewed unintegrated” parton distribution functions in a perturbative approach.

(See, for instance, [76–78].) This will allow one to relate the double diffractive Higgs

production amplitude to other measurables in DIS, after implementing some plausible

assumptions [79, 80]. It is also worth noting that it should be possible to replace the

internal vertex VH , or equivalently replace the top quark loop by an operator for quark

and anti-quark production at the boundary of AdS space and thus extend the AdS analysis

to Pomeron fusion into heavy quark di-jets production, providing a powerful experimental

test and calibration to the building blocks introduced for our diffractive Higgs production

amplitude. We are considering how to do this but leave this extension as well as further

phenomenological investigations to future research.
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A AdS QCD and conformal symmetry breaking

In this appendix, we first present a model with scale invariance breaking due to confinement

deformation, leading to non-vanishing expectation values for 〈F 2〉, etc. Under such a

condition, there will be a Witten graviton-graviton-dilaton vertex in the bulk as well as the

existence of tensor glueballs. We next turn to a more amenable model, e.g., the hard-wall

model, where, due to confinement, the existence of a tensor glueball can be more easily

studied. This approach can also be used to provide a more explicit representation for our

Pomeron kernel, KP . Lastly, we discuss consequence of asymptotic freedom, and point

out how a non-vanishing beta-function can be used to relate gluon condensate to the non-

vanishing trace for the energy-momentum tensor. This observation has been used to provide

an estimate on the magnitude for the central Higgs production vertex VH in section 5.

Symmetry breaking and AdS/CFT correspondence. Symmetry breaking effect

has been studied in AdS/CFT correspondence mostly using a near-boundary analysis [28–

34]. In a standard AdS/CFT treatment for d = 4, N = 4 Yang-Mills theory, each local

operator Oi of dimension ∆i in the CFT corresponds to two possible solutions of the

linearized field equations for an associated bulk field Φi near the AdS boundary [28, 29],

a nonnormalizable solution which scales with the AdS radius as r∆i−4 with r the AdS

radius, and a normalizable solution which scales as r−∆i . As explained carefully in [33],

when a CFT is perturbed by a symmetry breaking local operator aiOi, a non-vanishing

vev 〈Oi〉 corresponds to a supergravity solution which behaves at large r as

air
∆i−4 + · · ·+ bi r

−∆i + · · · (A.1)

where 〈Oi〉 = bi. For our present purpose, it is more profitable to address scale invariance

braking in terms of Witten diagrams in the bulk.

In a truly realistic treatment of QCD, one expects scale invariance breaking due to run-

ning of QCD coupling, with the trace of the stress-energy tensor related to F 2 by the QCD

beta-function, e.g., 〈Tµ
µ 〉 = β 〈F 2〉. In an approximate treatment where conformal invari-

ance is maintained, on the other hand, it follows that Tµν remains traceless, with vanishing

〈F 2〉 = 0, etc. More generally, we will be interested in n-point correlators involving F 2 and

Tµν , which can be evaluated at strong coupling through the use of Witten diagrams. Under

such a scenario, as we shall explain below by an explicit model for dilaton-gravity, the

relevant Graviton-Higgs-Graviton coupling in the bulk would vanish. That is, there would

be no double diffractive Higgs production at strong coupling! Fortunately, in a framework

with proper confinement deformation, scale invariance is broken with non-vanishing vev

for F 2, and the Graviton-Higgs-Graviton coupling is non-zero. Furthermore, when the

running coupling is properly taken into account, through the conformal anomaly, we are

able to fix the normalization of double diffractive Higgs production.

Central vertex and scale invariance breaking. The importance of scale invariance

breaking for the QCD dynamics has been emphasized in [81]. It has also been discussed
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by many in connection with the spectrum of light scalar glueballs. It is possible to adopt

a holographic approach where one couples 5d gravity to a dilaton with AdS5 geometry

in the UV, eq. (2.2) while taking on a non-trivial background. For instance, this can be

achieved by considering a toy model with action [51]

S =M2
P

∫
d5x

√
g

(
−R− V (φ) +

1

2
gMN∂Mφ∂Nφ− λ(φ)T (z)

)
(A.2)

where φ is the dilaton and V (φ) is a dilatonic potential and we have added an external

“brane” source. This system was analyzed in some detail in DeWolfe, Freedman, Gubser

and Karch [82] by mapping the problem into the solution of a super potential. A

first question is, without introducing an external brane source, but with a potential

V appropriately chosen, is it possible to simulate running coupling, scale invariance

breaking, etc? This leads to a non-vanishing gluon condensate, and, in such a setting, a

non-vanishing graviton-graviton-dilaton vertex can be obtained. Since double diffractive

Higgs production proceeds via scalar glueball production, as discussed earlier, this in turn

leads to a non-vanishing Pomeron-Pomeron-Higgs vertex, VH .

Consider first an example leading to a “near-AdS” geometry, (2.2), by having a

dilaton background, φcl(z), which can be non-trivial. Expanding the action about this

background, Gmn = gmn + hmn and φ = φcl + ϕ, and consider traceless-transverse hmn

appropriate for Pomeron/Graviton fluctuations, terms linear in h and ϕ vanish, quadratic

terms serve to determine the glueball spectrum, and higher order terms correspond to

couplings in a Witten diagrammatic treatment. We are therefore interested in a term

linear in ϕ and quadratic in h. Expanding the action we obtain terms of this order

Sint =
M2

P

4

∫
dzd4x

√−ghnmhmn[V
′(φcl)ϕ− gzz∂zφcl(z)∂zϕ] . (A.3)

where φcl(z) is the classical background. Note in the pure AdS5 conformal background, the

potential is a constant, V = −12/R2, i.e., it simply provides the cosmological constant, and

φcl(z) = const. It follows both terms above are zero. That is, the graviton-graviton-dilaton

coupling vanishes identically in a conformal limit.

Conversely, if the background is non-trivial, and breaks scale invariance, a more

involved potential V (φ) is required. This in turn leads to a non-zero graviton-graviton-

dilaton coupling. This can best be illustrated for example by the special “subcritical

asymptotically free” solution, discussed in Csaki et al. [51], where

V (φ) = − 6

R2
e
√

2/3φ − 12

R2
, φcl = −

√
3/2 log log(z0/z) (A.4)

We note that, for this case,

e
√

2/3φcl = 1/ log(z0/z) (A.5)

As an illustration of the effects of running coupling in the UV, this model gives

Sint = −M
2
P

4

∫
dzd4x

√−g
√
6

R2 log(z0/z)
hnmhmn

[
φ+

z

4
∂zφ

]
(A.6)

with a non-trivial graviton-graviton-dilaton coupling in the bulk.
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Although the model discussed above looks attractive, it nevertheless cannot serve

as a realistic model for QCD as we will indicate shortly. The precise choice of the best

background is therefore left to future phenomenology. Here it is sufficient to assume that

there is confining background so that there is a stable (at large N) tensor glueball on

the leading trajectory at J = 2 and a non-zero Pomeron-Pomeron-dilaton vertex. As we

shall see shortly, the existence of a tensor glueball plays a crucial role in our treatment,

we turn next to a more detailed analysis using a hard-wall background which is also more

amenable to a J-plane analysis, necessary for discussing our Pomeron kernel.

Tensor glueballs and confinement deformation. Let us begin by first considering

confinement deformations keeping the ultraviolet region conformal. If confinement sets in

at a scale Λ in the gauge theory, this leads to a change in the metric away from AdS5 in the

region near z = R2/r ∼ 1/Λ = z0. One can think of the space being “cut-off” or “rounded

off”, in some natural way at z = z0, leading to a “wave-guide” effect. This in general leads

to a theory with a discrete hadron spectrum, with mass splitting of the order Λ among

hadrons of spin ≤ 2. As discussed in [13], the differential operator determining the J-plane

spectrum remains approximately unaffected for −t ≫ Λ2, while the effect of confinement

becomes important as t → 0−, and for any t > 0. To gain a qualitative understanding, it

is instructive to treat below the “hard-wall” model, so that eq. (3.7) remains valid, with z

cutoff in the range [0, z0]. While this model is not a fully consistent theory, it does capture

key features of confining theories with string theoretic dual descriptions.

To set the proper stage, let us first review the situation in the conformal limit. Recall

that, at finite λ, it has been shown in ref. [13] that, due to curvature of AdS, the effective

spin of a graviton exchange is lowered from 2 to j0 = 2 − 2/
√
λ. As such it is necessary

to adopt a J-plane formalism where the Pomeron kernel K̃P is given by an inverse Mellin

transform,

K̃P (s, t, z, z
′) = −

∫ i∞

−i∞

dj

2πi
(α′ŝ)j

1 + e−iπj

sinπj
G̃j(t, z, z

′) . (A.7)

with ŝ = zz′s/R2. Note that the J = 2 contribution is

(2/π)(α′ŝ)2G̃2(t, z, z
′) . (A.8)

This is simply the graviton Kernel, (3.3), up to a constant factor, which can be absorbed

into the coupling. When conformal invariance is maintained, this J-dependent propagator

G̃j(t, z, z
′) satisfies the standard AdS5 differential equation

(
−z∂zz∂z + (2

√
λ)(j − j0)− z2t

)
G̃j(z, z

′; t) = z δ(z − z′) (A.9)

with j0 = 2− 2/
√
λ. This equation can also be expressed in a standard Schrodinger form.

It can be solved either by a spectral resolution in t or in j. Holding j > j0 first and real,

the spectrum in t can be seen to be continuous, along its positive real axis, leading to

G̃j(z, z
′; t) =

∫ ∞

0
kdk

J(∆(j)−2)(kz)J(∆(j)−2)(kz
′)

k2 − t
. (A.10)
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where ∆(j) = 2+
√
2
√
λ(j − j0). If, on the other hand, an IR hard-wall cutoff is introduced,

the spectrum in t becomes discrete. The propagator is now given by a discrete sum,

G̃j(z, z
′; t) =

∑

n

φ̃n(z, j)φ̃n(z
′, j)

m2
n(j)− t

. (A.11)

The wave-functions φ̃n(z, j) can again be expressed in terms of Bessel functions, with

mn(j) fixed by a Neumann condition at z0, [z
jφ̃n(z, j)]

′∣∣
z=z0

= 0. This discrete structure

is what is to be expected when confinement deformation is introduced.

Alternatively, one finds that

G̃j(z, z
′; t) =

∫ ∞

−∞

dν

π2
(ν sinhπν)

Kiν(qz)Kiν(qz
′)

2
√
λ(j − j0) + ν2

(A.12)

where t = −q2 < 0. (A.12) provides a different representation for the Pomeron propagator

in the conformal limit. One observes more directly the presence of the branch cut at j = j0,

which corresponds to the minimum of the denominator in (A.12). From (A.10), the presence

of this cut has to be inferred from the dependence through ∆(j). Equivalently, one can work

directly with a spectrum analysis in the J-plane, as carried out in ref. [16]. The analysis can

best be thought of as working with the boost operator, Ĥ =M+−, which is conjugate to J .

It is also just as easy to treat the problem more generally, e.g., with e−2A(z) replacing

(R/z)2 as a confining warping factor. The Green’s function is the spectral representation

for the operator, (j − Ĥ)−1,

Gj(q⊥, z, z
′) = e−jA(z)

∑

n

ψn(q⊥, z)ψn(q⊥, z
′)

j − λn(q)
e−jA(z′) (A.13)

where traditional one regards ωn = λn − 1 as eigen-energies of boost operator.12

Further discussion on these construct can be found in ref. [13]. Here, we simply

display in figure 7, the structure of these Regge singularity for J and t real. In particular,

we emphasize that, when the trajectory crosses j = 2, it corresponds to a physical tensor

glueball. This important feature we shall make use of in the next section.

It is possible to adopt a more general background which mimics the features of

running coupling. This has also been done in [13]. The result is a discrete spectrum in the

Regge plane in agreement with expectation based on asymptotic freedom for the BRST

equation, figure 8.

Modeling asymptotic freedom and broken scale invariance. In a realistic holo-

graphic treatment of QCD, asymptotic freedom must be handled consistently. Although

there have been several models to implement some features of running coupling [13, 51] ,

they nevertheless do not prove to be entirely inadequate. For instance, they fail to give the

correct running coupling dependence as measured by the potential between static quarks

12Actually confinement alone has both a discrete and continuum spectrum, which we do not exhibit

explicitly here.
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j − 2

t

Figure 7. The analytic behavior of Regge trajectories in the hard-wall model, showing the location

of the bound-state poles at j = 2 and the t-independent continuum cut (shaded) at j = j0 =

2 − 2/
√
λ into which the Regge trajectories disappear. The lowest Regge trajectory intersects the

cut at a small positive value of t. At sufficiently large t each trajectory attains a fixed slope,

corresponding to the tension of the model’s confining flux tubes.

j − 2

t

Figure 8. Discrete Regge Spectrum at negative t due to running coupling.

at a small separation L

VQ̄Q(L) ≃ −α(L)/L , α(L) =
g2Nc

− log(µL)
(A.14)

when computed using the Nambu action in these deformed backgrounds. We have checked

that the background of [51] with running coupling does not support this interpretation.

An analogous suggestion in [13], discussed briefly above, does lead closer to the desired

answer. However it is not a solution to pure dilaton gravity. It requires a negative tension

brane in the UV to support it or some other source of energy. Perhaps it is not surprising

that to wed the UV behavior to a smooth effective background at strong coupling should

be difficult. A real QCD dual theory would have to describe hard scattering and gluon

jets at high energy not just a running coupling. Most likely this at the very least implies

highly curved background far from these phenomenological attempts.

Clearly the details of such a construct go beyond the scope of the current discussion.

It suffices to emphasize that VH 6= 0 is a general consequence of scale anomaly. As pointed
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out earlier, in a naive application of the hard-wall model, such vertex is indeed absent in

the bulk. Therefore, our discussion of Higgs production in AdS/CFT should be understood

in a more general setting with a proper confinement deformation of the AdS geometry.
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