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1 Introduction

The potential between static charges in gauge theories is defined through the expectation

value of a rectangular Wilson loop. In the AdS/CFT context, Wilson loops are directly

related to string worldsheets and at strong coupling their expectation values obey the area

law [1–3]. The static potential in N = 4 super-Yang-Mills theory (SYM) can thus be

computed at strong coupling by evaluating the area of a minimal surface in AdS5 × S5

with appropriate boundary conditions [1, 2]. This calculation has led to one of the first

quantitative predictions of the AdS/CFT duality [1]. Recently much progress has been

achieved towards a non-perturbative description of the static potential at any coupling.

The main tools are diagram resummations [4] and quantum integrability of the AdS/CFT

system [5, 6]. The former approach is less general and is applicable only in a corner of the

parameter space, but is technically simpler and can be derived from first principles. Apart

from giving another insight into the inner working of the AdS/CFT duality, this approach

can be helpful in finding direct gauge-theory interpretation of various quantities appearing

in TBA (Y-functions, driving terms in the TBA equations etc.).
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The approach of [4] is based on the resummation of ladder diagrams. The Bethe-

Salpeter equation that resums ladders for rectangular Wilson loop was derived in [7] and

predicts the
√
λ scaling of the static potential, consistent with the string calculation at

strong coupling. The limit that emphasizes ladder diagrams involves analytic continuation

in the scalar coupling of the Wilson loop [4], and once the same limit is taken on the two

sides of the duality, the results completely agree [4], in spite of a potential order-of-limits

problem. Identification of the ladder approximation with the leading order of an expansion

in a small parameter [4] makes it possible to systematically compute corrections.1 Our aim

will be to set up a general scheme of doing ladder resummation order by order. We will

explicitly compute the leading correction to the simple ladder approximation. In particular

we will check if the order-of-limits problem start to affect the comparison to string theory

at strong coupling, once the NLO corrections are taken into account.

2 Coulomb potential

The Wilson loop operator in N = 4 SYM theory is defined as

W (C) = tr P exp

[∮
C
ds
(
Aµẋ

µ + iΦIn
I |ẋ|
)]

(2.1)

It describes an infinitely heavy W-boson associated with the symmetry breaking by a Higgs

vev in the direction of the six-dimensional unit vector n: 〈ΦI〉 = vnI . Rectangular T × L
loop with the scalar couplings n1 and n2 on the two sides of the rectangle defines the

Coulomb potential between W and W̄ with the symmetry-breaking vevs n1,2:

ln 〈W (CT×L,n1,n2)〉 =
α(θ, λ)T

L
. (2.2)

The Coulomb charge α(θ, λ) is a function of the ’t Hooft coupling λ = g2
YMN and the angle

between the symmetry-breaking vevs: cos θ = n1 · n2.

To the leading order in perturbation theory,

α(θ, λ) =
λ

8π
(1 + cos θ) +O

(
λ2
)
, (2.3)

where the first term in the brackets comes from the gluon exchange and the second term

from exchanging scalars. The limit, which emphasizes the ladder diagrams, requires an

analytic continuation in θ:

θ = iϑ. (2.4)

When ϑ is real and large, the scalar exchange becomes dominant. In the scaling limit [4],

ϑ→∞, λ e ϑ − fixed, (2.5)

the scalar contribution is of order one, while the gluon contribution remains small because

we should simultaneously take λ→ 0. It is easy to see that any scalar line connecting the

1See [8] for an early discussion of how to improve the ladder approximation.
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two sides of the Wilson loop is enhanced by a factor of n1 ·n2 = cos θ ∼ e ϑ, while adding a

gluon line or an internal vertex produces an uncompensated coupling λ. The scalar ladders

(diagrams without internal vertices2) are thus the only diagrams that survive in the limit

ϑ → ∞ [4]. Resummation of the ladder diagrams can be reduced to solving a simple

Schrödinger equation [7].

It is convenient to introduce a rescaled coupling

λ̂ =
λ

2
(cos θ + 1) , (2.6)

which is of order one in the limit (2.5), (2.4), and to consider the Coulomb charge as a

function of λ̂ and λ. The ladder expansion can be regarded as series in e−ϑ, or equiva-

lently in λ:

α(λ, λ̂) =

∞∑
n=0

αn(λ̂)λn. (2.7)

Our goal is to compute α1. To make the presentation self-contained, we will also review

the leading order of the ladder approximation that computes α0.

3 Ladder diagrams

3.1 Bethe-Salpeter equation: general structure

To calculate the n-th order correction to the Coulomb charge, in principle it is enough

to identify all diagrams that have order O(λn) in the scaling limit (2.5). But the num-

ber of such diagrams is infinite, and a better way to organize the calculation is to first

compute 2PI diagrams and then generate all other diagrams with the help of the Bethe-

Salpeter equation. The number of 2PI diagrams at each order is finite. In addition, the

Bethe-Salpeter equation automatically exponentiates the result, making it easy to take the

logarithm in (2.2).

The kernel of the Bethe-Salpeter equation K(s′, s, t′, t) is the sum of 2PI diagrams

whose end-points lie within the intervals (s, s′) and (t, t′) on the two anti-parallel sides of

the Wilson loop. The sum of all diagrams, not necessarily 2PI, with end-points within the

intervals (0, S) and (0, T ), which we denote by Γ(S, T ), then satisfies the Bethe-Salpeter

equation (figure 1):

Γ(S, T ) = 1 +

∫ S

0
ds′
∫ s′

0
ds

∫ T

0
dt′
∫ t′

0
dtK(s′, s; t′, t)Γ(s, t). (3.1)

The Coulomb charge is related to the large-distance behavior of Γ(S, T ): in the units

where L = 1,

α = lim
T→∞

log Γ(T, T )

T
. (3.2)

2There are also diagrams without internal vertices, where propagators connect points on one and the

same line. However such diagrams cancel, since a separate straight Wilson line is supersymmetric.

– 3 –
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Figure 1. The Bethe-Salpeter equation.

The equation can be simplified by differentiating with respect to S and T :

∂2Γ

∂S ∂T
=

∫ S

0
ds

∫ T

0
dtK(S, s;T, t)Γ(s, t). (3.3)

It is convenient to introduce new variables (figure 1):

y = S + T, x = S − T, u = S − s, v = T − t. (3.4)

Owing to the translation invariance, the kernel does not depend on the center-of-mass

coordinate y:

K(S, s;T, t) ≡ K(u, v;x), (3.5)

and the Bethe-Salpeter equation becomes

∂2Γ

∂y2
− ∂2Γ

∂x2
=

∫ y+x
2

0
du

∫ y−x
2

0
dv K(u, v;x)Γ(y − u− v, x− u+ v). (3.6)

The equation should be supplemented with the boundary condition

Γ(y, x)

∣∣∣∣
y=|x|

= 1. (3.7)

According to (3.2), the Bethe-Salpeter wavefunction Γ(y, x) grows exponentially with

y, at least when x = 0. Under the assumption that at small but finite x the dependence

on y is still exponential, we arrive at the following ansatz:

Γ(y, x) ' ψ(x) e
αy
2 , (3.8)

where α is the Coulomb charge that we want to calculate. This ansatz can be valid only

at |x| � y, as is does not carry any information on the boundary condition (3.7). At the

leading ladder approximation it is possible to make a more rigorous argument and derive

the behavior (3.8) from the first principles [9]. We will not go into such a detail here,

and will simply assume that (3.8) holds for sufficiently large y. This assumption will be

sufficient for finding both α and ψ(x).

Substituting the ansatz (3.8) into the Bethe-Salpeter equation (3.6), and sending y to

infinity while keeping x finite, we get an integro-differential equation for ψ(x):

d2ψ

dx2
+

∫ ∞
0

du

∫ ∞
0

dv e−
α
2

(u+v)K(u, v;x)ψ(x− u+ v) =
α2

4
ψ. (3.9)

The Coulomb charge α is the smallest eigenvalue of this linear problem.

– 4 –
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3.2 Summing up ladders

The Bethe-Salpeter kernel can be computed in perturbation theory:

K(u, v;x) =
∞∑
n=0

λnKn(u, v;x), (3.10)

where each order contains a finite number of 2PI diagrams. Each Kn is a function of λ̂.

The only 2PI diagram of order O(λ0) is the scalar exchange:

K0(u, v;x) =
λ̂δ(u)δ(v)

4π2 (x2 + 1)
. (3.11)

With this approximation, the eigenvalue problem (3.9) reduces to an ordinary

Schrödinger equation:
d2ψ0

dx2
+

λ̂

4π2 (x2 + 1)
ψ0 =

α2
0

4
ψ0, (3.12)

which has been analyzed in great detail in [7, 9, 10, 4]. In particular, the eigenvalue of

the Schrödinger operator can be systematically analyzed at large and at small λ̂. For

completeness, we review the results below.

The weak-coupling expansion of α0 is not exactly a power series: the Taylor coefficients

contain logarithms. Such a non-analytic behavior arises because of the IR divergences of

perturbation theory for the static potential [11]. The logarithms first show up at two

loops [7], and can be resummed using a version of renormalization group equation [12].

Both logarithmic and finite terms can be calculated from the Schrödinger equation. To the

three-loop accuracy [4]:

α0(λ̂) =
λ̂

4π
+

λ̂2

8π3
ln
λ̂ e γ−1

2π
+

λ̂3

32π5

(
ln
λ̂ e γ

2π
ln
λ̂ e γ+1

2π
− 7

2
− π2

12

)
+ . . . , (3.13)

where γ is the Euler constant.

At large λ̂, the eigenvalue of the Schrödinger problem (3.12) is given by the classical

energy at the minimum of the potential [7]:

α0 =

√
λ̂

π
− 1 + . . . . (3.14)

The second term is the energy of the zero-point fluctuations. The strong-coupling asymp-

totics of the ladder diagrams perfectly agrees with the classical calculation in string theory,

as soon as the correct range of parameters is identified [4]. The angle θ defines the bound-

ary conditions for the string worldsheet on S5 in the AdS5×S5 geometry. Once the angle is

analytically continued to complex values and ϑ is taken to infinity, the area of the minimal

surface in AdS5×S5 grows exponentially, as e ϑ/2, reproducing the ladder result (3.14). It

would be very interesting to compare the second term with the one-loop correction due to

string fluctuations, which can be calculated along the lines of [13].3

3We thank Nadav Drukker for the discussion of this point.
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Figure 2. Comparison of the exact eigenvalue of the Schrödinger equation (3.12) (solid blue line)

with the three-loop weak-coupling result (3.13) (dashed magenta line) and one-loop strong-coupling

approximation (3.14) (dot-dashed yellow line).

(a) (b) (c) (d) (e)

Figure 3. Bethe-Salpeter kernel at the next-to-leading order.

The wavefunction in the strong-coupling limit is highly peaked near zero:

ψ0(x) '
(

λ̂

4π4

) 1
8

e−
√
λ̂ x2

4π (λ→∞) . (3.15)

The ladder diagrams are thus getting densely packed at large λ̂ [8]. Indeed, the average〈
x2
〉
∼ λ̂−1/2 determines the mean square distance between consecutive rungs of the ladder.

At strong coupling this distance becomes parametrically small.

In figure 2 the numerical solution for α0 in the full range of λ̂ is compared to the weak

and strong coupling approximations above.

4 Beyond ladders

To compute the NLO contribution to the Coulomb charge, we first need to calculate the

O(λ) correction to the kernel — the sum of 2PI diagrams proportional to λ, λ2 cos θ and

λ3 cos2 θ (there are no 2PI diagrams of higher order in λ̂). The relevant diagrams are

shown in figure 3. The resulting corrections to the Schrödinger equation (3.12) are non-

local, which definitely complicates the problem. On the other hand, we do not need to solve

the equation exactly, but can apply ordinary quantum-mechanical perturbation theory. As

we shall see, the problem really simplifies when λ̂ is very large (at strong coupling) and

when λ̂ is very small (at weak coupling).

Although the rectangular Wilson loop is not a supersymmetric observable, the di-

agrams in figure 3, when combined together, feature spectacular cancellations. In the

– 6 –
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(a) (b)

Figure 4. The H-diagram.

Feynman gauge the gluon and the scalar propagators are equal. The diagram (a) then

renormalizes the effective coupling, and it has been already taken into account by includ-

ing the 1 in the definition of λ̂, eq. (2.6). The sum of the remaining three diagrams can be

considerably simplified.

We start with the H-graph, figure 3(e). The numerator in the corresponding momen-

tum integral (the momentum assignment is shown in figure 4a), can be written as

− (k + q)(2p− k − q) = −2p2 + k2 + q2 + (p− k)2 + (p− q)2 − (k − q)2. (4.1)

This is the standard Passarino-Veltman reduction. All the terms but one contain a van-

ishing propagator. Those terms combine into

= 2 (∂1 + ∂2)2 + + + + − (4.2)

The last term exactly cancels with the X-diagram in figure 3d.

The Y-graph in figure 3(c) can be reduced to the scalar diagram with the derivatives

along the contour, acting on the external lines:

+ = − (4.3)

after which the external leg of the diagram can be integrated by parts. The fact

that the Y-diagrams gives a total derivative has been observed many times in similar

calculations [9, 14]. Upon integration by parts only the boundary terms survive:

+ = 2 − − (4.4)

The last two diagrams cancel off the four middle terms in (4.2). As shown in the ap-

pendix A, the bubble diagram cancels with the self-energy corrections in fig 3b. We are

– 7 –
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thus left with a single contribution, given by the second derivative of the scalar H-graph

(figure 4b):

K1(u, v;x) = λ̂2 ∆H(x1, . . . , x4), (4.5)

where the Laplacian is defined as

∆ = (∂1 + ∂2)2 . (4.6)

and

H(x1, x2, x3, x4) =
1

(4π2)5

∫
d4z d4y

(z − x1)2 (z − x4)2 (z − y)2 (y − x2)2 (y − x3)2
(4.7)

The diagram is taken in the following kinematics:

x1 = (u, 0, 0, 1), x2 = (0, 0, 0, 1), x3 = (x, 0, 0, 0), x4 = (x+ v, 0, 0, 0). (4.8)

We do not know if one can express the H-diagrams in terms of known functions. This

is a difficult double-triangle two-loop integral, for which we were unable to find any closed

analytic expression. The best we could do is a double-integral representation, presented in

appendix B. However, for analyzing the strong and weak coupling limits it will suffice to

know the asymptotic expressions of the H-diagram, which are relatively easy to get from

the Feynman integral directly.

The problem of finding the Coulomb charge at the NLO boils down to solving the

linear problem (3.9) with the kernel given by the sum of (3.11) and (4.5). Doing this

exactly is rather difficult, as the Schrödinger operator becomes integro-differential, and the

eigenvalue α enters the equation non-linearly. However, λ is small and we can apply the

usual formulas of quantum-mechanical perturbation theory. But as we do not know the

leading-order wavefunctions explicitly, we will restrict ourselves to the two limiting cases

of small λ̂ and large λ̂.

5 Strong coupling

At large λ̂ the problem significantly simplifies, because then α is large, and the integral

transform in (3.9) is highly peaked at small u and v, because of the exponential suppression

factor. In particular, the scale of variation of the wavefunction is proportional to λ̂−1/4,

cf. (3.15), and is thus much larger than the scale at which the integrand gets exponentially

suppressed, which is α−1 ∼ λ̂−1/2. We can thus neglect the shift in the argument of ψ by

v − u and reduce the problem to the Schrödinger equation with a local effective potential

Veff(x) = −
∫ ∞

0
du

∫ ∞
0

dv e−
α
2

(u+v)K(u, v;x), (5.1)

Moreover, the kernel itself changes on the distances of order one, and we thus need to know

its expansion at small u and v. This corresponds to the regime when the end-points of the

H-diagram collide pairwise (figure 1). The relevant limit is computed in eq. (B.8), with

logarithmic accuracy:

K1(u, v;x) '
λ̂2
(
u2 lnu2 + v2 ln v2

)
256π6 (x2 + 1)3 . (5.2)

– 8 –
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Substituting this result into (5.1), we get for the effective potential:

Veff(x) = − λ̂

4π2 (x2 + 1)
+

λλ̂2 lnα

2π6α4 (x2 + 1)3 . (5.3)

At strong coupling, when the eigenvalue is given just by the depth of the potential

well, we get:

α =

√
λ̂

π

(
1− λ ln λ̂

2λ̂

)
. (5.4)

The second term in the brackets is the correction to the ladder approximation. Since we

have not determined normalization of the logs in (5.2), the answer is calculated with the

logarithmic accuracy. It should be possible to more accurately determine all the constants

and calculate the non-logarithmic term of order λ/λ̂, but we will not attempt to do it here.

It is a non-trivial fact that the corrected Coulomb charge, as a function of λ and ϑ,

is still proportional to λ1/2 and thus can be directly compared to the string calculation

at strong coupling. Provided that ln λ̂ can be traded for ϑ, in the strong-coupling limit,

we get:

α =

√
λ

2π
e
ϑ
2

(
1− 2ϑ e−ϑ

)
. (5.5)

5.1 Comparison to string theory

In string theory, the Wilson loop vev is given by the area of the minimal surface bounded

by anti-parallel lines on the boundary of AdS5, and interpolating between two points on

S5 with angular separation θ. The solution for the minimal surface was found in [1]. The

area can be written in the parametric form:4

α =
2
√
λ
[
E −

(
1− k2

)
K
]2

πk
√

1− k2
(5.6)

ϑ = 2
√

2k2 − 1K, (5.7)

where K ≡ K(k2) and E = E(k2) are the complete elliptic integrals of the first and

second kind. The angle θ is real when the elliptic modulus satisfies k2 < 1/2. Analytic

continuation to imaginary θ corresponds to real k2 > 1/2.

We are interested in the limit ϑ→∞, which corresponds to taking k2 → 1. Expand-

ing (5.6), (5.7) in 1− k2 with the logarithmic accuracy, we get:

α =
2
√
λ

π
√

1− k2

(
1 +

1− k2

2
ln
(
1− k2

)
+O

(
1− k2

))
(5.8)

ϑ = − ln
(
1− k2

)
+ ln 16 +

3
(
1− k2

)
4

ln
(
1− k2

)
+O

(
1− k2

)
. (5.9)

Consequently,

α =

√
λ

2π
e
ϑ
2

(
1− 2ϑ e−ϑ

)
. (5.10)

in an agreement with (5.5).

4The same result can be extracted from the minimal surface bounded by a cusp [3, 13]. We follow the

notations and conventions of [13].

– 9 –
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As emphasized in [4], taking λ large and then sending ϑ to infinity is not quite the same

as keeping λ small and sending λ̂ to infinity. We see however that potential order-of-limits

ambiguities do not affect the agreement of the ladder resummation with string theory even

at the NLO order.

6 Weak coupling

The first order of perturbation theory in λ for the eigenvalue equation (3.9) produces the

following answer for the correction to the Coulomb charge:

δα =
2λ

α0

∞∫
−∞

dx

∞∫
0

du

∫ ∞
0

dv e−
α0
2

(u+v)ψ0(x)ψ0(x− u+ v)K1(u, v, x), (6.1)

where K1 is first correction to the kernel from (4.5)–(4.8). At small λ̂ the unperturbed

wavefunction is given by

ψ0(x) '
(α0

2

) 1
2

e−
α0
2
|x| (λ̂→ 0). (6.2)

Since α0, given by eq. (3.13), is parametrically small in λ̂, all exponential factors in (6.1)

decay very slowly and to the first approximation can be set to one, which leads to

δα = λλ̂2

∞∫
−∞

dx

∞∫
0

du

∫ ∞
0

dv∆H(x1, . . . , x4), (6.3)

where xi are expressed through u, v and x according to (4.8), or according to figure 1.

We got the expected result, that to the leading order in λ̂ it is enough to integrate the

H-diagram along the Wilson loop. There are no ladders to sum, as extra rungs of the ladder

are accompanied by extra powers of λ̂. However, as we shall demonstrate in a moment, the

integrals in (6.3) actually diverge. To understand how the divergence is cut off, we need

to go one step back to the all-loop expression (3.9). The exponential suppression factors

in the exact formula becomes important on the scale

tIR ∼ α−1
0 ∼ λ̂−1 . (6.4)

This scale imposes an effective IR cutoff on the integrals in (6.3).

The integral (6.3) is convergent by power counting, which indicates that nothing special

happens when all points go to infinity simultaneously. The divergence comes from the

configuration in which x2 and x3 are a finite distance from one another, while x1, x4 go

to infinity (figure 5), and from a symmetric configuration in which x1, x4 stay close, while

x2, x3 go to infinity. In this regime we can use the long-distance approximation (B.9) for

the H-diagram. Moreover, we can apply the Laplacian only to the logarithmic prefactor,

since the derivatives acting on the other terms in (B.9) raise powers in the denominator,

and produce IR convergent integrals. Then, using ∆ lnx2
23 = 4/x2

23 = 4/(x2 + 1), we can

easily integrate over x: ∫ +∞

−∞

dx

x2 + 1
= π. (6.5)

– 10 –
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Figure 5. The dangerous region of integration in the H-diagram.

We are thus left with the u, v and z integration:

δα = −2
λλ̂2

44π7

∞∫
0

du

∫ ∞
0

dv

∫
d4z

z2
[
z2 + (u− z0)2

] [
z2 + (v − z0)2

] . (6.6)

The factor of two takes into account the identical contribution from x14 ∼ 1. Doing the u

and v integration first, we arrive at

δα = − λλ̂2

(2π)7

∫
d4z

z2z2

(
π

2
+ arctan

z0

|z|

)2

. (6.7)

The integral is most easily computed by changing variables to ρ =
√
z2 and ϕ =

arctan(z0/|z|):

δα = − λλ̂2

32π6

∫ tIR dρ

ρ

∫ +π
2

−π
2

(π
2

+ ϕ
)2
. (6.8)

The logarithmic divergence at small ρ is fake. It arises because we have initially assumed

that ρ � 1, and neglected, for example, the separation between the two sides of the

Wilson loop. The neglected contributions regularize the divergence at some ρ ∼ 1. On the

contrary the IR divergence at large ρ is real, and is regularized only by the resummation

of an infinite number of ladder diagrams. The resulting cutoff, up to a numerical factor,

is given by (6.4). Taking this relationship into account, we get the final answer for the

correction to the Coulomb charge (3.13):

δα =
1

96π3
λ λ̂2 log λ̂ (6.9)

Taken at face value, the result (6.9) is a three-loop single-logarithmic correction, which

combines with the single-log terms in (3.13). There is also a finite O(λλ̂2) term, that we

have not calculated. Clearly, the higher orders in the ladder expansion will produce single-

log contributions of the form λ2λ̂ ln λ̂ and λ3 ln λ̂, which originate, for instance, from the

purely gluonic H-diagram. It would be interesting to compute these log-enhanced contri-

butions, which complete the perturbative three-loop calculation of the Coulomb charge in

the NLLO.
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7 Conclusions

The leading-order ladder resummation can be done also for the Wilson loops on S3×R1 [4].

In R4 this configuration maps to a cusp with the opening angle ϕ, where ϕ is the angular

separation of the Wilson lines on the sphere [15]. Our calculation corresponds to the

limiting case ϕ → π. It would be interesting to evaluate the NLO correction for general

ϕ, especially since the Schrödinger problem is exactly solvable at ϕ = 0. This latter case

corresponds to the straight Wilson line, with the scalar coupling jumping from 0 to cos θ

at some point on the contour.

It would be also interesting to reproduce the ladder limit (2.5) from the TBA equations,

that in principle describe the Coulomb charge at any value of θ and λ [5, 6]. The TBA

equations are highly non-linear, and in general are difficult to solve, but when ϑ→∞ they

should reduce to a simple Schrödinger equation (3.12). Such a dramatic simplification is

not unconceivable, as ϑ plays the rôle of a chemical potential in TBA. Large real chemical

potential (real θ actually corresponds to an imaginary chemical potential) should strongly

emphasize the degrees of freedom with positive charge, which perhaps can be taken into

account by rearranging the ground state of the auxiliary spin system. Whatever the un-

derlying reason for the drastic reduction in complexity in comparison to the general case,

in this corner of the parameter space the TBA equations should be solvable.
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A Cancellation of the self-energy corrections

Here we will show that the one-loop correction to the propagator (figure 3b) exactly cancels

with the bubble graph in the right-hand-side of eq. (4.4). Both of these diagrams diverges,

and it is necessary to regularize them exactly in the same way, to make sure that no finite

leftover survives the cancellation. We use the usual dimensional reduction scheme.

In the dimensional reduction regularization, the one-loop scalar propagator is

given by [9]:

D1−loop(r) =
Γ
(
D
2 − 1

)
4π

D
2 rD−2

−
λΓ2

(
D
2 − 1

)
16πD (D − 3) (4−D) r2D−6

. (A.1)

The bubble diagram then gives:

Dbubble(r) =
2λΓ3

(
D
2 − 1

)(
4π

D
2

)3

∫
dDz

z2D−2(r − z)D−2
=

λΓ2
(
D
2 − 1

)
16πD (D − 3) (4−D) r2D−6

, (A.2)

which exactly cancels the second term in (A.1), even before taking the D → 4 limit.
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B H-diagram

The following auxiliary integral is useful:∫
d4z d4y

(z2 + µ2)2 (y2 + ν2)2 (z − y + a)2
=

π4

4a2

(
ln2 ω+

ω−
− ln2 µ

2

ν2

)
, (B.1)

where ω± are the roots of the quadratic equation

ω2
± −

(
µ2 + ν2 + a2

)
ω± + µ2ν2 = 0. (B.2)

With the help of this formula, we can get for the H-diagram a double-integral representation

over two sets of Feynman parameters:

H =
1

(4π)6

∫ 1

0
dκ1

∫ 1

0
dκ2

1

a2

[
ln2 ω+

ω−
− ln2 κ1 (1− κ1)x2

14

κ2 (1− κ2)x2
23

]
, (B.3)

where now ω± are the roots of

ω2
± −

[
κ1 (1− κ2)x2

13 + κ2 (1− κ1)x2
24 + κ1κ2x

2
12 + (1− κ1) (1− κ2)x2

34

]
ω± (B.4)

+κ1κ2 (1− κ1) (1− κ2)x2
14x

2
23 = 0,

and

a = κ1x14 − κ2x23 − x34. (B.5)

It is also true that

a2 = κ1 (1− κ2)x2
13 + κ2 (1− κ1)x2

24 + κ1κ2x
2
12 + (1− κ1) (1− κ2)x2

34

−κ1 (1− κ1)x2
14 − κ2 (1− κ2)x2

23. (B.6)

B.1 Short-distance asymptotics

First we consider the case when |x12| ∼ |x34| � |x23|. The H-diagram is non-singular in

the limit x12, x34 → 0, and on dimensional grounds we expect the leading term of the form

const /x2
23. As 1/x2

23 is annihilated by the Laplacian at x2 6= x3, we will need the next term

in the expansion in x12, x34. This term appears at the quadratic order and contains an

extra logarithmic enhancement. The large logarithm ln(x2
12/x

2
23) arises from the region of

integration where both integration points simultaneously approach x1,2 or x3,4. When both

z and y are close to x1, x2, each of the two ”long” propagators can then be approximated

by 1/x2
23, and we are left with the integral

1(
4π2x2

23

)2 ∫ d4zd4y

(4π2)3 (x1 − z)2 (z − y)2 (y − x2)2
+ (1, 2→ 3, 4) . (B.7)

The integral is the Fourier transform of 1/p6, equal to x2
12 lnx2

12/2
7π2. Taking into account

the contribution from the other coincidence limit, we obtain:

H =
const

x2
23

+
x2

12 ln
x212
x223

+ x2
34 ln

x234
x223

211π6x4
23

+ . . . . (B.8)
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B.2 Long-distance asymptotics

Next we consider the case when |x23| � |x12| ∼ |x34| (figure 5). When x23 → 0, the

y-integration in (4.7) is log-divergent at y → x2,3. The divergence is cut off at y ∼ x23,

and we can thus replace

H ' − lnx2
23

45π8

∫
d4z

(z − x1)2 (z − x2)2 (z − x3)2 . (B.9)
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