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rameter B together with the little hierarchy to other soft supersymmetry breaking masses,

a light higgsino with an electroweak scale mass leads to successful electroweak symmetry

breaking, at the price of fine-tuning the higgsino mixing µ parameter. Furthermore the

light higgsinos produced at the decays of gravitinos can constitute the dark matter of the

universe. The heavy squark mass spectrum of O(104)GeV can increase the Higgs boson

mass to about 125GeV or higher.
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1 Introduction

Although supersymmetry (SUSY) [1, 2] is a promising candidate for physics beyond the

standard model (SM), a closer look reveals its weak spots. Among other things, the grav-

itino with the very long lifetime is known to be a potentially dangerous existence in cos-

mology [3–10].

The abundance of the unstable gravitinos is severely constrained by the success of the

big-bang nucleosynthesis for its mass up to ∼ 5 × 104 GeV [11–14]. Even for a heavier

gravitino, cosmology is not yet free from the fear of the gravitino decay. When the grav-

itinos were amply produced at the decay of the moduli [15–17] (see also ref. [18] for an

earlier discussion) or other scalar fields [19–21], or in the thermal bath with high reheat

temperature, the lightest superparticles (LSPs) produced by the gravitino decays would

exceed the observed abundance of the dark matter of the universe. Given a neutralino LSP

with mass around 100GeV, the gravitino should weigh 106GeV or even more [16]. To solve

this problem, a previous work postulated the existence of a lighter LSP in an extension of

the minimal supersymmetric standard model (MSSM) [22].

In this paper, we shall revisit this problem within the framework of the MSSM. The

gravitino mass is generically related to soft SUSY breaking masses. This is because the

vacuum expectation value of the chiral compensator auxiliary field Fφ is comparable to the

gravitino mass m3/2 in size unless one considers a very specific SUSY breaking scenario.

In this case, the SUSY-breaking Higgs mixing parameter B is comparable to Fφ, and thus

to m3/2. Furthermore, we assume that the contribution from the anomaly mediation to

other soft masses is inevitable and is not cancelled by other SUSY breaking mediation

contributions. Thus the soft masses should satisfy

msoft &
1

8π2
m3/2. (1.1)
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On the other hand, the supersymmetric higgsino mass parameter µ is not constrained by

this argument. We are thus led to consider the case where the higgsino is light with the

hierarchical mass spectrum:1

µ ∼ O(100) GeV ≪ msoft ∼ O(104) GeV ≪ m3/2 ∼ O(106) GeV. (1.2)

We note that the suppressed soft masses compared to the gravitino mass are realized

in the KKLT setup [23]. In this case, the resulting soft masses are of the mixed modulus-

anomaly mediation [24–28]. Our argument given here can apply to a wider class of models

and thus we do not specify a particular mediation mechanism.

As we will show shortly, the electroweak symmetry breaking (EWSB) successfully

takes place with this hierarchy. Furthermore the higgsino LSP abundance produced by the

gravitino decays is consistent with the measured value of the dark matter abundance and

hence can constitute the dark matter of the universe.

The Higgs sector in this scenario contains a SM-like Higgs boson whereas all others

become very heavy ∼ O(104)GeV. We will show that the SM-like Higgs boson naturally

has mass in the range suggested by the recent data from ATLAS and CMS at the Large

Hadron Collider (LHC) [29].

2 Electroweak symmetry breaking

Let us begin by investigating how the EWSB takes place with the mass spectrum eq. (1.2).

The neutral part of the tree-level Higgs potential in the MSSM is given by

V =(|µ|2 +m2
Hu

)|H0
u|2 + (|µ|2 +m2

Hd
)|H0

d |2 − (BµH0
uH

0
d + c.c.)

+
1

8
(g21 + g22)(|H0

u|2 − |H0
d |2)2, (2.1)

where m2
Hu

and m2
Hd

are SUSY breaking mass squared parameters for hypercharge 1/2 and

−1/2 Higgs doublet, respectively, and g1, g2 are U(1)Y , SU(2)L coupling constants.

It is well known that the following two conditions should be satisfied in order that the

theory exhibits the EWSB:

1. The scalar potential is stable along the D-flat direction, |H0
u|2 = |H0

d |2, where the

quartic terms are absent. This yields

2|Bµ| < 2|µ|2 +m2
Hd

+m2
Hu

. (2.2)

2. One of the eigenvalues of the squared-mass matrix is negative, and so is the determi-

nant

(|µ|2 +m2
Hd

)(|µ|2 +m2
Hu

)− |Bµ|2 < 0. (2.3)

1Another possibility one can consider is that a relatively heavy neutralino will annihilate very effectively

via Higgs resonance to reduce its relic abundance. However, we will discard this case as it requires fine

turning of the masses of the neutralino and the Higgs boson.
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Figure 1. The mass spectrum in heavy gravitino scenario with a light higgsino. The right plot

shows the masses of χ0
1,2 and χ±

1 for tanβ = 2 (dashed lines) and tanβ = 10 (solid lines) in the

case with µ = 120 GeV and M1 = M2 = 104 GeV.

To realize the electroweak scale from the much larger soft masses, the negative eigen-

value should be tuned to be at the electroweak scale. Then the magnitude of the deter-

minant becomes much smaller than the typical soft mass scale, which implies |Bµ|2 ∼
m2

Hu
m2

Hd
for µ ≪ msoft. The EWSB thus requires both m2

Hu
and m2

Hd
to be positive, and

is driven by a large Bµ term. To be more precise, the extremum conditions of the Higgs

potential read

m2
Hu

≃
m2

Hd

tan2 β
,

|µ| ≃
m2

Hd

|B| tanβ , (2.4)

for 1 ≪ tan2 β ≪ m2
Hd

/|µ|2 where tanβ = 〈|H0
u|〉/〈|H0

d |〉. It is interesting to observe that

µ ∼ 1

(8π2)2
m3/2, (2.5)

when B ∼ m3/2 and
√
mHumHd

∼ m3/2/8π
2, which is anticipated from the anomaly

mediation contribution. For m3/2 ∼ 106 GeV, one naturally obtains µ ∼ 100 GeV. A

rather small mHu (∼ mHd
/ tanβ) at a low energy scale would be the result of a negative

radiative correction associated with the top Yukawa coupling.

In figure 1, we illustrate the superparticle mass spectrum in heavy gravitino scenario.

Since µ ≪ msoft, the lightest chargino and the two lightest neutralinos are dominated by

the higgsino components and closely degenerate in masses.

3 Higgs boson mass

Below the scale msoft ∼ 104GeV, one combination of Hu and Hd behaves like the SM Higgs

doublet scalar while sfermions, gauginos and other heavy Higgs bosons decouple from the
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Figure 2. The contours for the Higgs boson mass in the tanβ-msoft plane for heavy gravitino

scenario with µ = 120 GeV. The stop mixing Xt is set to zero.

theory. In the low energy effective theory, the mass of the SM-like Higgs boson h can

be estimated from the relation m2
h = λ(mh)v

2 where λ(mh) is the Higgs quartic coupling

renormalized at mh, and v is the vacuum expectation value of the SM-like Higgs scalar.

The Higgs coupling λ at msoft is given by

λ(msoft) =
g21 + g22

4
cos2 2β +

3y4t
8π2

(
X2

t − X4
t

12

)
, (3.1)

and its low energy value is determined by the renormalization group equations, which are

affected by the higgsinos with mass µ ∼ 102GeV. Here yt is the top Yukawa coupling, and

Xt = (At − µ cotβ)/msoft is the stop mixing parameter.

The Higgs quartic coupling λ(mh) gets a large positive contribution from the loops

involving the top Yukawa coupling [30–33]. For heavy stops with mass ∼ 104 GeV, this

loop contribution makes the Higgs boson have a mass around 125 GeV, which lies in

the range where the LHC experiments reported an excess of Higgs-like events over the

background expectation [29]. A stop mixing due to the trilinear A-term can raise the

Higgs mass further.

Figure 2 shows the Higgs boson mass for µ = 120GeV without the stop mixing Xt = 0.

One can see thatmh is around 125GeV formsoft = 104GeV. The Higgs mass has a negligible

dependence on µ since the higgsinos only contribute to the beta function coefficients for

g1,2. For instance, if the higgsinos decouple with mass µ ∼ msoft, mh increases slightly by

about 0.1% compared to the case with µ = 120 GeV.

4 Higgsino relic abundance

Let us next see whether the neutral higgsino is the LSP in the mass spectrum eq. (1.2).

We define the mass difference ∆m between the lightest chargino χ+
1 and the lightest neu-

– 4 –
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tralino χ0
1 as

∆m ≡ mχ+
1

−mχ0
1
= ∆m(0) +∆m(1)

gauge +∆m
(1)
Yukawa, (4.1)

where ∆m(1) is the 1-loop correction to the tree-level mass difference ∆m(0). In the limit

of mZ , |µ| ≪ M1,M2 where mZ is the Z boson mass and M1,M2 are U(1)Y and SU(2)L
gaugino masses, the lightest chargino and neutralino consist mainly of the charged and

neutral higgsino, respectively. Taking a rather unusual convention that µ is positive while

M1,M2 have either sign, we find the two neutral higgsinos H̃S , H̃A have masses

M
H̃S

= µ+
1− sin 2β

2
m2

Z

(
sin2 θW
M1

+
cos2 θW
M2

)
,

M
H̃A

= µ− 1 + sin 2β

2
m2

Z

(
sin2 θW
M1

+
cos2 θW
M2

)
, (4.2)

where θW is the Weinberg angle. The charged higgsino has mass

M
H̃± = µ− m2

W sin 2β

M2
, (4.3)

where mW is the W boson mass. Thus, the tree-level mass difference is

∆m(0) = M
H̃± −min

(
M

H̃S
,M

H̃A

)
. (4.4)

We find that when M1 and M2 have the same sign, ∆m(0) is always positive. But more

generally, ∆m(0) can take either sign. The magnitude of ∆m(0) is typically

∣∣∣∆m(0)
∣∣∣ ≃ 0.3 GeV ×

( |M2|
104 GeV

)−1 ∣∣∣∣1 +
M2

M1
tan2 θW

∣∣∣∣ (4.5)

for tanβ ≫ 1. Furthermore, the 1-loop correction from gauge boson loops

∆m(1)
gauge =

g22 sin
2 θW

8π2
|µ|

∫ 1

0
dx(x+ 1) ln

(
1 +

1− x

x2
m2

Z

µ2

)

= 0.24 GeV → 0.35 GeV (for |µ| = 100 GeV → ∞) (4.6)

is always positive, whereas that from the top-stop loops is estimated as

∆m
(1)
top-stop ∼ −0.027 GeV ×

(
mt

170 GeV

)4( mt̃

104 GeV

)−2 At

104 GeV

1

sin2 β
, (4.7)

where mt is the top mass, mt̃ is the stop mass scale, and At is the mass scale included

in the trilinear scalar term [34]. We represent the top-stop loop contribution explicitly

because it is the largest contribution in the Yukawa one. As we can see in eq. (4.7), the

Yukawa contributions to the mass difference are negligibly small compared to the gauge

boson contribution. Thus, we find

∆m > 0 (4.8)

in the sizable region of the parameter space.
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Figure 3. The constant contours for the density parameter Ωχ0

1

h2 are shown in themχ0

1

-m3/2 plane.

Tree dashed lines represent the contours of Ωχ0

1

h2 = 0.03, 0.06, 0.09, from the above respectively.

The real one stands for Ωχ0

1

h2 = 0.13 that is the 95 % C.L. upper bound of the LSP abundance

restricted by the dark matter observation.

Now we will discuss the relic abundance of the neutral higgsino LSP. The LSPs are

produced by the decays of gravitinos followed by the pair-annihilation among them. The

abundance highly depends on the thermal averaged annihilation cross section of the LSPs.

Here only the W boson or Z boson pairs are taken account of in the final state because

other annihilation processes are highly suppressed due to the heavy soft masses. Thus the

cross section is computed to be [35]

〈σannvrel〉 =
g4

32π

1

m2
χ0
1

[
(1− xW )3/2

(2− xW )2
+

1

2 cos4 θW

(1− xZ)
3/2

(2− xZ)2

]
, (4.9)

where mχ0
1
≃ |µ|, xW = m2

W /m2
χ0
1

and xZ = m2
Z/m

2
χ0
1

.

In computing the annihilation cross section, the Boltzmann distribution was, for sim-

plicity, assumed for the higgsino momentum distribution, whose justification may be quite

non-trivial [36]. We note, however, this simplification does not cause any significant change

to our result as far as the higgsinos are non-relativistic and the annihilation occurs in the

unsuppressed S-wave. Also, we ignored the possible coannihilation effects [37], which do

not bring any dramatic alternation of our result.

As the nature of the R-odd particles, the gravitino decay yields (at least) one LSP

production under the R-parity conservation. Thus in the absence of the annihilation among

the LSPs, the final yield of the LSPs would be the same as the initial yield of the gravitinos.

When the gravitino abundance is large enough, which we assume to be the case, the

annihilation among the LSPs becomes effective. We note that the gravitino decay width is

– 6 –
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given by

Γ3/2 =
193

384π

m3
3/2

M2
P l

, (4.10)

corresponding to the temperature at the gravitino decay

T3/2 ≃
(

90

π2g∗(T3/2)

)1/4√
Γ3/2MP l

≃ 0.25GeV ×
(
g∗(T3/2)

10

)−1/4( m3/2

106GeV

)3/2

, (4.11)

where the effective number of relativistic degrees of freedom g∗ changes from about 100

to 10 by the QCD phase transition at around 0.2GeV. Thus, the LSPs are produced

after the freeze-out of the LSPs from the thermal bath takes place (with the temperature

Tf ≃ mχ0
1
/25−mχ0

1
/20). In this case, one can estimate the yield of the LSPs as [38]:

nχ0

s

∣∣∣∣
T3/2

≃ H(T )

〈σannvrel〉s

∣∣∣∣
T3/2

=
1

4

(
90

π2g∗(T3/2)

)1/2 1

〈σannvrel〉T3/2MP l
. (4.12)

From eq. (4.9) and eq. (4.12), the ratio of the LSP mass density to the entropy density is

straightforwardly given by

ρχ0
1

s
≃ 0.22× 10−9 GeV

×
[

1

2 cos4 θW

(1− xZ)
3/2

(2− xZ)2
+

(1− xW )3/2

(2− xW )2

]−1( mχ0
1

100GeV

)3

×
(
g∗(T3/2)

10

)−1/4( m3/2

106GeV

)−3/2

, (4.13)

which corresponds to the density parameter

Ωχ0
1
h2 ≃ 0.060×

[
1

2 cos4 θW

(1− xZ)
3/2

(2− xZ)2
+

(1− xW )3/2

(2− xW )2

]−1( mχ0
1

100GeV

)3

×
(
g∗(T3/2)

10

)−1/4( m3/2

106GeV

)−3/2

, (4.14)

where h ≃ 0.72 is the Hubble constant in unit of 100 km/s/Mpc.

In figure 3, we draw constant contours for the density parameter Ωχ0
1
h2 in themχ0

1
-m3/2

plane. The real line shows Ωχ0
1
h2 = 0.13 that is the 95 % C.L. upper bound of the LSP

abundance restricted by the dark matter observation [39]. Remarkably, there is no LSP

overproduction problem in the mass spectrum eq. (1.2) and we can conclude the neutral

higgsino constitutes the dark matter of the universe.

– 7 –
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5 Discussion and summary

Since χ0
1,2 and χ+

1 are all higgsino-like for µ ≪ msoft, only the interactions Zχ0
1χ

0
2,W

−χ+
1 χ

0
1,2,

γχ+
1 χ

−
1 and Zχ+

1 χ
−
1 have non-negligible couplings. Heavy gravitino scenario with the mass

spectrum eq. (1.2) generally leads to mπ < ∆m . 1GeV with mπ being the pion mass, for

which the lightest chargino decay is dominated by the single pion mode χ+
1 → χ0

1π
+:

Γχ+
1
→χ0

1
π+ =

G2
F

π
cos2 θCf

2
π∆m3

(
1− m2

π

∆m2

)1/2

≃ 1

0.2cm

(
∆m

500MeV

)3(
1− m2

π

∆m2

)1/2

, (5.1)

where fπ is the pion decay constant, and θC is the Cabbibo angle. Thus, it would be

difficult for the lightest chargino to produce a visible track in the detector unless it is highly

boosted.2 Also, produced pions would be too soft to be detected. The mass difference

between the two lightest neutralinos is similar to ∆m in size, and thus the detection of the

decay products of χ0
2 would be challenging as well. On the other hand, at e+e− colliders,

the processes e+e− → γχ0
1χ

0
2, γχ

+
1 χ

−
1 mediated by virtual Z exchange become important,

and would provide a visible signal if a hard photon radiation occurs in the initial state.

The direct detection of dark matter is also challenging because the couplings hχ0
1χ

0
1

and Zχ0
1χ

0
1 are suppressed by a small factor mW /M1,2 for a higgsino-like χ0

1. The spin-

dependent cross section with proton due to the Zχ0
1χ

0
1 coupling is approximately given by [48]

σSD ∼ 0.8× 10−42cm2 ×
(

M2

104GeV

)−2( µ

100GeV

)−2

cos2 2β, (5.2)

for M1 = M2. The spin-independent scattering is mediated mainly by Higgs boson ex-

change, and has a cross section smaller than σSD by about 5 orders of magnitude. Thus,

in both cases, the scattering is too small to be detectable by current experiments. On the

other hand, the higgsino annihilation into γγ and γZ can provide an interesting signal for

the indirect detection of dark matter. Dark matter is detectable by observing a γ-ray line

with energy Eγ = mχ0
1
or mχ0

1
−m2

Z/4mχ0
1
coming from the Galatic center. The cross sec-

tion for χ0
1χ

0
1 → γγ is σv ≈ 10−28cm3/s for the higgsino LSP, and the annihilation into γZ

has a little bit larger cross section [49, 50]. The annihilation cross sections are about one

order of magnitude below the experimental upper limits [51]. Future experiments would

be possible to observe γ-ray lines from the processes χ0
1χ

0
1 → γγ, γZ, providing a signature

of dark matter.

Though we have focused on the case with µ ≪ msoft ∼ m3/2/8π
2, it would be possible

to have a light gaugino with mass ≪ m3/2/8π
2 if the anomaly mediation contribution is

cancelled by some other contribution. Then mass differences among the light charginos and

neutralinos become larger as long as the higgsino remains the dominant component of χ0
1.

This increases the detection potential of SUSY at the LHC as the decay of chargino can

produce hard enough leptons or jets. In addition, because the couplings hχ0
1χ

0
1 and Zχ0

1χ
0
1

are enhanced, there are more possibilities also for the direct detection of dark matter.

2See refs. [40–47] for discussions of collider searches.
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To conclude, we have shown that the heavy gravitino scenario with the hierarchical

mass spectrum

µ ∼ 102 GeV ≪ msoft ∼ 104 GeV ≪ m3/2 ∼ 106 GeV (5.3)

can explain well the EWSB while solving the cosmological problems associated with the

gravitino. The EWSB is achieved at the correct scale for B ∼ m3/2 ∼ 8π2msoft, as is

generally the case when the anomaly mediation is a main source of superparticle masses.

Furthermore, the higgsino LSP abundance produced by the gravitino decays is consistent

with the observed value. We also note that the heavy stop with mass msoft ∼ 104 GeV

yields the SM-like Higgs boson mass around 125GeV without invoking a large stop mixing.
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