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1 Introduction

The central topic in the development of Monte-Carlo event generators during the past

decade was the systematic inclusion of higher order QCD effects. One of the first ap-

proaches, the merging of leading-order (LO) multi-jet matrix elements of varying multi-

plicity with parton showers, has been pioneered and matured in a series of papers [1–10],

such that by now it has become the accepted standard for simulating final states which in-

clude multi-jet topologies. It typically yields a very satisfactory description of experimental

data, but due to the lack of virtual corrections it can never achieve the formal accuracy of

a full next-to-leading order (NLO) calculation. This shortcoming is especially worrisome

in the case of Standard Model Higgs-boson production through gluon fusion, where a large
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K-factor indicates substantial higher-order corrections, such that theoretical predictions

should be made at next-to-leading order accuracy or better.

With the development of the MC@NLO [11] and POWHEG [12, 13] techniques it became

feasible to combine NLO accurate matrix-element calculations with parton showers. This

technology is called NLO matching, in contrast to the LO merging described above. Ulti-

mately, NLO matching techniques allow to carry out a full simulation of events, including

hadronisation, hadron decays and the underlying event. While MC@NLO relies on a sub-

traction algorithm based on the parton shower approximation to collinear divergences in

real-emission matrix elements, the POWHEG method effectively constructs a one-emission

generator, similar to a one-step parton shower, with evolution kernels determined by ratios

of real-emission and Born matrix elements. In this respect the POWHEG method is very

similar to traditional matrix-element correction techniques [14–17].

Despite having been proposed several years ago, the MC@NLO and POWHEG methods

were not applied to processes which can become singular at Born level, such as di-jet

production, until recently. This delay signals several complications which arise in reactions

with additional light partons. Di-jet production [18] and Z + j production [19] have now

become available through the POWHEGBOX [20] and, more recently, W± plus two jets

production was implemented [21] using MC@NLO methods.

In this publication the MC@NLO and POWHEG methods will be compared in some

detail, and open issues related to their implementation and validation will be discussed. As

benchmark processes, the production of Higgs-, W±- and Z-bosons, alone or in association

with one hard jet at Born level have been chosen. These processes are either signals central

to the experimental program at the LHC, or they contribute as important backgrounds

to many new physics searches [22–26]. Apart from that, QCD-associated W±- and Z-

production are of great interest, to study jet production and evolution in a hadron-collider

environment at the energy frontier [27–31], to improve the jet energy scale determination

by the experiments, or to study multiple parton scattering processes. At the LHC as well

as at the Tevatron, typically, good agreement is found when comparing respective data

with merged leading-order predictions or with next-to-leading order perturbative QCD

predictions, for instance from [32–39]. This level of theoretical control and experimental

precision suggests that the processes chosen here are indeed well-suited to serve as testbed

for NLO matching methods.

The present paper is organised as follows: In section 2 basic ideas underlying the

MC@NLO and POWHEG strategies are reviewed. Similarities and differences between the

two methods are discussed and potential pitfalls in their implementation are indicated. The

solution to some of these problems is detailed in section 3, where the MC@NLO algorithm is

worked out in a formalism similar to [40]. This allows to elaborate on various aspects of the

method regarding non-trivial colour and flavour configurations. Readers not interested in

the technical details may skip this section. In section 4 perturbative uncertainties related to

scale variations and to the different exponentiation in the MC@NLO and POWHEG methods

are highlighted. The impact of non-perturbative effects is investigated in section 5 and

results for W±- and Z-production are compared to experimental data. Finally, section 6

summarises the findings of this publication and outlines some possible extensions of the

methods presented here.
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2 Event generation with POWHEG and MC@NLO in a nutshell

This section is meant to highlight in a simple language the ideas of how NLO QCD calcula-

tions can be combined with subsequent parton showers. A common notation is established

for POWHEG and MC@NLO and critical aspects related to the practical implementation for

processes with non-trivial colour structure are discussed.

2.1 Anatomy of NLO calculations

In order to see how the existing matching algorithms work, consider first the structure of

an NLO calculation. The total cross section can be written as

σ(NLO) =

∫
dΦB

[
B(ΦB) + Ṽ(ΦB) + I(S)(ΦB)

]
+

∫
dΦR

[
R(ΦR)−D(S)(ΦR)

]
, (2.1)

where dΦB and dΦR denote Born and real-emission phase space, respectively and B, Ṽ,

I(S), R and D(S), are the matrix elements for the Born, virtual, integrated subtraction, real

emission and real subtraction contribution. Note that for hadronic initial states Ṽ is defined

such as to include the collinear mass-factorisation counterterms. All integrands include

parton luminosity and flux factors. For simplicity it is assumed that the processes under

consideration here have no identical QCD partons in the final state, a detailed discussion of

symmetry factors is postponed to section 3. In the subtraction formalisms most commonly

employed to date [41–44], subtraction terms can be written as the convolution of Born

matrix elements with suitably defined operators K̃, such that schematically

dΦR D(S)(ΦR)=dΦB dΦ1

[
B(ΦB)⊗K̃(Φ1)

]
and I(S)(ΦB)=

∫
dΦ1

[
B(ΦB)⊗K̃(Φ1)

]
, (2.2)

indicating that the two related contributions cancel locally in the Born phase space. This

also suggests that the definition of the subtraction kernels K̃ is somewhat arbitrary, as long

as they exhibit the same singularity structure as the full real-emission matrix elements in

the soft and collinear limits.

To combine an NLO calculation with a parton shower, it is essential to ensure that

the result inherits the total cross section from the fixed-order calculation. This could

trivially be achieved by multiplying a leading order plus parton shower simulation with

a local K-factor - the ratio of NLO and LO cross section. The problem is that parton

showers generate emissions which do not necessarily follow the pattern obtained from the

real emission matrix elements, leading to a mismatch of radiation patterns at first order

in the strong coupling constant αs. In principle, this problem has been solved by the

traditional matrix-element correction procedure outlined in [14–17], which is implemented

for a number of processes in both HERWIG and PYTHIA. The essence of this method lies in

the fact that, for the processes it is applied to, the product of Born-level contribution and

parton shower evolution kernel K is larger than the corresponding real emission term R in

the complete phase space of the extra emission. This allows to correct the first (hardest)

emission with a factor R/(B K), leading to the desired distribution in phase space. From

this it can be seen that such an algorithm will fail for cases, where R is not always smaller

than the Born-times-parton-shower result, or where the parton shower is not capable of

filling the full phase space. In such cases a more detailed analysis is necessary.
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2.2 Sudakov form factors

In this section the construction of the parton shower using Sudakov form factors will be

briefly recalled. They are defined as

∆(t, t′) = exp

{
−
∫ t′

t

dt̄

t̄

∫
dz

∫
dφ

2π
J(t̄, z, φ)

αs
2π

K(t̄, z, φ)

}
=exp

{
−
∫ t′

t
dΦ1

αs
2π

K(Φ1)

}
,

(2.3)

where the sequence of emissions is ordered by a parameter t — typically related to the

virtuality, transverse momentum or opening angle of the emission. Furthermore, z is the

variable defining the splitting of energy or light-cone momentum of the two daughters

emerging in the decay of the parton, and φ denotes the azimuthal angle. Collectively

they define the one-emission phase space Φ1 and its Jacobian J , while K is the splitting

kernel encoding the detailed kinematical distribution due to soft-collinear enhancement and

spin effects. For simplicity, parton luminosity factors are included into this kernel, and a

detailed discussion is postponed to section 3. Note that in all practical implementations of

eq. (2.3) the argument of the strong coupling is related to the transverse momentum of the

splitting, given by the decay kinematics, i.e. by Φ1. For the sake of clarity this argument

will be suppressed in this section.

This Sudakov form factor can be interpreted as a no-branching probability between

the two scales t and t′. Obviously, 1 −∆(t, t′) then yields the probability that a splitting

has taken place in the interval between the two scales. Therefore, to first order in αs, the

cross section in the parton-shower approximation reads

σ
(LO)
PS =

∫
dΦB B(ΦB)

[
∆(t0, µ

2
F ) +

∫ µ2F

t0

dΦ1
αs
2π

K(Φ1) ∆(t, µ2F )

]
, (2.4)

where t is determined by the kinematics of the first emission, t = t(Φ1), such that it is

smaller than the suitably chosen, process-dependent factorisation scale µ2F , and where the

arguments of the splitting kernel depend on this extra emission kinematics. The first term

in the square bracket represents the probability of no extra emission to happen above the

infrared cut-off t0 of the parton shower, while the second term generates one emission above

this scale. It can also be seen that the square bracket as a whole integrates to one, exposing

the probabilistic nature of the parton shower, which leaves the total cross section of an

event sample unchanged.

2.3 Matrix element corrections and POWHEG

Applying matrix element corrections to the parton shower transforms the equation above,

eq. (2.4), into

σ
(LO)
MEC =

∫
dΦB B(ΦB)

[
∆̄(t0, µ

2
F ) +

∫ µ2F

t0

dΦ1
R(ΦB,Φ1)

B(ΦB)
∆̄(t, µ2F )

]
, (2.5)

where the modified Sudakov form factor ∆̄ reads

∆̄(t, t′) = exp

{
−
∫ t′

t
dΦ1

R(ΦB,Φ1)

B(ΦB)

}
. (2.6)
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Again, the square bracket in eq. (2.5) integrates to one, and the cross section of an event

sample is identical to the Born cross section. However, the distribution of the first (hardest)

emission, to first order in αs will follow the pattern given by the full real emission matrix

element. It is thus correct to O(αs) if the upper integration limit in the real-emission

term is extended to the hadronic centre-of-mass energy. This corresponds to a power-

shower approach [45, 46] and ensures coverage of the full phase space. However, it also

implies extending the resummation built into the parton shower beyond the region of

its validity and is therefore unjustified. A more detailed discussion of this point can be

found in appendix A. The problem can be solved for example in the MC@NLO method,

see section 2.4.

In order to achieve full O(αs)-accuracy in both the cross section of the produced event

sample and the pattern of the first emission it is mandatory to replace the differential Born

cross section dΦBB with an expression that integrates to the full NLO cross section of

eq. (2.1). This is achieved by the substitution

B(ΦB) −→ B̄(ΦB)=B(ΦB) + Ṽ(ΦB) + I(S)(ΦB)+

∫
dΦ1

[
R(ΦB,Φ1)−D(S)(ΦB,Φ1)

]
. (2.7)

It is straightforward to interpret this term as an NLO-weighted Born-level cross section,

or, put in a slightly different way, a Born-level cross section that is augmented with a local

K-factor.

Equipped with this definition the expression for the cross section in the POWHEG-

formalism reads

σ
(NLO)
POWHEG =

∫
dΦB B̄(ΦB)

[
∆̄(t0) +

∫
t0

dΦ1
R(ΦB,Φ1)

B(ΦB)
∆̄(t)

]
. (2.8)

This expression is accurate up to the first order in the strong coupling constant for both

the total cross section of the event sample and the differential cross section with respect to

the kinematics of the first emission.

2.4 Modified subtraction and MC@NLO

As indicated above, hard real-emission configurations should not be included in the expo-

nentiation in eq. (2.8). There are also contributions which can generically not be obtained

from a Born-level configuration by simply emitting an extra parton. Examples for this

include flavour processes such as uū → cs̄e−ν̄e or kinematical configurations such as ra-

diation zeroes [47–49]. Therefore, it is well motivated to split the real-emission matrix

elements R into an infrared-singular (soft) and an infrared-regular (hard) part, D(A) and

H(A), respectively: R = D(A) + H(A) [50]. Equation (2.1) then transforms into

σ(NLO) =

∫
dΦB

[
B(ΦB) + Ṽ(ΦB) + I(S)(ΦB)

]
+

∫
dΦR

[
D(A)(ΦR)−D(S)(ΦR)

]
+

∫
dΦR H(A)(ΦR) ,

(2.9)
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and the cross section, eq. (2.8), can be rewritten as

σ
(NLO)
MC@NLO =

∫
dΦB B̄(A)(ΦB)

[
∆̄(A)(t0) +

∫
t0

dΦ1
D(A)(ΦB,Φ1)

B(ΦB)
∆̄(A)(t)

]
+

∫
dΦR H(A)(ΦR),

(2.10)

where

B̄(A)(ΦB) = B(ΦB) + Ṽ(ΦB) + I(S)(ΦB) +

∫
dΦ1

[
D(A)(ΦB,Φ1)−D(S)(ΦB,Φ1)

]
(2.11)

and, with obvious notation,

∆̄(A)(t, t′) = exp

{
−
∫ t′

t
dΦ1

D(A)(ΦB,Φ1)

B(ΦB)

}
. (2.12)

In this manner, the non-singular contributions at real-emission level are correctly captured

and their exponentiation can be avoided. This is how the MC@NLO formalism works [11].

2.5 Subtleties in practical implementations of POWHEG and MC@NLO

At the level of detail of the discussion up to now, an implementation of both methods,

POWHEG and MC@NLO, seems quite straightforward. However, there are a number of

subtleties, which have not been presented yet in a coherent fashion in a journal publication.

1. Subtraction of infrared divergent sub-leading colour terms in MC@NLO

The parton shower is based on a leading logarithmic and leading colour approxi-

mation. Using it, without modification, to define modified subtraction terms D(A)

will therefore necessarily miss divergences in sub-leading colour configurations and

will result in infinite integration results in eq. (2.11). This presents a clear obsta-

cle to apply the method to processes where infrared divergences in such sub-leading

colour configurations emerge. In [51], and referring to ideas outlined in the original

MC@NLO publication [11], this problem was overcome for the case of heavy flavour

hadro-production processes of the type gg → QQ̄ and qq̄ → QQ̄ at Born-level. An ad-

ditional factor was introduced, which multiplies the complete integrand in eq. (2.11)

and tends to zero as emissions become soft. This same method is applied in the case

of the recently presented aMC@NLO [52, 53].

We propose a different, exact and process-independent solution here, which relies on

choosing D(A) = D(S), leading to a tremendous simplification of eq. (2.11). In the

remainder of this publication we will refer to this scheme as the MC@NLO method.

Technical details of how D(S) is exponentiated into a Sudakov form factor will be

given in section 3.

2. Choice of scales in POWHEG and MC@NLO

It was argued in [12, 13], based on [54], that the proper choice of scale for the strong

coupling in the kernel R/B of the POWHEG Sudakov form factor is given by the trans-

verse momentum of the emission generated in the branching process. Similarly, it was

– 6 –
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pointed out in [11] that the scale in the evolution kernel of an MC@NLO should be

the transverse momentum. This particular choice of scale effectively resums a certain

class of universal higher-order corrections. It typically leads to a very good agreement

between the results from existing parton shower algorithms and experimental data

and is therefore employed in all standard Monte-Carlo event generators [55].

Such a scale choice ultimately implies higher-order corrections to the event kinemat-

ics. The key point is that the differential NLO cross section defined by eq. (2.7) can

be evaluated with arbitrary scales. However, the functional form of the scale must be

infrared and collinear safe. This is not the case for the transverse momentum in the

branching process, because, in contrast to the Sudakov branching algorithm, there

is no infrared cutoff in the calculation of B̄. Thus, the first-order expansion of the

Sudakov form factor does not reproduce the exact same real-correction / subtraction

terms as the NLO calculation. The differences are numerically large in the loga-

rithmically enhanced regions of phase space, where it is not expected that POWHEG

or MC@NLO reproduce the exact leading-order result. But even the region of hard

radiation can be affected, depending on how much phase space is covered by D(A).

3. Exponentiation of non-leading logarithms in POWHEG

Ultimately, there is a last subtlety, which has also been discussed in [20], summarising

some previous work by the same authors. The evolution kernel R/B in the POWHEG

method generates subleading logarithms and it is somewhat questionable in how far

they should be exponentiated. The difference compared to evolution kernels in the

parton shower may lead to sizable effects, up to orders of magnitude, when results

for the hard, non-logarithmic tails of distributions in the POWHEG approach are

compared with those of pure NLO calculations, see for instance [56].

In this context, it is important to distinguish two effects: One is exponentiation of

R/B beyond the factorization scale µF (cf. eq. (2.8)), the other is the difference in the

functional form of the evolution kernels itself. The former effect can be emulated in

our implementation of the MC@NLO formalism and we will examine it more closely

in sections 4.1 and 4.2. We use CS subtraction and a parton shower built on CS

subtraction kernels [57]. Initially the starting scales of the parton shower will be

maximised for the first emission, in order to fill the full phase space, similar to the

POWHEG method and a power-shower approach [45, 46]. To show that the main dif-

ference between POWHEG and MC@NLO lies in the enlarged phase space in POWHEG,

a simple phase-space constraint is added to the subtraction [58], limiting the logarith-

mically enhanced region of the real-emission contribution and adding the hard regions

to the regular contribution. The impact of the choice of this constraint is analysed

quantitatively in section 4. The respective variations in the result are referred to

as “exponentiation uncertainties”. It is important to note that this uncertainty is

minimised in the MC@NLO method, as the phase space constraint is determined by

the resummation scale. In this publication we simply use the MC@NLO framework

to make the problem in POWHEG explicit.

– 7 –
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3 POWHEG and MC@NLO in detail

When combining next-to-leading order matrix elements with parton showers, the logarith-

mic corrections encoded in the Sudakov form factor must be matched to the full next-

to-leading order prediction of the parton-level calculation. This is usually achieved either

by subtracting the first-order expansion of the resummed result from the NLO calculation

(MC@NLO with D(A) = D(S)), or by exponentiating the full real-emission correction in the

resummation (POWHEG). One can also construct mixed schemes, as argued in section 2.4.

The difference which is induced by the exponentiation of subleading corrections vanishes

for soft or collinear parton emission. However, it might play an important role in other re-

gions of the phase space. In the following, a formalism that allows to discuss the difference

between the MC@NLO and POWHEG methods in more detail is reviewed.

3.1 Notation and definitions

Denoting sets of n particles in a 2 → (n − 2) process by {~a} = {a1, . . . , an}, while their

respective flavours and momenta are specified separately through {~f } = {f1, . . . , fn} and

{~p} = {p1, . . . , pn}, the generic expression for a fully differential Born-level cross section

can be written as a sum over all contributing flavour configurations:

dσB({~p}) =
∑
{~f }

dσB({~a}) , where dσB({~a}) = dΦB({~p}) B({~a}) , (3.1)

The individual terms in the sum are given by

B({~a}) = L({~a})B({~a}) ,

B({~a}) =
1

F ({~p})
1

S({~f })
|MB|2 ({~a}) ,

dΦB({~p}) =
dx1
x1

dx2
x2

dΦB({~p}) ,

L({~a};µ2) = x1ff1(x1, µ
2) x2ff2(x2, µ

2) ,

(3.2)

where |MB|2 ({~a}) denotes the partonic matrix element squared, dΦB({~p}) is the cor-

responding differential n-particle partonic phase-space element, S({~f }) is the symmetry

factor, F ({~p}) is the flux factor, and L is the parton luminosity.1

In a similar fashion, the real-emission part of the QCD next-to-leading order cross

section can be written as a sum, depending on parton configurations {A1, . . . ,An+1}, by

replacing the Born-level matrix elements B with the real-emission matrix elements R and

the Born-level phase space dΦB with the real-emission phase-space dΦR.

It is then useful to introduce a notation for mappings from real-emission parton con-

figurations to Born-level parton configurations and vice versa. They are given by (cf. [40])

bij,k({~A}) =

{
{~F } \ {Fi, Fj} ∪ {fı̃}

{~P } → {~p } and rı̃,k̃(Fi,Φ
ij,k
R|B ; {~a}) =

{
{~f } \ {fı̃} ∪ {Fi, Fj}

{~p } → {~P } .

(3.3)

1In the case of leptonic initial states, and ignoring QED initial-state radiation, the parton distribution

functions f(x, µ2) are replaced by δ(1− x).
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The map bij,k({~A}) combines the partons Ai and Aj into a common “mother” parton aı̃,

in the presence of the spectator Ak by defining a new flavour fı̃ and by redefining the

particle momenta. The inverse map, rı̃,k̃({~a}) determines the parton configuration of a

real-emission subprocess from a Born parton configuration and a related branching pro-

cess ı̃, k̃ → ij, k. The radiative variables Φij,k
R|B, denoted Φ1 in section 2 for brevity, are

thereby employed to turn the n-parton momentum configuration into an (n + 1)-parton

momentum configuration.

The real-emission matrix elements, R({~A}), can be approximated in the soft and

collinear limits by subtraction terms D(S)
ij,k({~A}), which capture the universal singularity

structure when two partons i and j become collinear, or one of them becomes soft in the

presence of a spectator parton k.

R
ij collinear
i,j soft−→ D(S)

ij,k({~A}) . (3.4)

These subtraction terms are related to the ones defined in section 2 through D(S) →
L({~A})D(S)

ij,k({~A}), with implicit notation of dipole indices, phase space and flavour config-

uration on the left hand side. They are not uniquely defined, but can be constructed, for

example, using the Catani-Seymour method [41, 42] or the FKS approach [43, 44]. Fur-

thermore they can be restricted in phase space [58] or extended with an arbitrary finite

function. Similar terms can also be computed in a parton-shower approximation as

R ij collinear−→ D(PS)
ij,k ({~A}) = B(bij,k({~A}))

S(bij,k({~F }))
S({~F })

1

2 pipj
8π αsKij,k(pi, pj , pk) , (3.5)

where Kij,k denote the parton-shower evolution kernels. The parton-shower approximation

is meaningful only in the collinear region, as it implements an exact factorisation of the

colour structure into a Born part and an emission part. In many cases also a factorisation

of the helicity structure is assumed.

3.2 From fixed-order to resummation

Section 2 only introduced expressions for the total cross section in the MC@NLO and

POWHEG methods. A detailed discussion requires an analysis of the expectation value of

arbitrary infra-red safe observables. The respective formulae are developed in the following.

Using the subtraction terms introduced in eq. (3.4), the expectation value of an ob-

servable O is determined to next-to-leading order accuracy as

〈O〉(NLO) =
∑
{~f }

∫
dΦB({~p})

B({~a}) + Ṽ({~a}) +
∑
{ı̃,k̃}

I
(S)

ı̃,k̃
({~a})

 O({~p})

+
∑
{~F }

∫
dΦR({~P})

R({~A})O({~P})−
∑
{ij,k}

D
(S)
ij,k({~A})O(bij,k({~P}))

 .
(3.6)

where I(S)({~a}) represent the subtraction terms D(S)({~A}) integrated over the extra-

emission phase space. Note that the configurations {~F }, {~P} and {~A} on the second line

each include one more particle.
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This equation can be modified by adding and subtracting an additional arbitrary set

of subtraction terms D(A)({~A}) with the same kinematics mapping as D(S)({~A})

〈O〉(NLO) =
∑
{~f }

∫
dΦB({~p}) B̄(A)({~a})O({~p})

+
∑
{~F }

∫
dΦR({~P})

R({~A})O({~P})−
∑
{ij,k}

D
(A)
ij,k({~A})O(bij,k({~P}))

 , (3.7)

where the function B̄(A)({~a}) is defined as

B̄(A)({~a}) = B({~a}) + Ṽ({~a}) +
∑
{ı̃,k̃}

I
(S)

ı̃,k̃
({~a})

+
∑
{ı̃,k̃}

∑
fi=q,g

∫
dΦij,k

R|B

[
D

(A)
ij,k(rı̃,k̃({~a}))−D

(S)
ij,k(rı̃,k̃({~a}))

]
,

(3.8)

and where dΦij,k
R|B represents an integral over the radiative phase space.

When combining fixed-order calculations with resummation, the task is to define a

unique starting condition for the parton shower. As was argued in [11], it is not possible

to process the terms R({~A}) and D
(A)
ij,k({~A}) in eq. (3.7) separately because this would lead

to double-counting. Instead, the problem is solved if the observables on the second line of

eq. (3.7) are both assumed to depend on the momentum configuration {~P}. This leads to

〈O〉(NLO) =
∑
{~f }

∫
dΦB({~p}) B̄(A)({~p})O({~p})

+
∑
{~F }

∫
dΦR({~P})

R({~A})−
∑
{ij,k}

D
(A)
ij,k({~A})

 O({~P}) + 〈O〉(corr) ,
(3.9)

introducing the correction term2

〈O〉(corr) =
∑
{~F }

∫
dΦR({~P})

∑
{ij,k}

D
(A)
ij,k({~A})

[
O({~P})−O(bij,k({~P}))

]
. (3.10)

The essence of both the MC@NLO and POWHEG methods is to generate eq. (3.10) by

using a Sudakov branching algorithm, which is formulated in terms of an evolution variable

t, where t ∝ 2 pipj . Let a corresponding form factor be defined as

∆̄(A)(t; {~a}) =
∏
{ı̃,k̃}

∆̄
(A)

ı̃,k̃
(t; {~a}) , (3.11)

2The dependence of the observable O on the kinematics of the partonic final state makes the need for a

correction term 〈O〉(corr) manifest. This term integrates to zero in eq. (2.9), as O=1 and the phase-space

dependence is trivial.

– 10 –



J
H
E
P
0
9
(
2
0
1
2
)
0
4
9

where

∆̄
(A)

ı̃,k̃
(t; {~a}) = exp

− ∑
F i=q,g

∫
dΦij,k

R|B Θ(t(Φij,k
R|B)− t)

× 1

Sij

S(rı̃,k̃(Fi; {~f }))
S({~f })

D
(A)
ij,k(rı̃,k̃(Fi,Φ

ij,k
R|B; {~a}))

B({~a})

 .

(3.12)

The ratio of symmetry factors, including Sij , is explained in detail in [40]. It accounts for

the way in which the phase space is successively filled by a parton shower.

It can then be proven [11–13, 40], that the following formula for the expectation value

of an infrared safe observable reproduces eq. (3.9) to O(αs):

〈O〉(NLOMC) =
∑
{~f }

∫
dΦB({~p}) B̄(A)({~a})

 ∆̄(A)(t0; {~a})︸ ︷︷ ︸
unresolved

O({~p})

+
∑
{ı̃,k̃}

∑
F i=q,g

∫
dΦij,k

R|B Θ(t(Φij,k
R|B)− t0) O(rı̃,k̃({~p}))

× 1

Sij

S(rı̃,k̃(Fi; {~f }))
S({~f })

D
(A)
ij,k(rı̃,k̃(Fi,Φ

ij,k
R|B; {~a}))

B({~a}) ∆̄(A)(t; {~a})︸ ︷︷ ︸
resolved, singular



+
∑
{~F }

∫
dΦR({~P})

R({~A})−
∑
ij,k

D
(A)
ij,k({~A})


︸ ︷︷ ︸

resolved, non-singular

O({~P}) . (3.13)

NLO Monte-Carlo events reproducing eq. (3.13) can be generated in the following way:

• A seed event is produced according to either the first or the second line of eq. (3.9),

not including the correction factor 〈O〉(corr).

• If the second line is chosen (H-event) the event has real-emission kinematics and is

kept as-is.

This generates the “resolved, non-singular” term of eq. (3.13)

• If the first line is chosen (S-event), the event has Born-like kinematics and is processed

through a one-step Sudakov branching algorithm described by eqs. (3.11) and (3.12).

The necessary techniques for that case will be detailed in section 3.4. An emission

might or might not occur, which is represented by the “resolved, singular” and “un-

resolved” terms of eq. (3.13), respectively.

3.3 The MC@NLO and POWHEG methods

Equation (3.13) becomes particularly simple when

D
(A)
ij,k → D

(S)
ij,k . (3.14)
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In this special case the integral over the radiative phase space in eq. (3.8) is zero. We will

refer to this as the MC@NLO technique. It can be thought of as a method which uses the

Sudakov branching probability for subtraction or, conversely, which uses the subtraction

kernels for parton evolution. Possible event generation techniques to achieve this will be

discussed in section 3.4.

The POWHEG method, in its original form, on the other hand, defines

D
(A)
ij,k → ρij,k({~A}) R({~A}) where ρij,k({~A}) =

D(S)
ij,k({~A})∑

mn,lD
(S)
mn,l({~A})

, (3.15)

It can be thought of as exponentiating the full radiative corrections into a Sudakov form

factor. As such, it bears strong similarity to matrix-element corrected power showers. This

aspect has been discussed extensively in [40, 59].

One can construct a mixed scheme, where D
(A)
ij,k is defined as

D
(A)
ij,k → ρij,k({~A})

[
R({~A})− R(r)({~A})

]
, (3.16)

with R(r) an arbitrary infrared-finite part of the real-emission cross section and ρij,k given

by eq. (3.15). This method leads to the original MC@NLO prescription, proposed in [11],

if D
(A)
ij,k = D

(PS)
ij,k . It was also used in [50] to deal with the problem of radiation zeros in the

W±-production process in the POWHEG approach.

Note that all the above choices of D
(A)
ij,k fulfil the requirement that the kinematics and

flavour mapping be identical to the one in D
(S)
ij,k, cf. eq. (3.7).

3.4 Event-generation techniques

In the parton-shower approximation, eq. (3.12) would read

∆ı̃,k̃(t
′, t′′; {~a}) = exp

− ∑
F i=q,g

∫ t′′

t′

dt

t

∫ zmax

zmin

dz

∫ 2π

0

dφ

2π
Jij,k(t, z, φ)

× 1

Sij

αs
2π
Kij,k(t, z, φ)

L(rı̃,k̃(Fi, t, z, φ; {~a}); t)
L({~a }; t)

}
,

(3.17)

where z is called the splitting variable of the parton-shower model and Jij,k is the Jacobian

factor associated with the transformation of dΦij,k
R|B into dt dz dφ [40].

It is well known how to generate emissions according to eq. (3.17). The task of a

proper implementation of MC@NLO and POWHEG is, however, to employ eq. (3.12). In

our formulation of MC@NLO, i.e. with D
(A)
ij,k = D

(S)
ij,k, this can involve the exponentiation

of subtraction terms which are negative, due to subleading colour configurations in the

real-emission matrix elements, cf. section 2.5. This leads to a form factor larger than one,

which cannot be interpreted in terms of a no-branching probability. In this section we will

show how to generate such form factors efficiently in a Markov chain Monte Carlo. The

respective algorithm is the basis for our implementation of the MC@NLO method. It was

outlined in [60] and reformulated in [61]. As it needs to be modified slightly in the current

context, it is briefly discussed here again. The method is based on an extension of the

veto algorithm [62].
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The veto algorithm. Let t be the parton-shower evolution variable and f(t) the split-

ting kernel K, integrated over the splitting variable z.3 The differential probability for

generating a branching at scale t, when starting from an upper evolution scale t′ is then

given by

P(t, t′) = f(t) exp

{
−
∫ t′

t
dt̄ f(t̄)

}
. (3.18)

A new scale t is therefore found as

t = F−1
[
F (t′) + log #

]
where F (t) =

∫
t
dt̄ f(t̄) , (3.19)

and where # is a random number between zero and one. The key point of the veto algorithm

is, that even if the integral F (t) is unknown, one can still generate events according to P
using an overestimate g(t) ≥ f(t) with a known integral G(t). Firstly, a value t is generated

as t = G−1 [G(t′) + log # ]. Secondly, the value is accepted with probability f(t)/g(t). A

splitting at t with n intermediate rejections is then produced with probability

Pn(t, t′) =
f(t)

g(t)
g(t) exp

{
−
∫ t1

t
dt̄ g(t̄)

}
×

n∏
i=1

[∫ tn+1

ti−1

dti

(
1− f(ti)

g(ti)

)
g(ti) exp

{
−
∫ ti+1

ti

dt̄ g(t̄)

}]
,

(3.20)

where tn+1 = t′ and t0 = t. The nested integrals in eq. (3.20) can be disentangled, and

summing over n leads to the exponentiation of the factor g(t)− f(t), such that eq. (3.18)

is reproduced [62].

Analytic weights. The purpose here is to introduce an additional overestimate h(t).

The additional weight g(t)/h(t) is then applied analytically rather than using a hit-or-miss

method. This leads to the following expression for the differential probability to generate

an emission at t with n rejections between t and t′

Pn(t, t′) =
f(t)

g(t)
h(t) exp

{
−
∫ t1

t
dt̄ h(t̄)

}
×

n∏
i=1

[∫ tn+1

ti−1

dti

(
1− f(ti)

g(ti)

)
h(ti) exp

{
−
∫ ti+1

ti

dt̄ h(t̄)

}]
.

(3.21)

Note that the function h(t) and the ratio f(t)/g(t) must be positive definite. Generating

events according to eq. (3.21) is then straightforward. In order to recover the desired

distribution, the following analytic weight needs to be applied

w(t, t1, . . . , tn) =
g(t)

h(t)

n∏
i=1

g(ti)

h(ti)

h(ti)− f(ti)

g(ti)− f(ti)
. (3.22)

3For simplicity, the existence of only one splitting function is assumed, i.e. that there is no flavour change

of the splitter during the evolution. The extension to flavour changing splittings is straightforward, but it

would unnecessarily complicate the notation at this point.
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Here the term g(t)/h(t) is due to the acceptance of the emission. The product, which is

needed for an exponentiation of h(t)− f(t) instead of g(t)− f(t), runs over all correction

weights for rejected steps. Equation (3.22) can lead to negative weights, which reflect the

fact that sub-leading colour configurations are taken into account and that the a-priori

density h(t) might underestimate f(t).

Implementation of the MC@NLO method. In order to implement the MC@NLO

method with D
(A)
ij,k = D

(S)
ij,k we need to identify the function f above with the (z, φ)-

integrated subtraction terms D
(S)
ij,k, divided by the Born contribution. A convenient choice

of the function h will be the (z, φ)-integral of the parton-shower evolution kernels D
(PS)
ij,k ,

divided by the Born contribution. We are then free to choose the auxiliary function g on

a point-by-point basis, but a convenient way is to define g = C f , where C is a constant

larger than one. This guarantees that both acceptance and rejection term are generated

in sufficient abundance to reduce Monte-Carlo errors. In the remainder of this paper, the

functions f , g and h are thus schematically identified as follows:

f → D(A) , h→ D(PS) , and g = C f , (3.23)

where C ≈ 2 is a constant.

By exponentiating D
(S)
ij,k in this manner, we can suppress the integral over the radiative

phase space in eq. (3.8) and thus substantially simplify the event generation.

4 Analysis of perturbative uncertainties

In the following the uncertainties discussed in section 2.5 are investigated in detail. The

event generator SHERPA [63, 64] sets the framework for this study, including its automated

MC@NLO implementation, the matrix-element generator AMEGIC++ [65], an automated

implementation [66] of the Catani-Seymour dipole subtraction method [41] and the parton

shower model described in [57, 60]. The CTEQ6.6 PDF set [67] is used together with the

corresponding parametrisation of the running coupling. All analyses are carried out with

the help of Rivet [68].

4.1 Higgs-boson production in gluon fusion

The production of a Higgs boson at the LHC with 7 TeV centre-of-mass energy serves

as a first example. This process amplifies some of the effects discussed in section 2.5

because the radiating partons are gluons. There are thus no valence PDF’s involved at

Born level, which allows to test fixed-order effects and resummation in a relatively clean

setting. Results presented in this section do not include non-perturbative or multiple

parton scattering effects. A detailed study of the POWHEG algorithm and its associated

uncertainties has already been presented in [40]. In the following, the focus will therefore

mainly lie on our implementation of the MC@NLO method, but comparisons with POWHEG

will be made at the appropriate junctures.

For an unbiased comparison of the MC@NLO and POWHEG techniques, the events are

analysed with a minimal set of cuts. A Higgs-boson mass of mh = 120 GeV is assumed and
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two τ -leptons with |η| < 3.5 and p⊥ > 25 GeV are required; jets are defined according to

the inclusive k⊥-algorithm [69–71] with R = 0.7 and p⊥,min = 20 GeV. The renormalisation

and factorisation scales are set to µF = µR = mh. The effective coupling of the Higgs to

gluons, mediated by a top-quark loop, is modeled through an effective Lagrangian [72, 73].

Both powers of αs in the effective gluon-gluon-Higgs coupling are also evaluated at mh.

The comparison with fixed-order predictions and predictions from standard parton

showers (referred to as LO⊗PS in the following) presents a first crucial test of the MC@NLO

and POWHEG methods. In this context, SHERPA is also used as a framework for NLO

fixed-order event generation, enabling a comparison of all approaches with identical input

parameters. In order to vary the amount of exponentiated real-emission corrections in our

MC@NLO, which is governed by eqs. (2.10)–(2.12) or, more rigorous, eqs. (3.12)–(3.14), the

phase-space restriction described in [58] is employed and the parameter αcut is varied. It

has the effect of increasing (αcut → 1) or decreasing (αcut → 0) the phase space for non-

singular contributions in D(A) by setting an upper bound on the virtuality t̂ of the splitting

parton. The leading logarithm is then of the form αs log2(t̂/αcut s), with s the centre-of-

mass energy of the colliding protons. Hence, for αcut ∼ 1 the leading logarithm contains

the wrong argument αcuts � µ2F , clearly at odds with usual choices of the resummation

scale and in violation of factorisation theorems. Similarly, the original POWHEG method

exponentiates radiative corrections throughout the real-emission phase space, correspond-

ing to our MC@NLO with αcut = 1. Some practical implementations of POWHEG propose

to suppress non-singular terms with a continuous function which tends to one in the sin-

gular limits and approaches zero in those regions of phase space where emissions become

hard [50]. However, even in this approach the volume of phase space where exponentiation

is performed is left invariant, and only the influence of non-logarithmic terms is reduced.

The leading logarithm is thus still of the form αs log2(t̂/s). The traditional LO⊗PS method

directly implements the DGLAP resummation and thus uses the factorisation scale µF as a

phase space constraint, resulting in the correct logarithmic form αs log2(t̂/µ2F ). It is clearly

desirable to implement this very same constraint in our MC@NLO. This requires the com-

putation of a new class of integrated subtraction terms in the Catani-Seymour framework,

which is beyond the scope of this work and will be the topic of a forthcoming publication.

The influence of αcut on the MC@NLO predictions and its relation to the POWHEG

and LO⊗PS predictions are investigated for various observables in figures 1–5. Taking

the O(αs) expansion of eq. (3.13) at face value leads to the expectation that results from

MC@NLO (for any αcut) and POWHEG should approximately agree with fixed-order predic-

tions in the limit of hard, well separated partons. In the limit of soft/collinear radiation

the common logarithmic structure of the resummation in MC@NLO, POWHEG and LO⊗PS

should lead to identical results in all three approaches.

In practice, the transverse momentum spectrum of the Higgs boson, shown in fig-

ure 1a, exhibits a large dependence on αcut. This roots in the different composition of the

distribution in terms of H- and S-events, which is depicted in figures 6 and 7. Neglecting

subsequent parton shower emissions, H-events above αcut coincide with those of the NLO

calculation, while S-events resum the leading logarithm of the real emission matrix element

and occur with an additional enhancement B̄(A)/B. This enhancement, though formally
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Figure 1. Transverse momentum of the Higgs boson in inclusive Higgs boson production (mh =

120 GeV) at Ecms = 7 TeV. The variation of MC@NLO predictions with varying αcut (denoted

α in the legend) is shown in figure (a), while figure (b) compares the MC@NLO, POWHEG and

LO⊗PS methods.
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Figure 2. Transverse momentum of the Higgs boson (left) in inclusive Higgs boson production

(mh = 120 GeV) at Ecms = 7 TeV. The solid lines show the full MC@NLO (green) and POWHEG (red)

results, while the corresponding dashed lines show the results where the prefactor of the resummed

S events, B̄ and B̄(A) respectively, have been replaced by B. In all cases only the first emission is

taken into account. The black dashed line shows the NLO fixed-order prediction.

contributing to O(α2
s), can be numerically large. Thus, when allowing S-type events to fill

more than the phase space suited for the resummation of the DGLAP logarithms, their

emission probability is not only distorted by the exponentiation but also by an artificial
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Figure 3. Transverse momentum of the leading jet in inclusive Higgs-boson production (mh =

120 GeV) at Ecms = 7 TeV. See figure 1 for details.
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Figure 4. Rapidity separation between Higgs-boson and leading jet in inclusive Higgs-boson

production (mh = 120 GeV) at Ecms = 7 TeV. See figure 1 for details.

K-factor B̄(A)/B, as compared to the NLO result. For smaller values of αcut, the argument

of the leading logarithm is closer to the one in DGLAP evolution, even though αcut has

a functional form which makes a direct comparison difficult. It is thus observed that the

MC@NLO distributions come close to the fixed-order result in the hard region, and the

method behaves exactly as expected.

Further, excessively small values of αcut lead to spurious results, as the S-event prefac-

tor B̄(A)/B turns negative. This is exemplified in figure 6. Thus, those values of αcut are pre-
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Figure 5. Prediction and uncertainties for the rapidity of the Higgs boson in inclusive Higgs boson

production (mh = 120 GeV) at Ecms = 7 TeV. See figure 1 for details.

ferred which ensure that S-events only fill the phase space suited for resummation and simul-

taneously avoid B̄(A) turning negative. Defining such an allowed range of αcut introduces an

unwanted process dependence into this implementation. Clearly a physically more mean-

ingful definition of phase space constraints will ultimately lead to removing this uncertainty.

Comparing these results to the predictions of the POWHEG and LO⊗PS methods,

depicted in figure 1b, one finds that POWHEG behaves as our MC@NLO implementation

with αcut = 1, suffering from a too large phase space for exponentiation. On the other

hand, the resummation properties of the parton shower are retained. The difference in

the actual Sudakov shape can entirely be attributed to the respective size and functional

form of the phase-space boundaries. Further, within the region where the standard parton

shower is able to fill the phase space (up to |t̂| = µ2F ), the LO⊗PS result scaled by a global

factor K = σNLO/σLO = 2.3 is in good agreement with the POWHEG and MC@NLO with

αcut = 1 distributions. This is a consequence of the simple form of the virtual corrections

resulting in a local K-factor B̄(A)/B, that largely coincides with the global K-factor.

It was claimed in [56] that the difference between POWHEG and MC@NLO predictions

for Higgs-boson production originates from the local K-factor B̄/B in POWHEG. Figure 2

shows explicitly that this claim is at odds with our findings. It displays predictions from

a standard POWHEG simulation and a modified one, where we replace B̄ → B. The same

analysis is repeated with MC@NLO at α = 1, except that in this case we replace B̄(A) → B.

It is manifest that the original and the modified POWHEG results agree, except for a global

K-factor, as was observed in [56]. However, the same effect is found for MC@NLO at α = 1.

In contrast, both the modified POWHEG and the modified MC@NLO result differ in shape

from the NLO prediction at high pT , while the MC@NLO result with α = 0.01 matches the

NLO result exactly. The deviations between POWHEG and MC@NLO, which were observed

in [56] can therefore not be attributed to the local K-factor B̄ → B. Instead they must

originate from the unrestricted phase space in POWHEG.
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Figure 6. Higgs-boson transverse momentum for small values of ph⊥ in inclusive Higgs-boson

production (mh = 120 GeV) at Ecms = 7 TeV. The contribution of S- and H-events in the MC@NLO

method is displayed separately for different values of αcut. For αcut = 1 and αcut = 0.3 the sample

consist primarily of S-events with small additions of negatively and positively valued H-events,

respectively.
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Figure 7. Higgs-boson transverse momentum for large values of ph⊥ in inclusive Higgs-boson

production (mh = 120 GeV) at Ecms = 7 TeV. The contribution of S- and H-events in the MC@NLO

method is displayed separately for different values of αcut. For αcut = 1 and αcut = 0.3 the sample

consist primarily of S-events with small additions of negatively and positively valued H-events,

respectively.
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Similar observations are made for the transverse momentum of the hardest jet of

figure 3. Here, the difference in the emission rate for H- and S-events, as discussed earlier,

is plainly visible. Again, MC@NLO with αcut = 0.01 agrees with the fixed-order NLO

prediction for large jet transverse momenta. Also POWHEG and MC@NLO with αcut = 1

give similar results, overestimating the emission rate by more than 250%.

This overestimation also feeds into the rapidity separation between the Higgs boson

and the first jet in figure 4. The predictions of MC@NLO with αcut = 0.01 and MC@NLO

with αcut = 1 differ by a factor of two. The effects of decreasing αcut are examined in

figure 4a. With decreasing αcut, the rapidity difference distribution develops a pronounced

dip, which becomes broader and flattens out until the fixed-order result is approached for

αcut ≈ 0.01 and stabilises for even smaller αcut. Again, this is explained by the different

composition of the samples in terms of H- and S-events. Similar findings were reported

in [74], where tt̄-production was analysed and the MC@NLO method was compared to

tree-level merging. The authors concluded that a dip in the leading jet rapidity spectrum,

present only in the MC@NLO prediction, was most likely an artifact of the incomplete phase-

space coverage in HERWIG’s parton shower. While the dead zones of this parton shower are

clearly different from the dead zones generated through αcut in our approach, the resulting

effect is surprisingly similar. It suggests that the dip, which is not present in either NLO

fixed-order or tree-level merged results, must be attributed to exponentiation uncertainties.

Figure 4b shows a comparison with POWHEG and LO⊗PS. POWHEG predictions agree well

with those from our MC@NLO with αcut = 1 and from LO⊗PS with a global K-factor,

while MC@NLO with αcut = 0.01 agrees with standard LO⊗PS.

Figure 5 shows the rapidity spectrum of the Higgs boson, which can be defined at

Born level and is thus described at NLO accuracy. No significant variation is observed

in this spectrum when the parameter αcut is varied, as expected. One can thus conclude

that both the MC@NLO and POWHEG techniques are consistently implemented in the event

generator SHERPA.

Summarising the above results, we find that the perturbative uncertainties associated

with the POWHEG method are large, due to the unrestricted phase space available for expo-

nentiation. It is important to stress that this problem is in principle solved by the MC@NLO

method and that we simply use our implementation of MC@NLO to quantify the effect.

4.2 Higgs-boson production in association with a jet

This section presents predictions for the production of a Higgs boson in association with

at least one jet. This process has not yet been investigated using either the MC@NLO

or the POWHEG approach. The Higgs mass is set to mh = 120 GeV. Jets at parton-

level (i.e. before parton shower emissions take place) are defined using the inclusive k⊥
algorithm [69–71] with R = 0.5 and p⊥,min = 10 GeV. The independence of the results

of the precise value of generation cut has been checked by varying p⊥,min = 5 . . . 15 GeV.

Again, the effective coupling of the Higgs to gluons, mediated by a top-quark loop, is

modeled through an effective Lagrangian [72, 73], and the virtual matrix elements here are

computed by MCFM [75, 76].
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Both the renormalisation and factorisation scales are set to the transverse momentum

of the hardest parton-level jet in the event. The two powers of αs in the effective gluon-

gluon-Higgs coupling are evaluated at a fixed scale mh, independent of the renormalisation

scale µ. The reason for this choice is that scale variations of the effective coupling do not

reflect a systematic uncertainty of the calculation at hand. They should be compensated

by higher-order corrections to the effective coupling (i.e. diagrams with gluons attached to

the top quarks in the loop), and will not be compensated by the one-loop corrections in the

h+jet matrix elements that we use. Thus, while the respective scale uncertainty is part of

the systematics of the final cross section prediction, its proper assessment must come from

a different calculation.

Our central prediction chooses αcut = 0.03 to minimise the uncontrolled exponentia-

tion of non-logarithmic terms and distortions of the Sudakov shape of the Higgs boson’s

transverse momentum spectrum. The predictions presented here include simulation of

hadronisation [77, 78] and multiple parton interactions (MPI) [79, 80] as well as hadron

decays [81] and higher-order QED corrections to the h→ ττ decay [82].

Uncertainty bands correspond to the variation of the renormalisation and factorisation

scales in the range 1/2µ . . . 2µ as well as to the variation of αcut in a range from 1 to 0.001.

Scales are varied only in the matrix elements, not in the parton shower. As before, only

minimal cuts are applied in the analysis: two τ -leptons with |η| < 3.5 and p⊥ > 25 GeV

are required. Jets are defined using the inclusive k⊥-algorithm with R = 0.7 and p⊥,min =

20 GeV. Their minimum transverse momentum requested in the analysis ensures that the

parton-level event selection is inclusive enough to guarantee coverage of the full phase space.

Figure 8 shows the transverse momentum spectra of the Higgs boson and the leading

jet. Grey bands indicate the uncertainty due to the choice of αcut, which will be referred to

as exponentiation uncertainty in the following. Yellow bands show the scale uncertainty. It

is manifest, that the exponentiation uncertainty is largest in the region of large transverse

momenta, a fact that seems counter-intuitive at first. Despite the transverse momentum

distributions being described at NLO, they can apparently be altered significantly by addi-

tional emissions in the parton shower. Taking a closer look at eqs. (2.10)–(2.12), this fact

becomes clear:

• The proof of next-to-leading order accuracy of both the POWHEG and the MC@NLO

formulae is based on an expansion of the Sudakov form factors to first order. Higher-

order corrections do play an important role, however, especially in regions of the phase

space where parton emission is logarithmically enhanced. This region is drastically

enlarged if the upper integration limit of the exponentiated real emission is shifted

from µF to s = E2
CMS, as is the case in POWHEG and MC@NLO with αcut = 1 (cf.

section 4.1). This change alters the shape of the emission term in eq. (2.10) compared

to the emission term in eq. (2.9). This finding is reinforced by the fact that in all

distributions investigated, the predictions for αcut = 0.03 coincide with those for

αcut = 0.001.

• The strong coupling is evaluated at a scale of the order of the relative transverse

momentum between two partons in the emission term in eq. (2.9), while it is evaluated
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Figure 8. Prediction and uncertainties for the transverse momentum of the Higgs boson (left) and

the leading jet (right) in Higgs boson plus jet events (mh = 120 GeV) at Ecms = 7 TeV.
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Figure 9. Predictions and uncertainties for transverse momentum of the second hardest jet (left)

and the scalar sum of all jet transverse momenta (right) in Higgs boson plus jet events (mh =

120 GeV) at Ecms = 7 TeV.

at a different scale (here the transverse momentum with respect to the beam) in

eq. (2.11). This leads to an additional distortion of the spectrum of the real-emission

term, which is formally a sub-leading effect, but which becomes important in the

enlarged logarithmically enhanced regions of the emission phase space.

The above effects are amplified in figure 9, as the observables there, the transverse mo-

mentum of the second jet and the scalar sum of all jets in the event, are described at

leading-order accuracy only.

In contrast, figures 10 and 11 show a rather mild dependence on αcut in the shape of

the distributions. Nonetheless, a change in the normalisation can be observed, which is
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Figure 10. Prediction and uncertainties for the rapidity of the Higgs boson (left) and the leading

jet (right) in Higgs boson plus jet events (mh = 120 GeV) at Ecms = 7 TeV.
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Figure 11. Predictions and uncertainties for the pseudorapidity (left) and angular (right) sepa-

ration of the Higgs boson and the leading jet in Higgs boson plus jet events (mh = 120 GeV) at

Ecms = 7 TeV.

explained by the fact that due to larger emission rates with increasing αcut, the amount of

radiative events is increased. Their kinematic distribution, however, does not seem to differ

significantly. In fact, the large scale dependence observed in figures 8 and 9 is amplified

here, especially for observables related to the hardest jet, indicating that, although µ = p⊥
is an appropriate scale choice for this process, the canonical variation to µ = 1

2p⊥ leads to

unphysical behaviour for jet rapidities beyond |η| ≈ 3.4.

As a consequence of the strongly varying jet rates with varying αcut, the pseudorapid-

ity separation between first and second hardest jet suffers from large uncertainties. It is

displayed in figure 12. While the shape of the distribution is mostly unaffected, the nor-

malisation varies strongly. The azimuthal separation between the two leading jets indicates
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Figure 12. Predictions and uncertainties for the pseudorapidity (left) and azimuthal (right)

separation of the two hardest jets in Higgs boson plus jet events (mh = 120 GeV) at Ecms = 7 TeV.

how the exponentiation uncertainty affects the relative position of both jets in phase space.

Compared to the pure next-to-leading order result, the back-to-back situation is amplified

by a factor ∼ 10 in the MC@NLO prediction. In such events, the Higgs-boson is likely to

have been produced at p⊥ → 0, consistent with the observation of a depletion of events in

the first bins of the Higgs transverse momentum spectrum for αcut = 1, cf. figure 8.

4.3 W -boson production in association with a jet

In the following, W [→ eν]+jet production in pp collisions at 7 TeV is studied. As for the

case of Higgs-boson production, the MC@NLO implementation is validated against a fixed-

order calculation. In addition the scale uncertainties are assessed by varying factorisation

and renormalisation scales in MC@NLO by a factor of two in both directions.

To make the validation as meaningful as possible effects from parton showering beyond

the first emission in S-events, hadronisation and multiple parton scattering are not included

in these parton level (PL) studies. Events are generated requiring at least one jet with

p⊥,min = 10 GeV, defined according to the inclusive k⊥-algorithm [69–71] with R = 0.5.

The transverse momentum of that hardest jet also sets the central value of factorisation

and renormalisation scales. The level of exponentiation is fixed by αcut = 0.03.

The total generated cross sections of the NLO calculation, σNLO = (4695 ± 12) pb,

and MC@NLO, σMC@NLO = (4680 ± 30) pb, agree within statistical uncertainties. The

total generated cross section in MC@NLO varies between σ(µ/2) = (4950 ± 40) pb and

σ(µ · 2) = (4510± 23) pb, i.e. up to 5.8% around the central value.

Properties of the W -boson, which is reconstructed from the truth neutrino and the

lepton, are displayed in figure 13. Agreement between fixed-order and MC@NLO results

in both the rapidity and transverse momentum spectra is found. Agreement is also found

for the transverse momentum and pseudorapidity distributions of the electron, which are

shown in figure 14.
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Figure 13. Transverse momentum and rapidity of the W -boson in W [→ eν] + j production at the

LHC.
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Figure 14. Transverse momentum and pseudorapidity of the electron in W [→ eν] + j production

at the LHC.

In the event analysis jets are defined according to the inclusive k⊥ algorithm [69–71]

with R = 0.7 and requiring p⊥ > 20 GeV. Properties of these jets are displayed in figure 15.

The transverse momentum of the leading jet, an observable described at next-to-leading

order accuracy, shows good agreement between both approaches. The scalar sum of jet

transverse momenta (HT ) is only described at leading-order accuracy and thus suffers from

larger exponentiation uncertainties. This leads to a disagreement between the fixed-order

result and MC@NLO, up to the level of 20%.

No distribution is affected significantly by scale variations beyond the change in total

rate. This indicates that the functional form of the scale choice described at the beginning

of this section works well for this process.
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Figure 15. Transverse momentum of the leading jet and scalar sum of all jet transverse momenta

in W [→ eν] + j production at the LHC.

5 Non-perturbative uncertainties and comparison to data

In this section the MC@NLO method is further studied using W+jet and Z+jet production

as a testing ground. Emphasis is now placed on the investigation of non-perturbative effects

and associated systematic variations.

5.1 Analysis of non-perturbative effects

The MC@NLO method allows to generate fully hadronised events as an input for detector

simulation or for direct comparison to measurements at the particle level. A question that

naturally arises is, whether the theoretical uncertainties of the full MC@NLO simulation

are then dominated by the perturbative or non-perturbative effects. We do not attempt to

judge on this question here as it is not obvious on which grounds they can be compared

at all, but rather point out that both non-perturbative corrections and non-perturbative

uncertainties are modest compared to the intrinsic uncertainties of the parton-level result,

which were investigated in the previous section.

To this end, MC@NLO simulations for W+jet production are compared with a varying

level of non-perturbative effects included:

“Parton Level”

Only the first emission off S-events in MC@NLO is generated in addition to the seed

event. This is the same method that was used in the comparison to fixed-order results

in section 4.3.

“Shower Level”

All QCD emissions in the parton shower and QED emissions in the YFS approach

are taken into account.
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Figure 16. Transverse momentum and rapidity spectrum of the W -boson in W [→ eν] + j produc-

tion at the LHC.
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Figure 17. Transverse momentum and pseudorapidity spectrum of the electron in W [→ eν] + j

production at the LHC.

“Shower+MPI”

Multiple parton interactions and intrinsic transverse momentum of the beam hadron

are additionally allowed for.

“Hadron Level”

Hadronisation and hadron decays are included to generate events at the particle level.

All other event generation parameters have been chosen identical to section 4.3.

Non-jet observables, like the rapidity and transverse momentum of the W -boson and

the rapidity and transverse momentum of the charged lepton are virtually unaffected by

non-perturbative effects, as expected. This is shown in figures 16 and 17.

Jet observables are far more sensitive, as is exemplified by the transverse momentum

and rapidity spectra of the leading and next-to-leading jet in figure 18. They show effects of
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Figure 18. Transverse momenta and pseudorapidities of the two leading jets in W [→ eν] + j

production at the LHC.

“out-of-cone” radiation at shower level, which are partially compensated by the simulation

of multiple scattering effects. Hadronisation again leads to softer jet spectra, such that

the various effects can compensate each other. Although the tendency of the corrections

stays the same, their precise magnitude depends on the jet algorithm and its parameters

and will have to be investigated separately for each analysis. Figure 19 exemplifies how

non-perturbative effects can distort correlations between the two hardest jets.

The uncertainties inherent in the hadronisation model were probed by switching from

the SHERPA default cluster fragmentation model [77, 78] to the Lund string model [83, 84]

in the implementation of PYTHIA [62]. Both models have been tuned to data from LEP

and excellent agreement has been achieved. For this comparison to be meaningful the same

perturbative events (i.e. identical random seeds) were subjected to the two hadronisation

models. Effects from statistical fluctuations are thus cancelled.

The differences were found to be negligible for the observables studied here, as displayed

in figure 20, except for the specifically hadronisation-sensitive jet mass, where variations

up to 20% occur.
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Figure 19. Correlations between W -boson and leading jets in W [→ eν]+j production at the LHC.

5.2 Z+jet production compared to Tevatron data

Let us now turn to the comparison of MC@NLO predictions to data and a simple assessment

of the systematic uncertainties associated with a significant part of the non-perturbative

effects. Central predictions are made at the hadron level with SHERPA’s default tune. An

uncertainty band is generated by allowing for a variation of the MPI parameters within

boundaries given by existing measurements of the underlying event. All event generation

parameters have been chosen analogous to the W+jet case above.

Figure 21 compares Z+jet production in the electron channel to a measurement from

the CDF collaboration [85]. The reconstructed electrons are required to have transverse

momenta p⊥ > 25 GeV and an invariant mass of 66 < mee < 116 GeV. Jets are defined

using the midpoint cone algorithm [86] with R = 0.7 and a split/merge fraction of 0.75.

At least one jet with p⊥ > 30 GeV and |y| < 2.1 needs to be present and separated from

both electrons by ∆Rej > 0.7. The cross section in the one-jet bin is predicted slightly too

low. The cross section of the two-jet bin is significantly underestimated, as it is determined

to leading order accuracy and subject to large uncertainties from the NLO+PS matching

procedure as discussed in section 4. The shape of the transverse momentum distributions

agrees well with data.

More characteristics of Z-boson plus jet production were investigated in a recent DØ

analysis [87]. Events with two muons of invariant mass 65 < mµµ < 115 GeV and with

at least one jet of p⊥ > 20 GeV and |y| < 2.8 were collected at a center-of-mass energy

of 1.96 TeV. Jets were defined using the DØ midpoint cone algorithm [88] with R = 0.5

and a split/merge fraction of 0.5. Each jet had to be separated from both leptons by

∆Rµj > 0.5. A comparison of Monte-Carlo predictions with this measurement is shown

in figure 22. The agreement is fair, except for the p⊥-spectrum of the first jet, where a

deficiency of the Monte-Carlo result at intermediate and high p⊥ is observed.

A further measurement of Z+jet production in the electron channel was presented

by the DØ collaboration in [89]. Each electron is required to have p⊥ > 25 GeV and
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Figure 20. Hadronisation uncertainties for different observables studied in W [→ eν]+j production

at the LHC.
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Figure 21. Inclusive jet cross sections and inclusive transverse momentum distributions of all and

all-but-the-hardest jets compared to CDF data [85].

the mass window 65 < mee < 115 GeV is enforced. Jets are defined using the midpoint

cone algorithm [88] with R = 0.5 and a split/merge fraction of 0.5. At least one jet

with p⊥ > 20 GeV and |η| < 2.5 must be present in the event. Experimental data were
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Figure 22. Transverse momentum and rapidity distributions of the reconstructed Z boson (top

row), and the total cross section, the transverse momentum and rapidity distributions of the hardest

jet (bottom row) in Drell-Yan production in association with at least one jet compared to DØ

data [87].

normalised to the inclusive Drell-Yan cross section. This quantity is not predicted by the

MC@NLO simulation of Z+jet, and therefore the MC@NLO results are scaled by a global

factor of 0.35 such that the normalisation of the one-jet-rate agrees with data. Figure 23

displays the comparison of these scaled MC@NLO predictions with the results from DØ.

The transverse momentum shape of the leading jet is well described by the simulation.

The two-jet rate, described here at leading-order accuracy, seems to be underestimated

compared to data, but the shape of the sub-leading jet’s p⊥ spectrum is relatively flat. For

the third jet, which is generated in the parton-shower approximation, both the rate and

the shape of the spectrum are not simulated correctly.

To quantify the success of the next-to-leading order calculation it is important not

only to investigate single-particle spectra, but also correlations between the Z-boson and

the hardest jet. They might give some insight into the genuine one-loop effects in Z+jet

production. Therefore, the analysis strategy of a measurement presented by the DØ collab-
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Figure 23. Transverse momentum distributions of the three hardest jets in Drell-Yan production

in association with at least one jet compared to DØ data [89]. All SHERPA predictions are scaled

with a common factor to account for the unknown normalisation to the inclusive process.
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Figure 24. Azimuthal and rapidity difference distributions of the reconstructed Z boson and the

hardest jet and their rapidity average in Drell-Yan production in association with at least one jet

compared to DØ data [90].

oration in [90] is pursued. Opposite-sign muons with p⊥ > 15 GeV and an invariant mass

of 65 < mµµ < 115 GeV are required in association with at least one jet of p⊥ > 20 GeV

and |y| < 2.8. Jets are defined using the midpoint cone algorithm [88] with R = 0.5 and

a split/merge fraction of 0.5. Two event samples are defined, one requiring the transverse

momentum of the reconstructed Z boson to be above 25 GeV, the other requiring it to

be above 45 GeV. Figure 24 compares MC@NLO predictions to the measurement. The

shape of the rapidity distributions is matched fairly well, again with the total rate predic-

tion at the lower end of the uncertainty band. For the azimuthal correlation distribution
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Figure 25. Inclusive jet cross sections and transverse momentum spectra of the hardest and second

hardest jet in W [→ eν] + j production at the LHC compared to ATLAS data [27].

the shape shows significant deviations from data: Only the back-to-back configuration is

described well, but for ∆φ < π the MC@NLO prediction underestimates the data. This sig-

nals the uncertainty related to emissions beyond the hardest one, which are only generated

at leading-order or parton-shower accuracy and which are also subject to large NLO+PS

matching systematics as discussed in section 4.

5.3 W+jet production compared to LHC data

The production of a W boson in association with at least one hard jet in proton-proton

collisions at
√
s = 7 TeV has been studied by the ATLAS collaboration at the CERN

LHC [27].

In the electron channel events are selected by requiring an electron with p⊥ > 20 GeV

defined at the particle level to include all photon radiation within a ∆R = 0.1 cone.

Only electrons in the fiducial volume |η| < 1.37 or 1.52 < |η| < 2.47 are taken into

account. Emiss
⊥ at the particle level has been defined through the leading neutrino in the

event which is required to have p⊥,ν > 25 GeV. The transverse mass cut is placed at

mT =
√

2p`⊥p
ν
⊥ (1− cos(φ` − φν)) > 40 GeV.

Jets are reconstructed using the anti-kt algorithm with R = 0.4 and have been taken

into account if pjet⊥ > 20 GeV, |ηjet| < 2.8 and ∆R(`, jet) > 0.5. Muons, neutrinos and the

leading electron were excluded from the input of jet reconstruction.

The comparison in figure 25 shows good agreement of the SHERPA hadron level pre-

diction with ATLAS data in the shapes of differential distributions on the one hand, and

discrepancies in the prediction of the total rate on the other hand. While the one-jet rate

is still predicted fairly well, the two and three-jet rates are significantly too low. The latter

are only predicted at leading-order and parton-shower accuracy and also subject to the

inherent uncertainties from NLO+PS matching.

6 Conclusions

In this publication, the MC@NLO and POWHEG methods to match NLO QCD matrix

elements with parton showers have been compared, with a special emphasis on some issues
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that generate large differences between their predictions. In particular, these issues are

related to

• the treatment of sub-leading colour configurations in MC@NLO

• the choice of scales in POWHEG and MC@NLO and

• the exponentiation of non-leading terms in POWHEG.

Before discussing the findings related to these issues, it is worth summarising some

other results presented in this publication. They refer to the impact of scale variations at

the parton-level of the processes studied here, and to the effect of hadronisation and the

underlying event on a number of observables:

• Scale uncertainties

In W/Z(+jets) production, uncertainties due to scale variations are typically about

5-10%, but they can increase up to about 25% in the high-p⊥ region of jet produc-

tion, where higher jet multiplicities become relevant. In Higgs production processes

scale uncertainties tend to be significantly larger, by at least a factor of 2, which is

indicative of large higher-order corrections.

• Underlying event corrections and uncertainties

Multiple parton interactions tend to increase jet production rates, and they have a

particularly large influence on observables which are sensitive to high jet multiplic-

ities, like HT . They typically do not affect inclusive observables, with changes of

about 5% or below. Their associated uncertainty is small.

• Hadronisation corrections and uncertainties

Hadronisation corrections are similar in magnitude to parton-shower and multiple-

scattering effects. The associated uncertainties are about 5%, except for observables

such as jet masses, where they can increase to about 20%.

Let us now turn to the uncertainties induced by the NLO+PS matching.

Regarding the problem of infrared divergences in sub-leading colour configurations, it

should be noted that up to now, only one critical process — heavy quark pair production —

has been implemented in a publicly available and fully documented event generator. In this

case the problem was solved by introducing a factor that modifies the integral in eq. (2.11)

such that contributions from the region of soft-gluon emission are removed. A similar

strategy seems to be employed in the recently presented aMC@NLO code, but it has not been

published or made publicly available yet. It is therefore not yet clear whether this technique

is sufficiently process-independent to allow for a general implementation of MC@NLO. In

this publication a different approach has been followed, which aims instead at constructing

an exact solution, irrespective of the process considered. The basic idea is to correct the

Casimir operators used in the parton shower such that the full colour structure in the

soft-gluon limit is obtained. This introduces both positive and negative splitting functions,

which is unproblematic for NLO calculation but implies “anti-probabilistic” evolution in

– 35 –



J
H
E
P
0
9
(
2
0
1
2
)
0
4
9

a parton shower. To resolve this issue, a weighting procedure has been introduced. It is

anticipated that this modification will eventually allow the systematic inclusion of sub-

leading colour terms in the parton shower.

The exponentiation of non-leading terms in POWHEG is an issue that has been known

for some time. Actual differences in how POWHEG and MC@NLO predict the p⊥ spectrum of

the Higgs boson are documented in the literature [56]. They have typically been attributed

to a different treatment of higher order, in particular NNLO, corrections (see section 4.3

of [56]). We find that the difference is related to exponentiation uncertainties, naturally

affecting the next-to-next-to leading order, but continuing to all orders. The upper scale

in the logarithms resummed in POWHEG is related to the total hadronic centre-of-mass

energy, which is substantially different from the scale typically used in the resummation

programme [91, 92], where a value of the order of the Higgs boson mass is assumed. It

is thus clear that a suitable constraint on the emission phase space in POWHEG must be

defined. This problem has already been solved by the MC@NLO method. On a related

note, the occurrence of the well-known dip around zero in the MC@NLO simulation of the

yj−yH distribution, the rapidity difference of Higgs boson and accompanying jet, has been

studied here. Cutting on the phase space of the Catani-Seymour subtraction kernels and

reflecting these cuts in the parton shower, as enforced by MC@NLO, yields dead zones of

parton emission in the latter. While these dead zones are clearly different from the dead

zones in the HERWIG parton shower, the resulting effect is surprisingly similar. In fact,

both including the full phase space and comparably tight cuts on the phase space leads

to a vanishing dip; this finding suggests that the dip, which is not present in the NLO

calculation, must be attributed to true exponentiation uncertainties.

To complete our implementation of the MC@NLO method in the sense that only log-

arithms related to emissions on scales below the factorisation scale are exponentiated,

physically more meaningful cuts on the phase space of Catani-Seymour subtraction ker-

nels are currently investigated. Devising a similar technology for POWHEG would result

in two formally completely equivalent algorithms, but imply a larger computational effort

for event generation in POWHEG due to the additional numerical integration in B̄ and

the matrix-element correction of the weighted parton shower, see [40]. For this reason,

in favour of the MC@NLO method, the further development of POWHEG methods in the

SHERPA framework will be abandoned.
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A Comment on the NLL accuracy of the POWHEG formula

In [93] it was proven that the POWHEG formula yields NLL accurate predictions, if the

strong coupling is modified according to [94]. The proof rests on the crucial assumption

that when logarithms of the form L = log(p⊥/Q) are resummed, the dependence on the

resummation scale Q introduces corrections beyond next-to-leading logarithmic order. This

argument holds as long as Q differs from the hard scale in the process, say mh in Higgs-

boson production, by a factor of order one [91, 92, 95–97]. As pointed out in [91] large

spurious subleading logarithms may otherwise be introduced, that are associated with the

overall normalization of observables, rather than radiative corrections. In other words, in

the large-kT region the resummed results lose their predictivity and should be replaced by

conventional fixed-order calculations [97]. Following these arguments, the reasoning in [93]

is only correct as long as the resummation scale and the hard scale are sufficiently similar.

This is not the case in the POWHEG method when it is applied to hadronic collisions where

Q → Ecms, the total hadronic centre-of-mass energy, while the hard scale is of order mh,

for example.
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[10] L. Lönnblad and S. Prestel, Matching tree-level matrix elements with interleaved showers,

JHEP 03 (2012) 019 [arXiv:1109.4829] [INSPIRE].

[11] S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower

simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].

[12] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms,

JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].

[13] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower

simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].

[14] M.H. Seymour, Matrix element corrections to parton shower algorithms, Comput. Phys.

Commun. 90 (1995) 95 [hep-ph/9410414] [INSPIRE].

[15] M.H. Seymour, A simple prescription for first order corrections to quark scattering and

annihilation processes, Nucl. Phys. B 436 (1995) 443 [hep-ph/9410244] [INSPIRE].
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