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1 Introduction

Theories with N = 2 supersymmetry represent an interesting theoretical laboratory to

study nonperturbative effects in four dimensions. The great virtue of these models is that

the low energy dynamics is explicitly known and can be encoded in a family of algebraic

curves, as shown for SU(2) gauge theories by Seiberg and Witten in [1, 2] and then for

more general gauge groups in [3, 4] (see also [5] and references therein).

It was soon realized that superconformal fixed points are ubiquitous in these models

and their study was initiated in [6] and [7]. In particular, in the latter reference general

properties of conformal theories with N = 2 supersymmetry were derived, such as the fact

that mass parameters associated to a nonAbelian global symmetry cannot acquire anoma-

lous dimension. A more systematic analysis was initiated in [8] and especially [9], in which

the authors classified singular points in SU(N) SQCD with Nf flavors. All these papers

are based on the idea that the SW curve in a neighbourhood of the singular point should

exhibit scale invariance. Combining this with the requirement that the SW differential

has scaling dimension one fixes the scaling dimensions of all the chiral operators. This

analysis revealed the existence (for any value of the bare mass m of the flavors) of singular

submanifolds in the moduli space such that the SW curve factorizes as y2 = (x+m)2rQ(x)

(2r ≤ Nf ). The low energy dynamics is described by a nonAbelian SU(r) theory with Nf

massless matter fields in the fundamental. Only in the case 2r = Nf we have an inter-

acting fixed point. Tuning m appropriately one can find points in the moduli space where

the curve becomes more singular. In this latter case the approach of [9] leads to anoma-

lous dimensions for the casimirs of the nonAbelian flavor group, contrary to the argument

given in [7].

More recently the situation has been reanalyzed in [10], in which the authors show that

this problem can be solved if one allows for the existence of two scale invariant sectors,

weakly coupled by a gauge field. This is analogous to Argyres-Seiberg duality [11] (and
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generalization thereof), apart from the fact that the gauge group appearing in the dual

description is infrared free. This proposal also removes a possible counterexample to the

a-theorem [12] (see also [13, 14]).

In [9] the authors analyzed singular points in USp(2N) and SO(N) gauge theories as

well. The result of their study is that, as long as the flavors are massive, the singular

points are identical to those of SU(N) SQCD. However, when the masses are set to zero

the flavor symmetry enhances and one finds a different class of fixed points. At that time

no tools were available to study them but now, with the techniques of [11] and the methods

developed by Gaiotto in [15] and Tachikawa in [16], the problem can be approached. The

scope of this note is to make a systematic analysis of these singular points.

Another fundamental aspect of N = 2 gauge theories is that breaking softly extended

supersymmetry with a mass term for the chiral superfield in the N = 2 vector multiplet,

the theory becomes confining [1]: the moduli space is lifted and a finite number of vacua

remain in which magnetically charged objects condense realizing the ’t Hooft-Mandelstam

mechanism for confinement. The low energy dynamics of these models have been exten-

sively studied (an incomplete list of references is [17–20]). It turned out that the relevant

vacua are generically characterized by a nonAbelian gauge symmetry in the infrared. When

the flavors are massive the properties of these vacua are “universal” and do not depend

on the gauge group (for classical gauge groups). In the massless limit this picture does

not change for SU(N) theories, whereas a different phenomenon occurs for SO and USp

theories [18, 20]: only two vacua remain. One is characterized by the condensation of

baryonic-like composite objects and is in a nonAbelian Coulomb phase (this vacuum was

identified in [19]). The second one (called Chebyshev point in [18, 20]) arises from the

collision of the other vacua and is in general characterized by a strongly interacting low

energy theory, which exhibits conformal invariance in the N = 2 limit. In these sense the

study of confinement in the softly broken theory and the analysis of singular points in the

parent N = 2 theory are linked. As we will see, the analysis of maximally singular points

will allow us to understand the low energy physics at the Chebyshev point as well. The

properties of the theory once the N = 1 perturbation has been turned on will be studied

in a separate publication.

The paper is organized as follows: in section 2 we review the argument given in [10],

which will be the key ingredient of our analysis, and explain the properties of vacua relevant

for the perturbation to N = 1. In section 3 we determine the structure of the maximally

singular point and the Chebyshev point in USp(2N) gauge theory with 2n flavors. In section

4 we repeat this analysis for SO gauge theories and we conclude with a discussion in section

5. As a byproduct we will recover many of the infinite coupling dualities proposed recently.

2 SU(N) SQCD with 2n flavors and r-vacua

We will now sketch the argument presented in [10]. As is well known, the SW curve and

differential for SU(N) SQCD with Nf = 2n flavors are

y2 = PN (x)− 4Λ2N−2n
2n∏
i=1

(x+mi), λ = xd log
PN − y
PN + y

,
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with PN (x) = xN −
∑

k≥2 ukx
N−k. For our purposes, it is convenient to rewrite the curve

in the following way (see [10] for the details):

y2 = (xN − · · · − uN )(xN − · · ·+ (4ΛN−n − uN−n)xn − · · · − uN )−
2n∑
k=2

ckx
2n−k.

Setting all the coulomb branch coordinates ui and casimirs of the flavor symmetry ci to

zero, we find the maximally singular (EHIY) point, where the SW curve and SW differen-

tial become:

y2 = xN+n(xN−n + 4ΛN−n), λ ≈ y

xn
dx.

Requiring that the SW differential has dimension one gives the relation [y] = 1+(n−1)[x].

If we further impose the scale invariance of the curve we find the equation 2[y] = (N+n)[x].

These relations fix the scaling dimensions of x and y and in particular imply an anomalous

dimension for the cubic and higher casimirs of the flavor group ([ci] = (2N + i)/(N + 1)).

So, when n is at least two, the above analysis is inconsistent with the general constraints

for theories with N = 2 superconformal symmetry (e.g. the ci’s should have canonical

dimension [7]).

A natural resolution of this inconsistency is to identify subsectors with different scalings

of x; clearly the N + n colliding branch points will distribute among the subsectors. The

proposal of [10] is precisely along this line: the authors introduce a particular scaling

limit in which two subsectors emerge: one is a DN−n+2 Argyres-Douglas theory [9, 21] (or

maximally singular point of SU(N−n+1) gauge theory with 2 flavors [10]; see also [22, 23])

and the other can be described as a three punctured sphere in the Gaiotto framework [15],

as we will now see.

The first step is to rewrite the curve in a “6d form”: one defines t = y/xn−1 (so the

SW differential becomes λ ≈ tdx/x) and writes the curve as

t2 =

(
xN−n+2 − u1xN−n+1 − · · · − uN−n+2 − · · · −

uN
xn−2

)
×
(
xN−n − · · ·+ (4ΛN−n − uN−n)− · · · − uN

xn

)
−

2n∑
k=2

ckx
2−k.

(2.1)

Notice the presence of u1, which is a parameter proportional to
∑

imi and not a coordinate

on the Coulomb branch. This will be important in later sections. To account for the

presence of two sectors, we now introduce two scales εA, εB � 1. Notice that with the

above rescaling the condition [λ] = 1 implies [t] = 1 in both sectors. In the A sector

(|x| ∼ εA) we will impose [x] = 1, in order to satisfy the constraint [ck] = k. This leads

to the relation ck ∼ O(εkA). Consider now the term 4ΛN−nxN−n+2. It is clearly negligible

for |x| ∼ εA (with respect to, e.g.
∑2n

k=2 ckx
2−k), and consequently has to appear in the B

sector (|x| ∼ εB). This implies t2 ∼ εN−n+2
B , and since t has scaling dimension one in both

sectors, we deduce the relation

ε2A = εN−n+2
B . (2.2)
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Interestingly, the above considerations and the requirement that all the coulomb branch

coordinates appear in at least one sector necessarily imply

uk ∼ O(εkB), k = 1, . . . , N − n+ 2; uk ∼ O(εk+n−NA ) k = N − n+ 2, . . . , N.

Now it is possible to read from (2.1) the curves for the two subsectors just collecting

the leading order terms:

1. For |x| ∼ εA we are left with

t2 = −
(
uN−n+2 + · · ·+ uN

xn−2

)(
4ΛN−n − uN−n+2

x2
− · · · − uN

xn

)
−

2n∑
k=2

ckx
2−k.

(2.3)

As discussed in [10], this is the SW curve (when n > 2) for the Gaiotto theory obtained

compactifying n M5 branes on a sphere with three regular punctures (two are maximal

and one is described by a Young tableau with columns of height {n − 2, 1, 1}). Its

global symmetry group is SU(2)× SU(2n) and the corresponding casimirs are ci and

uN−n+2+c2/4ΛN−n. This is precisely the interacting theory that enters in the S-dual

description of SU(n) theory with 2n flavors and its properties have been studied in

detail in [24]. For n = 3 this S-duality coincides with Argyres-Seiberg duality and

the A sector describes the E6 theory of Minahan and Nemeschansky [25]. For n = 2

the theory becomes free and describes three doublets of SU(2) (the global symmetry

is SU(2)× SO(6) ' SU(4)).

2. For |x| ∼ εB we find instead

t2 = 4ΛN−n(xN−n+2 − u1xN−n+1 − · · · − uN−n+2)− c2. (2.4)

This is the SW curve for the DN−n+2 theory. For N = n this sector is free and

describes a doublet of hypermultiplets.

Both theory 1 and theory 2 have an SU(2) flavor symmetry; in our context the diagonal

combination has been gauged and the SW curve for εA < |x| < εB describes the tubular

region associated to this gauge group (t2 = −4ΛN−nuN−n+2 − c2).
As explained in [10], one can now evaluate the beta function for this SU(2) gauge group

from the above curve: a closed BPS string located in the tubular region at constant |x|
describes a W-boson with central charge a, whereas a geodesic connecting a branch point

at |x| ∼ εB and another at |x| ∼ εA describes a monopole with central charge aD (see [26]

for a detailed discussion on this point).

a =

∫
|x|=const.

λ = 2πiα; α2 = −4ΛN−nuN−n+2 − c2,

aD =

∫ |x|∼εB
|x|∼εA

λ = α

(
N − n

N − n+ 2
log εA + const.

)
.

Using then the relation τ = ∂aD/∂a and identifying εA with the renormalization group

scale we obtain
dτ

d(log εA)
=

b1
2πi

=
1

2πi

N − n
N − n+ 2

,
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where b1 is the one-loop coefficient of the beta function. We thus learn that this SU(2)

group is infrared free. Since the contribution to the beta function from the three punctured

sphere is 3, we can read out the contribution given by the DN−n+2 theory:

bDN−n+2
= 2

(
1− 1

N − n+ 2

)
.

Indeed, this matches the result of [21] (the calculation can also be performed using the

techniques presented in [27]).

In view of the breaking to N = 1, the relevant points in the moduli space are those

such that the SW curve factorizes as

y2 = (x− α)(x− β)Q2(x). (2.5)

As shown in [17, 18], in the case of equal masses mi, these vacua are labelled by an

integer r (0 ≤ r ≤ Nf/2), corresponding to the fact that Q(x) factorizes as Q(x) =

(x + m)rQ̃(x).When the N = 1 perturbation is turned on, for m � Λ the theory is in

the Higgs phase, whereas in the limit m � Λ it becomes confining. For each value of

r there are 2N − Nf vacua and the low energy effective theory is characterized by an

abelian sector and a nonAbelian one with U(r) gauge group and Nf massless matter fields

in the fundamental representation. For r < Nf/2 the low energy theory is infrared free

and admits a lagrangian description. More interesting is the situation for r = Nf/2: in

this case the nonAbelian sector of the low energy theory is superconformal and the scaling

dimensions of chiral operators can be determined as in [9] (in this case the casimirs have

canonical dimension and there is no need to introduce two sectors). For generic values of

the mass parameter m, this is the whole story. However, if one sets m equal to

m = ωk2N−Nf

2N −Nf

N
Λ,

one can show [28]1 that some of the r vacua (one for each value of r) collide and the curve

becomes more singular. This signals the transition from Higgs to confinement phase [28].

In this limit α or β in equation (2.5) become equal to −m and the SW curve and differential

can be approximated as

y2 ≈ (x+m)Nf+1, λ ≈ y

xn
dx.

Here we recognize the EHIY point when N = n + 1. Indeed, as was argued in [9], the

physics of this singular point is that for the EHIY point of SU(n + 1) gauge theory with

2n flavors. In this case the B sector is given by the D3 theory.

We thus propose that the low-energy physics at this point is described by:

• An abelian U(1)N−n−1 sector with massless hypermultiplets charged under each

U(1) factor.

1In [28] the formula for m is different. The discrepancy is simply due to a different convention (which is

the one adopted in [29]): indicating with m̃ and Λ̃ the parameters used in those papers, we have m = m̃/
√

2

and Λ2N−Nf =
√

2
Nf Λ̃2N−Nf . This point was overlooked in [30].
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• The D3 theory (B sector).

• The scale invariant theory entering in the S-dual description of SU(n) SQCD with

2n flavors (A sector).

• An infrared free SU(2) gauge multiplet coupled to sectors A and B.

This is identical to the proposal made in [10], apart from the fact that the abelian sector

includes hypermultiplets charged under the various U(1) factors (one for each U(1)). This

comes from the requirement that the point we are discussing is not lifted by the N = 1

perturbation [17, 18]. This is not the case for the EHIY point discussed in [10] (apart from

the case N = n+ 1).

3 USp(2N) SQCD with 2n flavors

Let us turn to N = 2 gauge theories with USp gauge group and Nf hypermultiplets in

the fundamental representation (we consider only the equal mass case as before). If the

bare mass m for the matter fields is different from zero, the flavour symmetry is U(Nf )

and, as we said in the introduction, one recovers the results found in the previous section;

in particular the vacua surviving the N = 1 perturbation have exactly the same structure

as the r-vacua of SU(N) SQCD (see [4, 9, 18, 19]) and all the superconformal points are

analogous to those described in the previous section.

More interesting is the case of massless matter fields: the first main difference is the

flavor symmetry, which is enhanced to SO(2Nf ). Moreover, all the r vacua merge into a

single superconformal point in this limit [18] (we will refer to it as the Chebyshev point

from now on, because its location in the Coulomb branch is determined by Chebyshev

polynomials [18]). As the symmetry enhancement suggests, this fixed point is different

from those we have seen so far. The purpose of this section is to study the superconformal

points of massless USp(2N) SQCD with Nf = 2n.

The SW curve and SW differential for this model are [4]:

xy2 = [xPN (x) + 2Λ2N−2n+2
∏
i

mi]
2 − 4Λ4N−4n+4

∏
i

(x−m2
i ), (3.1)

λ =

√
x

2πi
d log

(
xPN (x) + 2Λ2N−2n+2

∏
imi −

√
xy

xPN (x) + 2Λ2N−2n+2
∏
imi +

√
xy

)
. (3.2)

where PN (x) = xN − u1xN−1 − · · · − uN and mi are the masses for the flavors. Note that

in the SU(N) case u1 was a parameter while in this case is a coordinate on the Coulomb

branch. We can now rewrite the curve as

xy2 = (xN+1 − u1xN − · · · − uNx+ c̃2n)2 − 4Λ4N−4n+4x2n −
∑
i

c2ix
2n−i, (3.3)

where c2i, c̃2n are the SO(4N) casimirs. We can further rewrite it as

xy2 = (xN+1 · · · − uN−n+1x
n · · ·+ c̃2n)(xN+1 . . .

−(uN−n+1 − 4Λ2N−2n+2)xn · · ·+ c̃2n)−
∑
i

c2ix
2n−i, (3.4)
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where we just redefined uN−n+1. If we set to zero all ci and uk, we find the maximally

singular point, where the curve and differential become

y2 = xN+n(xN−n+1 + 4Λ2N−2n+2), λ =
y

xn
dx. (3.5)

We thus come across the same problem found in the previous section: imposing [λ] = 1

and [y] = N+n
2 [x] leads to anomalous dimensions for the nonAbelian casimirs (c2i = 2 +

(i− 1)[x] = 2N−n+1+i
N−n+2 ). In order to determine the structure of this infrared fixed point, we

can adopt the technique seen before and introduce two different sectors.

It is now convenient to define t = y/xn−1 and rewrite the curve as

t2 =

(
xN+2−n · · ·+ c̃2n

xn−1

)(
xN+1−n · · ·+ c̃2n

xn

)
−
∑
i

c2ix
2−i. (3.6)

The constraint [c2i] = 2i can be satisfied introducing the scale εA and setting c2i ∼ O(ε2iA ),

|x| ∼ ε2A. This gives t ∼ εA. A second sector emerges as we introduce the scale εB and

set |x| ∼ ε2B. The same reasoning adopted in the previous section leads to the relation

t2 ∼ xN+2−n, from which we deduce

ε2N+4−2n
B = ε2A.

The Coulomb branch coordinates are then scaled to zero as

ui ∼ O(ε2iB) i = 1, . . . , N − n+ 2; uN−n+2+i ∼ O(ε2+2i
A ) i = 0, . . . , n− 2.

Collecting the leading terms as before we can now determine the SW curves for

the two sectors.

For |x| ∼ ε2A the curve becomes

t2 =

(
uN+2−n + · · ·+ c̃2n

xn−1

)(
4Λ2N+2−2n − uN−n+2

x
+ · · ·+ c̃2n

xn

)
−
∑
i

c2ix
2−i. (3.7)

It has 2n− 2 branch points.

The remaining N −n+ 2 branch points appear in the second sector, for |x| ∼ ε2B. The

curve becomes in this case

t2 = 4Λ2N+2−2n(xN+2−n − · · · − uN−n+2)− c2. (3.8)

Let us analyze these two regions.

For |x| ∼ ε2B we recognize the curve we have seen before: this is the SW curve for

the DN−n+2 theory. The only difference with respect to the SU(N) case is that, as we

noticed before, u1 is a coordinate on the Coulomb branch in the present context. The

flavor symmetry of this theory is thus just SU(2). Two special cases are N = n, when the

theory becomes free and describes a doublet of SU(2), and N = n − 1, when the curve

becomes trivial and describes an “empty” theory [11].

The curve for the region |x| ∼ ε2A is new; it has SU(2)× SO(4n) flavor symmetry and

can be described as the compactification on a three punctured sphere of the 6d (2, 0) Dn

theory [16], as we will now see, for n > 2. For n = 2 it becomes a free theory.

– 7 –
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The SW curve for this class of theories can be written in the form

λ2N =
∑
k

φ2k(z)λ
2N−2k, λ = v

dz

z
. (3.9)

The theory is specified by the singularities on the Riemann surface, which are labelled by

Young tableaux (in the case of regular punctures) as in the AN case. From the Young

tableaux one can read out the pole structure of the various k-differentials and then deter-

mine the Coulomb branch coordinates using Riemann-Roch theorem.2 The pole structure

at each puncture can be determined as follows [16, 31, 32]:

• Take the longest even row in the Young tableau which occurs with odd multiplicity

(in our case the row of length four) and remove the last box. Place it at the end

of the next available row (such that the result is a Young tableau). Repeat this

operation until it stops (the resulting Young tableau does not contain even rows with

odd multiplicity).

• Number the boxes of the “corrected” Young tableau as follows: start with zero in the

first box and number the boxes in the first row with successive integers. When you

reach the end of the row, repeat that number in the first box of the following row

and continue.

The numbers inserted in boxes number 2, 4, . . . , 2N are the orders of the pole of

φ2, φ4, . . . , φ2N = (φ̃N )2 at the given puncture. The algorithm for AN punctures is ob-

tained just neglecting the first step (odd degree differentials φ2k+1 do not vanish in the

AN case, and the corresponding degree of the pole is the integer contained in boxes num-

ber 2k + 1).

Let us apply the above algorithm to a sphere (depicted in figure 1) with two maximal

punctures (labelled by a Young tableau with a single row of length 2n) and a third one

labelled by a Young tableau (always with 2n boxes) with a row of length 4 and the others

of length one (these are all grey punctures in the notation of [16]). The pole structure

at the maximal puncture is {1, 3, . . . , 2n − 3;n − 1}, whereas the other puncture assigns

pole orders {1, 2, . . . , 2; 1}. The last entry represents the order of the pole of φ̃n. The k

differentials can thus be written as

φ2k = 2
u2kz

(z − 1)2

(
dz

z

)2k

2k = 4, . . . , 2n− 2; φ2 = φ̃n = 0.

The SW curve can then be derived just by plugging this result in (3.9). If we now multiply

both sides by (z − 1)2/v2n and define y = z − 1, x = v2 we find

y2 = 2
n−1∑
k=2

u2k
xk

(y + 1) =⇒

(
y −

n−1∑
k=2

u2k
xk

)2

=

(
n−1∑
k=2

u2k
xk

)(
2 +

n−1∑
k=2

u2k
xk

)
.

2Contrary to the AN theory, in which this is the general recipe, the DN theory has a further complication:

the coefficients one extracts using Riemann-Roch theorem obey in general non-trivial polynomial relations

and one must take this into account in order to extract the true coordinates on the Coulomb branch (see [32]

for a detailed analysis of this issue). However, this will not be important in the present case.
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Figure 1. The three punctured sphere that represents the theory entering in the S dual description

of USp(2N) with 2N + 2 flavors (in this case N = 3).

Defining now (y −
∑n−1

k=2
u2k
xk

)2 = t2/x2 and multiplying both terms by x2 we immediately

recognize (3.7), with ci and uN−n+2 set to zero. These are the mass parameters associated

with the SO(4n = 2Nf )× SU(2) flavor symmetry of the theory.

Following [10], our interpretation is that the infrared physics at the maximally singular

point can be described by the two sectors A (|x| ∼ ε2A) and B (|x| ∼ ε2B); both sectors have

SU(2) global symmetry and the diagonal combination is promoted to a gauge symmetry.

The A sector we have just described (see figure 1) already appeared in [16] (and for

N = 3 was studied in [31]), where it was recognized that it enters in the S dual description

of the scale invariant USp(2N) theory with 2N+2 flavors: in the infinite coupling limit the

two simple punctures collide and this three punctured sphere emerges from the collision.

Indeed, we can understand this duality using the analysis of the maximally singular point

given above: if we apply the same strategy to the scale invariant case, so that the maximally

singular point is precisely the origin of the Coulomb branch, we find a B sector which is

trivial and thus the S dual description is given by the A sector, with an SU(2) subgroup

of the global symmetry group gauged. The commutant SO(2Nf ) is the flavor group of the

original theory. For N = 1 the theory is USp(2) ' SU(2) with 4 flavors, which has SO(8)

flavor symmetry. In this case the A sector becomes free and describes four doublets of

SU(2). For N = 2 the theory is USp(4) with six fields in the fundamental. This case has

been studied by Seiberg and Argyres in [11], where it was recognized that the A sector

coincides with the E7 SCFT of Minahan and Nemeschansky [33] (so in this case there is

an enhancement from the naive SU(2)×SO(12) to E7). Indeed, the scale invariance of the

curve requires (for N = n− 1) that the SU(2) beta function is zero, so the A sector should

give the same contribution as 4 flavors. This obviously works in the N = 1 case and tells

us that the SU(2) central charge is 8 in the other cases. This is precisely the value found

in [31] for the puncture with partition {2n− 3, 1, 1, 1}.

We can now determine the beta function of the SU(2) gauge group emerging at the

maximally singular point with the same technique adopted in the previous section: the

curve for ε2A < |x| < ε2B represents a tubular region associated with the SU(2) gauge group.

We can thus compute a and aD and then determine the generalized coupling constant
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τ = ∂aD/∂a.

a =

∫
|x|=const.

λ = 2πiα; α2 = −4Λ2N+2−2nuN−n+2 − c2,

aD =

∫ |x|∼ε2B
|x|∼ε2A

λ = α

(
2N − 2n+ 2

N − n+ 2
log εA + const.

)
.

Identifying as before εA with the energy scale we find

b1 = 2

(
1− 1

N − n+ 2

)
,

which is the contribution to the beta function of the DN−n+2 theory. Indeed, this is the

expected result, since the contribution from the A sector, as we have just seen, saturates

the SU(2) beta function.

The case n = 1 deserves some comments: the A sector becomes trivial and we are left

with the DN+1 theory, which has SU(2) flavor symmetry and not SO(4)! Let us analyze

the curve carefully in this case:

xy2 = (xN+1 − · · · − uNx+ c̃2)(x
N+1 − · · · − (uN ± 4Λ2N )x+ c̃2)− c2x− c̃22.

Scaling towards the small x region we find

y2 = ±4Λ2N (xN+1 − · · · − uNx)− c2 ± 4Λ2N c̃2,

where the casimir associated to the SU(2) global symmetry is c2 ± 4Λ2N c̃2. The ± term

reflects the fact that there are two maximally singular vacua, corresponding to uN = ±2Λ2N

(clearly, this is true also for n > 1). The n = 1 case is special because the two quadratic

casimirs of SO(4) enter symmetrically in the scaled curve and in each one of the two singular

points only an SU(2) subgroup acts. Of course, it is well known that this occurs in the

N = 1 case (i.e. the USp(2) ' SU(2) gauge theory with two massless flavors): in this case

the two singular points describe two hypermultiplets which are neutral under an SU(2)

subgroup of the SO(4) flavor symmetry group.

We are now in a position to determine the infrared physics at the Chebyshev point.

The SW curve and differential are [18]

y2 ≈ x2n, λ ≈ y

xn
dx.

This are precisely the curve and differential at the maximally singular point of USp(2n)

theory with 2n flavors, in which the B sector describes a doublet of SU(2). We thus

propose that the low-energy description at the Chebyshev point of USp(2N) theory with

2n massless flavors includes:

• An abelian U(1)N−n sector, with massless particles charged under each

U(1) subgroup.

• The A sector described above, with global symmetry SU(2)× SO(4n).

• A third sector consisting of two hypermultiplets, whose symmetry is SU(2). The gaug-

ing of the diagonal SU(2) couples the last two sectors.

Notice that for n = 2 the A sector becomes free and describes four doublets of SU(2).

– 10 –
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4 SO(N) SQCD

We can extend this analysis to theories with gauge group SO(N), that exhibit the same

phenomena described in the previous section (coalescence of r vacua and flavor symmetry

enhancement in the massless limit). We analyze first theories with N even and then those

with N odd.

4.1 SO(2N) SQCD with 2n flavors

Let us consider SO(2N) gauge theory with Nf = 2n flavors. The theory becomes super-

conformal for n = N − 1 and in the massless limit has USp(4n) flavor symmetry. The SW

curve and differential are

y2 = xP 2
N (x)− 4Λ4N−4n−4x3

∏
i

(x−m2
i ), (4.1)

λ =

√
x

2πi
d log

(
xPN (x)−

√
xy

xPN (x) +
√
xy

)
, (4.2)

where PN (x) = xN −
∑N−1

k=1 ukx
N−k − (uN )2 (u1 is a Coulomb branch coordinate in this

case as well). With usual manipulations we can rewrite the curve as

y2 = x(xN − · · · − u2N )(xN − · · ·+ (4Λ2N−2n−2 − uN−n−1)xn+1 − · · · − u2N )

−
2n∑
k=1

c2kx
2n+3−k. (4.3)

Here we have simply redefined uN−n−1 + 2Λ2N−2n−2 → uN−n−1. Turning off all the pa-

rameters we then get the maximally singular point:

y2 = xN+n+2(xN−n−1 + 4Λ2N−2n−2), λ =
y

xn+2
dx. (4.4)

Rescaling the curve as before we obtain (t = y/xn+1)

t2 =−
2n∑
k=1

c2kx
1−k +

(
xN−n − · · · − uN−n − · · · −

u2N
xn

)
×
(
xN−n−1 − · · ·+ (4Λ2N−2n−2 − uN−n−1)− · · · −

u2N
xn+1

)
.

(4.5)

We can now introduce the two sectors imposing |x| ∼ ε2A and |x| ∼ ε2B. Setting c2k ∼ O(ε2kA )

leads to t ∼ εA in the A sector and t ∼ εN−nB in the second one, so we deduce

εA = εN−nB .

The same argument we gave in sections 2 and 3 then assigns

ui ∼ O(ε2iB) i = 1, . . . , N − n; uN−n+i ∼ O(ε2+2i
A ) i < n; uN ∼ O(εn+1

A ).

The SW curve in the B sector is the by now familiar curve for the DN−n theory:

t2 = 4Λ2N−2n−2(xN−n − · · · − uN−n)− c2.

– 11 –
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Figure 2. The three punctured sphere associated to the SCFT entering in the S dual description

of SO(2N) with 2N − 2 flavors (in this case N = 4). The black dot indicates the D-partition and

we have drawn the corresponding Young tableau. The two maximal C-partitions are indicated with

?. To visualize the presence of the twist we draw a dashed line.

In the conformal case N = n+ 1 this sector is trivial and describes a doublet of hypermul-

tiplets when N = n+ 2. The A sector is described by the curve

t2 =

(
uN−n − · · · −

u2N
xn

)(
4Λ2N−2n−2 − uN−n

x
− · · · −

u2N
xn+1

)
−

2n∑
k=1

c2kx
1−k.

This curve has 2n + 2 branch points and contrary to the USp(2N) case the A sector is

never free. The global symmetry group is SU(2)×USp(4n) and, as usual, the SU(2) gauge

group is gauged. In the scale invariant case we recover a S-dual description similar to the

one for USp(2N): the B sector is trivial and we are left with the A sector with an SU(2)

subgroup of the flavor symmetry group gauged. Now one can repeat the calculation of the

SU(2) beta function with the same technique adopted in sections 2 and 3; the result is

b1 = 2

(
1− 1

N − n

)
.

This coincides again with the contribution of the DN−n theory, so the contribution from

the A sector must saturate the SU(2) beta function as before.

Also in this case a description in terms of 6d (2, 0) Dn+1 theory compactified on a

three punctured sphere is available (for n > 1). The only new ingredient is the presence

of black puntures (in the notation of [16]), or C-partitions in the language of [31, 32].

To determine the theory, the simplest way is to notice that the A sector emerges in the

dual description (of the strong coupling limit) of the scale invariant SO(2N) SQCD. The

collision of the simple punctures produces as before the D-partition (or grey puncture)

described by Young tableau with 2n + 2 boxes, organized in a row of length four and the

others of unit length (see figure 2). This puncture gives rise to an SU(2) global symmetry

group with central charge k = 8, which is precisely the value needed to saturate the beta

function. The remaining two punctures are described by a Young tableau with 2n boxes

and a single row. The pole structure for the k-differentials encoded in this puncture has

– 12 –
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been determined in [16] and is {1, . . . , 2n− 1;n+ 1/2}.3 The fractional degree of the pole

for φ̃n+1 is not a problem, since we have two such punctures. Turning around one of them

we find φ̃n+1 → −φ̃n+1, which is precisely the action of the Z2 outer automorphism of the

Dn+1 Lie algebra [34] (see figure 2). The k-differentials can thus be written as

φ2k =
u2kz

(z − 1)2

(
dz

z

)2k

k = 2, . . . , n; φ̃n+1 =
un+1

√
z

z − 1

(
dz

z

)n+1

.

Using (3.9) we find the following SW curve:

v2n+2 =
z

(z − 1)2

(
n∑
k=2

u2kv
2n+2−2k + u2n+1

)
.

With the same manipulations described in section 3 we get precisely the curve for the

A sector.

The case n = 1 deserves some comments: the A sector has (at least) SU(2)× USp(4)

global symmetry and turning off all the mass deformations its curve becomes

t2 = −
u2N
x

(
4Λ2N−4 −

u2N
x2

)
.

It describes a rank one, scale invariant theory with a Coulomb branch coordinate of dimen-

sion 2. Notice also that the discriminant is proportional to u6N . The possible scale invariant

singularities of rank one curves were classified in [25] (see also [35]) and just from these

data we can associate the above curve with the D4 singularity.4 In [36] it was pointed out

that this is not enough to identify the A sector: there are different theories associated with

the same singularity and one should turn on the mass deformations in order to distinguish

them. In the case of the D4 singularity there are two possibilities: one theory has SO(8)

global symmetry and the second one SU(2) (corresponding to SU(2) gauge theory with 4

hypermultiplets in the doublet or one in the adjoint). The second possibility can be ruled

out since our theory has a larger global symmetry group. We can thus identify the A

sector with the origin of the Coulomb branch of SU(2) theory with 4 massless flavors. This

theory has central charges a = 23/24, c = 7/6 and SO(8) global symmetry with central

charge kSO(8) = 4 (see e.g. [37]). Here we see once again the phenomenon first described

by Argyres and Seiberg in [11]: SO(8) has a maximal SU(2) × USp(4) subgroup and by

gauging the SU(2) factor we recover the USp(4) symmetry of the parent gauge theory.

We can confirm our claim looking at the conformal case, namely SO(4) gauge theory

with two flavors: this theory is equivalent to the SU(2) gauging of the A sector. We expect

the SU(2) beta function to vanish and the value of the central charges a and c should match

3The algorithm for determining the pole structure for general C-partitions is different with respect to

the one described in section 3 and in this paper we will not need it. The interested reader can find an

exhaustive discussion on this point in [32].
4In the present context the A-D-E nomenclature comes from a correspondence between the A-D-E affine

Lie algebra extended Dynkin diagrams and the pattern of blowups resolving those singularities. This should

not be confused with the D4 Argyres-Douglas theory we have discussed so far (see e.g. [35]).
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in both descriptions. The SU(2) central charge can be computed using the formula given

in [11]

kSU(2) = ISU(2)↪→SO(8)kSO(8),

where I is the embedding index. Using for example that the 8V of SO(8) decomposes as

8V = (3,1) ⊕ (1,5) under SU(2) × USp(4), (indeed the result does not depend on the

representation chosen) we obtain [11]

ISU(2)↪→SO(8) =
T (3) + 5 · T (1)

T (8V)
= 2.

We thus find that the SU(2) central charge is 8, which is precisely the value needed to

saturate the beta function. Finally, summing the contribution to a and c coming from the

SU(2) gauge group and from the A sector we get precisely the central charges for the SO(4)

theory with two flavors, which is nothing but the SU(2) × SU(2) gauge theory with two

hypermultiplets in the (2,2).

4.2 SO(2N + 1) SQCD with 2n + 1 flavors

The above analysis can be repeated for SO(2N + 1) gauge theories with odd number of

flavors Nf = 2n+ 1. The SW curve and differential are

y2 = xP 2
N (x)− 4Λ4N−4n−4x2

∏
i

(x−m2
i ), (4.6)

λ =

√
x

2πi
d log

(
xPN (x)−

√
xy

xPN (x) +
√
xy

)
, (4.7)

Redefining uN−n−1 + 2Λ2N−2n−2 → uN−n−1 we can rewrite the curve as

y2 = −
2n+1∑
i=1

c2ix
2n+3−i

+x(xN − · · · − uN )(xN − · · ·+ (4Λ2N−2n−2 − uN−n−1)xn+1 − · · · − uN ). (4.8)

The most singular point can be found setting all C2i and ui to zero:

y2 = xN+n+2(xN−n−1 + 4Λ2N−2n−2); λ ≈ y

xn+2
dx.

As before, when N = n+ 1 the theory is conformal and this point coincides with the origin

of the Coulomb branch. When N = n+2 we recover the Chebyshev point, where the curve

degenerates as y2 ≈ xNf+3.

We can now set t = y/xn+1 and introduce the A and B sectors, in which |x| ' ε2A and

|x| ' ε2B respectively. The same argument given in the previous sections leads us to the

relation εA = εN−nB and to the assignment

ui ∼ O(ε2iB) i = 1, . . . , N − n; uN−n+i ∼ O(ε2+2i
A ).
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The curves describing the theories in the two sectors can now be readily identified: the

B sector is the DN−n theory (when N = n + 2 it describes a doublet of SU(2) and when

N = n+ 1 becomes trivial) and the curve for the A sector is

t2 = −
(
uN−n + · · ·+ uN

xn

)(
4Λ2N−2−2n − uN−n

x
− · · · − uN

xn+1

)
−

2n+1∑
i=1

c2ix
1−i. (4.9)

One can easily see from the above curve that this sector has SU(2) × USp(4n + 2) global

symmetry. To identify the theory, let us start from the n = 1 case. Turning off the mass

parameters we are left with the curve (setting 4Λ2N−4 = 2)

t2 = −u
x

(
2− u

x2

)
.

To bring it to a more familiar form, it is now convenient to define y = tx2. We then find

y2 = −ux(2x2 − u);
∂λ

∂u
=
dx

y
.

Making then the change of variables

y = − ỹ

2u
; x = − x̃

2u
,

we recognize the curve for the E7 SCFT of Minahan and Nemeschansky [33]:

ỹ2 = x̃3 − 2u3x̃;
∂λ

∂u
=
dx̃

ỹ
.

The fact that only an SU(2)×USp(6) subgroup of E7 appears in (4.9) can be understood

in terms of the phenomenon mentioned in the previous section [36, 38]: there is more than

one theory described by the above curve and in order to distinguish them one has to turn

on the mass deformations. They are characterized by different flavor symmetries and the

Minahan-Nemeschansky theory is just the one with the largest symmetry group. In [38] the

authors recognized that the SU(2)×USp(6) theory enters in the S-dual description of SO(5)

gauge theory with three flavors at the infinite coupling point and called it submaximal mass

deformation of the E7 theory.

We already encountered the E7 theory in section 3: it is the A sector for USp(2N)

SQCD with six flavors. Comparing equations (3.7) and (4.9), we can see that the analogy

between the A sectors of these two theories is not limited to this case! The A sectors of

SO(2N +1) SQCD with Nf = 2n+1 flavors and USp(2N) SQCD with Nf = 2n+4 flavors

are described by the same curve (once we have set to zero the mass deformations), with

Coulomb branch coordinates of the same scaling dimension. However, the flavor symmetry

groups are different: USp(4n + 2) and SO(4n + 8) respectively. Here we see some higher

rank examples of the phenomenon studied in [36, 38] (in the language of Argyres and Wittig

the first theory represents a submaximal mass deformation of the second one). This is not

surprising since the SW curves and differentials for SO(2N + 1) SQCD with Nf = 2N − 1

and USp(2N) SQCD with Nf = 2N + 2 coincide in the massless case.
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5 Conclusions

We have made a systematic analysis of singular points in N = 2 SQCD with classical

gauge groups, focusing on the maximally singular points in the moduli space. We have

seen that, in order to satisfy the constraint on the scaling dimensions of mass parameters,

we are forced to introduce different scale invariant sectors. The introduction of two sectors,

which is the simplest possibility, leads to a unique answer which is consistent with all the

strong coupling dualities found recently and allows to satisfy the constraints imposed by

superconformal invariance.

We found a common structure for the low-energy description at these points, which is

schematically given by:

• An abelian sector.

• The B sector, which is always given either by a DN theory (with N > 2) or by a

doublet of hypermultiplets. In both cases the flavor symmetry is SU(2).

• The A sector, with (at least) SU(2) × G flavor symmetry, where G is the flavor

symmetry of the parent gauge theory. This is the only sector that changes as we vary

the gauge group and in most cases admits a six-dimensional description.

• An infrared free SU(2) gauge multiplet coupled to sectors A and B.

At the maximally singular point the abelian sector just describes a number of decoupled

vector multiplets, as pointed out in [10], whereas at points which are not lifted by the

N = 1 perturbation it includes massless hypermultiplets charged under each U(1) factor.

Chebyshev points in USp and SO gauge theories fall in this second class and are charac-

terized by a free B sector, which describes two massless hypermultiplets. This is not the

case for SU(N) gauge theories. A particularly simple case is given by USp theory with 4

flavors: in this case the A sector becomes free and it turns out that the Chebyshev point

admits a lagrangian description.

One possible future direction is to analyze more general theories and see whether

different structures emerge in the infrared at the maximally singular points. The Argyres-

Douglas theories studied in [39] certainly play an important role. In particular, it would be

interesting to see whether the constraints we imposed in this note always lead to a unique

answer. Another interesting question is how to use our results to explore the properties of

the N = 1 theories obtained adding a superpotential for the chiral field in the adjoint.
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