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1 Introduction

One of the amazing developments emerging from the research in string theory, is the

idea of a gauge/gravity correspondence [1]. The remarkable feature of this correspon-

dence is that it relates the strongly coupled regime of the gauge theory to the weakly

coupled regime of the string theory and vice-versa. Consequently, it has become a power-

ful tool in studying strongly interacting systems by using a conjectured dual weakly cou-

pled string/gravitational theory. At present, holographic descriptions of non-perturbative
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phenomena include, among others applications to condensed matter physics, high energy

physics and quark-gluon plasma.

One of the most distinctive uses of the gauge/gravity correspondence has been the

study of the physics of heavy ion collisions. Through collisions at Brookhaven and LHC a

strongly coupled plasma of quarks and gluons was created which cannot be described by the

standard perturbative techniques. Also other methods such as Lattice Gauge theory fail

in computing transport coefficients of the plasma and the rapid thermalization rate of the

quark gluon plasma observed. This is where the gauge/gravity duality enters in the field

and provides interesting new insights. For example, for large-N gauge theories at strong

coupling, gauge/gravity duality predicts that the ratio of the shear viscosity to entropy

density is 1/4π (see [2]) in natural units and therefore very close to the measured value.

The small value of the ratio of the shear viscosity to entropy density can be understood

as an effect of the strong coupling of the system. Within the framework of Gauge/Gravity

duality we can also compute the thermalization rate τth ∼ 0.5fm of the plasma [3, 4],

which is in agreement with the observed value indicating again the strong coupling nature

of the plasma. The energy loss of the heavy/energetic partons in the plasma also acquires

a gravity dual description (see [5, 6]).

Despite the remarkable insights into the quark-gluon plasma and QCD in general

gained by studying gauge/gravity dualities, the application of the correspondence to real-

world systems such as QCD remains a challenge and has to be developed further. So

far, we do not have a rigorous string dual of QCD at hand. However, under extreme

external parameters (such as temperature and chemical potential) different gauge theories

exhibit similar properties. Therefore, it is natural to apply holographic techniques to study

phenomena which are believed to be of universal nature.

An important example in this class of phenomena is the effect of mass generation and

spontaneous chiral symmetry breaking in the presence of an external magnetic field. The

effect is known as magnetic catalysis and has been shown insensitive to the microscopic

physics underlying the low energy effective theory. Using conventional field theory methods,

the magnetic catalysis has been demonstrated in various (1+2) and (1+3)-dimensional

field theories [7–12], while the holographic study of the effect initiated in [13].1 Additional

holographic studies of magnetic catalysis at finite temperature or chemical potential appear

in [15–30].

Until recently all the holographic studies of the magnetic catalysis were in the probe

approximation, where the backreaction of the flavor branes on the supergravity background

is neglected [31]. On the field theory side, this corresponds to an approximation in which

the flavor degrees of freedom Nf are much smaller than the color ones Nc. Unquenching

the holographic description means a large number of flavor branes that backreact on the

geometry. Due to the technical difficulties that arise from a set of localized flavor branes,

we distribute them along the compact directions [32]. This procedure is called smearing2

and restores a significant part of the global symmetry of the geometry.

1For a comprehensive review we refer the reader to [14].
2For a detailed review on the smearing see the review [33], while for other solutions employing this

technique that appeared after the review see [34–42].
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A promising framework for the construction of such a geometry was started in [43],

where the ten-dimensional supergravity solutions including the backreaction of a large

number of D7-branes in AdS5 ×X5 (with X5 any squashed Sasaki-Einstein manifold) was

introduced. This was further developed in [44], where the black-hole solution dual to the

non-conformal plasma of flavored N = 4 supersymmetric Yang-Mills theory is presented.3

The authors outline the smearing procedure, derive the corresponding equations of motion

and present a perturbative solution for general massless non-supersymmetric flavor D7–

brane embeddings.

The first steps towards unquenching the holographic description of magnetic catalysis

have been undertaken in [49] and [50]. More specifically in [49], a string dual to SU(Nc)

N = 4 SYM coupled to Nf massless fundamental flavors in the presence of an external

magnetic field is presented. For sufficiently strong magnetic field, the supergravity back-

ground is unstable, suggesting that the theory undergoes a phase transition to a stable

phase with dynamically generated mass for the matter fields. In [50], the external mag-

netic field couples to Nf massive fundamental flavors and the background has a hollow

cavity in the bulk of the geometry, where it is similar to the supergravity dual of a N = 1

non-commutative SYM. The radius of this cavity is related to the dynamically generated

mass of the fundamental fields. After developing an appropriate renormalization scheme,

the free energy and the condensate can be expanded in powers of the perturbative param-

eter. While at leading order, both agree with the previously obtained results in the probe

approximation, at next to leading order the effect of magnetic catalysis is enhanced and

the contribution to the condensate runs logarithmically with the finite cutoff ΛUV .

An overview of the paper is as follows: In section 2 we continue the studies initiated

in [49, 50] and present a string dual to the finite temperature SU(Nc)N = 4 SYM coupled to

Nf massless fundamental matter in the presence of an external magnetic field. The solution

is analytic and perturbative in a parameter that counts the number of internal fundamental

loops. Given the non illuminating expressions for the functions of the background we

provide some numerical plots, and since we have a perturbative solution we supplement it

with a hierarchy of scales.

In section 3 we study the thermodynamics of the anisotropic black hole, which provides

a non trivial check for the validity of the gravity solution. Since the solution is first order

in the expansion parameter, our computations have some overlap with those of [51] and

extend those of [44] in the presence of an external magnetic field. While in the absence

of a magnetic field the breaking of conformal invariance happens at second order in the

expansion parameter [44, 47, 52], in its presence conformal invariance breaks at first order.

In section 4 we holographically calculate the stress energy tensor of the boundary field

theory. The presence of the magnetic field sources an anisotropy in the medium, which is

realized through a difference between the pressure transverse to the magnetic field and the

pressure along the direction of the magnetic field. We present thermodynamic arguments

supporting the holographic computation.

3All the hydrodynamic transport coefficients of the model were analyzed in [45, 46], while the addition

of a finite baryon density was presented in [47]. For a review on unquenching the Quark Gluon Plasma

see [48].
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In section 5 we calculate the energy loss of the partons as they propagate through

the anisotropic plasma. The jet quenching parameter depends on the relative orientation

between the anisotropic direction, the direction of motion of the parton and the direction

along which the momentum broadening is measured. We consider a parton moving parallel

to the magnetic field with the momentum broadening taking place in the transverse plane.

The presence of the magnetic field enhances or reduces the jet quenching parameter of a

theory without magnetic field, depending on the conditions we use to make the comparison.

The drag force experienced by an infinitely massive quark propagating at a general angle

through the plasma is calculated using an appropriate set up to compensate the Lorentz

force on the probe quark. In this way we obtain an expression reflecting the anisotropy of

the plasma due to the external magnetic field.

2 Constructing the black hole

The present section is devoted to the construction of a supergravity background describing

an anisotropic black hole. The field theory duals are realized on the intersection between

a set of Nc color D3-branes and a set of Nf , homogeneously smeared, flavor D7–branes,

with an additional coupling between the fundamental fields and an external magnetic field.

2.1 Setup

The smearing of the flavor D7-branes allows for an ansatz where all the functions of the

background depend just on the radial coordinate. Having this in mind and inspired by [44,

49, 50], we adopt the following ansatz for the metric

ds210 = h−
1

2

[

− b2T dt
2 + b

(

dx21 + dx22
)

+ dx23

]

+ h
1

2

[

b2 b2T S
8 F 2 dσ2 + S2 ds2CP 2 + F 2 (dτ + ACP 2)2

]

, (2.1)

where the CP 2 metric is given by

ds2CP 2 =
1

4
dχ2 +

1

4
cos2

χ

2
(dθ2 + sin2 θdϕ2) +

1

4
cos2

χ

2
sin2

χ

2
(dψ + cos θdϕ)2 ,

ACP 2 =
1

2
cos2

χ

2
(dψ + cos θdϕ) . (2.2)

The range of the angles is 0 ≤ (χ, θ) ≤ π, 0 ≤ (ϕ, τ) < 2π, 0 ≤ ψ < 4π. The ansatz for the

NSNS and the RR field strengths is given by

B2 = Hdx1 ∧ dx2 , C2 = J dt ∧ dx3 ,
F5 = Qc (1 + ∗)ε(S5) , F1 = Qf (dτ +ACP 2) , F3 = dC2 + B2 ∧ F1 , (2.3)

where ε(S5) is the volume element of the internal space4 and Qc, Qf are related to the

number of different colors and flavors in the following way

Nc =
Qc V ol(XSE)

(2π)4gs α′2
, Nf =

4Qf V ol(XSE)

V ol(X3)gs
. (2.4)

4With
∫

ε(S5) = Vol(S5) = π3.
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In our case XSE = S5 and the X3 = S3, a 3-sphere with volume 2π2. The fact that the

flavors are massless is encoded in the independence of F1 on σ, see [43, 53] . All the functions

that appear in the ansatz, h, bT , b, S, F, Φ, J and H, depend on the radial variable σ only.

In the convention we follow, S and F have dimensions of length, b, bT , h, J and H are

dimensionless and σ has a dimension of length−4. The function b in the ansatz for the

metric reflects the breaking of the SO(1, 3) Lorentz symmetry down to SO(1, 1) × SO(2).

The blackening function bT allows for the existence of solutions with a black brane, whose

horizon sits at a position σh such that bT (σh) = 0, and which allows to study the field

theory at finite temperature.

Solving the 10d equation of motion for F3, we need to impose the following relation

J ′ = Qc
e−Φb2T
h

(H −H0) , (2.5)

where H0 is an integration constant. In the next subsection we will keep the function J

and will see how this relation appears from an effective one-dimensional Lagrangian.

2.2 Effective actions and equations of motion

The action for the Type IIB supergravity plus the contribution from the Nf D7–branes in

the Einstein frame is

S = SIIB + Sfl , (2.6)

where the relevant terms of the SIIB action are

SIIB =
1

2κ210

∫

d10x
√−g

[

R− 1

2
∂MΦ∂MΦ− 1

2
e2ΦF 2

(1) −
1

2

1

3!
eΦF 2

(3) −
1

2

1

5!
F 2
(5) (2.7)

−1

2

1

3!
e−ΦH2

(3)

]

− 1

2κ210

∫

C4 ∧H3 ∧ F3 ,

and the action for the flavor D7–branes takes the usual DBI+WZ form

Sfl = −T7
∑

Nf

[

∫

d8x eΦ
√

− det(Ĝ+ e−Φ/2F) −
∫

(

Ĉ8 + Ĉ6 ∧ F
)

]

, (2.8)

with F ≡ B̂2 + 2πα′F . In those expressions B2 denotes a non-constant NSNS potential

which will model the magnetic field, F the worldvolume gauge field and the hat refers to

the pullback of the quantities, along the worldvolume directions of the D7–brane. The

gravitational constant and D7–brane tension, in terms of string parameters, are

1

2κ210
=
T7
gs

=
1

(2π)7g2sα
′4
. (2.9)

We plug our ansatze, (2.1) and (2.3), into (2.6) and integrate out all the directions except

the radial one, since the dependence is trivial. After an integration by parts to get rid of

second derivatives we obtain the following expression

Seff =
π3V1,3
2κ210

∫

Leff dσ (2.10)
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where V1,3 is the volume of the Minkowski space and the one-dimensional effective la-

grangian Leff is given appendix A. Since the function J enters in the effective action only

via its radial derivative, there is a first integration given by a conserved quantity. We fix

this constant of motion in the following way

∂Leff

∂J ′
≡ −QcH0 ⇒ J ′ =

e−ΦQc b
2
T

h
(H − H0) . (2.11)

which is precisely (2.5). The next step is to use (2.11) to eliminate J ′ in favor ofH in (2.10),

after performing the following Legendre transformation

L̃eff = Leff − δLeff

δJ ′
J ′

∣

∣

∣

∣

∣

J ′≡J ′(H)

, (2.12)

and then calculate the Euler-Lagrange equations from the transformed action (2.12). The

equations of motion are given in appendix A.

Setting Qf = 0 in the transformed action, the Euler-Lagrange equations imply that a

solution with H 6= 0 is given by (black) AdS5 ×XSE with Φ = Φ∗ and H = H0 constants.

We will use this solution later on as a starting point to obtain a black brane solution with

backreacted flavor in the presence of a non trivial H.

It is worth noting that by demanding ∂J ′Leff = −QcH0 exactly, with H0 the value

of the magnetic field in the unflavored limit, we are enforcing the field J to vanish when

Nf → 0. As such, J reflects magnetic effects by providing a field connected holographically

to the magnetization of the system, as we will see.

The equation for the blackening factor (A.3) decouples from the rest and can be solved

analytically

b2T = e−4r4
h
σ , (2.13)

where rh is a non-extremality parameter coming from the integration constants. The

position of the horizon is at σ → ∞, whereas the boundary would be at σ = 0 (there is an

additional integration constant corresponding to a shift in σ, which we set to zero).

Reduced five-dimensional action. For the calculation of the stress-energy tensor in

section 4, we find convenient to write as well a truncated five-dimensional action, obtained

after integrating out the compact Sasaki-Einstein manifold in (2.1). Denoting the effective

metric as gµν , the action is

S5d =
1

2κ25

∫

d5x
√−g [Lkin + Lpot] +

1

2κ25

∫

d5xLtop , (2.14)

– 6 –
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where the kinetic, potential and topological terms are given by

Lkin = R[g]− 40

3
∂µf∂

µf − 20∂µw∂
µw − 1

2
∂µΦ∂

µΦ− 1

12
eΦ− 20

3
fFµνρF

µνρ (2.15)

− 1

12
e−Φ− 20

3
fHµνρH

µνρ ,

Lpot = − 4e
16

3
f+2w

(

e10w − 6
)

−
Q2

f

2
e

16

3
f−8w+2Φ −

Q2
f

4
eΦ− 4

3
f−8wBµνB

µν − Q2
c

2
e

40

3
f

−4Qfe
Φ

2
+2f+2w

√

eΦ+ 20

3
f +

1

2
BµνBµν , (2.16)

Ltop = − Qc

4
εµνρστBµν∂ρCστ , (2.17)

with the convention εtxyzr = 1 for the completely antisymmetric symbol. To make contact

with the ansatz presented in section 2.1 we identify κ25 = κ210/VSE and

f = − 1

5
log
[

S4Fh
5

4

]

, w =
1

5
log

[

F

S

]

, H3 = dB2 , F3 = dC2 , (2.18)

gµνdx
µdxν ≡ e−

10

3
fh−

1

2

[

− b2Tdt
2 + b

(

dx21 + dx22
)

+ dx23 + e−10fh−
3

2 b2b2Tdσ
2

]

,

B2 =
1

2
Bµνdx

µ ∧ dxν = H(σ)dx ∧ dy , C2 =
1

2
Cµνdx

µ ∧ dxν = J(σ)dt ∧ dz .

This effective 5d action is not enough to study perturbations, though, since the truncation

of fields that cancel in the specific background we are considering is not a consistent one [54].

2.3 Perturbative solution

The system (2.11) and (A.4)–(A.9) allows for a systematic expansion of all the functions

in power series of Qf , as defined in equation (2.4). In fact physically it is more relevant to

expand in the parameter, ǫ∗
ǫ∗ ≡ Qf e

Φ∗ , (2.19)

which takes into account the running of the effective ’t Hooft coupling (through the dilaton

factor eΦ∗). We consider the following first order expansion in ǫ∗

b = 1 + ǫ∗b1 +O(ǫ2∗) , h =
R4

r4
(

1 + ǫ∗h1 +O(ǫ2∗)
)

,

S = r
(

1 + ǫ∗S1 +O(ǫ2∗)
)

, F = r
(

1 + ǫ∗F1 +O(ǫ2∗)
)

, (2.20)

Φ = Φ∗ + ǫ∗Φ1 +O(ǫ2∗) , H = H0

(

1 + ǫ∗H1 +O(ǫ2∗)
)

.

where R4 ≡ Qc/4. We define the new radial coordinate r, in such a way that the zeroth

order expansion in ǫ∗ of h becomes R4/r4

e−4r4
h
σ ≡ 1 − r4h

r4
. (2.21)

The extremal limit corresponds to sending the horizon radius rh to zero. It is also conve-

nient to define the following parameter

r4m = e−Φ∗H2
0R

4 , (2.22)

– 7 –



J
H
E
P
0
9
(
2
0
1
2
)
0
3
9

The result is a coupled system of second order differential equations which can be decoupled

by the transformations

∆1 ≡ S1 − F1 , Υ1 ≡ 4F1 + 16S1 + 5h1 , Λ1 ≡ h1 − b1 . (2.23)

This allows us to write

Ψ′′
1 +

5r4 − r4h
r(r4 − r4h)

Ψ′
1 − 4ζΨr

2

r4 − r4h
Ψ1 =

AΨr
4 +BΨr

4
m

(r4 − r4h)
√

r4 + r4m
, (2.24)

H̃ ′′
1 +

r4 + 3r4h
r(r4 − r4h)

H̃ ′
1 − 16r2

r4 − r4h
H̃1 =

4r4

(r4 − r4h)
√

r4 + r4m
, (2.25)

where

Ψ = {b,Λ,Υ,∆,Φ} , ζ{b,Λ,Υ,∆,Φ} = {0, 8, 8, 3, 0} ,
A{b,Λ,Υ,∆,Φ} = {0, 0,−16,−1, 4} , B{b,Λ,Υ,∆,Φ} = {−4, 2,−6,−1, 2} . (2.26)

The solution to these equations of motion is described in appendix B. Let us comment

here on the boundary conditions we impose. In our solution there are four scales. We have

already introduced the first three: rh is the radius of the horizon and we impose the fields

to be regular there; rm is associated to the magnetic field, and r∗ denotes the point at

which we pierce the dilaton, this is, Φ(r) = Φ∗ + φ(r) with φ(r∗) = 0. With this scale we

defined ǫ∗ and its interpretation is given in terms of the scale at which the gauge coupling

is defined, since [44]

ǫ∗ =
1

2π
gsNc e

Φ∗
Nf

Nc
. (2.27)

The fourth scale (which we will define as rs) is the scale at which we paste the thermal

solution presented in the appendix B to the T = 0 (supersymmetric) one [44], i.e. we impose

the following conditions

b1(rs) = H1(rs) = Λ1(rs) = 0 , Υ1(rs) =
2

9
, ∆1(rs) =

1

12
. (2.28)

Notice that bT (rs) 6= 1, which is the supersymmetric solution. This is not a problem in

Euclidean signature, since it can be solved by fixing the periodicity of the Euclidean time

in the solution without temperature, and we will use this in the following to compare the

energy and free energy of both solutions. In Lorentzian signature it introduces an error of

order (rh/rs)
4, which is small provided rh ≪ rs.

From now on we set rs → ∞, which corresponds to push the Landau pole to infinity,

or more physically, to focus only in the IR properties of the theory. A UV completion of

the system is not known even in the supersymmetric case. The following results can be

understood as the leading terms in an rh/rs expansion. At the same time, we will take

r∗ = rh, therefore describing the value of the dilaton relative to its value at the horizon,

which implies that the ’t Hooft coupling λh = 4πgsNce
Φh is evaluated at the energy scale

marked by the temperature.

– 8 –
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For completeness, let us mention that from (2.11) and (2.25) we have at first order

in ǫh

∂rJ̃ = ǫh

[

r2mr
√

r4 + r4m
− 1

4
∂r

((

1− r4h
r4

)

r∂rH̃1

)

]

. (2.29)

Qualitative behavior of the solution. Given the gargantuan form of the solution to

our system at first order in ǫh, which can be found in appendix B, we give in this section a

description of the different functions presented above. In this section some numeric work

is presented, but in the rest of the paper we will restrict to analytic results.

The function b1 is easy to describe by focusing in its radial derivative, given by

b′1 = − 2r4m
r
(

r4 − r4h
) log





r2 +
√

r4 + r4m

r2h +
√

r4h + r4m



 , (2.30)

which for r ≥ rh and real non-vanishing rm is always negative (it is exactly vanishing if

rm = 0), and asymptotes b′1 → 0 at large radius. As the boundary condition used in

the integration is b1(rs) = 0, we conclude that this function is a monotonically decreasing

function of r for finite rm (exactly zero if rm = 0) with the maximum value at the horizon.

Similarly, we can analyze the radial gradient of the dilaton correction

φ′1 =
1

r

r2r2h +
√

(r4 + r4m)
(

r4h + r4m
)

r2
√

r4h + r4m + r2h
√

r4 + r4m

, (2.31)

which is strictly positive for r ≥ rh and real rm. In this case the boundary condition

used to integrate the solution is φ1(r∗) = 0, where r∗ will be identified eventually with

the horizon position as the IR scale of our effective solution. At large radius the dilaton

diverges logarithmically, signaling the presence of a Landau pole, as discussed in [44].

For the other functions present in our solution –namely Λ1, Υ1, ∆1 and H1– the gradi-

ent does not take a simple form that is worth writing, so we provide plots of the functions

for several values of the parameters. For example, for Λ1 one has that, numerically, the

radial gradient is strictly non-negative (zero if rm = 0), and Λ1(rs) = 0 from the boundary

condition, in a similar situation to the function b1 but with different sign for the gradient.

In figure 1 we plot this quantity as a function of r/rh for several values of rm/rh = 0, 2, 5, 10

and observe that it has non-negative gradient, and approaches Λ1 → 0 as r → rs (with

rs → ∞ in the figure).

As opposed to the previously presented cases, function Υ1 presents some structure.

To start with, the boundary condition at r = rs changes and is given by Υ(rs) = 2/9.

However, when one works in the rs → ∞ limit this boundary condition is modified to

Υ1(∞) = 1/2, which is the value of the function when rm = 0. For small values of the

magnetic field scale (weighted by the horizon radius), rm/rh . 1.23144, the value of Υ1 at

the horizon is less than 1/2, and after that specific value of the magnetic scale it is always

larger than 1/2. We plot this behavior in figure 2. Given the analyticity of the function

there is a minimum which, numerically, we determined to be at rm ≈ 0.961122rh. We have
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Figure 1. Λ1 as a function of r/rh for several values of rm/rh = 0 (blue straight line), 2 (orange

dashed line), 5 (brown dotted line) and 10 (purple dotdashed line). To produce this plot the limit

rs → ∞ has been taken analytically first.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
rm�rh

0.49

0.51

0.52

U1HrhL

Figure 2. Υ1(rh) as a function of rm/rh. We observe a minimum at rm = 0.961122rh with value

Υ1 = 0.485816 and the curve crosses Υ1 = 1

2
again at rm = 1.23144rh. To produce this plot the

limit rs → ∞ has been taken analytically first.

not found any characteristic signature of the presence of this minimum of Υ1(rh) in the

plasma.

In figure 3 we plot several examples of Υ1 as a function of the radial variable in three

graphs, classified according to the value of the function at the horizon. All the curves

present a minimum (on the horizon when rm ≤ 0.961122rh and on the bulk otherwise) and

asymptote the rm = 0 value (Υ1 = 1/2) at large radius.

We have not given an analytic expression for ∆1 because we couldn’t find an easy way

to write it, since it involves integrals of Legendre functions. However, from integrating

the equation numerically we find that its behavior is very similar to that of b1 or Λ1 (with

reversed sign), and we simply report here figure 4. We are not going to need to evaluate ∆1

anywhere in this work. The reason is that this is the mode describing the squashing in the

compact Sasaki-Einstein manifold, but from the point of view of the 5-dimensional system

it is just a scalar that does not enter explicitly in the 5-dimensional metric (its influence

would be felt just via the equations of motion, but recall we have defined ∆1 precisely to

decouple them). In this paper we will focus on the thermodynamics, stress-energy tensor
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U1

(a) 0 ≤ rm ≤ 0.961122rh

1.5 2.0 2.5 3.0 3.5 4.0
r�rh

0.488

0.490

0.492

0.494

0.496

0.498

0.500
U1

(b) 0.961122rh ≤ rm ≤ 1.23144rh

1.5 2.0 2.5 3.0 3.5 4.0
r�rh

1

2

3

U1

(c) rm ≥ 1.23144rh

Figure 3. Υ1 as a function of r/rh for several values of rm/rh represented by a blue straight line,

an orange dashed line, a brown dotted line, and a purple dotdashed line, with values given respec-

tively by (a) 0, 0.32, 0.64, 0.961122, (b) 0.961122, 1.05, 1.14, 1.23144 and (c) 1.23144, 2, 3.5, 5. To

produce this plot the limit rs → ∞ has been taken analytically first.

and energy-loss of probes in the system, which do not depend explicitly in the matter

content of our theory, just in the 5-dimensional metric.

Finally, we present the flavor correction to the NSNS 2-form H1. As usual we take

the rs → ∞ limit analytically and we find, as it was the case for Υ1, that the boundary

condition is not H1(∞) = 0 but H1(∞) = −1/4. One might be puzzled by the fact that the

correction is not vanishing independently of the value of rm, in concrete when rm = 0, but

recall that this correction is modulated by the flavorless value of the NSNS field strength

H ∼ r2m(1 + ǫhH1 +O(ǫh)
2), therefore at vanishing magnetic field we have H = 0. As the

value of the magnetic field is increased the correction gets smaller and smaller as can be

seen in figure 5.

2.4 Hierarchy of scales and regime of validity of the supergravity solution

The perturbative solution, that we present in full detail in the appendix B, needs to be sup-

plemented with a hierarchy of energy scales (in terms of radial scales). Our analysis follows

closely similar sections of [44, 49, 50], whose arguments we repeat here for completeness.
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1
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5

D1

Figure 4. ∆1 as a function of r/rh for several values of rm/rh = 0 (blue straight line), 2 (orange

dashed line), 5 (brown dotted line) and 10 (purple dotdashed line). To produce this plot rs has been

taken to rs = 80rh in the numerics. We have checked that this value for rs gives indistinguishable

results from those in figures 1 and 3.

1.5 2.0 2.5 3.0 3.5 4.0
r�rh

-0.25

-0.20

-0.15

-0.10

-0.05

H1

Figure 5. H1 as a function of r/rh for several values of rm/rh = 0 (blue straight line), 2 (orange

dashed line), 5 (brown dotted line) and 10 (purple dotdashed line). To produce this plot the limit

rs → ∞ has been taken analytically first.

As usual, for the Taylor expansions in (2.20) to be valid in the region rh ≤ r ≤ rs
we need to separate the scale rs from the scale introduced by the solution to φ1(r), which

diverges logarithmically at large values of the radius r > rs, rs ≪ rhe
1/ǫh . The requirement

that we discard corrections in rh/rs implies that our perturbative corrections are much

larger than the terms we discard, therefore ǫh ≫ rh/rs. Joining these two conditions we

have

e−1/ǫh ≪ rh
rs

≪ ǫh , (2.32)

which for large rs ≫ rh (implying that the UV completion this theory needs is far from

the IR, where we study the physical properties of the system) implies that

0 < ǫh ∼ λh
Nf

Nc
≪ 1 . (2.33)

The scale rm is associated with the magnetic field and can be arbitrarily close to

rm = 0. For large values of rm (large magnetic fields/magnetization of the system, as we
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will see in the next section), requiring that our solution remains in the perturbative level

sets up a top value. As can be seen from the plots given previously, the maximum value of

the functions appearing in the solution is at the horizon, and from the asymptotic values

given in appendix B it is easy to see that, at large values of rm, all the functions diverge at

the horizon as r2m/r
2
h. Therefore we must impose 1 ≫ ǫhr

2
m/r

2
h, which gives the condition

|rm| < rh

ǫ
1/2
h

. (2.34)

Similarly to [44], validity of the supergravity approximation requires to ignore closed

string loops (Nc ≫ 1) and α′ corrections (λh ≫ 1), where λh is the effective ’t Hooft

coupling at the energy scale set by the temperature. In addition, validity of the smearing

approximation suggests a dense distribution of flavor D7-branes. In summary we have

{Nc, Nf} ≫ 1, λh ≫ 1 , ǫh ≡ λhNf

8π2Nc
≪ 1 . (2.35)

Finally requiring that α′ corrections, which scale as λ
−3/2
h , are sub-leading relative to flavor

corrections, controlled by ǫh, requires

λ
−3/2
h ≪ ǫh . (2.36)

3 Thermodynamics

In the previous section we presented in full detail the solution of an anisotropic black hole

and now we will extract its thermodynamic properties. This will provide a non trivial

validity check of the solution itself through the closure of the standard thermodynamical

formulae. As in [44, 47], all quantities are obtained in power series of the perturbative

expansion parameter and, therefore, the relevant thermodynamic relations are verified up

to the relevant order.

3.1 Smarr formula

The temperature of the black hole is computed after imposing regularity of the Euclidean

action. A simple computation using (B.16), (B.19) and (B.23) gives5

T =
rh
πR2

[

1 +
1

4
ǫh ( 3Λ1 − Υ1 − b1)

]

r=rh

=
rh
πR2

[

1 +
1

8
ǫh

(

1 − 2

√

1 +
r4m
r4h

)]

.

(3.1)

The entropy density is proportional to A8, the volume at the horizon of the eight dimen-

sional part of the space orthogonal to the t̂, r plane (where t̂ is the Euclidean time), divided

by the infinite constant volume of the 3d space directions V3. Another simple computation

5In this section all quantities have corrections coming from O(ǫ2h) terms as well as
r4
h

r4
s

, where we are

setting rs → ∞.
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using (B.16), (B.19) and (B.23) gives

s =
2π

κ210

A8

V3
=
N2

c r
3
h

2πR6

[

1− ǫh
4
(3Λ1 −Υ1 − b1)

]

r=rh

=
N2

c r
3
h

2πR6

[

1− ǫh
8

(

1− 2

√

1 +
r4m
r4h

)]

=
N2

c π
2T 3

2

[

1 +
ǫh
2

(

1− 2

√

1 +
r4m
r4h

)]

. (3.2)

Note also combining (3.1) and (3.2) that

sT =
2π3

κ210
r4h . (3.3)

In principle this result is perturbative in ǫh and valid to order ǫ2h in the present case,

however, it is not difficult to show that the statement is true, independently of the expansion

parameter.

We define now the magnetic quantities. One natural identification for the magnetic

field, B, is given by the value of the H field at the boundary, which from (2.22) is6

B = r2mR
−2 . (3.4)

Looking at (2.11), we see that J ′ and H0 are conjugate variables. The existence of the

holographic duality implies that, if we associate H0 with the magnetic field then J has to

determine the magnetization density M. This relation reads

M ≡ 1

V3

∫

δSeff
δH0

= −Qc π
3

2κ210

∫

J ′dr = − N2
c

2π2R4
∆Jreg , (3.5)

and we will regularize the finite temperature result subtracting the zero temperature one.

Using (2.29), to obtain the integral of J ′, we arrive to the following expression for the

magnetization

M =
N2

c

2π2R4

Qf B

2
log





r2h +
√

r4h + r4m

r2m



 . (3.6)

The next step in the determination of the Smarr formula is the calculation of the internal

energy. Starting from the ADM energy we have

EADM = − 1

κ210

√−gtt
∫

d8x
√

det g8(KT −K0) . (3.7)

The eight-dimensional integral is taken over a constant time, constant radius hypersurface.

The symbols KT and K0 are the extrinsic curvatures of the eight-dimensional subspace

within the nine-dimensional (constant time) space, at finite and zero temperature, respec-

tively. Using the explicit solution in appendix A we have

εADM =
EADM

V3
=

3N2
c r

4
h

8π2R8



1 + ǫh
r4m
3 r4h

log





r2m

r2h +
√

r4h + r4m







 . (3.8)

6Notice that we cancel a factor of eΦh by passing between the string and Einstein frames.
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Another way to write (3.8) is, at order O(ǫ2h),

εADM =
3

4
s T − 1

2
BM , (3.9)

which implies that we must identify the ADM mass with the magnetic enthalpy of the

system, H = εADM . The internal energy, U , is given in terms of the enthalpy by the

following expression

U = H + BM =
3

4
s T +

1

2
BM . (3.10)

3.2 Thermodynamic potentials

The relations that must be satisfied by the thermodynamic potentials are the following

F = U − s T , G = F − BM , (3.11)

where F is the Helmholtz free energy (in the ensemble where the magnetization is kept

fixed) and G is the Gibbs free energy (in the ensemble where the magnetic field is kept

fixed), which is the interesting ensemble in our case. These thermodynamic potentials are

related by a Legendre transformation

G = F − ∂F
∂M M . (3.12)

In a holographic set-up the thermodynamic potentials are related to the on-shell Euclidean

action (times the temperature to cancel the periodicity of the Euclidean time direction).

Given our previous discussion on the identification of the magnetization with the field J

(see (3.5)), which leads to the following relation

∂M
∂J

=
M
J
, (3.13)

we can associate the Legendre transformation defining the Gibbs free energy with the

Legendre transformation defining the action S̃ in (2.12). By denoting the on-shell action7

as Ĩ we have8

G =
Ĩ

β
= −1

8
N2

c π
2T 4



1 + ǫh



−1

2
+

√

1 +
r4m
r4h

+
r4m
r4h

log





r2h +
√

r4h + r4m

r2m







+O(ǫ2h)



 .

(3.14)

The regularization is performed by subtracting the T = 0 background and the action is

supplemented with a Gibbons-Hawking term. In [50, 51] the regularization of the free

energy in the probe approximation was performed by the addition of counterterms. We

consider the fact that we recover their results in the appropriate limit as a sign that the

7Notice that to obtain S̃eff we have integrated by parts to get rid of second order differentials, introducing

some boundary terms. These, in principle, are taken care of by the Gibbons-Hawking term and will not

contribute to the final expression. We have checked that this is the case by calculating the on-shell action

with and without these extra boundary terms.
8This calculation is detailed in appendix C.
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background subtraction method gives the correct answer. In particular, we do not need

to worry about the presence of logarithmic divergences, cancelled by counterterms with

explicit cutoff dependence, since these are temperature independent and the background

subtraction cancels them completely. It is not difficult to check that, when subtracting the

T = 0 background, the contribution of that term vanishes up to order 1/r4∗. Now, it is not

difficult to check that indeed

G = − 1

4
s T − 1

2
BM . (3.15)

Applying the standard thermodynamic relations

s = −
(

∂G
∂T

)

B

, M = −
(

∂G
∂B

)

T

, (3.16)

we confirm the previously obtained results in (3.2) and (3.6) respectively. The calculation

of the Helmholtz free energy can be done in a similar fashion, but using the original

action (2.10). This can be seen as the Legendre transformation of S̃eff , which eliminates

H0 and adds a term +BM, after the proper renormalization. In this way we have

F = G + BM = U − s T ⇒ F = − 1

4
s T +

1

2
BM . (3.17)

Once again we can check the thermodynamic relations

s = −
(

∂F
∂T

)

M

, B =

(

∂F
∂M

)

T

, (3.18)

where, to work at fixed magnetization, we have to specify how rm evolves with the tem-

perature. For that we look at equation (3.6), from where the following evolution follows

∂T rm =
πR2rhrm

r2h −
√

r4h + r4m log

[

r2
h
+
√

r4m+r4
h

r2m

] . (3.19)

3.3 Speed of sound

Finally we analyze the speed of sound in the plasma with a magnetic field. Due to the

anisotropy of the gravitational solution we will find that there are two normal directions

in which the pressure waves propagate at different speeds. For a perturbation propagating

in the direction of the magnetic field we have

c2s,|| =
∂P||

∂U =
− (∂G/∂T )B
(∂U/∂T )B

=
s

CV,B
, (3.20)

where CV,B is the heat capacity at fixed magnetic field. To calculate it we have to derive

the internal energy with respect to the temperature, but we must take into account how

the parameters ǫh and rm run with the energy scale. The case of the parameter ǫh is easy

to understand from the profile for the dilaton and it follows that ∂T ǫh ∼ ǫ2h, [44]. Since we

work at first order in ǫh, the running of the coupling constant9 — via the presence of factors

9Recall that ǫh ∼ λhNf/Nc.
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of R in the definitions of the physical magnetic field (3.4) and the magnetization (3.6) —

does not affect our results. At fixed magnetic field, since B ∼ r2m we observe that ∂T rm = 0,

therefore

CV,B =

(

∂U
∂T

)

B

=
3N2

c r
3
h

2πR6









1− ǫh
8









1−
(

2 +
10

3

r4m
r4h

)

1
√

1 + r4m
r4
h









+O(ǫ2h)









. (3.21)

With this result at hand we can find readily the speed of sound in the direction of the

magnetic field as

c2s,|| =
s

CV,B
=

1

3









1− ǫh
6

r4m
r4h

1
√

1 + r4m
r4
h

+O(ǫ2h)









, (3.22)

which gives a lower speed of sound than the conformal result. For the speed of sound in

the direction orthogonal to the magnetic field we obtain, using the chain rule

c2s,⊥ =
∂P⊥

∂U =
− (∂F/∂T )B
(∂U/∂T )B

= −
(

∂F
∂T

)

M
+
(

∂F
∂M

)

T

(

∂M
∂T

)

B

(∂U/∂T )B
=

s

CV,B
− B

CV,B

(

∂M
∂T

)

B

,

(3.23)

which leads to

c2s,⊥ =
1

3









1− 7 ǫh
6

r4m
r4h

1
√

1 + r4m
r4
h

+O(ǫ2h)









. (3.24)

In particular we see that the presence of a magnetic field in our setup breaks conformal

invariance at first order in λh
Nf

Nc
even when the fundamental degrees of freedom we included

are massless (in the absence of magnetic field the breaking of conformal invariance happens

at order ǫ2h, see [44–47, 52]. This is one difference between the setup presented in this

work and the results in the quenched approximation λhNf/Nc → 0, [51]. Although for

thermodynamic quantities such as the entropy, the magnetization and the Gibbs free energy

we obtain agreement with the results of that paper, in our setup the anisotropy sourced

by the magnetic field is included, and this allows us to calculate the different speeds of

sound, depending on the direction of the pressure wave, and obtain conformality-breaking

results.

For completeness we calculate here the heat capacity at constant magnetization, where

we need to make use of equation (3.19) to work at fixed magnetization. The result is

CV,M =

(

∂U
∂T

)

M

=
3N2

c r
3
h

2πR6

[

1 +
ǫh
24
Ccor
V,M +O(ǫ2h)

]

, (3.25)
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with

Ccor
V,M =

1

r4h

√

1 + r4m
r4
h

(

r2h −
√

r4h + r4m log

[

r2
h
+
√

r4m+r4
h

r2m

])



6r2h
(

r4h + 3r4m
)

− 3r4h

√

r4h + r4m

+

(

3r2h
(

r4h + r4m
)

− 2
(

3r4h + r4m
)

√

r4h + r4m

)

log





r2h +
√

r4m + r4h

r2m







 . (3.26)

4 Stress-energy tensor with a magnetic field

In this section we will calculate holographically the stress-energy (SE) tensor of the bound-

ary field theory. As customary in the AdS/CFT context, we evaluate the Brown-York

tensor at a cutoff rΛ from the 5d action (2.14)

τ ij =
2√−γ

δS5d
δγij

∣

∣

∣

∣

∣

rΛ

=
1

κ25

(

Kij −Kγij
)

rΛ
, (4.1)

where γ is the induced metric at the r = rΛ surface, where the indices i, j run, and Kij is

the extrinsic curvature. The Brown-York tensor diverges when the cutoff is taken to the

boundary. To cancel this divergence we employ the same background subtraction as in the

previous section, which allows us to read the temperature and magnetic field contribution

to the SE tensor.

4.1 Expectations

Before presenting the actual calculation we will state what we expect the diagonal compo-

nents of the SE tensor to be. The presence of the magnetic field sources an anisotropy in

the medium, and therefore we will have a vev for the SE tensor of the field theory given by

〈T i
j〉 = diag

(

−EADM , P⊥, P⊥, P||

)

, (4.2)

where EADM is the enthalpy, as was shown in the previous section, P⊥ the pressure in

the directions transverse to the magnetic field, and P|| the pressure along the direction of

the magnetic field. When no magnetic field is present the two pressures coincide and are

related to the Gibbs free energy10 P⊥ = P|| = −G.
The question that is immediately risen is whether in our case P⊥ = −G or P|| = −G —

if any —, and if this is true what is the expression for the other pressure. Notice that the

difference ∆P ≡ P|| − P⊥ is a measure of the anisotropy of the medium, and therefore we

expect it to be proportional to the magnetization (times the magnetic field) ∆P ∼ BM.

10In the absence of a magnetic field the Gibbs and Helmholtz free energies presented in (3.14) and (3.17)

coincide, but the presence of non-trivial charge density and chemical potential would make a difference

between the two. Actually, in a traditional nomenclature the Gibbs free energy should correspond to the

thermodynamic potential at fixed chemical potential and zero magnetic field; we use the same name here

by analogy.
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The answer to this question is given by

P|| = −G , P⊥ = −F . (4.3)

To understand why this is the case, we will follow a thermodynamic argument that can be

found in a similar context in appendix C of [55]. In that paper the thermal N = 4 SYM

plasma has an anisotropy sourced by a specific distribution of D7 branes along the horizon

of the black brane, translated in a value for the axion χ = az, with a a constant. In the

present case the D7 branes are extended along the radial direction of AdS, reaching the

boundary and describing fundamental matter in the plasma, and the anisotropy appears

by the presence of a magnetization of the fundamental.

The key of the argument is to write the internal energy of the plasma as an extensive

quantity11 U = U(S,Lx, Ly, Lz,M), with S the extensive entropy, Lx,y,z the length of the

sides of a box in which we have inserted our plasma andM the magnetization of the system.

The energy and the entropy scale with the total volume of the box V3 = LxLyLz =
∫

d3x,

but the magnetization does not. This may seem strange at first sight, since one would

expect the magnetic field to be an intrinsic quantity and the magnetization to be a density.

One way to see the scaling is to realize that the magnetization is a vector in the z direction

whereas the magnetic field is given by a 2-form B dx∧dy. Therefore, to keep the magnetic

field constant when we scale Lx or Ly, we should scale B accordingly. In the same way,

the magnetization scales with Lz. This suggests that it is more appropriate to talk about

magnetic flux along the xy plane, B, and magnetization linear density along the z direction.

These are the quantities that matter when considering a finite box is the presence of an

external magnetic field.

Therefore, comparing with the calculation in [55], all we need to do is to repeat the

arguments in their appendix C with the identification a→ M and Φ → B –which we will

not write explicitly here since it is nicely discussed in the referred paper–, and we are led

to the result (4.3). From here, it is also straightforward to see that ∆P = BM.

The identities (4.3) can also be written as Gibbs-Duhem equations

U + P|| = sT +BM , U + P⊥ = sT . (4.4)

4.2 Holographic calculation

We proceed now to calculate the components of the vev of the SE tensor in the field theory.

This is related to the Brown-York tensor (4.1) by

〈T i
j〉 =

√−γ τ ij,reg
∣

∣

∣

rΛ→∞
, (4.5)

where we have assumed that the expression (4.1) has been regularized before taking the

rΛ → ∞ limit. Notice that strictly speaking this is a density since we are not integrating

11Note that in the rest of the paper thermodynamic quantities are intensive!
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over the space. From the definition (4.1) we have

〈T t
t〉 =

1

2κ25
r5
(

1− r4h
r4

)

∂r log
(

e−10fh−3/2b2
)

, (4.6)

〈T x
x〉 = 〈T y

y〉 =
1

2κ25
r5
(

1− r4h
r4

)

∂r log
(

e−10fh−3/2b b2T

)

, (4.7)

〈T z
z〉 =

1

2κ25
r5
(

1− r4h
r4

)

∂r log
(

e−10fh−3/2b2b2T

)

. (4.8)

Expressions (4.6)–(4.8) can be expanded in powers of ǫh using the solution described in

appendix B. With this we can write 〈τ ij〉 = 〈τ ij〉0 + ǫh〈τ ij〉1 +O(ǫ2h).

At zeroth order in ǫh we have b = 1, since this function describes the anisotropy

between the directions perpendicular to the magnetic field and the direction along the

magnetic field, which is an order ǫh effect caused by the presence of fundamental matter.

Therefore, at zeroth order in ǫh one obtains that 〈T x
x〉 = 〈T y

y〉 = 〈T z
z〉 and the Brown-

York tensor is isotropic. Actually, at zeroth order the solution to the type IIB action is

nothing but AdS5×S5 by construction, and we know already what the Brown-York tensor

is going to be. The explicit calculation goes as

(√−γ τ ij
)

0,div
=

1

κ25
(3r4Λ − r4h) diag (−3, 1, 1, 1) , (4.9)

where the subindex div signs that the expression is divergent in the rΛ → ∞ limit and

must be regularized. Once again, the regularization is achieved by background subtraction

〈T i
j〉0 = lim

rΛ→∞

(

(√−γ τ ij
)

0,div
−
√

1− r4h
r4Λ

lim
rh→0,B→0

(√−γ τ ij
)

0,div

)

, (4.10)

where the factor in the square root matches the euclidean geometries at the cutoff. A

straightforward calculation gives

〈T i
j〉0 =

VSE
2κ210

r4h diag (−3, 1, 1, 1) , (4.11)

after use of κ25 = κ210/VSE . Considering now the observation made in (3.3), we can rewrite

this expression as

〈T i
j〉0 =

sT

4
diag (−3, 1, 1, 1) . (4.12)

This, of course, is just the AdS5 result, which gives an isotropic contribution. Notice that

even when the entropy density and the temperature are sensitive to the magnetization of

the plasma, their product cancels out factors coming from M to give the contribution to

the SE tensor given above.

We consider now the contribution due to the presence of fundamental matter at first

order in ǫh, 〈T i
j〉1. This term is given prior to regularization by

(√−γ τ ij
)

1,div
=
rΛ(r

4
Λ − r4h)

4κ25

[(

b′1 − 3Λ′
1 +Υ′

1

)

I4×4 − 2b′1diag (0, 1, 1, 0)
]

. (4.13)
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Once regularized we read the vev of the field theory SE tensor. In this case the 〈T t
t〉

component must coincide with the ADM mass calculation (see appendix D) given in the

previous section. We have checked this explicitly by regularizing (4.13) and evaluating the

expression one gets in terms of b1, Λ1 and Υ1. This fact helps us to find the expressions

for the SE tensor with the aim of the following two properties

(√−γ τ tt
)

1,div
=
(√−γ τ zz

)

1,div
, (4.14)

(√−γ τxx
)

1,div
=
(√−γ τyy

)

1,div
=
(√−γ τ zz

)

1,div
− rΛ(r

4
Λ − r4h)

2κ25
b′1 . (4.15)

Expression (4.14) tells us that the contribution at first order in ǫh for 〈T t
t〉 and 〈T z

z〉
coincide, and since we know that the time component is given by the ADM energy, which

we already calculated, we get

〈T t
t〉 = −εADM = −3

4
sT +

1

2
BM ⇒ 〈T z

z〉 =
1

4
sT +

1

2
BM = −G , (4.16)

as announced.

To evaluate the pressure in the transverse directions P⊥ = 〈T x
x〉 we can make use of

the relation (4.15). There are two equivalent ways to obtain the answer. The first and

more obvious one is to evaluate the b′1 contribution in the r.h.s. of (4.15) and regularize.

This can be seen to lead to

〈T x
x〉 = 〈T z

z〉 −BM = −F , (4.17)

which is the expected result. Unfortunately, the evaluation makes use of the analytic –but

somehow complicated– form of b1(r), and intermediate steps to arrive to this result imply

writing down long, non-illuminating expressions. A second strategy would be to notice

that the contributions to the regularized SE tensor from Λ1 and Υ1 vanish. This implies

that the correction at order ǫh to 〈T x
x〉 is opposite in sign to the correction to 〈T z

z〉, giving
once again 〈T x

x〉 = 1
4sT − 1

2BM = −F . However, the explicit solution for Λ1 and Υ1 is

more complicated that the one for b1, and intermediate expressions are again cumbersome

equations which would lengthen this section without adding anything relevant.

Of course, from the former arguments it follows that the anisotropic measure is given

by ∆P = BM, in agreement with the thermodynamic argument of the previous subsection.

5 Energy loss in the magnetically anisotropic plasma

In this section we will focus on calculating the energy loss of the partons as they propagate

in an anisotropic plasma.

An estimation of this influence is coming through the calculation of the jet quench-

ing parameter q̂. In [56], using the eikonal approximation in the high energy limit, they

presented a non-perturbative prescription for calculating q̂ as the coefficient of L2 in an

almost light-like Wilson loop with dimensions L− ≫ L. Following this prescription we will

calculate q̂ for our anisotropic backreacted background.
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Another estimate of the energy loss of a parton passing through a medium may come

through the drag force calculation. This computation can be implemented in a holographic

framework through a macroscopic string moving with constant velocity v. That string is

attached to a probe flavor brane and dragged by a constant force f which keeps the velocity

fixed. The drag coefficient µ, measuring the energy loss, is calculated from the equation of

motion

f = µ p , (5.1)

where p is the parton momentum. Following the prescription of [5, 6], we will calculate µ

for our anisotropic backreacted background.

5.1 Drag force

In this section we perform the calculation of a second observable describing energy loss in

the Quark-Gluon plasma by computing the drag force experienced by an infinitely massive

quark propagating at constant velocity through an anisotropic plasma in constant magnetic

field. In an anisotropic medium, the drag coefficient is not just a number but a matrix.

This matrix is diagonal, µ = diag(µx, µy, µz) but with µx = µy 6= µz, which means that

the force and the momentum (or the velocity) of the quark will not be aligned in general.

The external magnetic field plays a double role in this scenario. On one side it makes

the plasma anisotropic, on the other side it stimulates synchrotron radiation of gluons which

is an additional factor contributing to the energy loss of the moving quark. In our analysis

we stabilize the classical trajectory of the quark by introducing an additional electric field

perpendicular to the magnetic field, compensating the Lorentz force. In addition we add

a drag electric force compensating the viscous force of the plasma. The only energy loss is

due to the negative work exerted by the viscous force.

We follow closely [57], where the isotropic analysis of [5, 6] has been generalized to

the case of anisotropic plasma. Another relevant papers are ref. [58], where heavy quark

in external magnetic field has been studied, and ref. [59] where the study of the radiation

of a quark in an anisotropic plasma is performed.

On the gravity side the quark is described by a string propagating in the back-

ground (5.23) while the string action is given by

S = − 1

2πα′

∫

d2σ
√−g +

1

2πα′

∫

P [B] =

∫

d2σL , (5.2)

where g is the induced worldsheet metric and P [B] is the pullback of the Kalb-Rammond

B-field.

Physically, the electric forces needed to stabilize the trajectory are introduced by

attaching one end of the string to a D7-brane and turning on a constant gauge filed

FMN = ∂[MAN ] on the brane [57]. This results to the following boundary term

Sbdry =

∫

∂Σ
dτAN∂τX

N =
1

2

∫

∂Σ
dτFMNX

M∂τX
N . (5.3)

Next we define

ΠM =
∂L

∂(∂σXM )
. (5.4)
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From the variation of the boundary action one has

ΠM |∂Σ + (2πα′)FMN∂τX
N = 0 . (5.5)

Equation (5.5) is the equation for the balance of the forces acting on the moving quark.

One can expect that the contribution to ΠM from the Nambu-Goto term of the action cor-

responds to the viscous force of the plasma, while the contribution from the anti-symmetric

part corresponds to the Lorentz force, this is confirmed by our analysis.

We choose an ansatz in which the string does not move along the compact directions,

while due to the rotational symmetry in the xy-plane, we can choose y = 0. However in

order for this ansatz to be consistent we need to compensate the Lorentz force along the

y direction. To clarify this we keep a general ansatz y = y(τ, σ) for a while. We fix the

reparameterization invariance by identifying (t, r) = (τ, σ) and consider a string profile of

the form

x = [ut + x(r)] sinϕ , z = [ut + z(r)] cosϕ , y = y(τ, σ) , (5.6)

corresponding to a quark moving with velocity u in the xz-plane at an angle ϕ with the

z-axis and with so far undetermined profile along y (eventually we will fix y ≡ 0). Since

the lagrangian does not depend explicitly on x , y and z we have:

Πx = − G11

L
[

Gtt x
′ + u2 cos2 ϕ G33

(

x′ − z′
)

+G22ẏ
(

ẏx′ − uy′
)

]

sinϕ−B12ẏ ,(5.7)

Πy = − G22

L
[

Gtt y
′ + u sin2 ϕ G11

(

uy′ − x′ẏ
)

+ u cos2 ϕG33

(

uy′ − z′ẏ
)

]

(5.8)

+u sinϕB12

Πz = − 1

L G33

[

Gtt z
′ − u2 sin2 ϕ G11

(

x′ − z′
)

+G22ẏ
(

ẏz′ − uy′
)

]

cosϕ , (5.9)

where ′ denotes differentiation with respect to r. As one can see from equation (5.8), even

if we set y ≡ 0, Πy has a non-vanishing contribution u sinϕB12. For the y component of

equation (5.5) we obtain

u sinϕH0 − (2πα′)F02 = 0 , (5.10)

where we have used that FMN has only electric components and that B12|∂Σ = H0. It

is clear that equation (5.10) represents the balance between the Lorentz force u sinϕH0

acting on the quark and the electric field along the y component, F02, needed to cancel

the Lorentz force. Therefore we fix F02 = u sinϕH0/(2πα
′) which enables us to set y ≡ 0.

The expressions for Πx and Πy simplify to:

Πx = − 1

L G11

[

Gtt x
′ + u2 cos2 ϕ G33

(

x′ − z′
)

]

sinϕ , (5.11)

Πz = − 1

L G33

[

Gtt z
′ − u2 sin2 ϕ G11

(

x′ − z′
)

]

cosϕ , (5.12)

Inverting (5.11) and (5.12) we have

(x′)2 =
G33Grr

G11Gtt

u2N2
x

D − NxNz
, (z′)2 =

G11Grr

G33Gtt

u2N2
z

D − NxNz
, (5.13)
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with

Nx = ΠxGtt cotϕ + u2G11 cosϕ (Πz cosϕ + Πx sinϕ) , (5.14)

Nz = Πz Gtt + u2G33 cosϕ (Πz cosϕ + Πx sinϕ) , (5.15)

and

D = cotϕGttD1D2 (5.16)

D1 = ΠxΠz − 1
2 u

2G11G33 sin 2ϕ and D2 = Gtt + u2
(

G33 cos2 ϕ + G11 sin2 ϕ
)

.

The critical value of r is determined from the equations Nx = Nz = 0 and D = NxNz =

0 and it is given by

rc =
rh

(1− u2)1/4

[

1 + ǫh
r4m
r4h

u2 cos2 ϕ

1− u2

[

π2 + log2
(

1− u2
)

+ Li2

(

u2

u2 − 1

)]

]

. (5.17)

For this critical value we have Πx = uG11 sinϕ and Πz = uG33 cosϕ. With all these

constraints the denominator in (5.13) is always real and positive except at rc, where it

vanishes. The numerators, at the critical point, also vanish and the functions x′, z′ are

smooth and negative for rh < r < rs → ∞. The force that must be exerted on the quark

in order to maintain its stationary motion (see [57] for a detailed explanation) is

~F =
1

2πα′
(Πx,Πz) , (5.18)

in terms of the quark’s velocity ~u = u(sinϕ, cosϕ). For the specific case of anisotropic

plasma under study we have, in the small magnetic field limit

F{x,z} =
π

2

√

λh T
2 u√

1− u2

[

1 +
1

8
ǫh
[

2 − log(1− u2) + f{x,z}
]

]

, (5.19)

with

fx =
1

12
sϕ
r4m
r4h

[

36 − 12 log
(

1− u2
)

− 6

(

1 +
2

1− u2
−

2 c2ϕ u
2

1− u2

)

×

×
[

π2

6
+

1

2
log2

(

1− u2
)

+ Li2

(

u2

u2 − 1

)]

]

, (5.20)

fz =
1

12
cϕ
r4m
r4h

[

36 − 12 log
(

1− u2
)

+ 6

(

1 −
2 s2ϕ u

2

1− u2

)

×

×
[

π2

6
+

1

2
log2

(

1− u2
)

+ Li2

(

u2

u2 − 1

)]

]

. (5.21)

These expressions show the dependence of the magnitude of the force on the magnetic field,

and also how the presence of the anisotropy affects the orientation of the field. This effect
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is not due to a Lorentz force, since it is compensated in equation (5.10). The directions in

which the quark is moving and the force is pushing are related by

arg ~F = ϕ+ ǫh
b1(rc)

2
sin(2ϕ) +O(ǫ2h) , (5.22)

where b1(rc) is the correction to the function b in the ansatz for the metric, evaluated at

the critical radius.

Finally we would like to discuss the regime of validity of our analysis. In this section

we introduce additional electric fields coupled to the charged quark, but we do not take

into account the effect that they have on the SYM plasma. On the other hand we take into

account the effect of the magnetic field on the plasma. This can be justified if the quark

is moving sufficiently slow and the Lorentz force and the viscous force (both proportional

to the velocity of the quark) can be compensated with electric fields weak relative to the

magnetic field. Comparing to the discussion in section 2.4, for our solution to still be

reliable we consider that the electric field enters, effectively, at order ǫ2. This is the regime

in which our analysis applies.

5.2 Jet quenching

In this section we will compute the jet quenching parameter q̂ for our anisotropic plasma,

extending the computation of [44].

We will follow the analysis of ref. [60], where jet quenching in anisotropic plasma have

been studied. In our case the anisotropy is due to external magnetic field which triggers

synchrotron radiation. Therefore one would expect the motion of the fundamental string

to encode both the phenomena of jet quenching and the energy loss due to synchrotron

radiation. This suggests that the prescription of refs. [56, 60] should be revised in the

presence of external magnetic field. Technically this can be seen from the more general

form of the fundamental string action (5.2). In particular the presence of the B-field term

affects the prescription for the holographic calculation of the wilson loop. More precisely

the on-shell action evaluated on the world sheet corresponding to the wilson loop is no

longer purely imaginary which is crucial part of the derivations in refs. [56, 60].

To circumvent this difficulty we will constraint ourselves to motion parallel to the

magnetic field. In this case the pull-back of the B-field on the world sheet vanish and

the motion of the string in not directly affected by the external magnetic field. Physically

the Lorentz force acting on the quarks vanish. This suggests that in the holographic

calculation the wilson loop is given by the area of the world sheet and technically there

are no difficulties in applying the prescription of refs. [56, 60]. Note that the energy loss of

the quark is still indirectly affected by the external magnetic field through the alternated

properties of the SYM plasma. We will sketch the derivation referring to [60] for details.12

We consider a parton moving along the direction parallel to the magnetic field, z, with

the momentum broadening taking place in the transverse xy-plane. Due to the rotational

symmetry in the transverse plane we can choose q̂ to lay along the x-direction.

12See [61, 62] as well.
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In order to cover more general situations we consider the following class of metrics

ds210 = Gtt dt
2 + G11 dx

2 + G22 dy
2 + G33 dz

2 + Grr dr
2 + · · · (5.23)

where the ellipses denote compact directions. After introducing light-cone coordinates

z± =
1√
2
(t ± z) , (5.24)

we consider a rectangular Wilson loop with contour C. The expectation value of the Wilson

loop is given by the extremum of the Nambu-Goto action for a string with endpoints tracing

the contour C. We consider a quark moving along z− and fix the reparameterization

invariance by identifying (z−, r) = (τ, σ). Moreover we set z+ = 0 and specify the string

embedding through the function x = x(r), subject to the boundary condition x(±ℓ/2) = 0.

The Nambu-Goto action for this configuration is then given by

S = 2i

√
λ

2πR2

∫

dz−
∫ ℓ/2

0
dr

√

1

2
(Gtt + G33) (Grr + G11x′2) , (5.25)

where x′ = dx/dr and the action is imaginary because the string worldsheet is spacelike.

Since the action does not depend on x explicitly we obtain the equation of motion for x(r)

x′2 =
π2x

4G11

(

Gtt + G33

)

− π2x

Grr

G11
. (5.26)

The turning point for the string is at x′ = 0 and following the prescription of [56] and [63]

we will work in the limit ℓ→ 0, which corresponds to the limit πx → 0. Integrating (5.26)

and taking the limit for πx → 0, we obtain the separation length between the endpoints of

the string

L = πxIx +O(π2x) with Ix ≡
∫ r∗

rh

√
Grr

G11

√
Gtt + G33

dr . (5.27)

For the computation of the jet quenching parameter we have to evaluate the action on shell

and focus on the L2 term after using (5.27). In way we have

S =
iL−

8
√
2

√
λ

2πR2

2L2

Ix
, (5.28)

The prescription given in [56] and [63] for the jet quenching parameter is

ei2S = exp

[

−L
−ℓ2

4
√
2
q̂

]

⇒ q̂ =

√
λ

2πR2

2

Ix
. (5.29)

We rewrite this expression in terms of field theory quantities, namely the ’t Hooft coupling

at the temperature scale, λh ≡ λ eΦh and the temperature, given by (3.1). We obtain a

correction to the unflavored jet-quenching in the presence of a small magnetic field given by

q̂ =
π3/2 Γ(34)

Γ(54)

√

λh T
3

[

1 +
1

8
ǫh

[

2 + π +
r4m
r4h

(

3 − 1

6
Mcor

)

+ O
(

rm
rh

)8
]

+ O(ǫ2h)

]

,

(5.30)
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with

Mcor = π (log 8− π) + 4F3

[

1, 1, 1,
5

4
;
7

4
, 2, 2; 1

]

≈ −1.99143 . (5.31)

Unfortunately we were not able to find a closed expression for the jet quenching parameter

when generic magnetic field is present.

Comparison to the non-magnetic case. To understand whether the presence of the

magnetic field enhances or reduces the energy loss parameterized by q̂ with respect to

a theory without magnetic field, we must compare the expression (5.30) obtained before

between the two different theories.

The result in (5.30) can be written as

q̂ = q̂0

(

1 + ǫh
r4m
r4h

M+O(ǫ2h)

)

, (5.32)

where

q̂0 =
π3/2Γ(34)

Γ(54)

√

λhT
3

[

1 +
ǫh
8
(2 + π) +O

(

ǫ2h
)

]

, (5.33)

is the flavored result in the absence of a magnetic field [44], which receives a enhancement of

the jet quenching with respect to the unflavored setup, both in a scheme where the number

of degrees of freedom (entropy density) and temperature are kept fixed or in a scheme

where the energy density and the force between external quarks are fixed, indicating the

robustness of the correction. The presence of the magnetic field is given by the factor

M = (3/8 − Mcor/48)/8 ≈ 5/12 when the quark is moving along the direction of the

transverse field.

To compare the magnetic and non-magnetic result we must state clearly under which

conditions we are making this comparison. For example, if we choose to keep the entropy

density and the temperature of the field theories the same, therefore allowing us to compare

the values of q̂ per degree of freedom at fixed T , we observe that the parameters Nc in the

B = 0 and B 6= 0 cases are related (in the rm < rh approximation) by

Nc,B = Nc,B=0

[

1− ǫh
4

r4m
r4h

+O
(

ǫ2h
)

]

. (5.34)

This correction enters in the jet quenching parameter via
√
λh ∼ N

1/2
c , giving

q̂B
q̂B=0

=

[

1 + ǫh
r4m
r4h

(

M− 1

8

)

+O(ǫ2h)

]

, (5.35)

implying that the presence of a magnetic field enhances the jet quenching if the quarks are

moving parallel to the magnetic field.

We could have chosen to fix Nc as well as the entropy density, allowing T to vary. In

that case the temperatures in the presence and absence of a magnetic field are related by

TB = TB=0

[

1− ǫh
6

r4m
r4h

+O
(

ǫ2h
)

]

⇒ q̂B
q̂B=0

=

[

1 + ǫh
r4m
r4h

(

M− 1

2

)

+O(ǫ2h)

]

. (5.36)

Therefore, in this scheme the presence of an anisotropy induced by the magnetic field

reduces the jet quenching for motion parallel to magnetic field.
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6 Conclusions

In this work we have presented a solution to the equations of motion of type IIB supergrav-

ity in the presence of a smeared set of Nf ≫ 1 D7 branes. This solution is perturbative in

the backreaction parameter ǫh ∼ λh
Nf

Nc
. The presence of a finite magnetic field sources an

anisotropy in the solution which leaves a footprint in physical observables.

We have studied the thermodynamics associated to the magnetically anisotropic solu-

tion at first order in backreaction. Results for thermodynamic quantities like the entropy,

free energy or magnetization coincide with studies performed in the quenched approxima-

tion, in which the dynamics of the matter in the fundamental representation decouples

from the dynamics of the adjoint degrees of freedom. However, the quenched setup fails to

describe the anisotropy due to the magnetic field. Actually, this probe approximation is

only valid at small magnetic fields (compared to the scale of the temperature), where the

anisotropy is very mild and the component of the NSNS potential, Bxy(r), is approximately

constant (see figure 5). At larger magnetic fields the backreaction of the branes onto the

geometry creates a non trivial profile of the Bxy component, which is itself reflected in an

anisotropy in the metric.

We have presented expressions for the pressure of the plasma in the directions parallel

and orthogonal to the magnetic field, that –not surprisingly– do not coincide for finite

magnetic field. This has as a consequence that the speed of sound in the two normal

directions of the plasma do not coincide between them. Actually, from equations (3.22)

and (3.24) we observe that both speeds of sound have a value lower than the conformal

setup, signaling that scale invariance is broken by the magnetic field at first order in ǫh,

even when we have massless D7 branes (in the absence of magnetic field this is not the

case, even when a charge density is present in the setup).

The breaking of the conformality means that we must not necessarily have a traceless

stress-energy tensor. However, from direct inspection in section 4, we have 〈Tµ
µ〉 = 0 at

first order in backreaction. A word of caution is needed here. As discussed in some extent

in the text, the 00 component of the stress-energy tensor corresponds to the magnetic

enthalpy, and not the internal energy of the system. Therefore one must not conclude that

the tracelessness of the s-e tensor implies an equation of state of the form U = 2P⊥ + P||.

In fact, given the relation between the magnetic enthalpy and the internal energy (3.10)

we have

U = 2P⊥ + P|| + BM . (6.1)

The last consequence of the anisotropy we have studied is the implications of the

magnetic field in the energy loss of a heavy quark moving through the plasma. The lack

of explicit isotropy has as a consequence that the energy loss depends on the direction of

movement of the quark. Furthermore, if the quark is charged it will feel a Lorentz force

due to the presence of the magnetic field.

An alternative approach to the jet quenching calculation we presented in this work is

through fluctuation analysis, relating the jet quenching parameter to momentum broaden-

ing [64]. In this reference the jet quenching is related to the transport coefficient associated

to Langevin diffusion inside the plasma. A similar analysis of the jet quenching parameter
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for a deformed N = 4 SYM after introducing massless flavor branes in the Veneziano limit

was presented in [65]. Since the background is analytic, but perturbative in the number

of flavors, it is possible to obtain perturbative expressions for the jet quenching around

the unquenched result. We believe that the same analysis could be very well extended in

our case, with the only concern on the complexity of the solution after the inclusion of the

magnetic field. Generically, it seems a straightforward computation that will circumvent

the issue of generalizing the “standard” recipe of the jet quenching calculation.

One interesting question that is raised immediately is what are the shear and bulk

viscosities of the magnetic plasma. The shear viscosity is a tensorial quantity that has

been seen in [66] not to satisfy the KSS value η/s = 1/4π for the anisotropic plasma

of [67] (this situation happens as well in condensed phases of holographic superfluids, as

was proposed in [68] and checked explicitly in [69]). Here we have an anisotropy sourced

by a 2-form instead of a scalar, and this may complicate the analysis of the perturbations

to calculate the shear viscosity via a Kubo formula. Due to the lack of conformality at first

order in ǫh we expect that the bulk viscosity is non-zero as well, but proportional to BM.
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A Equations of motion from the effective action

The expression for the one-dimensional effective lagrangian is given by Leff

Leff = − 1

2

(

h′

h

)2

+ 12

(

S′

S

)2

+ 8
F ′S′

FS
+ 24 b2T b

2 F 2 S6 − 4 b2T b
2 F 4 S4

+

(

b′T
bT

+
b′

b

) (

h′

h
+ 8

S′

S
+ 2

F ′

F

)

+
1

2

b′

b

(

b′

b
+

4b′T
bT

)

− b2T b
2Q2

c

2h2
(A.1)

−1

2
Q2

f b
2
T b

2e2ΦS8

(

1 +
e−ΦH2 h

b2

)

− 4Qf b
2
T b

2 eΦ F 2 S6

√

1 +
e−ΦH2 h

b2

−1

2
Φ′2 − 1

2

e−ΦH ′2 h

b2

(

1− e2Φ J ′2 b2

b2T H
′2

)

− QcHJ
′ .

Defining the following auxiliary (dimensionless) expressions

β1 ≡
√

1 +
e−ΦH2 h

b2
, β2 ≡ 1 +

e2Φ J ′2 b2

H ′2 b2T
and β3 ≡ 1 +

e−2ΦH ′2 β2
Q2

f H
2 b2T b

2 S8
(A.2)
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we can write the equations of motion in the following compact way

∂2σ(log bT ) = 0 (A.3)

∂2σ(log b) = − 4Qf H
2 b2T hS

6F 2

β1
− eΦH2Q2

f b
2
T hS

8 β3 , (A.4)

∂2σ(log h) = −Q2
c

b2T b
2

h2
− 2Qf H

2 b2T hS
6F 2

β1
− 1

2
eΦH2Q2

f b
2
T hS

8 β3

+ (1− β2)
e−Φ hH ′2

b2
, (A.5)

∂2σ(logS) = − 2 b2T b
2F 4S4 + 6 b2T b

2F 2S6 − Qf e
Φ b2T b

2F 2 S6

β1

+
1

4
eΦH2Q2

f b
2
T hS

8 β3 , (A.6)

∂2σ(logF ) = 4 b2T b
2F 4S4 − 1

4

(

1 + β21
)

Q2
f e

2Φ b2T b
2 S8 +

Qf H
2 b2T hS

6F 2

β1

+
1

4

e−Φ hH ′2 β2
b2

, (A.7)

∂2σΦ =
1

2

(

1 + β21
)

[

Q2
fe

2Φb2T b
2S8 +

4Qfb
2
T b

2eΦS8

β1

]

− 1

2

e−ΦhH ′2β2
b2

, (A.8)

∂σ

[

e−Φ hH ′

b2

]

= eΦQ2
f H b2T hS

8 + Qc J
′ +

4Qf H b2T hS
6F 2

β1
. (A.9)

It is straightforward to check that the above set of equations, together with (2.11), solve

the full set of Einstein equations, provided the following “zero-energy” constraint is also

satisfied

0 = −1

2

(

h′

h

)2

+ 12

(

S′

S

)2

+ 8
F ′S′

FS
− 24 b2T b

2 F 2 S6 + 4 b2T b
2 F 4 S4

+

(

b′T
bT

+
b′

b

) (

h′

h
+ 8

S′

S
+ 2

F ′

F

)

+
1

2

(

b′

b

)(

b′

b
+

4b′T
bT

)

+
b2T b

2Q2
c

2h2
(A.10)

+
1

2
Q2

f b
2
T b

2e2ΦS8

(

1 +
e−ΦH2 h

b2

)

+ 4Qf b
2
T b

2 eΦ F 2 S6

√

1 +
e−ΦH2 h

b2

−1

2
Φ′2 − 1

2

e−ΦH ′2 h

b2

(

1− e2Φ J ′2 b2

b2T H
′2

)

.

This constraint can be thought of as the σσ component of the Einstein equations. Differ-

entiating (A.10) and using (2.11) and (A.4)–(A.9) we are getting zero, meaning that the

system is not overdetermined.
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B Analytic perturbative solution of the equations of motion

The homogeneous solutions for the equations (2.24)–(2.25) are

bH1 = Kb,1 +Kb,2 log

[

1− r4h
r4

]

, (B.1)

ΛH
1 = KΛ,1

(

2
r4

r4h
− 1

)

+KΛ,2

[

2 +

(

2
r4

r4h
− 1

)

log

[

1− r4h
r4

]

]

, (B.2)

ΥH
1 = KΥ,1

(

2
r4

r4h
− 1

)

+KΥ,2

[

2 +

(

2
r4

r4h
− 1

)

log

[

1− r4h
r4

]

]

, (B.3)

∆H
1 = K∆,1 P1/2

(

2
r4

r4h
− 1

)

+K∆,2Q1/2

(

2
r4

r4h
− 1

)

, (B.4)

φH1 = Kφ,1 +Kφ,2 log

[

1− r4h
r4

]

, (B.5)

HH
1 = KH,1

r4

r4h
+KH,2

[

1 +
r4

r4h
log

[

1− r4h
r4

]

]

. (B.6)

The solutions with integration constant KΨ,1 are regular at the horizon whereas the ones

with KΨ,2 diverge logarithmically there. This situation is reversed at infinity, where the

solutions withKΨ,2 tend to zero whereas the ones withKΨ,1 can diverge or go to a constant.

Also, in principle Q1/2(2r
4/r4h− 1) has an imaginary part, but this is just P1/2(2r

4/r4h− 1)

and can be absorbed in K∆,1. In the following, we will consider just the real part of

Q1/2(2r
4/r4h − 1) and that constants K∆,1,2 are real.

The particular solution for every equation can be found in the following way. Defining

GΨ(r) ≡
AΨr

4 +BΨr
4
m

(r4 − r4h)
√

r4 + r4m
, (B.7)

a particular solution of the corresponding inhomogeneous differential equation is given by

Ψ
(p)
1 (r) = −Ψ

(1)
1 (r)

∫ r Ψ
(2)
1 (r̃)GΨ(r̃)

W (r̃)
dr̃ + Ψ

(2)
1 (r)

∫ r Ψ
(1)
1 (r̃)GΨ(r̃)

W (r̃)
dr̃ , (B.8)

with Ψ
(1,2)
1 the homogeneous solutions accompanied by the constants KΨ(1,2) and

W ≡ Ψ′
1
(2)(r)Ψ

(1)
1 (r)−Ψ′

1
(1)(r)Ψ

(2)
1 (r) , (B.9)

the Wronskian. With the symbol
∫ r

we denote an antiderivative, therefore no lower bound

is considered (its addition amounts to a shift in the constants of integration for the homo-

geneous solutions). This method also works for H1, but in that case

GH(r) ≡ 4r4

(r4 − r4h)
√

r4 + r4m
. (B.10)

The solutions can be expressed in terms of the following expressions

adn(r) ≡ 1

rn−1
h

∫ r r̃n log
[

1− r4
h

r̃4

]

√

r̃4 + r4m
dr̃ , (B.11)
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which for the special cases n = 1, 5, 9 read

ad1(r) =
1

4

[

2Li2

[

αr + 1

αr − 1

]

− Li2

[

αr + 1

αr − 1

αrh + 1

αrh − 1

]

− Li2

[

αr + 1

αr − 1

αrh − 1

αrh + 1

]

]

,

ad5(r) = − 1

2

(

α2
rh

− 1
)

ad1(r) +
1

4
αr

α2
rh

− 1

α2
r − 1

log

[

α2
rh

− α2
r

α2
rh

− 1

]

− 1

4
log

[

(

α2
rh

− 1
) αr + 1

αr − 1

]

+
1

4
αrh log

[

αr + αrh

αr − αrh

]

, (B.12)

ad9(r) =
3

8

(

α2
rh

− 1
)2
ad1(r) +

1

16
αr

(

5 − 3α2
r

)

(

α2
rh

− 1

α2
r − 1

)2

log

[

α2
rh

− α2
r

α2
rh

− 1

]

− 1

8
αr

α2
rh

− 1

α2
r − 1

+
1

16
αrh

(

5 − 3α2
rh

)

log

[

αr + αrh

αr − αrh

]

− 1

4

(

1 − 1

2
α2
rh

)

log

[

(

α2
rh

− 1
) αr + 1

αr − 1

]

,

with as usual

αr ≡
√

1 +
r4m
r4

, αrh ≡
√

1 +
r4m
r4h

, αr∗ ≡
√

1 +
r4m
r4∗

. (B.13)

We express the solution13 in terms of the dimensionless parameters αr, αrh and αr∗ .

Solution for φ1. The solution for φ1 which is regular at the horizon and vanishes at

r = r∗ is

φ1 =
1

4
log

[

αr + 1

αr − 1

αr∗ − 1

αr∗ + 1

]

+
1

2
αrh log

[

αr∗ + αrh

αr + αrh

]

. (B.14)

Whenever we calculate a physical quantity we will set the scale r∗ at the horizon

r∗ = rh, indicating that we are working in the IR range of energies.

Solution for b1. The solution for b1 which is regular at the horizon and vanishes at

r = rs is

b1 =
(

α2
rh

− 1
)

[

1

4
log

[

α2
rh

− α2
r

α2
rh

− 1

]

log

[

αr − 1

αr + 1

αrh + 1

αrh − 1

]

−1

4
log

[

α2
rh

− α2
rs

α2
rh

− 1

]

log

[

αrs − 1

αrs + 1

αrh + 1

αrh − 1

]

+ ad1(r) − ad1(rs)

]

. (B.15)

The following limit of (B.15) will be useful in thermodynamic calculations

lim
rs→∞

b1(rh) = − 1

24

(

α2
rh

− 1
)

[

π2 + 12 log2 (αrh − 1)

+ 12 log2 (αrh + 1) − 6 log2
(

α2
rh

− 1
)

+ 12Li2

[

1 + αrh

1− αrh

]

]

. (B.16)

13We do not include the expression for ∆1 since it is given in terms of integrals that cannot be evaluated

analytically. Furthermore, we do not need its explicit form in the text.
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Solution for Λ1. The solution for Λ1
14 which is regular at the horizon and vanishes at

r = rs is

ΛNH
1 =

1

2

α2
rh

− 1

α2
r − 1

(

2α2
rh

− α2
r − 1

)

[

ad1(r) − 2 ad5(r) − 1

2
log

[

(

α2
rh

− 1
) αr + 1

αr − 1

]]

+
1

4

(

α2
rh

− 1
)

(

2 − α2
r − 2α2

rh
+ 1

α2
r − 1

log

[

α2
rh

− α2
r

α2
rh

− 1

])

(B.17)

×
(

αr

α2
rh

− 1

α2
r − 1

− 1

2
α2
rh

log

[

(

α2
rh

− 1
) αr + 1

αr − 1

]

)

,

Λ1 = CΛ1

2α2
rh

− α2
r − 1

α2
r − 1

+ ΛNH
1 (r) (B.18)

−1

4
αrh

(

α2
rh

− 1
)

(1 − αrh log [1 + αrh ])

(

2 − α2
r − 2α2

rh
+ 1

α2
r − 1

log

[

α2
rh

− α2
r

α2
rh

− 1

])

.

The following limit of (B.18) will be useful in thermodynamic calculations

lim
rs→∞

Λ1(rh) = − 1

48

(

α2
rh

− 1
)

[

12 + π2α2
rh

− 6α2
rh

log2
(

α2
rh

− 1
)

+ 12α2
rh

Li2

[

1 + αrh

1− αrh

]

+24αrh log

[

2αrh

1 + αrh

]

+ 12α2
rh

(

log2 [αrh − 1] + log2 [αrh + 1]
)

]

. (B.19)

Solution for Υ1. The solution for Υ1
15 is

ΥNH
1 = − 1

2

2α2
rh

− α2
r − 1

α2
r − 1

[

1

2

(

α2
rh

− 1
)

log

[

αr + 1

αr − 1

]

− 4αr

α2
rh

− 1

α2
r − 1

+3
(

α2
rh

− 1
)

ad1(r) + 2
(

7 − 3α2
rh

)

ad5(r) − 16 ad9(r)

]

−1

4

(

α2
rh

− 1
) (

3α2
rh

− 2
)

(

2 − α2
r − 2α2

rh
+ 1

α2
r − 1

log

[

α2
rh

− α2
r

α2
rh

− 1

])

(B.20)

×
(

αr

− 3 + 7α2
rh

− α2
r

(

1 + 3α2
rh

)

(α2
r − 1)2

(

3α2
rh

− 2
) +

1

2
log

[

αr + 1

αr − 1

]

)

,

Υ1 = CΥ1

2α2
rh

− α2
r − 1

α2
r − 1

+ ΥNH
1 (r) (B.21)

−1

8

(

α2
rh

− 1
)

(

6αrh + (2− 3α2
rh
) log

[

αrh + 1

αrh − 1

])

(

2 − α2
r − 2α2

rh
+ 1

α2
r − 1

log

[

α2
rh

− α2
r

α2
rh

− 1

])

.

14The value of the constant CΛ1
is determined by requiring Λ1(rs) = 0.

15The value of the constant CΥ1
is determined by requiring Υ1(rs) = 2

9
.
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The following limit of (B.21) will be useful in thermodynamic calculations

lim
rs→∞

Υ1(rh) = − 1

4

[

3α2
rh

− 4αrh − 1 + 6αrh

(

α2
rh

− 1
)

log

[

2αrh

1 + αrh

]

(B.22)

+
(

3α2
rh

− 2
) (

α2
rh

− 1
)

(

π2

12
+ Li2

[

1 + αrh

1 + αrh

]

+
1

2
log2

[

αrh − 1

αrh + 1

])

]

.

Solution for H1. The solution for H1
16 is

HNH
1 = − α2

rh
− 1

α2
r − 1

(

ad5(r) +
1

4
log

[

αr + 1

αr − 1

])

(B.23)

+
1

4

(

α2
rh

− 1
)

(

1 +
α2
rh

− 1

α2
r − 1

log

[

α2
rh

− α2
r

α2
rh

− 1

])

(

αr

α2
r − 1

− 1

2
log

[

αr + 1

αr − 1

])

,

H1 = CH1

α2
rh

− 1

α2
r − 1

+ HNH
1 (r) (B.24)

−1

4

(

αrh +
1

2
(1− α2

rh
) log

[

αrh + 1

αrh − 1

])

(

1 +
α2
rh

− 1

α2
r − 1

log

[

α2
rh

− α2
r

α2
rh

− 1

])

.

The limiting cases rh → 0 and rm → 0 can be obtained, recovering the results in [49]

and [44] respectively.

C Calculation of the Gibbs free energy

Applying the general recipe of [70] we identify the on-shell Euclidean action, divided by

the inverse temperature, with the Gibbs free energy (in an ensemble where the magnetic

field is kept fixed). The Euclidean action has contributions from both bulk and surface

terms given by the following expressions

Ibulk =
V4π

3

2κ210

∫

LIIB dσ and Isurf = − V4π
3

κ210

√
γK , (C.1)

where LIIB is the wick rotated action (2.6) and in Isurf is the standard Gibbons-Hawking

term. In order to generate Leff , defined in (A.1), we need to integrate by parts and get

rid of second order derivative terms. This in turn will lead us to consider boundary terms,

on-shell, only of the form ψ′
a/ψa, where ψa is a collective notation for the background

functions (b, bT , h, F, S,Φ). While at r = rs those terms are canceled by the contribution

of the Gibbons-Hawking term, they remain at the horizon. It turns out that the only

non-vanishing term is coming from the function bT , with the following contribution

− 2
∂σbT
bT

∣

∣

∣

∣

∣

σ=∞

= 4 r4h . (C.2)

In other words

I = Ibulk + Isurf = β
π3V3
2κ210

(

4 r4h −
∫

Leff dσ

)

. (C.3)

16The value of the constant CH1
is determined by requiring H1(rs) = 0.
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Expanding in ǫh and using (2.20) we have

I = I0 + ǫhIDBI + ǫhIbound +O(ǫ2h) , (C.4)

and more explicitly, changing the radial coordinate to r

I0 = β
π3V3
2κ210

(

6 r4s − 2 r4h
)

, IDBI = −β
π3V3
2κ210

4

∫ rs

rh

dr r
√

r4 + r4m

Ibound = −β
π3V3
2κ210

r4h

[

b1(rh) − 3Λ1(rh) + Υ1(rh) (C.5)

−
(

1 − 2
r4s
r4h

)

[5b1(rs) + 5Λ1(rs) − Υ1(rs)]

]

.

This action is infinite and should be regularized by subtracting the zero temperature on-

shell Euclidean action. We take rs as the radial cut-off for the integrals, such that the finite

and zero temperature geometries coincide. Since gTtt(rs) 6= g0tt(rs), we rescale the Euclidean

time of the zero temperature solution in the following way [44]

β0 = β

(

1− r4h
r4s

)1/2

, (C.6)

where β is the period of the Euclidean time of the finite temperature solution. Doing so it

is easy to prove that

I = − 1

8
β N2

c π
2 T 4



1 + ǫh



− 1

2
+

√

1 +
r4m
r4h

+
r4m
r4h

log





r2h +
√

r4h + r4m

r2m







+O(ǫ2h)



 ,

(C.7)

and consequently (3.14).

D ADM energy and Brown-York tensor

In this appendix we show that the definition of the ADM energy used in (3.7) coincides

with the calculation of the tt component of the boundary Brown-York tensor, given by

EBY = −
∫

d3x
√−γkiξjτ ij , where k is the unit-norm vector orthogonal to the t = constant

surfaces, ξ = ∂t is a Killing vector and

τ ij =
2√−γ

δS5d
δγij

(D.1)

the Brown-York boundary tensor. The calculation is done by noticing that in the boundary

metric, γij , bT (rs) enters only in the γtt component, then we can trade γtt by bT in the

calculation17

bT (rs)
δS5d
δbT (rs)

= bT (rs)
δS5d
δγtt

δγtt
δbT (rs)

= 2γtt
δS5d
δγtt

. (D.2)

17Notice that we express the radial dependence of fields in terms of the radial coordinates r or σ indis-

tinctively, depending on which one is more convenient for every step.
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On the other hand
δS5d
δbT (rs)

= −V3VSE
2κ210

δ

δbT (rs)

∫ σs

Leffdσ , (D.3)

where we are using (A.1) to define Leff . Using the equation of motion for bT we can express

the on-shell value of Leff as a total derivative and perform the integral and the variation

δS5d
δbT (rs)

=
V3VSE
2κ210

∂Leff

∂b′T

∣

∣

∣

∣

∣

σs

=
V3VSE
2κ210

2

bT (σs)
∂σ log

√

hb2b2TF
2S8
∣

∣

∣

σs

. (D.4)

Therefore, from the BY definition

EBY = −
∫

d3x
√−γkiξjτ ij = −bT (rs)

δS5d
δbT (rs)

= −V3VSE
κ210

∂σ log
√

hb2b2TF
2S8
∣

∣

∣

σs

(D.5)

Now, the ADM mass is defined in (3.7) as

EADM = −V3VSE
κ210

√−gtt
√
g8KT = −V3VSE

κ210

√−gtt√
gσσ

∂σ
√
hb2F 2S8 = EBY . (D.6)

Therefore, as far as we implement the same regularization procedure, these two quantities

coincide and, as we have argued in the main text, can be identified with the magnetic

enthalpy in the field theory side.

References

[1] J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200]

[INSPIRE].

[2] G. Policastro, D. Son and A. Starinets, The Shear viscosity of strongly coupled N = 4

supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066]

[INSPIRE].

[3] P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and

far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory,

Phys. Rev. D 82 (2010) 026006 [arXiv:0906.4426] [INSPIRE].

[4] V. Balasubramanian, A. Bernamonti, J. de Boer, N. Copland, B. Craps, et al., Holographic

Thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].

[5] C. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L. Yaffe, Energy loss of a heavy quark

moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013

[hep-th/0605158] [INSPIRE].

[6] S.S. Gubser, Drag force in AdS/CFT, Phys. Rev. D 74 (2006) 126005 [hep-th/0605182]

[INSPIRE].

[7] V. Gusynin, V. Miransky and I. Shovkovy, Catalysis of dynamical flavor symmetry breaking

by a magnetic field in (2+1)-dimensions, Phys. Rev. Lett. 73 (1994) 3499 [Erratum ibid. 76

(1996) 1005] [hep-ph/9405262] [INSPIRE].

[8] V. Gusynin, V. Miransky and I. Shovkovy, Dimensional reduction and dynamical chiral

symmetry breaking by a magnetic field in (3+1)-dimensions, Phys. Lett. B 349 (1995) 477

[hep-ph/9412257] [INSPIRE].

– 36 –

http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
http://dx.doi.org/10.1103/PhysRevLett.87.081601
http://arxiv.org/abs/hep-th/0104066
http://inspirehep.net/search?p=find+EPRINT+hep-th/0104066
http://dx.doi.org/10.1103/PhysRevD.82.026006
http://arxiv.org/abs/0906.4426
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.4426
http://dx.doi.org/10.1103/PhysRevD.84.026010
http://arxiv.org/abs/1103.2683
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.2683
http://dx.doi.org/10.1088/1126-6708/2006/07/013
http://arxiv.org/abs/hep-th/0605158
http://inspirehep.net/search?p=find+EPRINT+hep-th/0605158
http://dx.doi.org/10.1103/PhysRevD.74.126005
http://arxiv.org/abs/hep-th/0605182
http://inspirehep.net/search?p=find+EPRINT+hep-th/0605182
http://dx.doi.org/10.1103/PhysRevLett.73.3499
http://arxiv.org/abs/hep-ph/9405262
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9405262
http://dx.doi.org/10.1016/0370-2693(95)00232-A
http://arxiv.org/abs/hep-ph/9412257
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9412257


J
H
E
P
0
9
(
2
0
1
2
)
0
3
9

[9] D.K. Hong, Y. Kim and S.-J. Sin, RG analysis of magnetic catalysis in dynamical symmetry

breaking, Phys. Rev. D 54 (1996) 7879 [hep-th/9603157] [INSPIRE].

[10] K. Klimenko, Three-dimensional Gross-Neveu model in an external magnetic field,

Theor. Math. Phys. 89 (1992) 1161 [INSPIRE].

[11] K. Klimenko, Three-dimensional Gross-Neveu model at nonzero temperature and in an

external magnetic field, Z. Phys. C 54 (1992) 323 [INSPIRE].

[12] K. Klimenko, Three-dimensional Gross-Neveu model at nonzero temperature and in an

external magnetic field, Theor. Math. Phys. 90 (1992) 1 [INSPIRE].

[13] V.G. Filev, C.V. Johnson, R. Rashkov and K. Viswanathan, Flavoured large-N gauge theory

in an external magnetic field, JHEP 10 (2007) 019 [hep-th/0701001] [INSPIRE].

[14] V.G. Filev and R.C. Raskov, Magnetic Catalysis of Chiral Symmetry Breaking. A Holographic

Prospective, Adv. High Energy Phys. 2010 (2010) 473206 [arXiv:1010.0444] [INSPIRE].

[15] V.G. Filev, Criticality, scaling and chiral symmetry breaking in external magnetic field,

JHEP 04 (2008) 088 [arXiv:0706.3811] [INSPIRE].

[16] J. Erdmenger, R. Meyer and J.P. Shock, AdS/CFT with flavour in electric and magnetic

Kalb-Ramond fields, JHEP 12 (2007) 091 [arXiv:0709.1551] [INSPIRE].

[17] J. Erdmenger, N. Evans, I. Kirsch and E. Threlfall, Mesons in Gauge/Gravity Duals - A

Review, Eur. Phys. J. A 35 (2008) 81 [arXiv:0711.4467] [INSPIRE].

[18] C.V. Johnson and A. Kundu, External Fields and Chiral Symmetry Breaking in the

Sakai-Sugimoto Model, JHEP 12 (2008) 053 [arXiv:0803.0038] [INSPIRE].

[19] A. Zayakin, QCD Vacuum Properties in a Magnetic Field from AdS/CFT: Chiral

Condensate and Goldstone Mass, JHEP 07 (2008) 116 [arXiv:0807.2917] [INSPIRE].

[20] V.G. Filev, C.V. Johnson and J.P. Shock, Universal Holographic Chiral Dynamics in an

External Magnetic Field, JHEP 08 (2009) 013 [arXiv:0903.5345] [INSPIRE].

[21] V.G. Filev, Hot Defect Superconformal Field Theory in an External Magnetic Field,

JHEP 11 (2009) 123 [arXiv:0910.0554] [INSPIRE].

[22] N. Evans, A. Gebauer, K.-Y. Kim and M. Magou, Holographic Description of the Phase

Diagram of a Chiral Symmetry Breaking Gauge Theory, JHEP 03 (2010) 132

[arXiv:1002.1885] [INSPIRE].

[23] K. Jensen, A. Karch and E.G. Thompson, A Holographic Quantum Critical Point at Finite

Magnetic Field and Finite Density, JHEP 05 (2010) 015 [arXiv:1002.2447] [INSPIRE].

[24] K. Jensen, A. Karch, D.T. Son and E.G. Thompson, Holographic

Berezinskii-Kosterlitz-Thouless Transitions, Phys. Rev. Lett. 105 (2010) 041601

[arXiv:1002.3159] [INSPIRE].

[25] N. Evans, A. Gebauer, K.-Y. Kim and M. Magou, Phase diagram of the D3/D5 system in a

magnetic field and a BKT transition, Phys. Lett. B 698 (2011) 91 [arXiv:1003.2694]

[INSPIRE].

[26] N. Evans, T. Kalaydzhyan, K.-y. Kim and I. Kirsch, Non-equilibrium physics at a holographic

chiral phase transition, JHEP 01 (2011) 050 [arXiv:1011.2519] [INSPIRE].

[27] N. Evans, A. Gebauer and K.-Y. Kim, E, B, µ, T Phase Structure of the D3/D7

Holographic Dual, JHEP 05 (2011) 067 [arXiv:1103.5627] [INSPIRE].

– 37 –

http://dx.doi.org/10.1103/PhysRevD.54.7879
http://arxiv.org/abs/hep-th/9603157
http://inspirehep.net/search?p=find+EPRINT+hep-th/9603157
http://dx.doi.org/10.1007/BF01015908
http://inspirehep.net/search?p=find+J+Theor.Math.Phys.,89,1161
http://dx.doi.org/10.1007/BF01566663
http://inspirehep.net/search?p=find+J+Z.Physik,C54,323
http://dx.doi.org/10.1007/BF01018812
http://inspirehep.net/search?p=find+J+Theor.Math.Phys.,90,1
http://dx.doi.org/10.1088/1126-6708/2007/10/019
http://arxiv.org/abs/hep-th/0701001
http://inspirehep.net/search?p=find+EPRINT+hep-th/0701001
http://dx.doi.org/10.1155/2010/473206
http://arxiv.org/abs/1010.0444
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.0444
http://dx.doi.org/10.1088/1126-6708/2008/04/088
http://arxiv.org/abs/0706.3811
http://inspirehep.net/search?p=find+EPRINT+arXiv:0706.3811
http://dx.doi.org/10.1088/1126-6708/2007/12/091
http://arxiv.org/abs/0709.1551
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.1551
http://dx.doi.org/10.1140/epja/i2007-10540-1
http://arxiv.org/abs/0711.4467
http://inspirehep.net/search?p=find+EPRINT+arXiv:0711.4467
http://dx.doi.org/10.1088/1126-6708/2008/12/053
http://arxiv.org/abs/0803.0038
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.0038
http://dx.doi.org/10.1088/1126-6708/2008/07/116
http://arxiv.org/abs/0807.2917
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.2917
http://dx.doi.org/10.1088/1126-6708/2009/08/013
http://arxiv.org/abs/0903.5345
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.5345
http://dx.doi.org/10.1088/1126-6708/2009/11/123
http://arxiv.org/abs/0910.0554
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.0554
http://dx.doi.org/10.1007/JHEP03(2010)132
http://arxiv.org/abs/1002.1885
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.1885
http://dx.doi.org/10.1007/JHEP05(2010)015
http://arxiv.org/abs/1002.2447
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.2447
http://dx.doi.org/10.1103/PhysRevLett.105.041601
http://arxiv.org/abs/1002.3159
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.3159
http://dx.doi.org/10.1016/j.physletb.2011.03.004
http://arxiv.org/abs/1003.2694
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.2694
http://dx.doi.org/10.1007/JHEP01(2011)050
http://arxiv.org/abs/1011.2519
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.2519
http://dx.doi.org/10.1007/JHEP05(2011)067
http://arxiv.org/abs/1103.5627
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.5627


J
H
E
P
0
9
(
2
0
1
2
)
0
3
9

[28] S. Bolognesi and D. Tong, Magnetic Catalysis in AdS4,

Class. Quant. Grav. 29 (2012) 194003 [arXiv:1110.5902] [INSPIRE].

[29] M.S. Alam, V.S. Kaplunovsky and A. Kundu, Chiral Symmetry Breaking and External Fields

in the Kuperstein-Sonnenschein Model, JHEP 04 (2012) 111 [arXiv:1202.3488] [INSPIRE].

[30] S. Bolognesi, J.N. Laia, D. Tong and K. Wong, A Gapless Hard Wall: Magnetic Catalysis in

Bulk and Boundary, JHEP 07 (2012) 162 [arXiv:1204.6029] [INSPIRE].

[31] A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236]

[INSPIRE].

[32] F. Bigazzi, R. Casero, A. Cotrone, E. Kiritsis and A. Paredes, Non-critical holography and

four-dimensional CFT’s with fundamentals, JHEP 10 (2005) 012 [hep-th/0505140]

[INSPIRE].
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