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1 Introduction

It has been more than a decade since the emergence of the technology of singularity resolu-

tion by D-branes, in the construction of supersymmetric gauge theories on their worldvol-

ume. This connection between gauge theory dynamics and Calabi-Yau geometry has been

a triumph of the AdS/CFT correspondence [1–3]. Much progress has undoubtedly been

made, especially for the largest class known to the correspondence, constituting almost all

the known examples. This is the class of toric singularities [4–7].

For four-dimensional gauge theories arising from toric Calabi-Yau threefolds, the ge-

ometry is controlled by a planar toric diagram consisting of a convex, lattice polygon and

its interior lattice points. On the other hand, it has by now become clear that the best way

to understand the physics is through dimer models or, equivalently, periodic brane tilings

on the plane [8–11]. The complete encoding of the worldvolume quiver gauge theory in
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terms of these bi-partite graphs drawn on a torus has led to both the simplification of ex-

isting problems as well as development of new ideas in a plethora of directions ranging from

physics to mathematics. The computation of moduli spaces has been trivialized, quantities

such as R-charges or procedures such as Higgsing or Seiberg duality [12] have found new

graphical realizations. In parallel, geometric resolution by combinatorics of perfect match-

ings or number-theoretic issues such as the field extension of the defining torus have also

provided a fruitful dialogue.

Last year, the path to a new direction was illuminated in the mathematics literature

by [13], where a correspondence between dimer models and certain integrable models was

found. The correspondence associates any dimer model on a torus to a (0+1)-dimensional

quantum integrable system — which they dub cluster integrable system — whose phase

space contains the moduli space of line bundles with connections on Γ and whose Hamil-

tonian and Casimir operators are given by the partition function of the dimer model.

This connection was readily exploited in our current context of toric gauge theories

in [14–16]. Explicit integrable systems can be thus established for the myriad of theories

in the catalogue (cf. [17, 18]) of brane tilings.

Fortified by the strengthening of this correspondence in various guises, we propose to

extend it in yet another direction, investigating whether a certain continuous limit exists.

Indeed, our dimer models are finite graphs, thereby giving a finite number of faces in the

fundamental domain of the torus. Loops around these faces, together with loops around the

two fundamental directions of the torus, provide a parametrization of the Poisson manifold

of the integrable system. Nevertheless, one could envision a toric diagram with an infinite

number of lattice points corresponding to some singularity of infinite order — obtained

for example by taking the limit of an Abelian orbifold with the quotient group taken to

infinite order. In this situation, we shall be dealing with an integrable system with an

infinite number of degrees of freedom. Can we construct in this way continuous integrable

field theories in (1+1) or even (2+1) dimensions? If so, can dimer models provide new

tools or useful perspectives?

In order to initiate this study we need to understand how to “glue” and “split” two

integrable systems in our present framework. The procedure of splitting or gluing toric

diagrams, in relation to geometric resolutions, is well-known. An efficient method for

studying general resolutions exploiting dimer models was introduced [19]. In this paper we

will first systematically study how this splitting/gluing is mapped to the integrable-system

variables, and will demonstrate how this manifests in the spectral curve (defined as the zero

locus of the Newton polynomial) associated to the toric diagram. We will also discuss the

combinatorics of contributions to conserved charges in the limit in which a large number

of building blocks are pasted. Finally, we will introduce a toy model that exhibits some

of the desired features of a reformulation of cluster integrable systems in the continuous

limit.

The organization of the paper is as follows. In section 2 we review the correspondence

between dimer models and integrable systems. Section 3 discusses the gluing and splitting

of spectral surfaces and its relation to the resolution of toric singularities. In 4 we identify

a continuous parameter controlling the separation of individual components. We relate
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this parameter to expectation values in the underlying quiver gauge theory and introduce

two methods for finding the dependence of the integrable system on it. These ideas are

illustrated with explicit examples in section 5. In section 6, we investigate the combination

of a large number of building blocks and introduce a simple toy model that exhibits some

properties we expect in the continuous limit of cluster integrable systems. We conclude in

section 7.

2 Dimer models and cluster integrable systems

A remarkable correspondence linking dimer models to an infinite class of integrable systems,

denoted cluster integrable systems, was recently introduced in [13]. We now provide a brief

review of the correspondence.

The Poisson manifold of the integrable system is parametrized by oriented loops on

the brane tiling. Cycles going clockwise around each face wi (i = 1, . . . , Ng, with Ng

the number of gauge groups in the quiver) and the cycles z1 and z2 wrapping the two

directions of the 2-torus provide one possible basis for loops. The w-variables are subject

to the constraint
∏Ng

i=1wi = 1, which sometimes can be used to simplify expressions.

The Poisson brackets are given by

{wi, wj} = ǫwi,wj
wiwj

{z1, z2} = (〈z1, z2〉+ ǫz1,z2) z1z2 (2.1)

{za, wi} = ǫza,wi
zawi

where ǫx,y is the number of edges on which the x and y loops overlap, with orientation.

Then, ǫwi,wj
is simply the antisymmetric oriented adjacency matrix that counts the number

of arrows between gauge groups in the quiver dual to the brane tiling.

The integrable system can be quantized replacing the Poisson brackets by a q-deformed

algebra, which takes the form

XiXj = qnijXjXi , (2.2)

where Xi = exi , q = e−i2π~ and nij = {xi, xj}/(xixj).

Every perfect matching is associated with a point in a toric diagram [9]. When more

than one perfect matching corresponds to the same point, we must add all their contri-

butions. As we have just reviewed, the natural variables of cluster integrable systems are

loops. We can translate any perfect matching into a closed loop on the tiling by subtracting

a reference perfect matching.

In [13], it was shown that the commutators defined by (2.2) and (2.1) give rise to

(0 + 1)-dimensional quantum integrable system, whose conserved charges are:

• Casimirs: they commute with everything and are given by the ratio between contri-

butions associated to consecutive points on the boundary of the toric diagram.

• Hamiltonians: they commute with each other and correspond to the internal points

in the toric diagram.

– 3 –
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The toric diagram of the Calabi-Yau 3-fold associated to the dimer model gives rise to

a Riemann surface of genus equaling to the number of internal points. The latter is given

by the zero locus of the Newton or characteristic polynomial

D = {(v1, v2)i} ❀ P (z1, z2) =
∑

i

ciz
v1
1 zv22 , (2.3)

where D is the planar toric diagram, specified by lattice points (v1, v2)i and z1, z2 ∈C are

complex coordinates. The coefficients ci are functions of the w-variables. This Riemann

surface is indeed the spectral curve of the integrable system.

The full Poisson manifold of the integrable system is obtained by gluing different

patches via cluster transformations, equivalently Seiberg duality in the associated quiver

gauge theories.

3 Gluing and splitting

In this section we discuss the decomposition of a spectral curve into pieces and the reverse

procedure of gluing spectral curves. We also consider another context in which this process

arises, the desingularization, or Higgsing, of a Calabi-Yau space. The intimate connec-

tion between the decomposition of integrable systems and Higgsing will be the topic of

forthcoming sections.

3.1 Spectral curves

Let us consider the splitting process

Σ −→ Σ1 +Σ2 , (3.1)

where Σ is the “parent” spectral curve and Σ1,2 are the two daughters. In this process we

elongate certain throats of the Σ until it breaks into two pieces. Since the spectral curve

is a thickening of the (p, q)-web [20, 21], which is the graph dual to the toric diagram,

the connecting throats are dual to segments joining points of the toric diagram along the

boundary between the daughters, as shown in figure 1.

The separation between components of the spectral curve is achieved by tuning the

coefficients ci in the characteristic polynomial (2.3). In the integrable system, these coeffi-

cients are functions of the w-variables. In the limit of large distance between components,

the ci’s scale differently with respect to the separation and develop a hierarchical structure.

Given a decomposition of the spectral curve into two pieces, it is natural to expect

that in the limit of infinite separation the original integrable system reduces to the sum of

the integrable systems associated to the two components. In sections 4 and 5, we provide

a detailed explanation of how this intuition is realized.

Taking the splitting process to an extreme we obtain a decomposition of any Riemann

surface into a collection of trinions, i.e. spheres with three punctures. Any such decomposi-

tion is in one-to-one correspondence with triangulations of the toric diagram. Each triangle

gives rise to a trinion. Their number is thus equal to twice the area of the toric diagram,
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Figure 1. Splitting of a Riemann surface into two daughters.

Figure 2. A general triangulation of the toric diagram and the corresponding trinion decomposition

of the spectral curve.

which in turn is equal to the number of gauge groups in the associated quiver gauge the-

ory. These decompositions allow us to see the full integrable system continuously emerge

from the combination of trivial integrable systems associated to trinions. Figure 2 shows

a possible triangulation of a toric diagram and its corresponding trinion decomposition.

A standard method in real (“tropical”) geometry to visualize Riemann surfaces, which

will prove useful in later sections, is the so-called amœba projection:

A : (z1, z2) 7→
(
log |z1|, log |z2|

)
. (3.2)

The amœba can be thought of as a thickening of the graph-dual of the toric diagram; i.e.,

we can draw the (p, q)-web from D and this will constitute the “spine” of the amœba. In

the actual plot, the “tentacles” which tend to infinity will have their directions given by

the (p, q)-vectors which are normal to the toric diagram.

As explained in the introduction, what we ultimately wish to study is the integrable

system that emerges in the continuous limit where we glue a countably infinite number
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Figure 3. Combining an infinite number of elementary spectral curves to generate a (1 + 1)-

dimensional theory. By performing a similar gluing along the vertical direction we expect to generate

a (2 + 1)-dimensional theory.

of toric sub-diagrams, or equivalently, spectral curves. We conjecture that, depending on

how we assemble these building blocks, the integrable systems with an infinite number of

degrees of freedom that are generated by this procedure are (1 + 1) or (2 + 1)-dimensional

integrable field theories. Figure 3 shows a number of elementary spectral curves glued to

generate a (1 + 1)-dimensional theory.

3.2 Partial resolution of Calabi-Yau singularities and Higgsing

The splitting and gluing of Riemann surfaces of the type discussed in section 3.1 also play

an important role in the context of partial resolutions of toric singular Calabi-Yau 3-folds.

We now review this process from geometric, gauge theoretic and dimer model perspectives.

In section 4 we elaborate on the intimate connections with the (de)composition of integrable

systems.

Geometrically, the partial resolution of a toric singularity corresponds to the process

illustrated in figure 1: one takes the toric diagram and divides it into components.1 The

resulting components must correspond to well-behaved toric diagrams, which constrain

them to be convex. For concreteness, we will focus on the case in which we split the

toric diagram into two parts, to which we shall affectionately refer as the parent with two

daughters. It is possible to deal with more components by iteration of this procedure.2

Let us now describe the resolution from the perspective of the quiver theory on the

worldvolume of D3-brane probes. This is of course standard technology dating back to

the early days of studying quiver gauge theories from toric Calabi-Yau singularities [4–7].

The starting point is a set of N = n1 + n2 D3-branes on the parent singularity. All chiral

fields in the parent quiver are (n1 + n2) × (n1 + n2) matrices. The parent singularity is

then resolved into two daughter singularities containing n1 and n2 D3-branes, respectively.

As a result, we obtain two decoupled quiver gauge theories, whose gauge group ranks are

given by n1 and n2. From a gauge theory viewpoint, this resolution corresponds to turning

on non-zero vacuum expectation values (vevs) for some block sub-matrices in the scalar

components of these fields. Fields charged under gauge groups in both quivers have masses

controlled by the expectation values and decouple from the low energy theory.

1In the dual cone picture of the toric variety, this is the process of stellar division [22].
2Not all decompositions can be reduced to a sequence of binary splittings. A necessary condition is that,

at each step, the toric diagrams of the daughters are convex.
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Figure 4. The resolution of the parent singularity with parallel coincident N = n1+n2 D3-branes

(on the left) results in two daughter theories with n1 and n2 D3-brane respectively. The blue cone

signifies the Calabi-Yau singularity at the tip of which the D3-branes sit.

A pictorial representation of this process is given in figure 4. One could envisage,

of course, the reverse process of gluing to produce a more singular parent. This should

correspond to an un-Higgsing mechanism (q. v. [23]). We will illustrate these ideas with

explicit examples in section 5.

For our purposes, it is sufficient to focus on the simple case in which n1 = n2 = 1. We

focus on diagonal vevs of the form

〈Xij〉 =

(

X
(1)
ij 0

0 X
(2)
ij

)

, (3.3)

for the field Xij in the parent theory. We will stick to this case throughout the paper.

Resolutions generically involve turning on several non-zero expectation values simultane-

ously. We restrict to the case in which all non-zero vevs have the same magnitude, which

will turn out to control the distance between the daughter singularities.3 The acquisition

of vevs in this fashion will split the parent theory into its two daughters.

3.2.1 Resolution in the dimer model

One of the greatest computational challenges to the resolution of toric singularities by

D3-branes was the identification of which fields in the parent acquire non-zero vevs [6, 7].

This issue was resolved by the dimer model representation of toric quiver gauge theo-

ries [8, 9, 11]. Dimer models are extremely useful for identifying the non-zero vevs that are

necessary in order to achieve a given resolution. An elegant description of general partial

resolutions, exploiting the map between the dimer model and a tiling of the spectral curve,

was introduced in [19]. We now briefly review this procedure.

Like perfect matchings, zig-zag paths play a prominent role in connecting dimer models

to geometry. They are defined as paths that alternate between turning maximally right

and maximally left at consecutive nodes in the bane tiling. Each edge, then, has exactly

two oppositely oriented zig-zag paths, criss-crossing before heading to nodes of opposite

3Theories with different vevs give rise to multiple energy scales. If these scales are hierarchically sepa-

rated, the Higgsing process can be studied sequentially.
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color, weaving an intertwined pattern on the torus. For consistent gauge theories, these

zig-zag paths never intersect themselves and form closed loops wrapping (p, q)-cycles on

the torus.

The untwisting map is an operation on zig-zag paths that exchanges the criss-cross

and turns a brane tiling, which by construction lives on a 2-torus, into a tiling of the

spectral curve Σ (which we recall is the zero locus of the Newton polynomial for the given

toric diagram) and vice versa. We refer the reader to [11] for a detailed explanation of the

untwisting map whose effect on zig-zag paths of both T
2 and Σ is summarized below.

T
2 Σ

zig-zag path ↔ face = puncture

face = gauge group ↔ zig-zag path

Starting from the parent spectral curve Σ, we elongate one or several internal throats

that connect the two daughters, Σ1 and Σ2. The daughters then decouple in the limit in

which these throats become infinitely long. From the viewpoint of the daughters, these

throats become new external legs, i.e., new punctures. The appearance of new punctures

can easily be implemented in terms of brane tilings. We consider one copy of the original

brane tiling on T
2 for each of the two daughters. On each copy, we draw the zig-zag paths

associated to the original punctures that will end up on the corresponding component.

Next, we introduce the paths which are the complement to these zig-zag paths in the

original set. These new paths correspond to the new punctures that are generated in the

splitting process.

In order for the new paths to become actual zig-zag paths, some edges must be removed

from the daughter tilings. The bifundamentals on the tiling that do not have any paths

running over them are removed. These are precisely the ones that acquire non-zero vevs

in the Higgsing. Generically, different edges are removed from the two tilings associated to

the daughters. This is the manifestation, in dimer language, of the matrix vevs in (3.3). In

section 5, we present explicit examples illustrating this procedure. Bivalent nodes might be

generated when removing edges. They correspond to massive fields that can be integrated

out [9]. From the perspective of the daughter integrable systems, the generation of new

punctures corresponds to the appearance of new Casimir operators.

When Higgsing, the rule for removing perfect matchings is simple: every perfect match-

ing containing an edge corresponding to a field with a non-zero vev, must be eliminated.

The mapping of the dimer model into a tiling of the spectral curve provides an interesting

alternative perspective on the disappearance of perfect matchings. Differences of perfect

matchings are translated into 1-cycles with appropriate homology on Σ. The difference

between two adjacent perfect matchings, say p and p′, in the toric diagram simply cor-

responds to a 1-cycle wrapped around the associated elongation of Σ. Once Σ has been

split, certain 1-cycles will no longer be able to exist. If the difference between two perfect

matchings is contained in any of the sub-dimers, both perfect matchings will survive in the

corresponding component of the daughter singularity. On the other hand, if the difference

is not contained in any sub-dimer, one or both of the perfect matchings will not survive

the Higgsing process.

– 8 –
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In general, the set of non-zero expectation values resulting in a given decomposition,

or, equivalently, the set of removed edges from the daughter brane tilings, is not unique.

In section 5, we will discuss the issue of multiple solutions for an explicit example in detail.

4 A continuous control parameter

As we have already mentioned, the splitting of the spectral curve follows from certain

hierarchies between the coefficients in the characteristic polynomial. These hierarchies are

controlled by a continuous parameter, which we will denote Λ; in quiver language it is

connected to the non-zero expectation values of bifundamental fields.

In this section, we introduce two complementary approaches for determining the pre-

cise dependence of Λ on the coefficients of P (z1, z2) that achieves a given Σ → Σ1 + Σ2

decomposition.

4.1 Scalings from VEVs

Without loss of generality, we can identify Λ with the non-zero vevs, i.e. 〈X
(a)
ij 〉 = Λ. The

coefficients in P (z1, z2) are polynomials in the wi variables, corresponding to closed loops

with vanishing homology on the brane tiling. Following [24] (see also [25] for applications

of this idea), we can write any loop in terms of edges in the brane tiling as

v(γ) =
k−1∏

i=1

X(wi, bi)

X(wi+1, bi)
, (4.1)

where the product runs over the contour γ and bi and wj denote black and white nodes.

Here, X(wi, bi) and X(wi+1, bi) are bifundamental fields, in which we explicitly indicate

the tiling nodes connected by the corresponding edge when going around γ instead of

employing the usual notation with subindices for the gauge groups under which they are

charged. Going back and forth between the two notations is straightforward. Furthermore,

we remind the reader that the variables defined section 2 for our integrable system, in terms

of the notation in (4.1), are

wj = v(γwj
) ; zi = v(γzi) j = 1, . . . , Ng , i = 1, 2 . (4.2)

We can thus obtain the Λ-scaling of any loop by plugging the expectation values

into (4.1). The conclusion is that we obtain the following factors4

Scaling Λ for each 〈X(wi, bi)〉 = Λ

Scaling Λ−1 for each 〈X(wi+1, bi)〉 = Λ
(4.3)

Applying (4.3) directly to the wi cycles, we can rephrase it in terms of vevs for fields

transforming in the fundamental or antifundamental representation of the corresponding

4Exchanging black and white nodes, an operation that has no effect on the physics, exchanges Λ with

Λ−1. This operation does not affect the scalings of individual contributions to conserved charges though,

since it also inverts the orientation of all paths.
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w

Λ Λ−1 Λ0

Figure 5. Examples of Λ scalings of a wi cycle, which we have drawn as the cyclic arrow in blue.

We indicate the edge associated with a field with a non-zero vev in red.

gauge group. We obtain

within wi cycle : Λ for each 〈Xji〉 = Λ

Λ−1 for each 〈Xij〉 = Λ
(4.4)

where we have changed the notation and subindices indicate gauge groups connected by

bifundamentals. We show some examples in figure 5.

Notice that we have not included color indices in (4.1). Similarly, we have not specified

on which of the two daughter components, which have different sets of non-zero vevs, the

scalings in (4.3) and (4.4) must be calculated. However, on physical grounds, it is clear

that determining the scaling in any of the two daughters leads to the same result. We shall

present explicit examples in section 5.

We have explained how to determine the Λ of any loop in the tiling arising from a

general decomposition of the Riemann surface. It is important to emphasize that the Λ-

independent part of these loops can be completely arbitrary in size, but in a way that is

uncorrelated with the splitting of Σ.

4.2 Scalings from the spectral curve

Let us now introduce an alternative method for determining the Λ scalings directly asso-

ciated with a decomposition of the spectral curve in an algorithmic fashion, wherein we

obtain a set of explicit Diophantine inequalities which needs to be solved. Suppose the

parent spectral curve, corresponding to the toric diagram DP = {vi1, v
i
2} (with i indexing

the nodes) can be written as

P (z1, z2) =
∑

i

( pi∑

k=1

NG∏

j=1

w
αi
k,j

j

)

z
vi
1

1 z
vi
2

2 ; (4.5)

here, we have explicitly written the coefficients as sums over monomials in the w-variables.

Indeed, the number of terms, which we index by k, of monomials for the i-th node is the

number of perfect matchings pi for that node. Finally, each monomial is a product of

w-variables, indexed by j, raised to integers αi
k,j .

5

Now, when we Higgs, the coefficients — as polynomials in w-variables — separate into

the sum of two types of terms: those which survive the Higgsing, which we shall separate

5It is always possible if desired, although not necessary, to bring the monomials to a form in which

αi
k,j ≥ 0 by using

∏Ng

j=1 wj = 1.

– 10 –
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into the first si terms for the i-th node, and those which do not, which are the remaining

pi − si terms:

P (z1, z2) =
∑

i

( si∑

k=1

NG∏

j=1

w
αi
k,j

j +

pi∑

k=si+1

NG∏

j=1

w
βi
k,j

j

)

z
vi
1

1 z
vi
2

2 ; (4.6)

as an emphasis, we have relabeled the powers of the monomials which do not survive as βi
k,j .

Now, let us introduce the scalings (we can take, without loss of generality, the powers

kj to be integers):

wj −→ Λκj , κj ∈ ZZ (4.7)

and substitute back into (4.6) to give

P (z1, z2) =
∑

i

(
si∑

k=1

Λ

NG∑

j=1

κjα
i
k,j

+

pi∑

k=si+1

Λ

NG∑

j=1

κjβ
i
k,j

)

z
vi
1

1 z
vi
2

2 ; (4.8)

It is now clear what has to occur: for the terms which survive, they must have the

same order in Λ and those which do not, must have strictly less order. In other words,

for each i, we must have
∑NG

j=1 κjα
i
1,j =

∑NG

j=1 κjα
i
2,j = . . . =

∑NG

j=1 κjα
i
si,j

≡ C. This

C must be strictly greater than each of
∑NG

j=1 κjβ
i
k,j for k = si + 1, . . . , pi. Finally, we

recall that
∏NG

j=1wj = 1, so that
∑NG

j=1 κj = 0. The terms that do not survive are precisely

those associated to perfect matchings that are removed by the Higgsing. We can use this

identification to determine a priori which terms must have a relative Λ suppression.

In summary, we have the following set of Diophantine inequalities in κ: for each

i = 1, 2, . . . , n where n is the number of nodes in the toric diagram,

C =

NG∑

j=1

κjα
i
k,j for all k = 1, . . . , si

C >

NG∑

j=1

κjβ
i
k,j for each k = si + 1, . . . , pi

0 =

NG∑

j=1

κj . (4.9)

5 Explicit examples

Having abstractly discussed how the splitting should work by obtaining the weights of the

variables either from the acquisition of vevs in the dimer or from the coefficients in the

spectral curve, we can now illustrate our proposal in detail with some explicit examples.

In this section, we will first study the cone over the double zeroth Hirzebruch surface and

then the space Y 4,0. These will give ample demonstration of our technique.

– 11 –
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Figure 6. Brane tiling for the double F0 theory.

Figure 7. Toric diagram for the double F0. A red line indicated how we split it into two components.

5.1 Double F0

Let us consider a Z2 orbifold of F0, whose toric diagram is shown in figure 7, to which

we refer as the double F0 theory. Figure 6 shows the corresponding brane tiling. We see

that there are 8 the gauge groups, twice that of F0, and 16 bifundamental fields which

we shall denote as Xij in standard nomenclature, signifying the field corresponding to the

edge bounding face i and face j in figure 6. The superpotential terms are all quartic and

can also be instantly read off from the figure. We wish to consider the decomposition of

this geometry into two copies of F0, as shown in figure 7.

Using the ideas of [19], which were summarized in section 3.2.1, we conclude there are

four possible sets of expectation values leading to the same desired decomposition of the

geometry. They are:

Higgsing 1 : X
(1)
41 , X

(1)
12 , X

(1)
85 , X

(1)
56 Higgsing 2 : X

(1)
34 , X

(1)
41 , X

(1)
78 , X

(1)
85

X
(2)
83 , X

(2)
32 , X

(2)
47 , X

(2)
76 X

(2)
32 , X

(2)
25 , X

(2)
76 , X

(2)
61

Higgsing 3 : X
(1)
27 , X

(1)
78 , X

(1)
63 , X

(1)
34 Higgsing 4 : X

(1)
12 , X

(1)
27 , X

(1)
56 , X

(1)
63

X
(2)
25 , X

(2)
54 , X

(2)
61 , X

(2)
18 X

(2)
18 , X

(2)
83 , X

(2)
54 , X

(2)
47

(5.1)

We have separated, in the above, the 8 fields of the parent theory that get a non-zero vev

into its two daughters, which following the notation in (3.3) we denote by superscripts (1)

and (2) respectively. We see that each daughter contains four fields with non-zero vevs.

From these non-zero vevs and the rule prescribed in (4.4), we determine the weights of our

– 12 –
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Figure 8. Dimer models for the four Higgsings of the double F0 theory into two daughter F0

theories.

wi variables for the four Higgsings:

Higgsing w1 w2 w3 w4 w5 w6 w7 w8

1 1 Λ 1 Λ−1 1 Λ 1 Λ−1

2 Λ 1 Λ−1 1 Λ 1 Λ−1 1

3 1 Λ−1 1 Λ 1 Λ−1 1 Λ

4 Λ−1 1 Λ 1 Λ−1 1 Λ 1

(5.2)

What is happening in the field theory, as graphically depicted by the dimer, is shown

in figure 8. In each of the four Higgsings, we separate the parent dimer model into the

complementary dimers of the two daughters, (1) on the left and (2) on the right. In order

to facilitate comparison with the original parent tiling, we have not integrated out massive

fields. If we do so, we obtain the square lattice characteristic of F0.

The weights associated to different Higgsings are simply related by an overall shift,

which follows from the fact that the Higgsed tilings are also connected by shifts and rota-

tions as shown in figure 8.

The integrable system

We now investigate the effect of continuously splitting the spectral curve, equivalently

Higgsing, on the integrable system. In this process some contributions to conserved charges,

those associated perfect matchings removed by the Higgsing, are continuously suppressed

until the theory reduces to two decoupled integrable systems.

We can also determine the Λ-scaling of w-variables by analyzing the behavior of co-

efficients of the spectral curve. Indeed, we can find the weights in (5.2) independently by

the procedure outlined in section 4.2. Reassuringly, the results of using this method agrees

in all examples with the ones obtained from (4.4).

The tables below present the information in the integrable system for the double F0

theory. The (n1, n2) row refers to the coefficient for the zn1

1 zn2

2 term in the Newton polyno-

mial. For each of the Higgsings, we underline the contributions that survive in the Λ → ∞

– 13 –
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limit. The third column shows the surviving leading Λ dependence of the coefficients in

the characteristic polynomial.

Higgsing 1. Let us begin with Higgsing 1 and discuss it in a little more detail. For each

node in the toric diagram, here given as an integer 2-vector, we can specify the coefficient in

terms of the w-variables within the spectral curve using the technique of [15], as reviewed

in section 2. The number of monomials will correspond to the number of perfect matching

for the node. Let us take the (1, 1) point of the toric diagram as an example, which is an

internal node with 8 perfect matchings; the term in the spectral curve will be

(
w1w3w4 + w3w4 + w3 + 1 + w−1

6 + w−1
5 w−1

6 w−1
8 + w1w2w3w4 + w−1

5 w−1
6

)
z1z2 ,

where we have underlined the terms which survive the Higgsing. The ones that do not

survive can be immediately determined, they are the ones containing edges corresponding

to fields with non-zero vevs.

In terms of (4.9), this means the weights wj → Λkj must be such that k3 = 0 =

−k5 − k6 − k8 = k1 + k2 + k3 + k4 coming from the underlined terms and that they must

all be strictly greater than any of {k1 + k2 + k3 , k3 + k4 ,−k6 ,−k5 − k6} coming from the

non-underlined terms. This thus constitutes one of the inequalities. We do this for each

of the 8 points in the toric diagram and combine all these relations, supplementing by

the inequality that
8∑

j=1
kj = 0, and solve the resulting system over the integers. We will

find precisely the first row of the solution table in (5.2). In the table below, we will also

include, for reference, the final leading order weight for the surviving terms. For the (1, 1)

term above, this is just 0, whence the entry Λ0 = 1 in the third column. These results are

in full agreement with those derived using (5.2) and (4.4). In the examples that follow,

we have independently determined the Λ-scalings using both methods and confirmed their

agreement.

(n1, n2) Loops

(0, 0) 1 1

(1, 0) 1 + w1w2w5w6 Λ2

(2, 0) w1w2w5w6 Λ2

(1, 1) w1w3w4 + w3w4 + w3 + 1 + w−1
6 1

+w−1
5 w−1

6 w−1
8 + w1w2w3w4 + w−1

5 w−1
6

(2, 1) w1w3 + w1w
−1
8 + w−1

8 + w1 + w−1
6 w−1

8 Λ

+w−1
6 w−1

7 w−1
8 + w1w2w3w5 + w1w2w3

(1, 2) w3w4w
−1
5 w−1

6 Λ−2

(2, 2) w1w3w4w
−1
6 + w3w

−1
5 w−1

6 w−1
8 1

(3, 2) w1w3w
−1
6 w−1

8 1

(5.3)
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Higgsing 2. We can now perform a similar analysis for the second Higgsing and obtain:

(n1, n2) Loops

(0, 0) 1 1

(1, 0) 1 + w1w2w5w6 Λ2

(2, 0) w1w2w5w6 Λ2

(1, 1) w1w3w4 + w3w4 + w3 + 1 + w−1
6 1

+w−1
5 w−1

6 w−1
8 + w1w2w3w4 + w−1

5 w−1
6

(2, 1) w1w3 + w1w
−1
8 + w−1

8 + w1 + w−1
6 w−1

8 Λ

+w−1
6 w−1

7 w−1
8 + w1w2w3w5 + w1w2w3

(1, 2) w3w4w
−1
5 w−1

6 Λ−2

(2, 2) w1w3w4w
−1
6 + w3w

−1
5 w−1

6 w−1
8 1

(3, 2) w1w3w
−1
6 w−1

8 1

(5.4)

Higgsing 3. So too we can now study the third Higgsing, confirming our results:

(n1, n2) Loops

(0, 0) 1 1

(1, 0) 1 + w1w2w5w6 1

(2, 0) w1w2w5w6 Λ−2

(1, 1) w1w3w4 + w3w4 + w3 + 1 + w−1
6 Λ

+w−1
5 w−1

6 w−1
8 + w1w2w3w4 + w−1

5 w−1
6

(2, 1) w1w3 + w1w
−1
8 + w−1

8 + w1 + w−1
6 w−1

8 1

+w−1
6 w−1

7 w−1
8 + w1w2w3w5 + w1w2w3

(1, 2) w3w4w
−1
5 w−1

6 Λ2

(2, 2) w1w3w4w
−1
6 + w3w

−1
5 w−1

6 w−1
8 Λ2

(3, 2) w1w3w
−1
6 w−1

8 1

(5.5)
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Higgsing 4. Finally, we complete the story with the last Higgsing:

(n1, n2) Loops

(0, 0) 1 1

(1, 0) 1 + w1w2w5w6 1

(2, 0) w1w2w5w6 Λ−2

(1, 1) w1w3w4 + w3w4 + w3 + 1 + w−1
6 Λ

+w−1
5 w−1

6 w−1
8 + w1w2w3w4 + w−1

5 w−1
6

(2, 1) w1w3 + w1w
−1
8 + w−1

8 + w1 + w−1
6 w−1

8 1

+w−1
6 w−1

7 w−1
8 + w1w2w3w5 + w1w2w3

(1, 2) w3w4w
−1
5 w−1

6 Λ2

(2, 2) w1w3w4w
−1
6 + w3w

−1
5 w−1

6 w−1
8 Λ2

(3, 2) w1w3w
−1
6 w−1

8 1

(5.6)

Amœba projections

As reviewed in section 3.1, amœba plots provide a simple way of visualizing the spectral

curves. Thus, we can draw such projections of the spectral curve of the parent for some

large value of Λ, as an additional check that the scalings we obtained indeed give rise to

elongations leading to the desired splitting of the spectral curve.

Let the Λ-weights for each node in the toric diagram be given by the third column

in the tables above. The leading behavior in Λ coincides for Higgsings 1 and 2 and for

Higgsings 3 and 4. Furthermore, the two pairs are related to each other by a 180◦ rotation,

as shown in figure 9.

We see that, in perfect agreement, the amœba projections exhibit the corresponding

behavior. figure 10 shows the amœbas for the four Higgsings for large Λ.

Indeed, the amœbas for the four models coincide, up to a trivial shift on the (x, y)

plane. This results from the simple relation between their scalings as given by figure 9.

Furthermore, we see that the thin spine in the center controls precisely the spliting of the

double F0 into her two daughter F0 theories. The holes in the spectral curve associated to

internal points in the toric diagram have zero size in figure 10. This is due to the particular

choice of coefficients in the characteristic polynomial. These coefficients can be varied at

will without modifying their Λ-scaling and hence preserving the splitting.

5.2 Y 4,0

Fortified by the consistency our story for double F0, let us move onto another non-trivial

example. We now consider Y 4,0, whose corresponding integrable system has been worked

out in [15]. We remind the reader of the dimer model in figure 11. This is a theory with

8 gauge group factors, quartic superpotential terms and 16 fields, which we suggestively
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Figure 9. The corresponding weights of the coefficients in the Newton polynomial for Higgsings

1 and 2 are connected to those of Higgsings 3 and 4 by a 180◦ rotation of the corresponding toric

diagram.

Higgsings 1 and 2 Higgsings 3 and 4

Figure 10. Amœba plots for the 4 possible Higgsings with Λ set to the numerical value of e5.

The patchy appearance of these and subsequent amoeba plots, with some missing points in their

interior, is due to the fact that we determine them numerically.

label as Vij , Ṽij and Hij in accordance with their vertical and horizontal orientation. The

toric diagram is shown in figure 12, with 7 nodes.

We now study the two splittings depicted in figure 12. We will refer to them as

Higgsings 1 and 2. Specifically, the acquisition of vevs is as follows:

Higgsing 1 : H
(1)
32 , H

(1)
65 , H

(1)
14 , H

(1)
87 Higgsing 2 : V

(1)
51 , V

(1)
73 , Ṽ

(1)
26 , Ṽ

(1)
48

H
(2)
34 , H

(2)
67 , H

(2)
12 , H

(2)
85 Ṽ

(2)
51 , Ṽ

(2)
73 , V

(2)
26 , V

(2)
48

(5.7)

We remark that the black and white nodes are exchanged with respect to [15]. This

is of course only a matter of convention. As in the previous example, the choice of vevs

leading to each splitting is not unique. Having already illustrated this possibility with the

splitting of double F0 to two F0’s, we focus on the vevs given in (5.7) for convenience.
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Figure 11. Brane tiling for Y 4,0.

Once again, we determine the Λ-scalings associated to both decompositions using the

methods of section 4, i.e. both the rule in (4.4) and the algorithm in section 4.2, which

yield identical results. We obtain:

Higgsing w1 w2 w3 w4 w5 w6 w7 w8

b Λ−1 Λ Λ−1 Λ Λ Λ−1 Λ Λ−1

c Λ Λ−1 Λ Λ−1 Λ−1 Λ Λ−1 Λ

(5.8)

Higgsing 1. We follow the notation in the previous examples, write the coefficients in

terms of the w-monomials and underline the terms which survive. We tabulate this for

each node, and in the third column write the overall leading behavior in Λ for the terms

which survive.

(n1, n2) Loops

(0, 0) 1 1

(−1, 0) w4 + w4w8 + w4w7w8 + w3w4w7w8 Λ

+w−1
1 w−1

5 w−1
6 + w−1

1 w−1
5 + w−1

1 + 1

(−2, 0) w−1
1 w−1

5 w4 + w4w8 + w−1
1 w4w8 + w−1

1 w−1
5 w4w8 Λ2

+w−1
1 w−1

5 w−1
6 w4w8 + w4w7w8 + w−1

1 w4w7w8 + w−1
1 w−1

5 w4w7w8

+w3w4w7w8 + w−1
1 w3w4w7w8 + w−1

1 w−1
5 w3w4w7w8 + w−1

1 w−1
5 w−1

6

+w−1
1 w−1

5 + w3w
2
4w7w8 + w4w

−1
1 w−1

5 w−1
6 + w3w

2
4w7w

2
8

(−3, 0) w−1
1 w−1

5 w4w8 + w−1
1 w−1

5 w−1
6 w4w8 + w−1

1 w−1
5 w4w7w8 Λ

+w−1
1 w−1

5 w3w4w7w8 + w−1
1 w−1

5 w3w
2
4w7w8 + w3w

2
4w7w

2
8

+w−1
1 w3w

2
4w7w

2
8 + w−1

1 w−1
5 w3w

2
4w7w

2
8

(−4, 0) w−1
1 w−1

5 w3w
2
4w7w

2
8 1

(−2, 1) w−1
1 w4w7w8 Λ2

(−2,−1) w2w3w
2
4w7w8 Λ2

(5.9)
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Figure 12. Toric diagram for Y 4,0, showing the two splittings that we will investigate. The

splitting is indicated by the red line.

Higgsing 2. Likewise, we tabulate the result for Higgsing 2 and obtain:

(n1, n2) Loops

(0, 0) 1 1

(−1, 0) w4 + w4w8 + w4w7w8 + w3w4w7w8 1

+w−1
1 w−1

5 w−1
6 + w−1

1 w−1
5 + w−1

1 + 1

(−2, 0) w−1
1 w−1

5 w4 + w4w8 + w−1
1 w4w8 + w−1

1 w−1
5 w4w8 1

+w−1
1 w−1

5 w−1
6 w4w8 + w4w7w8 + w−1

1 w4w7w8 + w−1
1 w−1

5 w4w7w8

+w3w4w7w8 + w−1
1 w3w4w7w8 + w−1

1 w−1
5 w3w4w7w8 + w−1

1 w−1
5 w−1

6

+w−1
1 w−1

5 + w3w
2
4w7w8 + w4w

−1
1 w−1

5 w−1
6 + w3w

2
4w7w

2
8

(−3, 0) w−1
1 w−1

5 w4w8 + w−1
1 w−1

5 w−1
6 w4w8 + w−1

1 w−1
5 w4w7w8 1

+w−1
1 w−1

5 w3w4w7w8 + w−1
1 w−1

5 w3w
2
4w7w8 + w3w

2
4w7w

2
8

+w−1
1 w3w

2
4w7w

2
8 + w−1

1 w−1
5 w3w

2
4w7w

2
8

(−4, 0) w−1
1 w−1

5 w3w
2
4w7w

2
8 1

(−2, 1) w−1
1 w4w7w8 Λ−2

(−2,−1) w2w3w
2
4w7w8 Λ−2

(5.10)

Figure 13 shows the amœbas corresponding to the scalings in (5.9) and (5.10), con-

firming they produced the desired splitting.

6 Combining multiple components

In the previous sections, we have explained how to split integrable systems. Reversing the

logic, we also understand how to glue them. We have identified a continuous parameter

Λ that controls the distance between components of the spectral curve. This parameter

manifests itself in the associated quivers as non-zero vevs and suppresses certain contribu-

tions in the integrable system. We can now proceed towards our goal of understanding the

continuous limit of these systems.
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Figure 13. Amœba plots for Higgsings 1 and 2 of Y 4,0 at Λ = e3.

6.1 Combinatorics of a large number of components

Let us focus on the case in which we combine an infinite number of identical components

Σ0 along a single direction, effectively generating a new continuous dimension. The amœba

projection suggests a natural way to approach the continuum: we consider all components

equally separated in the amœba and then send the number of components N contained in

a finite interval of length L to infinity. More concretely, defining Λ ≡ eα, we consider the

limit

N → ∞ , α → 0 , L = Nα fixed. (6.1)

This will give us a (1 + 1)-dimensional integrable system from the continuous limit of an

infinite number of (0 + 1)-dimensional ones. In principle, it seems possible to do the same

in both the x and y directions, generating a (2 + 1)-dimensional integrable field theory in

the process.

Before studying this limit, let us investigate how the number of contributions to Hamil-

tonians behaves for large N . Following the dictionary in section 2, this number corresponds

to the multiplicity of perfect matchings associated to internal points in the toric diagram.6

Gluing N copies of an integrable system corresponds to considering a certain ZN

orbifold of the basic theory. In dimer model language, this corresponds to enlarging the

unit cell by a factor N . While the number of points in the toric diagram grows linearly

with N , their multiplicity grows much faster. Let us illustrate this growth in some explicit

examples.

6.1.1 Y N,0

The cone over Y N,0 is the ZN orbifold of the conifold with toric diagram given by figure 14.

The integrable system for this geometry was determined in [15] using the prescription

in [13], where it was identified with the N -site relativistic periodic Toda chain. Our goal

in this section is to investigate its behavior for large N .

6Casimirs are given by ratios of external points in the toric diagram. Hence, the same ideas apply

independently to their numerator and denominator.
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Figure 14. Toric diagram for Y N,0 for even N . The red circle indicates the reference perfect

matching and the green dots correspond to cycles with windings (−N/2−1, 1) and (−N/2−1,−1),

which are fixed by the Casimirs.

i=1,...,N

even ieven i
c i

id

i−1c

i

i

i

Figure 15. A convenient set of cycles for Y N,0 with even N . The cycles of type c only exist for

even i.

For simplifity, let us focus on the case of even N . A similar analysis is possile for

odd N . It turns out that the resulting integrable system is considerably simplified when

considering the basis of cycles given in figure 15, instead of using the standard w and

z-variables.7 In terms of this basis, the Hamiltonians become

Hn =
∑∏

di cj
︸︷︷︸

n factors

. (6.2)

The problem of finding the Hamiltonians is thus reduced to the combinatorics of non-

intersecting paths, which can be used to immediately determine the multiplicity of internal

points in the toric diagram. A closed expression for this multiplicity was derived in [26] by

using a Potts model like description for the dimers, and via a recursion relation that was

obtained from a map to a 1-dimensional monomer-dimer system. The final result for the

multiplicity of the nth internal point is

n∑

i=0

N

N − i

(
n

i

)(
N − i

n

)

, (6.3)

which applies for both even and odd N .

7Figure 15 shows 2N cycles. The two additional cycles that are necessary to form a basis, are fixed by

the Casimirs and hence not important in our discussion. They correspond to the green dots in figure 14.
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Figure 16. Normalized multiplicity of perfect matchings for the internal points of the Y N,0 theory.

We have also normalized the length of the toric diagram to 1. We show results for N = 2a,

a = 1, . . . , 20 (black to red).

N

Figure 17. Toric diagram for the N F0 model.

It is interesting to visualize how these multiplicities are distributed over the toric

diagram and how the distribution approaches some limit shape after appropriate normal-

ization. This is shown in figure 16.

6.1.2 Multiple F0

Similarly, we can investigate the generalization of the model considered in section 5.1 to

N copies of F0. Figure 17 shows its toric diagram.

In this case, it is also possible to find closed formulas for the multiplicities of all points

in the toric diagram. They are

Boundary points:

(
N

m

)

Internal points: 2

(
2N

2n− 1

)

(6.4)

where N is the number of F0’s that have been glued together and m ∈ {0, N} and n ∈

{1, N} index points on the boundary and in the interior of the toric diagram, respectively.

The limit shape corresponding for the multiplicities of internal points after normalization

is shown in figure 18.

These two examples illustrate a general behavior of large-N models, an explosive

growth in the number of perfect matchings associated to a given point in the toric di-

agram, which translated into a huge number of contributions for each conserved charge. It

thus becomes clear that a continuous reformulation of cluster integrable systems is desir-

able in order to deal with their large-N limit. In the next section we take the first steps

towards such a reformulation.
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Figure 18. Normalized multiplicity of perfect matchings for the internal points of the multiple

F0 theory. We have also normalized the length of the toric diagram to 1. We show results for

N = 2a+ 1, a = 0, . . . , 20 (black to red).

... k2WW1 ... W

z’

x = Lx = 0

z

Figure 19. A toy model for the continuous limit of cluster integrable systems. The path z can be

shifted by multiplying by all the Wi’s contained in the strip between its initial and final positions.

6.2 A toy model for the continuous limit

The two examples considered in the previous subsection share some common characteristics.

In both of them, the nth Hamiltonian corresponds to the sum over all possible positions

on the brane tiling of n paths, subject to the constraint of not overlapping over edges.

Furthermore, these paths are of a very specific type: they cross the tiling along the short

direction of the unit cell and are almost straight. By this we mean that these paths are

almost localized along the long direction of the unit cell. Figure 15 shows the explicit form

of these paths for Y N,0 and (6.2) gives the corresponding Hamiltonians. It is natural to

assume that this structure is generic when gluing N copies of a cluster integrable system

with a genus-1 spectral curve.8 In this section, we introduce a toy model with these

properties, which we expect captures the main features of a continuous reformulation of

cluster integrable systems.

Let us consider a system in the x ∈ [0, L] interval and introduce a path z winding

vertically at x = 0. This toy model is shown in figure 19.

8Attaching N copies of a genus-N spectral curve results in g N Hamiltonians. We expect the resulting

theories to obey a similar structure.
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We can shift z horizontally by multiplying it by all the wi variables contained in the

strip between x = 0 and its final position.

z →
∏

i∈strip

Wi z . (6.5)

HereWi stands in general for a product of wi’s contained in a slice of the tiling. The explicit

form of Wi is controlled by the details of the specific brane tiling under consideration.

Combining n paths and summing over their positions ki, i = 1, . . . , n, we obtain

Hn =

( n∏

i=1

∑

ki<ki+1

ki∏

j=0

Wj

)

zn, (6.6)

which we have suggestively called Hn, since it has the expected structure for Hamiltonian

operators.9 We can readily generalize this expression in the continuous limit, obtaining

Hn =

( n∏

i=1

∫ L

xi−1

dxi e
∫ xi
0

dy lnW(y)

)

zn, (6.7)

where x0 ≡ 0. While we have derived (6.7) under rather basic assumptions that try to

capture the most basic features observed in explicit examples, we expect it displays the

main aspects of the actual continuous limit of cluster integrable systems. We leave a

detailed investigation of this limit in explicit models for future work.

7 Conclusions

We have taken the initial steps in extending the correspondence between dimer models and

(0+1)-dimensional cluster integrable systems to continuous (1+1) and (2+1)-dimensional

integrable theories. In order to understand the transition between discrete and continuous

theories, it is necessary to have certain notion of distance between elementary constituents,

or “lattice spacing”, such that the continuous theory emerges when it is sent to zero. We

identified such a continuous parameter controlling the distance between daughters from the

perspectives of both spectral curves and the resolution of Calabi-Yau singularities, equiva-

lently the Higgsing of quivers. Furthermore, we introduced two procedures for determining

the integrable system dependence on this parameter, whose effect is to suppress certain

contributions to conserved charges, making them vanish in the infinite separation limit.

We then explored the integrable systems that are constructed by combining a large

number of components, equivalently by gluing a large number of toric diagrams. More

concretely, we studied, in explicit examples, the behavior of the number of contributions to

individual Hamiltonians as the number of components grows. These contributions are in

one-to-one correspondence with perfect matchings of the underlying dimer model. For this

reason, their number diverges much more rapidly than the number of components, begging

9Strictly speaking, Hamiltonians might also contain an n-independent power of the cycle orthogonal to

z, as dictated by the position of the corresponding internal point in the toric diagram. This fact can be

trivially incorporated in our expressions so, for simplicity, we omit it from our discussion.
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for an alternative continuous formulation of cluster integrable systems. We also observed

that each Hamiltonian is given by the contributions of a number of simple paths summed

over all their possible positions on the brane tiling. We used these insights to develop a

toy model that we expect reproduces the basic features of the continuous limit of cluster

integrable systems.

Interestingly, our investigation of the continuous merging of integrable system has also

resulted in a novel understanding of (un)Higgsing in quiver theories and the associated

desingularization of the corresponding Calabi-Yau spaces. Thus, we have added a new

angle of attack to the classical subject of D-brane resolution of singularities. We have

realized that when one refines the coefficients of the spectral curve into polynomials in loop

variables, the Higgsing/resolution simply corresponds to establishing a consistent scale Λ

dictating which monomials should survive or suppressed. Therefore, we have effectively

generated a new algorithm, outlined in section 4.2, for systematically studying all partial

resolutions for a given toric diagram. It would be worthwhile to exploit this procedure for

classifying all consistent daughter theories for a given parent.

What we have touched upon is, of course, only the beginning of a program. The natural

question that arises now is how to extend our continuous toy model to theories that are

actually constructible from dimers. For example, attempting to recover simple integrable

field theories such as Toda theories would be an obvious next step. Given the simplifications

afforded by dimer models, we expect it should be possible to construct increasingly more

elaborate integrable field theories.

We envision many applications of dimer models to continuous theories, such as the

study of integrablity preserving lower dimensional impurities or interfaces between different

integrable field theories. Indeed, in light of the correspondence with dimer models, the

often difficult condition of integrability simply amounts to checking whether the field theory

results from the infinite limit of consistent toric diagrams, i.e. that they are given by convex

lattice polygons.

In addition to the continuous limit, there are several exciting directions worth study-

ing for the dimer model/integrable system correspondence. For example, the correspon-

dence naturally associates (0+1)-dimensional relativistic integrable systems to the (3+1)-

dimensional superconformal field theories dual to the dimer models. Recently, similar

integrable systems have emerged in the study of (3+1)-dimensional N = 2 superconformal

theories in the contexts of superconformal indices [27] and the enumeration of vacua in the

Omega background [28, 29]. It would be interesting to investigate whether the different

ways in which integrable systems emerge are indeed related.
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