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1 Introduction

Among the rich structures discovered in string theories, some of the most intriguing ones

are “stringy” symmetries, which have no correspondence in point particle theories. T-

duality is an example of such, for some backgrounds. These additional symmetries can

serve various purposes, like constructing an orbifold, or patching the target space fields

of a string configuration,1 instead of using the standard geometric transition functions

(diffeomorphisms and gauge transformations). Doing so creates unusual situations with

respect to point-like geometries. These ideas [1, 2] have lead to the development of non-

geometry, which has been explored through many different angles in the literature. We

provide a brief review in section 2.

Non-geometry is of particular interest for constructing phenomenologically interesting

models in four-dimensional supergravities. In this setting, non-geometry appears through

so-called non-geometric Q- and R-fluxes [3]. These fluxes generate terms in the potential,

that lead to desired phenomenological features. For instance, they sometimes help to fix

all moduli [4–6]. They also contribute positively to the four-dimensional cosmological con-

stant (a rather non-standard behaviour in type II supergravities), and this helps to obtain

de Sitter solutions [7, 8]. Furthermore, an interesting relation between non-geometrical

fluxes and non-commutative and non-associative closed string geometry was discovered

recently [9–11], see also [12] and references therein.

Four-dimensional supergravities with non-geometric potential terms have been iden-

tified as gauged supergravities, and the Q- and R-fluxes appear as some of the structure

constants of the corresponding gauge algebras [2, 3, 13]. The other structure constants

of these algebras usually have their origin in ten-dimensional supergravity fields, like the

Neveu-Schwarz (NSNS) flux or the metric (curvature); accordingly, compactifications from

ten to four dimensions can lead to four-dimensional supergravities, where the terms in

the potential can be traced back to some ten-dimensional supergravity origin. This is

unfortunately not the case for the non-geometric fluxes.

In ten-dimensional supergravity, non-geometry appears in a different fashion. When

going around a non-contractible loop in target space, one can patch the supergravity fields

using a stringy symmetry. Even if the fields are then globally well-defined from the string

point of view, they do not appear single-valued because they are not glued with the standard

geometric transition functions. One then deviates from the usual geometric set-up, and

so the term “non-geometry” is used [1, 14]. This is the simplest non-geometric situation,

which is thought to correspond to the presence of a Q-flux. Note that this point of view on

non-geometry does not involve any other degree of freedom than the supergravity fields.

In particular there is a priori no appearance of some new field which could correspond to

the non-geometric fluxes.

1We often prefer the terms “configuration”, “set-up” or “situation”, to a ten-dimensional supergravity

non-geometric “solution” or “background”. Indeed, most of the time we only consider a set of Neveu-

Schwarz (NSNS) fields, that must be completed by other ingredients to solve the equations of motion.

Usually, NSNS fields alone are not enough to get a compact solution.
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Put differently, no straight connection (via a dimensional reduction for instance) has

been established between the ten- and four-dimensional supergravity points of view on

non-geometry. This forbids the lifting of some four-dimensional gauged supergravities, and

their solutions, to ten-dimensional ones; more generally, this prevents us from getting an

understanding of the non-geometric fluxes, and the associated phenomenological models,

in terms of ten-dimensional (supergravity) target space fields. In this paper, we make some

progress in this direction, and clarify the relation between ten- and four-dimensional non-

geometry, by finding a way to make the non-geometric fluxes appear in ten-dimensional

supergravity. Before we describe this result in detail, let us briefly motivate it.

In the ten-dimensional point of view just described, one assumes a local geometry,2

and the non-geometry arises as a global issue: it is only when gluing the fields across a few

patches, that one must deviate from standard geometric transition functions. Consequently,

it is only globally that fields appear (naively) ill-defined. These global issues could be a

first reason to believe that ten-dimensional supergravity is not suited to describe non-

geometry. Indeed, its action assumes the point-like α′ → 0 limit of string theory and

the standard integration of fields, which do not accommodate the stringy aspects of the

geometry. In other words, the ten-dimensional supergravity effective description may not

be enough to capture what looks like stringy effects. Possibly, a proper description would

instead be provided by some string construction. Asymmetric orbifolds give examples

of such stringy descriptions, that lift some (non-geometric) gauged supergravities [2, 13].

More concretely, these questions on global issues and integration seem to forbid a standard

compactification procedure. Therefore, it looks difficult to establish a direct relation with

the four-dimensional non-geometric fluxes.

However, we can make some remarks on the non-geometric fluxes and their possible

higher dimensional origin. In four dimensions, the Q- and R-fluxes were at first motivated

by asking for T-duality covariance of the superpotential and the gauge algebras in the

NSNS sector. A way to understand this is that in ten dimensions, it was observed [15]

that some non-geometric situations could be reached by applying T-dualities on geometric

situations; the same should then occur in four dimensions. A well-known example of a

non-geometric configuration obtained in this way is given by a two-torus T 2 fibered over a

base circle, which we come back to in detail in appendix B. In this toroidal example, and

many others, T-duality is also the stringy symmetry used to make fields single-valued in

ten dimensions. Note that T-duality (at least in its standard form) is a symmetry only for

string backgrounds with some isometries. In the case of the toroidal example the isometries

are along the T 2 directions.

In this paper, we will be inspired by the toroidal example and the role of T-duality, even

if our results also apply more generically. Therefore, we will focus only on the NSNS sector

of ten-dimensional supergravity.3 As explained above, the non-geometric fluxes should then

2This non-geometric situation, which remains locally geometric, should give rise to a Q-flux. One can

also face a set-up where the local notion of geometry is lost [4, 13]. An R-flux should then also be present.

However, we will not consider R-fluxes in this paper.
3T-duality does not mix sectors, so if the Q- and R- fluxes arise from the NSNS sector and not the

Ramond-Ramond (RR) sector, studying the former is enough. In addition, the incorporation of RR-fluxes
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arise by applying T-duality on the NSNS fields. However, in ten dimensions, T-dualising

some geometric configuration like the toroidal example leads to the NSNS fields becoming

ill-defined. No new degree of freedom appears. This is a first hint that the non-geometric

fluxes do not correspond to any new degree of freedom, present in some more advanced

theory, or in some involved string construction, but they are just given by the NSNS fields.

With this in mind, we turn our attention to the NSNS action. It can be rewritten in

a T-duality covariant way [19, 20], up to a total derivative term which we will come back

to (in particular, we come back to double field theory in section 4.5). Such a rewriting

is possible thanks to the introduction of an object called the generalized metric H, which

depends on the metric ĝ and the Kalb-Ramond B-field B̂. For a d-dimensional space-time,

H is the 2d× 2d matrix with d× d-blocks4

H =

(
ĝ − B̂ĝ−1B̂ B̂ĝ−1

−ĝ−1B̂ ĝ−1

)
. (1.1)

The T-duality covariant rewriting of the NSNS action is done in terms of H and the dilaton

φ̂. Such a rewriting implies that, if we perform a T-duality which brings the fields to a

non-geometric situation (for instance, ĝ and B̂ in H are ill-defined), the resulting action

would still be the NSNS action. So again, even if the ten-dimensional NSNS action could

be argued to be ill-defined because of global properties, it looks like no other degree of

freedom would appear, which could provide non-geometric fluxes.

These observations lead us to think that the non-geometric fluxes could appear in ten

dimensions via a rewriting of the NSNS action. The NSNS degrees of freedom would be

the only ones involved, but they would be mixed into new variables which would reveal

non-geometric fluxes in the action. To find the good variables, we were inspired by the

Generalized Complex Geometry (GCG) [21, 22] approach, where a particular object has

been related [5, 12, 23, 24] to non-geometry: the antisymmetric bivector βmn. We come

back to these ideas in detail in section 2. Note that this rewriting will give us new tools to

discuss the global issues of the action, and the dimensional reduction.

The starting point is that the generalized metric H can, similarly to a usual metric,

be expressed in terms of generalized vielbeine. A positive-definite metric, given by a d× d

matrix g, can be written as g = eT
1d e in terms of the vielbein matrix e. However, the

same metric could equally well be obtained from the vielbein ke, with k ∈ O(d). The form

of the vielbein is therefore not unique. Similarly, the generalized metric H can be expressed

as H = ET
12d E . Let us introduce two possible generalized vielbeine

Ê =

(
ê 0

−ê−T B̂ ê−T

)
, Ẽ =

(
ẽ ẽβ̃

0 ẽ−T

)
. (1.2)

in type II non-geometric situations is always complicated by their possible D-brane or O-plane sources, that

are difficult to fit with the non-geometric global aspects. For simplicity, we will not consider NS5-branes

either. Let us note however some discussions of non-geometric solutions of heterotic string [14, 16–18].
4The unconventional notation ĝ and B̂ is chosen for later convenience, since we will soon consider fields

in different bases. Our conventions for the metric and form fields are given in appendix A and H is also

defined in section 2.2.
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We will refer to these different forms of generalized vielbeine, and to their content, as

vielbeine or fields in different “bases”, in particular the hatted and tilded bases. We leave

the word “frame” for the case where a T-duality is applied, as for instance in appendix B.

Ê is a natural choice for the generalized vielbein, since it corresponds to the metric ĝ =

êT
1d ê and the B-field B̂ which appear in H. However, a different generalized vielbein is

a priori possible. In particular, a transformation like a T-duality or an O(2d) action on

a generalized vielbein sometimes results in one of the form of Ẽ , whose top right corner

is given by an antisymmetric bivector β̃mn. For various arguments reviewed in section 2,

the appearance of such a β block can be a sign of non-geometry. In addition, reproducing

relations analogous to those of the gauge algebras of gauged supergravities, expressions for

the non-geometric fluxes Q and R in terms of β were proposed in [24] (see (2.12)), again

showing a relation between β and non-geometry.

These results inspired us the way to rewrite the NSNS action: in order to make the

non-geometric fluxes appear, we should relate the standard NSNS fields to β, which seems

to be the good variable for non-geometry. β appears by considering the generalized vielbein

in the tilded basis Ẽ , rather than the standard Ê . However, both give the same generalized

metric:

H =

(
ĝ − B̂ĝ−1B̂ B̂ĝ−1

−ĝ−1B̂ ĝ−1

)
= ÊT

12d Ê = ẼT
12d Ẽ =

(
g̃ g̃β̃

−β̃g̃ g̃−1 − β̃g̃β̃

)
, (1.3)

where g̃ = ẽT
1d ẽ is a new metric defined with respect to the ẽ vielbein in the tilded basis.5

From the relation (1.3), together with a definition of the dilaton φ̃ that leaves the measure

of the NSNS action invariant, we read off the change of variables from the fields ĝ, B̂ and

φ̂ to the fields g̃, β̃, and φ̃. It is then reasonable to assume that the NSNS Lagrangian can

equally well be written in the new variables.

In this paper, we focus for simplicity on the locally geometric situation, and do not

consider any R-flux. A way to implement this is to make the assumption

β̃km∂m· = 0 , (1.4)

where the dot is a placeholder for any field. While we motivate this assumption in more

detail in section 3, let us for now simply mention that (1.4) relies on the idea that the

β-field should be along the isometry directions, as it is the case in the toroidal example.

Given this assumption, the expressions proposed for the non-geometric fluxes [24] with

curved space indices become

Qm
np = ∂mβ̃np , Rmnp = 0 . (1.5)

Using the assumption, we prove in section 3 that

L̂ = e−2φ̂
√
|ĝ|

(
R̂+ 4|dφ̂|2 −

1

2
|Ĥ|2

)

= e−2φ̃
√
|g̃|

(
R̃+ 4|dφ̃|2 −

1

2
|Q|2

)
+ ∂(. . . ) = L̃+ ∂(. . . ) , (1.6)

5For metrics with Lorentzian signature, one should change 1d into the Minkowski metric, and the matrix

12d accordingly. This does not change the result of (1.3).
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where L̂ is the standard NSNS Lagrangian, and L̃ is the Lagrangian given by the tilded

fields, with a Q-flux term. The metric used for the squares in L̂ is ĝ, while it is g̃ in L̃ and

the H-flux is given by the three-form Ĥ = dB̂ (see appendix A for further conventions). We

show that the Lagrangians L̂ and L̃ with fields in the two different bases are equal up to a

total derivative term. The assumption (1.4) simplifies the derivation of (1.6) considerably,

and we leave the full computation for future work [25].

Given the rewriting (1.6), it is tempting to trade the NSNS action for the action

associated to L̃. However, the integration of these Lagrangians makes us face the global

issues mentioned in non-geometric situations. We discuss those at length in section 4.1,

together with the fate of the total derivative term. It turns out that the change of variables

helps us to propose a way out from these global issues. Indeed, g̃, φ̃ and Q can actually be

well-defined in some non-geometric situations like the toroidal example, whereas ĝ, φ̂ and

Ĥ are ill-defined. We argue that this is an illustration of a more general situation, where

one can find a preferred basis for the fields which leads to a single-valued Lagrangian.

In addition, it should differ from the NSNS one by at most a total derivative term, as

in (1.6). Then, we propose as a prescription that the associated action describes the low-

energy physics properly. Following this idea, we use the well-defined action obtained by

integrating L̃, and perform a dimensional reduction of it. This allows us to finally draw

the link with the non-geometric fluxes appearing in the four-dimensional scalar potential.

The paper is organized as follows. Section 2 contains a brief review on non-geometry,

together with a focus on GCG. This serves as a background and motivation for the rewriting

of the NSNS Lagrangian, which is performed in section 3. We also discuss there the

assumption (1.4) that we use. In section 4, we turn to the global aspects of the Lagrangians

L̂ and L̃, the resulting actions and the total derivative term. We argue in favour of the

prescription just mentioned and then focus on the action associated to L̃. This rewritten

Lagrangian is then dimensionally reduced to four dimensions, and the result is shown

to share essential properties with four-dimensional non-geometric models existing in the

literature. The ten-dimensional equations of motion are also derived from the Lagrangian,

and the Bianchi identity of the Q-flux is discussed. We end this section with a proposal on

a double field theory Lagrangian for non-geometry. Our conclusions and outlooks for future

work are presented in section 5. Three appendices complement the paper. Appendix A

gives the conventions used in the paper. Appendix B contains a detailed description of

well-known geometric and non-geometric toroidal fibrations that are related by T-duality.

This serves as an illustration for the relevance of different field bases in geometric and non-

geometric settings. Appendix C contains details of the computation performed in section 3.

2 A brief review on non-geometry

In this section, we come back in more detail to the literature on non-geometry, in order

to further motivate the result discussed in the introduction. We start with a brief review

on non-geometry, where we do not intend to be exhaustive but focus on the aspects we

need later on. After mentioning shortly the different aspects of non-geometry in various

dimensions, we focus on the Generalized Complex Geometry perspective along the lines

– 6 –
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of [24]. Given this background material, we return to the main computation and result of

this paper in the next section.

2.1 Non-geometry in various dimensions

The initial idea of non-geometry [1, 2] is based on the fact that string theory has more

symmetries than point particle theories do. These extra (stringy) symmetries could be

used to build new string vacua and associated four-dimensional effective theories, which

could be of particular interest for phenomenology.

From a target space point of view, the extra symmetries play a role when constructing

non-geometric string configurations. In a given space, when going from one patch to

another, fields of a string background are usually glued by diffeomorphisms and gauge

transformations. However, it could be argued that a string background is still obtained

if another string symmetry is used for this gluing, in particular a more stringy one like a

duality. Since diffeomorphisms and gauge transformations are the only allowed transition

functions in standard geometric settings involving smooth manifolds, one would talk of

non-geometry for any other transformation.

In practice, the fields of a non-geometric configuration appear ill-defined when going

around a loop in target space, but become single-valued only when allowing the additional

string symmetry as a transition function. For such a monodromy to occur, one would

need a non-contractible loop. The first non-geometric vacua with duality monodromies

were obtained on a manifold with a singularity [1] or with a non-trivial one-cycle [14, 26].

Concretely, one considers a fibration of a space F over a base B, so that while going around

a non-contractible loop on B, the fiber fields are glued from one patch to the other using

the symmetries of string theory on F . The case of a torus fiber, F = T n, with fields

independent of the fiber coordinates (i.e. there are n isometries), is of particular interest.

String theory on such a fiber admits an important symmetry group, that has the T-duality

group O(n, n, Z) as a subgroup (for a review see [27, 28]).6 This symmetry group can

then be used to patch the fiber fields. In appendix B, we illustrate that situation with

the well-known toroidal example [15, 26] of a T 2 fiber over a base circle, where the fiber

components of the metric and the B-field are patched by a T-duality transformation. In

this paper, we will focus on T-duality, but other string symmetries like S- and U-duality,

or mirror symmetry,7 could also be considered [30–32].

There are several arguments for why non-geometric configurations like those just de-

scribed should be consistent backgrounds of (at least classical) string theory [33] (see [34–38]

for related discussions on the quantized string). The string conformal field theory (CFT)

should remain the same under string symmetries, even if its representation as a sigma

model in terms of target space fields could change (e.g. under T-duality). Furthermore,

it was quickly noticed that some non-geometric backgrounds can be obtained from string

geometric backgrounds by applying T-dualities [15, 26], or equivalently [29] mirror sym-

6The T-duality group is the continuous O(n, n, R) at the supergravity level, but is broken to its discrete

version in string theory. For simplicity in the following, we will only talk of O(n, n).
7Note that the SYZ conjecture [29] implies that for Calabi-Yaus that have a toroidal fiber, mirror

symmetry is equivalent to T-duality.
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metry [23, 39, 40].8 In this case, starting with a consistent geometric background would

guarantee that quantum constraints like modular invariance are also satisfied for the dual

non-geometric background [33]. It is then of interest to provide a string world-sheet theory

on such backgrounds. This has been realized only in a few cases [1, 2, 13, 42, 43], using

the same initial idea of the stringy symmetries, to perform “duality twists” [2]. The result

is an asymmetric orbifold [44, 45] or a deformation of such.

The ten-dimensional target space picture of non-geometry was thus initially that of

naively ill-defined fields, which could be made globally defined only via non-standard

stringy transitions functions. The four-dimensional picture appeared in a very different

fashion (for a review see [46]). In a geometric configuration, the NSNS sector contributes

to the four-dimensional superpotential via Habc (components of the H-flux in flat space

indices), and fa
bc (structure constants obtained from derivatives of vielbeine as in (A.3),

also known as “geometric fluxes”; they correspond to the curvature contribution). We men-

tioned previously that some non-geometric configurations could arise by applying T-duality

on geometric cases. With this idea in mind, a T-duality covariant expression generalizing

the four-dimensional superpotential was proposed in [3]. This generalized superpoten-

tial has new contributions from “non-geometric” Q- and R-fluxes. The index structure

of these fluxes can be inferred by considering T-duality rules that generalize the Buscher

rules [47, 48] of the toroidal example, and are also inspired from RR fluxes (see [3] and

references therein). Concretely, one lifts or lowers the index in the T-duality direction

Habc
Ta−→ fa

bc
Tb−→ Qc

ab Tc−→ Rabc . (2.1)

This particular index structure actually relates geometric and non-geometric fluxes to

the structure constants of the gauge algebras of gauged supergravities. Indeed, by first

considering the Bianchi identities on the RR and NSNS fluxes, in absence of sources, and

using T-duality, one can derive a set of constraints on the various fluxes. These conditions

on NSNS fluxes can be identified [3, 13] with the Jacobi identities of a generalization of

the gauge algebra of gauged supergravities. The latter is obtained by allowing, in addition

to the usual fluxes in geometric situations [49–52], the non-geometric fluxes as structure

constants of the algebra.9 We will come back to the conditions on the NSNS fluxes and

the superpotential in section 2.2.3.

The relation to gauged supergravities was also discussed in the work on asymmetric orb-

ifolds. Indeed, by considering the four-dimensional scalar potential, it was shown in [2, 13]

that a Scherk-Schwarz reduction of an asymmetric orbifold could lead, in non-geometric

situations, to a gauged supergravity. As a consequence, some gauged supergravities, which

previously could not be lifted to a ten-dimensional supergravity geometric compactification,

then finally found a higher dimensional, albeit non-geometric, interpretation [13, 53].

8Even if some non-geometric backgrounds are obtained out of geometric ones using dualities, it is not a

generic feature (see for instance [4, 41]).
9The algebras involved generators of symmetries in the four-dimensional action, in particular generators

of diffeomorphisms and of gauge transformations. These algebras were generalized to a T-duality covariant

form: under the T-duality transformations of the chain (2.1), the four types of fluxes in this chain then

appeared as structure constants of these algebras.
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Note that the few examples of ten-dimensional asymmetric orbifold descriptions are

in essence stringy, and thus do not provide a relation between the four-dimensional non-

geometric fluxes and the ill-defined supergravity fields in ten dimensions. The aim of this

paper is to make a step further in establishing such a relation. This should clarify when the

four-dimensional (super)potential provides a good effective description (as should be the

case, for instance, in some toroidal compactifications, where the non-geometric situation is

T-dual to a geometric one [3, 4]), and when its vacua can be lifted to string solutions [4].

The following further development in non-geometry helped us to get a ten-dimensional

understanding of these non-geometric fluxes.

An important aspect of non-geometry has been to give a geometrical description of

the non-geometric configurations, at the cost of adding dimensions. As already discussed,

using T-duality as transition functions, in addition to diffeomorphisms and gauge trans-

formations, takes us away from the usual geometry of a smooth manifold. The resulting

space has been called a T-fold [33]. Usual transition functions are elements of the structure

group of the tangent bundle. In order for the T-duality group O(n, n) to be the structure

group of some bundle (of which diffeomorphisms and gauge transformations would appear

as the “geometric subgroup”), one needs to double the number of dimensions from n to

2n. A first way to do this is to double the number of coordinates, which is known as dou-

bled geometry (or, previously, the double formalism) and has motivations from string field

theory [33]. A concrete example is the doubled torus: for a manifold consisting of a torus

T n fibered over a base B, one considers for each patch of B a new fiber T 2n. Only half of

the coordinates and dimensions correspond to the physical space, and so on each patch one

can define a polarization (or projection) towards this T n. However, across patches, one can

glue fields either with the standard diffeomorphisms and gauge transformations, or with a

more involved T-duality element. The question of non-geometry then arises globally: to get

the physical space and fields, one glues together all the projected T n. If this can be done

smoothly (meaning if they are the same up to geometric transition functions), then one has

a geometric configuration; otherwise it is non-geometric. The idea of the doubled geometry

has then been used in several descriptions of non-geometry, along the lines of [53, 54] for

target space descriptions, and of [33–35] for sigma models.

Note that the T-fold, but also the initial idea of non-geometry, assume a local ge-

ometry; non-geometry appears as a global issue. Cases where we loose a local geometric

description have also been considered; for instance in doubled geometry the fields would

depend on the dual coordinates in a way that amounts to double not only the fiber, but also

the base (see [13, 54] and references therein). Such non-geometric configurations should

be obtained by performing T-dualities along non-isometry directions, in which case the

standard Buscher rules cannot be applied.10 It can be argued, following in particular the

T-duality chain (2.1) and the toroidal example, that such non-geometric situations would

10There are some arguments in favour of such a generalized T-duality from string field theory, and

proposals for such a transformation have been made [55, 56]. We also mentioned new rules for T-duality

near (2.1).
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lead to (at least) an R-flux11 while the locally geometric situation should give a Q-flux.12

As we will discuss further, we will not consider R-fluxes in this paper, so we restrict our-

selves to the T-fold case. The T-fold construction is related to the mathematical set-up of

Generalized Complex Geometry (GCG) [21, 22], which provides another way to consider a

space of doubled dimension. This is the topic we now turn to.

2.2 Non-geometry in Generalized Complex Geometry

2.2.1 Generalized tangent bundle

In GCG, one considers the generalized tangent bundle E which, for a manifoldM of dimen-

sion d, consists of the fibration of the cotangent bundle over the tangent bundle. Locally,

it is given by TM⊕ T ∗M. Hence, the generalized tangent bundle also has doubled di-

mension, although the number of coordinates has not been doubled (in contrast to doubled

geometry). A section of this bundle is given by a generalized vector V , which is a sum of

a vector and a one-form: V = v + ξ ∈ TM⊕ T ∗M. A natural metric η coupling vectors

and one-forms is given by the 2d× 2d matrix

η =

(
0 1

1 0

)
,

1

2

(
ξ

v

)T (
0 1

1 0

)(
ξ

v

)
= ξmvm , (2.2)

where the blocks are d-dimensional. The structure group of this bundle is then O(d, d): it

is the action on the generalized vectors which preserves this metric and the inner product

just defined. Indeed, for an action V ′ = OV to preserve the inner product, one gets

OT ηO = η ⇔ O ∈ O(d, d) . (2.3)

Therefore, for each patch of M, one can consider this new bundle E with structure group

O(d, d, R). The T-duality group O(n, n) (for n isometries inM) can be trivially embedded

in O(d, d). Analogously to the T-fold, one then uses the structure group of the bundle to

glue fields from one patch to the other. This can be done with, for example, the geometric

subgroup, or T-duality transformations. Given a metric ĝ and a B-field B̂ on M, one can

define the so-called generalized metric H as (see appendix A for conventions)

H =

(
ĝ − B̂ĝ−1B̂ B̂ĝ−1

−ĝ−1B̂ ĝ−1

)
. (2.4)

One can show that H is of determinant one, and positive definite if ĝ is. Under the previous

O(d, d) action, H transforms as

H′ = OTHO . (2.5)

11Scherk-Schwarz reductions of duality twists, or asymmetric twists and shifts, could lead to such terms,

providing then string realizations (at least classical ones) of non-geometric configurations of this kind. Exam-

ples of such non-geometries have been obtained from Kaluza-Klein monopoles and NS5-branes, see [13, 57]

and references therein.
12Note that the contrary is not true: having a Q- or an R-flux does not necessarily mean that we are

facing a non-geometric situation. An example of a geometric compactification in a WZW model, providing

an R-flux term, is given in [13]. See also [58], and the discussion on our rewriting in section 3.3.5.
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This action exactly reproduces the T-duality transformations13 of the metric and the B-

field [27]. Using this formalism is therefore very convenient for our purposes, and it actually

leads to some insight on non-geometry, that we will now discuss. For completeness, let us

add the T-duality transformation of the dilaton

e−2φ̂′
√
|ĝ′| = e−2φ̂

√
|ĝ| , (2.6)

which leaves the measure of the NSNS action invariant.

2.2.2 Generalized vielbeine, the β-field, and non-geometric fluxes

For a positive definite metric g onM, one can define vielbein matrices e of coefficients ea
m

as

g = eT
1d e . (2.7)

They are only defined up to O(d) transformations: for k ∈ O(d)⇔ kT
1dk = 1d, e and ke

give the same metric. Correspondingly for the generalized metric H defined in (2.4), one

can introduce generalized vielbeine E

H = ET
12d E , (2.8)

also defined up to O(2d) transformations: for K ∈ O(2d), E and KE give the same gen-

eralized metric (see also footnote 5). There is however a natural choice of basis (we label

quantities in this basis with a hat), where the generalized vielbein takes the form

Ê =

(
ê 0

−ê−T B̂ ê−T

)
. (2.9)

This generalized vielbein corresponds to the metric ĝ = êT
1d ê and the B-field B̂ which

appear in the generalized metric (2.4). A generalized vielbein transforms under an O(d, d)

action as14

E ′ = EO . (2.10)

In particular, Ê transforms naturally under the geometric subgroup [22, 24] consisting of

diffeomorphisms and gauge transformations. However, different forms of generalized viel-

beine could equally well make sense on the generalized tangent bundle. Such a different

13More precisely, one should consider the n × n blocks of the fields in the isometry directions, and act

on them in the way just described with an O(n, n) transformation in its fundamental representation; here

we consider for simplicity the whole ĝ and B̂, and a T-duality corresponds to embed O(n, n) trivially in

O(d, d): the action is non-trivial only along the isometry directions.
14Note that performing a T-duality on a generalized vielbein can be more complicated: one sometimes has

to act in addition with an O(2d) transformation on the left. This is the case when one wants to reproduce

the Buscher rules: to do so, one would act on H with an O(d, d) element we denote OT , which turns out to

satisfy OT ∈ O(2d). The T-dual generalized vielbein is actually given by E ′ = OT EOT , see [24, 59] for an

illustration.
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form could be obtained after an O(d, d) transformation15 on E , and/or an O(2d) trans-

formation on the left. Of particular interest for us is the following example (we denote

quantities in this basis with a tilde)

Ẽ =

(
ẽ ẽβ̃

0 ẽ−T

)
, (2.11)

where β̃ is a d × d antisymmetric matrix, that corresponds to an antisymmetric bivector

β̃mn when we put back indices. This object will play a key role for us: indeed, it has

been argued [5, 12, 23, 24, 60] that the appearance of such a β block can be a sign of

non-geometry. Before giving details on this point, let us mention that such a bivector first

appeared in a particular O(d, d) transformation named the β-transformation [22]. The

latter was used at first [61] in the context of AdS/CFT, to describe in particular the

Lunin-Maldacena solution [62].

As discussed previously, the generalized vielbein Ẽ in which β̃ appears is not the one

which transforms naturally16 under the geometric subgroup: that would be Ê . Hence, even

if one can make sense of a vielbein like Ẽ on the generalized tangent bundle, coming back

to the standard geometry amounts to use Ê . In the T-fold language, we could say that the

polarization makes us consider a vielbein of the form Ê on each patch. Locally, it is always

possible to go from a generalized vielbein of the form Ẽ to one like Ê , by using an O(2d)

transformation (more precisely a particular O(d)×O(d) transformation). However, if β̃ is

ill-defined with respect to M coordinates, the O(d) × O(d) transformation might not be

single-valued, and so cannot be performed globally. This means that one cannot go back

to the standard geometric description globally on M, and is a sign of non-geometry [24]

(see also the last appendix of [59] for an illustration).

In addition to the above argument, a relation between β̃ and non-geometry also results

from algebraic considerations. The action of the Courant bracket, the natural bracket

in GCG, on various components of generalized vielbeine has been analyzed in [24]. The

resulting algebra appears as the natural equivalent in GCG of the gauge algebras of gauged

supergravity. As discussed previously, some of the structure constants of these gauge

algebras correspond to the non-geometric fluxes. By looking at the action of the Courant

bracket, using different bases for the generalized vielbein (in particular Ê or Ẽ), and also by

applying T-dualities on some concrete examples (like the toroidal example), the structure

constants of the corresponding algebra were related to β̃. More precisely, the following

expressions were obtained for the non-geometric fluxes with flat space indices

Qc
ab = ∂cβ̃

ab − 2β̃d[af̃
b]
cd , Rabc = −2β̃d[a∂dβ̃

b]c + β̃adβ̃bef̃ c
de . (2.12)

15The form of the generalized vielbein obtained after an O(d, d) depends in particular on the vielbein

e before the transformation. The O(d) freedom on the choice of this initial vielbein is only a part of the

O(2d) freedom on the initial E , but it can be enough to give, after the O(d, d) transformation, generalized

vielbein of the form (2.9) or (2.11).
16One could still imagine a gauge transformation on β̃ instead of B̂ and so propose an alternative geometric

subgroup. It seems however that such a gauge transformation would be difficult to define because of cocycle

conditions [24].
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The structure constants f̃a
bc are defined as in (A.3) with respect to vielbeine ẽ of (2.11).

Note that taking β̃ab as a tensor, we obtain

Qc
ab = ẽ m

c ẽa
nẽb

p∂mβ̃np + 2β̃nmẽ p
c ẽ[a

n∂mẽb]
p , (2.13)

where the second term vanishes with our assumption (1.4). Again, the expressions in (2.12)

relate a non-trivial β̃ to non-geometry.

In [58, 63], string world-sheet analyses were used to derive a more general form

of (2.12), for a set-up with both B and β non-zero. In [63], by considering world-sheet

Hamiltonians, and proposing a coupling of a bivector to the bosonic string, a particular

bracket and associated charges are derived. The bracket is the Roytenberg bracket which

generalizes the Courant bracket, and its charges are related to non-geometric fluxes. Ex-

pressions for those are given in terms of the bivector that we call β here. The Hamiltonians

considered in [63] found deeper roots in [58], where a first order action reproducing them

is proposed. This first order action considers again a coupling to a bivector, in addition

to a two-form and a metric, and is related to the NSNS string. It can also be related to a

three-dimensional membrane action, where the whole set of (non)-geometric fluxes appear

as couplings. The expressions for these fluxes are reobtained, in particular

Qc
ab = ∂cβ

ab − 2βd[af
b]
cd + Hcdeβ

daβeb . (2.14)

Given this formula is valid in presence of a B-field, this situation should not correspond

to either the hatted or tilded bases considered so far, so we drop these notations here. We

will return to such a situation in section 4.

At this stage, all these expressions of the non-geometric fluxes remain somewhat for-

mal, and they were derived from rather different perspectives. Their interpretation in

ten dimensions is not clear, and no higher dimensional action including them has been

proposed. Thus no dimensional reduction has really been made, even if a relation to the

four-dimensional superpotential has been established, and we discuss the latter in the fol-

lowing. Given the rewriting done in this paper, the ten-dimensional understanding of these

formulas, and the relation to four dimensions, should be clearer.

2.2.3 Generalized covariant derivative and superpotential

We recall from section 2.1 that the Jacobi identities of the gauge algebras lead to a set of

constraints on the geometric and non-geometric NSNS fluxes, and that those can also be

obtained by applying T-duality on the Bianchi identity dH = 0. In a geometric setting,

one often encounters the twisted exterior derivative d−H. Asking for its nilpotency results

exactly in the previous H-flux Bianchi identity. Inspired by this situation, one can define a

generalized covariant derivative D, see (4.14), where not only H and the geometric fluxes

enter (the latter from the exterior derivative), but also the Q- and R-fluxes. D is then

covariant under T-duality. It turns out [4, 64] that requiring its nilpotency results in the

Jacobi identities of the gauge algebra, together with the unimodularity condition fa
ab = 0,

and the condition

Qa
ab = 0 . (2.15)

We come back to the relation between D and constraints on the fluxes in section 4.3.
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A deeper explanation for the generalized covariant derivative D can be found in GCG.

Indeed, one can define in GCG a derivative in terms of a generalized spin connection. The

latter is related to the structure constants one obtains from the Courant bracket, when

acting on the generalized vielbeine. As explained previously, these structure constants

should be given by the (non)-geometric fluxes, and so the derivative defined in GCG should

correspond to the generalized covariant derivative D (see [24] and references therein). This

brings more credit to the expressions (2.12) of the non-geometric fluxes.

For a geometric compactification on a background admitting an SU(3)× SU(3) struc-

ture, the four-dimensional superpotential can be written in terms of an integral over GCG

objects [65–67]. It involves the twisted derivative d−H. The covariant derivative D then

allows a natural generalization of this expression, that includes non-geometric fluxes. The

generalized formula was shown [5, 67] to reproduce the four-dimensional superpotentials

previously mentioned [3, 4, 68], after compactification (see also [64, 69]).

Let us note that in this process, one has to integrate over internal fields. To justify

an integration over naively ill-defined fields, the covariant derivative D plays an important

role. When going from one patch to the other, the fields of a non-geometric configura-

tion can be glued via T-duality transformations. The same goes for the integrand of the

superpotential, and this is the only way to make it globally defined. This would a priori

make the integration rather involved. However, by expressing the integrand in terms of

the covariant derivative, it turns out to be invariant under a T-duality transformation [5],

therefore it is single-valued and one can integrate.17 A drawback of this argument is that it

requires to define a Q-flux in ten dimensions (within D), which is not realized so far. This

paper should help in this direction. Then, we return to the question of the integration in

section 4.1 (see also footnote 25).

3 Rewriting of the NSNS Lagrangian

In this section, we come back in detail to the rewriting of the NSNS Lagrangian (1.6).

From the previous sections, we first repeat some arguments to motivate such a rewriting.

We also discuss the assumption (1.4) used in our computation. Then we give the details

of the derivation of the equality (1.6), and finally comment on this result.

3.1 Setting the stage

3.1.1 Motivation

Suppose we perform T-dualities on a geometric solution, and end up with a non-geometric

solution. In four dimensions, performing these T-dualities leads to new terms in the po-

tential, and in the gauge algebra, corresponding to non-geometric fluxes. On the contrary,

in ten dimensions, we do not see any new degree of freedom appearing: we only deal

with NSNS fields, which are globally ill-defined. However, in GCG, it is argued that non-

geometry can be seen by looking at generalized vielbeine of the form Ẽ (2.11) where an

antisymmetric bivector β̃mn appears. In addition, the ill-defined metric ĝ and B-field B̂,

17The Kähler potential is also invariant [65], so the scalar potential is well-defined.
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present in the generalized metric H and in the generalized vielbein Ê (2.9), can be reex-

pressed in terms of this β̃ and a new metric g̃. Indeed, one should keep in mind that even

if the generalized vielbeine can be different, the generalized metric should be the same. So

one has the relation (1.3), that we give again here:

H =

(
ĝ − B̂ĝ−1B̂ B̂ĝ−1

−ĝ−1B̂ ĝ−1

)
= ÊT

12d Ê = ẼT
12d Ẽ =

(
g̃ g̃β̃

−β̃g̃ g̃−1 − β̃g̃β̃

)
. (3.1)

This equality provides us with relations between the hatted and the tilded fields, allowing

us to perform a change of variable in the NSNS Lagrangian. We can then benefit from

the insight of GCG on the role played by β̃ in non-geometric situations. In particular,

β̃ is related to non-geometric fluxes via the expressions (2.12). So one can guess that

performing the change of variable in the NSNS Lagrangian would make the non-geometric

fluxes appear. We show in the following that this is actually true, at least for a subcase

where we use the simplifying assumption (1.4).

3.1.2 Definitions

Let us now turn to this change of variables more explicitly. The equality (3.1) gives the

following relations18

ĝ =
(
g̃−1 − β̃g̃β̃

)−1

= (g̃−1 + ǫβ̃)−1g̃−1(g̃−1 − ǫβ̃)−1 , ǫ = ±1

=
1

2

(
(g̃−1 − β̃)−1 + (g̃−1 + β̃)−1

)
(3.3)

B̂ = (g̃−1 + εβ̃)−1β̃(g̃−1 − εβ̃)−1 , ε = ±1

=
1

2

(
(g̃−1 − β̃)−1 − (g̃−1 + β̃)−1

)
, (3.4)

and the converse relations

g̃ = ĝ − B̂ĝ−1B̂

= (ĝ + ǫB̂)ĝ−1(ĝ − ǫB̂) , ǫ = ±1

=
1

2

(
(ĝ − B̂)−1 + (ĝ + B̂)−1

)−1
(3.5)

β̃ = (ĝ + εB̂)−1B̂(ĝ − εB̂)−1 , ε = ±1

=
1

2

(
(ĝ − B̂)−1 − (ĝ + B̂)−1

)
. (3.6)

18To get the expression for B̂, one can first notice that

B̂ĝ
−1 = g̃β̃ =

1

2
g̃

“

(g̃−1 + β̃) − (g̃−1 − β̃)
”

. (3.2)

Note as well that the symmetry or antisymmetry of ĝ and B̂ is automatic in this parametrization. One can

also check that while (3.1) first gives the two expressions (3.3) and (3.4) of ĝ and B̂, the third constraint

we get from it is then automatically satisfied. Let us note that the left equality of (3.2) and the first line

of (3.5) appeared already in [24, 63].
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For later convenience, we introduce the notation

Gmn
± = g̃mn ± β̃mn , (3.7)

where one can notice that

GT
± = G∓ . (3.8)

This property will allow us in the following to use mainly G+, that we will denote for

simplicity as G = G+. The definition (3.7) allows us to rewrite (3.3) and (3.4) as

ĝmn = (G−1
± )mk g̃kp(G−1

± )np , ĝmn = Gmk
± g̃kpG

np
± , B̂mn = (G−1

± )mkβ̃
kp(G−1

∓ )pn . (3.9)

Finally, we also define a dilaton φ̃, such that the measure remains invariant (see appendix A

for our conventions)

e−2φ̃
√
|g̃| = e−2φ̂

√
|ĝ| . (3.10)

This definition is inspired by T-duality, which leaves the measure invariant (see (2.6)).

After a short computation, we get19

e−2φ̃ = e−2φ̂|1d − β̃g̃β̃g̃|−
1
2 ⇔ φ̂ = φ̃−

1

4
tr(ln(1d − β̃g̃β̃g̃)) . (3.11)

We can now use the expressions (3.3), (3.4) and (3.11) to rewrite the NSNS Lagrangian

in terms of the variables g̃, β̃ and φ̃. This computation turns out to be rather involved,

and so we make use of a simplifying assumption, that we now discuss. The computation

without using the assumption is work in progress [25].

3.2 Discussion of the assumption

To derive the rewriting of the NSNS Lagrangian (1.6), we use the assumption (1.4) that

we recall here:

β̃km∂m· = 0 , (3.12)

where the dot is a placeholder for any field. Since the fields in one basis are combinations

of those in the other basis, thanks to the relations (3.3), (3.4) and (3.11), we can simply say

that the dot stands for ĝ, B̂ and φ̂. We refine the statement by saying that the dot can also

stand for vielbeine. This allows to apply (3.12) to fields with both curved or flat indices.

One advantage of this assumption is to simplify the computation, which is otherwise

rather involved. The difficulty comes from the combination G−1 = (g̃−1 + β̃)−1 which

appears quite often, and cannot be simplified or developed in any manner (see in the next

section the number of terms involving it). The assumed property (3.12) of β̃ helps us to

simplify some expressions where G−1 appears, as we will see below. Another reason to

use (3.12) is that the expressions of the non-geometric fluxes (2.12) reduce to

Qm
np = ∂mβ̃np , Rmnp = 0 . (3.13)

19From (3.9), we get (det(ĝ))−1 = (det(G))2 det(g̃) which implies that det(ĝ) and det(g̃) have the same

sign. In their ratio, we can then drop the absolute value, and we use (C.18) to get the second equality

of (3.11).
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This can be seen using (2.13) and (A.3), assuming β̃, Q and R to be tensors. Even if

the situation given by (3.13) is not the most general, it prevents us from considering the

conceptual issues arising in the presence of an R-flux (see previous section). Making this

(simpler) Q-flux appear in the NSNS Lagrangian is minimal but sufficient to show the

interest of the rewriting, and we restrict ourselves to that particular set-up in this paper.

An important observation is that the assumption (3.12) holds in the toroidal example

of appendix B, which is a standard example of non-geometric situations obtained by T-

duality. Note that our computation does not rely on the use of T-duality, neither as a

(non-geometric) solution generating technique, nor as the string symmetry used to make

fields single-valued. Nevertheless, the validity of this assumption is inspired by T-duality,

as we now explain. The derivation of the Buscher rules [47, 48] requires the NSNS fields

to be independent of some of the coordinates. Locally, this is equivalent to having some

isometries. The global aspects can complicate things (see [24] and references therein for

a discussion on topological aspects and T-duality), but for simplicity we will talk here of

an isometry direction when all the fields are independent of the corresponding coordinate.

We then define the fiber F as the subspace along the isometry directions, and the base

space B along the other directions. This is in agreement with the definitions of F and

B in section 2.1. For instance, in the toroidal example, F is along ∂x and ∂y, while B is

along ∂z. Given these definitions, the assumption (3.12) is satisfied if β̃ is purely20 along

F , meaning any of its components with a leg along B is zero.

When is this property of β̃ valid? From (3.6), we can see this property is verified if B̂

is purely along F , together with the manifold having a product structure (i.e. the metric

ĝ is block diagonal along F and B). We recall this is the case in any frame in the toroidal

example, and so the assumption is automatic there.21

The assumption (3.12) implies the simplifications

Gnk
± ∂k· = g̃nk∂k· , g̃mnGnk

± ∂k· = ∂m· ,
(
G−1

±

)
mn

g̃nk∂k· = ∂m· , (3.14)

that we will use. Furthermore, it leads to two other properties, and in the following, we

will keep track of their use. From (3.12), we can first deduce ∂k

(
β̃nm∂m·

)
= 0, hence

∂kβ̃
nm∂m· = 0 . (3.15)

Similarly, we also consider

∂kβ̃
kn = 0 . (3.16)

20β̃ being purely along F implies the assumption, but the converse is strictly speaking not true, since the

index m in (3.12) is summed.
21We mentioned in section 2.2 that in GCG, a β̃ could appear in a generalized vielbein E ′ after applying

T-dualities along F on an initial generalized vielbein E of the form Ê (2.9). The (Buscher) T-dual of E

is given by OT EOT with OT ∈ O(d, d), see footnote 14. If one obtains after T-duality an E ′ of the form

Ẽ (2.11), one can show that β̃ is purely along F provided the initial vielbein has the same properties we just

discussed: the initial B-field is purely along F , and the initial vielbein is block diagonal along F and B.
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This second property can be obtained from an integration by parts on any Lagrangian term

involving (3.12).22 It also corresponds to Qk
kn = 0, which is a known constraint (2.15)

that should be imposed on the Q-flux.

3.3 Rewriting step by step

We now explain the rewriting of each term in the NSNS Lagrangian, when expressing ĝ,

B̂ and φ̂ in terms of g̃, β̃ and φ̃, and making use of the assumption just discussed. The

technical details are given in appendix C.

3.3.1 The Ricci scalar

In the appendix, we give general formulas related to the Ricci scalar. For both ĝ and g̃, we

use the Levi-Civita connection. In particular, we get from (C.8) the Ricci scalar for g̃

R̃ = g̃lmg̃ku∂k∂mg̃lu − g̃lug̃km∂k∂mg̃lu (3.17)

+ 1
2∂mg̃ln∂kg̃pu

(
2g̃klg̃mng̃pu − 1

2 g̃kmg̃lng̃pu

+3
2 g̃kmg̃npg̃lu − g̃mpg̃kng̃lu − 2g̃mng̃kpg̃lu

)
.

The computation of R̂ in terms of g̃ and β̃ is rather involved and we detail it in the appendix.

We obtain a first expression using the assumption (3.12) and the simplifications (3.14), and

then slightly rewrite it for later convenience as

R̂ − R̃ =− ∂kg̃su∂mg̃pq

(
2g̃kmg̃uq g̃ps + 2g̃pq g̃ksg̃mu +

1

2
g̃uq g̃smg̃kp

)
(3.18)

− g̃pq∂kβ̃
pk∂mβ̃qm −

1

2
g̃pq∂kβ̃

qm∂mβ̃pk

+ 2g̃kmg̃pq∂k∂mg̃pq + 2g̃km(G−1)pq∂k∂mGqp

+ ∂mGvl
(
− 2g̃mr g̃ks(G−1)lv∂kg̃rs − g̃rsg̃km(G−1)lv∂kg̃rs

+ g̃msg̃ru(G−1)lu∂v g̃rs − g̃kmg̃rs(G−1)ls∂kg̃vr

)

+ ∂mGvl

(
(G−1)lq∂vG

qm +
1

2
ĝlq∂vG

mq

)

− ∂mGvl∂kG
ps 1

2
g̃km

(
2(G−1)lv(G

−1)sp + 5(G−1)sv(G
−1)lp + ĝslg̃pv

)
.

22For Fn and f some combination of fields, one has

e
−2φ̃

p

|g̃| Fnβ̃
nk

∂kf = ∂k(β̃nk
. . . ) −

“

∂k

“

e
−2φ̃

p

|g̃| Fn

”

β̃
nk + e

−2φ̃
p

|g̃| Fn∂k(β̃nk)
”

f .

The left-hand side vanishes, out of (3.12), and so does the second term on the right-hand side. Therefore,

discarding the total derivative term, we conclude that (3.16) holds. One could argue though that what is

inside the total derivative, is a priori not globally defined. As a consequence, this term should not vanish

(see section 4.1). This reasoning would be correct if the derivative index were independent of what was

acted on, but it is not the case here. If all field components (including β̃ itself) depend on a certain set

of coordinates corresponding to directions q, then the assumption (3.12) essentially amounts to having the

components β̃pq (∀p) vanishing. Therefore, in the sum on k given by ∂k(β̃nk . . . ), either the derivative gives

zero, or the component β̃nk is zero. So this total derivative term can be discarded because it vanishes. The

same reasoning could in fact be applied on ∂kβ̃kn itself.
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Note that a few ĝmn are kept to shorten notations: they should simply be replaced in terms

of g̃ and (G−1) using (3.9).

Let us make a few remarks on (3.18). The assumption has helped to simplify some

complicated terms, but a few terms containing (G−1) remain. As mentioned in the previous

section, these terms cannot be simplified further, which is what makes this computation

difficult. Fortunately, all the (G−1) terms will in the end cancel against other terms in the

Lagrangian, to leave us only with the non-geometric Q-flux. Let us note also that the third

line of (3.18) contains second order derivative terms. These cannot cancel against any

other since the other terms of the Lagrangian only contain first order derivatives. We thus

need to integrate these terms by parts, which will give us in particular a total derivative

term, that is discussed in more detail in section 4.1. The integration by parts will also give

rise to terms with a derivative of the dilaton. Therefore, we prefer to turn to the dilaton

kinetic terms, before treating these second order derivative terms.

3.3.2 The dilaton terms

Starting from the definition (3.11) of φ̂ in terms of φ̃, we compute in the appendix the

difference between the two dilaton terms (each squared with its corresponding metric, ĝ or

g̃) and get

|dφ̂|2 − |dφ̃|2 = 1
4 g̃kmg̃pq g̃uv∂mg̃pq∂kg̃uv (3.19)

+ 1
2 g̃kmg̃pq(G−1)uv∂mg̃pq∂kG

vu

+ 1
4 g̃km(G−1)pl(G

−1)uv∂mGlp∂kG
vu

− g̃kmg̃pq∂kg̃pq∂mφ̃

− g̃km(G−1)pq∂kG
qp∂mφ̃ ,

where we used the assumption (3.12) and the simplifications (3.14).

3.3.3 Second order derivative terms and integration by parts

We come back to the second order derivative terms appearing in (3.18) and the integration

by parts. For combinations of fields f and F km (of indices k,m), we have

∫
dDx e−2φ̃

√
|g̃|F km∂k∂mf =

∫
dDx ∂k(. . . ) (3.20)

+

∫
dDx e−2φ̃

√
|g̃|

((
2∂kφ̃−

1

2
g̃pq∂kg̃pq

)
F km − ∂kF

km

)
∂mf ,

(3.21)
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where we used the tilded measure for convenience, but note that the hatted and tilded

measures are the same (3.10). Applied to the third line of (3.18) one gets

2g̃kmg̃pq∂k∂mg̃pq + 2g̃km(G−1)pq∂k∂mGqp =
1

e−2φ̃
√
|g̃|

∂k(. . . ) (3.22)

+ 4g̃km∂kφ̃
(
g̃pq∂mg̃pq + (G−1)pq∂mGqp

)

+ ∂kg̃uv∂mg̃pq

(
2g̃pq g̃mug̃kv + g̃km (2g̃pug̃vq − g̃uv g̃pq)

)

+ (G−1)pq∂kg̃uv∂mGqp
(
2g̃mug̃kv − g̃kmg̃uv

)

+ 2g̃km(G−1)pu(G−1)vq∂kG
uv∂mGqp ,

where the total derivative is given by

∂k

(
e−2φ̃

√
|g̃| 2g̃km

(
g̃pq∂mg̃pq + (G−1)pq∂mGqp

))
. (3.23)

This can be expressed purely in terms of hatted fields, or tilded fields, using formu-

las (3.3), (3.4), or their converse.

Note that some terms appearing in (3.22) exactly cancel terms in (3.19), in particular

those which contain a derivative of φ̃. Replacing the second order derivative terms in (3.18)

by (3.22), adding (3.19), and using (for the first time) the two other properties (3.15)

and (3.16) derived from the assumption, one finally obtains

R̂ − R̃+ 4(|dφ̂|2 − |dφ̃|2)−
∂(. . . )

e−2φ̃
√
|g̃|

(3.24)

=
1

2
g̃kug̃mq g̃vlg̃sp(ĝsl − g̃sl)∂mg̃uv∂kg̃pq

+ g̃km∂mGpl

(
g̃pq(G

−1)lr∂kg̃
rq −

1

2

(
ĝlq g̃pr + (G−1)qp(G

−1)lr
)
∂kG

rq

)
,

where the total derivative is given by (3.23). We can easily verify that the right-hand side

of (3.24) vanishes for β̃ = 0.

3.3.4 The H-flux term

The NSNS H-flux is given by the three-form Ĥ = dB̂, where the coefficient of the two-

form B̂ is given in (3.9). Following our conventions on forms in appendix A, we compute in

appendix C the |Ĥ |2 term in the NSNS Lagrangian. Using the assumption (3.12), together

with (3.14) and (3.15) (but not (3.16)), we obtain an expression for |Ĥ|2. This is then

rewritten to obtain an expression more easily comparable with (3.24):

|Ĥ|2 = 1
2 g̃p1p2 g̃q1q2 g̃

s1s2∂s1β̃
p1q1∂s2 β̃

p2q2 (3.25)

+ (ĝq1q2 − g̃q1q2)∂p2 g̃
p1q1∂p1 g̃

p2q2

+ g̃s1s2∂s1G
p1q1

(
2g̃p1p2(G

−1)q1q2∂s2 g̃
p2q2

−
(
g̃p1p2 ĝq1q2 + (G−1)q2p1(G

−1)q1p2

)
∂s2G

p2q2

)
.
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3.3.5 Final result and comments

Combining all the expressions computed, namely (3.24) and (3.25), most of the terms drop

out, and we are left with

R̂−R̃+4(|dφ̂|2−|dφ̃|2)−
∂(. . . )

e−2φ̃
√
|g̃|
−

1

2
|Ĥ|2 = −

1

4
g̃p1p2 g̃q1q2 g̃

s1s2∂s1β̃
p1q1∂s2β̃

p2q2 . (3.26)

Using (3.13), (A.7) and (3.10), we obtain the rewriting of the NSNS Lagrangian (1.6)

discussed in the introduction

e−2φ̂
√
|ĝ|

(
R̂+ 4|dφ̂|2 −

1

2
|Ĥ|2

)
= e−2φ̃

√
|g̃|

(
R̃+ 4|dφ̃|2 −

1

2
|Q|2

)
+ ∂(. . . ) , (3.27)

where the total derivative term is given in (3.23).

The final result may at first look surprising, because it was derived without specifying

anything about the fields (except the assumption (1.4)). In particular, it was not mentioned

whether the field configuration was geometric or not, and nevertheless the result indicates

it is always possible to obtain a non-geometric Q-flux. An explanation for this has actually

already been given, for example in section 2.2: locally, it is always possible to go from the

hatted basis to the tilded basis via an O(2d) transformation on the generalized vielbein; the

question of non-geometry only arises as a global issue [24].23 Similarly here, the Lagrangian

is only a local quantity and can always be rewritten in a form that contains a Q-flux term.

However, once we integrate the Lagrangian to obtain an action, the global aspects become

important, and we really face the question of non-geometry. This will be discussed further

in section 4.1.

4 Aspects of the rewritten action

4.1 Global aspects: preferred bases and total derivative term

In section 3, we derived the equality (3.27) of the Lagrangians L̂ and L̃, up to a total

derivative term. In this section, we are interested in the associated actions, so we focus

on the global aspects. In particular, the global properties of the fields, and consequently

of the Lagrangians, will play an important role. For instance, the NSNS fields in a non-

geometric configuration are globally ill-defined, since they are not single-valued when using

only standard geometric transition functions. As a consequence, it is difficult to consider

an action over these fields, because the usual integration cannot be performed. The global

aspects of the fields are also important in the total derivative term. For globally well-

defined fields, such a term is discarded, since its integral over a manifold without boundary

vanishes. This is not the case for a non-geometric configuration, so the fate of the total

derivative term in (3.27) does matter. In particular, whether it integrates to zero tells us

if we get the same action in the two bases. This is important, since we would like to know

whether we can trade the NSNS action for the one obtained by integrating L̃.

23This is related to having a topological obstruction which prevents from performing T-duality, see related

discussion in [24, 56] and references therein.
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The toroidal example presented in appendix B provides a good illustration for the

discussion of these various questions, so let us first comment on it. In the T-duality frames

A and B, the hatted fields describe a geometric configuration (a torus together with a

B-field in frame A, or a twisted torus in frame B). The fields are well-defined and so is

the NSNS Lagrangian L̂. What about the tilded fields and L̃? In frame B, the two bases

are identical, and the two Lagrangians are the same and well-defined. Frame A is more

interesting: indeed, there, it turns out that g̃, β̃, φ̃ are ill-defined. This results in L̃ being

ill-defined as well. However, given that L̂ and L̃ only differ by a total derivative, the ill-

defined terms of L̃ should then be captured by a total derivative only. This is verified in

frame A, as can be seen by looking at L̃ in (B.5).

Thus for geometric situations, it seems that the NSNS Lagrangian L̂ is preferred over

the Lagrangian with Q-flux L̃, since the latter can contain an ill-defined total derivative

term. Consequently, the NSNS action is the good action to use, while the integral of L̃ is

ambiguous. This can seem at odds with the freedom to choose a field basis suggested by

GCG. However, from the perspective of string theory this is not surprising, since ĝ, B̂, φ̂

provide the low-energy description of the NSNS sector in geometric settings.

We now turn our attention to the non-geometric configuration of the toroidal example.

In frame C, we obtain the famous T-dual of the twisted torus, where the hatted NSNS fields

ĝ, B̂, φ̂ are ill-defined and so is the NSNS Lagrangian L̂. This agrees with our discussion

of non-geometry in ten dimensions. Interestingly, the tilded fields g̃, φ̃ are well-defined.24

The only tilded field that is ill-defined is β̃ (in contrast to B̂, we do not allow for gauge

transformations of β̃, see footnote 16). However, since it is |Q|2 and not β̃ that appears in

L̃, this does not result in an ill-defined Lagrangian, see (B.13). Similarly to the situation

in frame A, the well-defined L̃ and ill-defined L̂ differ only by a total derivative term

as in (3.27); the NSNS Lagrangian L̂ in the non-geometric configuration of frame C can

then be written as a well-defined piece plus an ill-defined total derivative term (B.11).

To summarize, the ill-defined properties of L̂ are captured by the total derivative term,

together with β̃, leaving the Q-flux Lagrangian L̃ well-defined. Although these features are

obtained here in a particular toroidal situation, we think that they are more general and

could be observed in other examples as well.

Let us remark that in all three T-duality frames of the toroidal example, there is a

basis where one field is only locally defined, while the others are well-defined (as discussed

further in appendix B), and the whole leads to a well-defined Lagrangian. In the geometric

frame A, this is true in the hatted basis, where the B-field is only defined up to gauge

transformations. In frame B, both bases share this property, and the metric connection is

the locally defined quantity. In frame C, the same is verified in the tilded basis, where the

locally defined field is now β̃. Combined with the fact that the Lagrangian L̃ is well-defined,

this is quite suggestive. We argued already that, for the geometric frames A and B, the

hatted NSNS fields form the preferred field basis, since they are well-defined (up to gauge

transformations) and lead to a well-defined Lagrangian. Applying the same reasoning to

24If in one T-duality frame, for instance the A one, the measure e−2φ
p

|g| is well-defined, then in any

other frame and any basis the dilaton will be well-defined whenever the metric is. Indeed, this measure is

invariant under change of frame (action of T-duality, see (2.6)) or change of basis (see definition of φ̃ (3.10)).
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the non-geometric frame C suggests that the tilded field basis should be preferred there.

Consequently, considering the well-defined L̃ and the associated action in a non-geometric

configuration looks like the natural thing to do. However, the rewriting of the ill-defined

NSNS Lagrangian leads in addition to an ill-defined total derivative term. The reader may

now ask herself if discarding the latter is allowed. This is a subtle question, but let us give

some reasons in favour of considering L̃ alone.

A total derivative of non-single-valued fields sometimes contributes as a topological

term to the action. In a non-geometric situation though, we know the fields can be made

single-valued if we allow some stringy symmetries as transition functions between different

patches of the target space. Allowing for such transformations in the integration would

make the total derivative term vanish. Thus, by integrating this way over non-geometric

fields, we can get rid of this additional term.25 Since doing so cures as well the problem

of the NSNS action we started with, the equality with the tilded action definitely holds.

Nevertheless, there is an advantage in rewriting L̂: by isolating the ill-defined terms in

a total derivative, we are left with a well-defined Lagrangian (e.g. L̃ in frame C of the

example) that can be used further.

In addition, we discussed several times that for non-geometric settings, it is not clear

that the NSNS action is a good low energy description of string theory. In the toroidal

example, a geometric string configuration with a well-defined NSNS Lagrangian leads, via

T-dualities, to a non-geometric configuration with ill-defined NSNS Lagrangian but well-

defined Q-flux Lagrangian. Since T-duality is a symmetry of toroidally compactified string

theory, one can think that having a point-like description in one frame (by an NSNS action)

should induce another point-like description in another T-duality frame. Similar arguments

can be given for the four-dimensional theory and mirror symmetry, see [5] and references

therein. For the toroidal example, the natural candidate for this other description is the

L̃ Lagrangian. Thus, we would shift focus and say that the proper low-energy description

of string theory in non-geometric backgrounds is given by g̃, φ̃, β̃ and not ĝ, φ̂, B̂. As a

consequence, we should use the action obtained from L̃ to describe the low-energy dynamics

of the fields. It would be nice to derive such a claim on the good low-energy description

from string world-sheet studies. In particular, although β̃ does not appear in the standard

string spectrum, it is a rank two antisymmetric tensor as B̂ is, and contains the same

number of degrees of freedom. More generally, the change of variables from the hatted to

the tilded is one-to-one. A world-sheet analysis could give more legitimacy to these new

variables as proper physical fields. One approach for such studies could be along the lines

of [35] or [70]. Another possiblity could be [58, 63], see also references therein.

The toroidal example revealed, for each of the three T-duality frames, a basis of fields

which are well-defined except for one locally defined field, and these fields lead to a well-

25In section 2.2.3, we mentioned a further possibility: even if the fields require a stringy symmetry to be

globally defined, the integrand of the superpotential in [5] is invariant under this symmetry and therefore

well-defined. Since we do not consider the same integrand here, we cannot use this property. We also

discussed in section 2.2.3 a drawback of this superpotential: it requires the definition of a Q-flux in ten

dimensions. Given the rewriting done here, such a definition now exists and would be interesting to use in

further studies of the superpotential.
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defined Lagrangian and action. More generally, it looks reasonable that given a field

configuration, geometric or not, there exists a preferred basis for the generalized vielbein

E , in which the quantities entering it lead to a single-valued Lagrangian, that differs from

the NSNS L̂ at most by a total derivative.26 Then we propose the following prescription: in

a given configuration, we use the preferred field basis and the associated action to describe

the low-energy aspects of string theory. Here, this is exemplified by choosing between

either the hatted basis for a geometric configuration or the tilded basis in a non-geometric

situation. But these are only particular examples of basis obtained from a generically

O(2d)-rotated generalized vielbein. Other choices for the generalized vielbein might lead

to a more involved basis, where the degrees of freedom are distributed in both a B- and a

β-field.27 The well-defined action would then have all types of fluxes, including H or even

R. We come back to these possibilities in the following and in the conclusion.

The prescription just proposed promotes as the good low-energy description of string

theory the well-defined action obtained in the preferred basis. The associated Lagrangian

is single-valued, which implies that we can perform on it the usual point-like or “geometric”

integration. In the case of non-geometry, we can even talk of this Lagrangian as being a

“geometric” description of a non-geometric situation. In a sense, the rewriting helped us

to solve the global issues of the non-geometric situation: by considering only L̃ and not

the total derivative term, we eventually obtained a globally well-defined action starting

from the NSNS action. This allows us to finally make a dimensional reduction in the

usual way, and relate in particular the Q-flux we obtained to the corresponding term in

the four-dimensional scalar potential. Before doing so, we derive the equations of motion

from the single-valued Lagrangian. If the latter is a good low energy effective description

of string theory as prescribed, these ten-dimensional equations should correspond to the

annihilation of some β functions of a sigma model in a non-geometric situation.

4.2 Ten-dimensional equations of motion

In this section, we derive the equations of motion from a ten-dimensional action with both

geometric and non-geometric fluxes. Additionally, these equations are used to investi-

gate whether compactifications to a four-dimensional de Sitter or Minkowski space-time

are possible. This analysis reproduces certain constraints from the four-dimensional non-

geometry literature.

As discussed above, we focus on the NSNS sector, and consider the proper low-energy

description to be given by a preferred basis where the fields g, φ,H,Q are globally well-

defined. This situation is considered here for more generality, and could a priori occur with

a more general form of the generalized vielbein in (2.8). This allows us to have both a B-

26The existence of such a basis could be related to the notion of generalized parallelizable backgrounds

of [24]. For such backgrounds, it is argued that the R-flux should vanish. The toroidal example could be

one of such backgrounds (the assumption on β̃ is trivially satisfied there, and so we do not have any R-flux).

We thank D. Waldram for related discussions.
27Note that in the appendix of [59], there is an example on a solvmanifold with both a B and β-field.

Note also that the example mentioned in footnote 12 may correspond to a non-geometric situation described

in a geometric way by the preferred basis.
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and a β-field, and we restrict ourselves again to the subcase without R-flux. Since this

basis is different from the hatted and tilded ones considered so far, we drop these notations.

As a particular example of this more general situation, we could consider a configuration

with both Q- and H-fluxes on a compact part of space-time consisting of a non-geometric

fiber F (along which Q is non-zero), and a geometric base B with a non-zero H-flux.

In the presence of an H-flux, one can argue that Q is given by (2.14). Assuming (1.4),

together with β and Q being tensors, it can be shown that the non-geometric Q-flux in

curved indices is then given by

Qk
mn = ∂kβ

mn + Hkpqβ
pmβqn . (4.1)

In this more general case, neither L̂ nor L̃ provide a good low-energy description of the

string configuration, and we instead propose to use a Lagrangian containing both an H-

and a Q-flux. We then consider the following ten-dimensional action in string frame

S =
1

2κ2

∫
d10x e−2φ

√
|g|

(
R+ 4|dφ|2 −

1

2
|Q|2 −

1

2
|H|2

)
, (4.2)

where 2κ2 = (2π)7(α′)4, α′ = l2s and further conventions are given in appendix A. As

we will show in section 4.4, this action is further motivated by reducing to the expected

four-dimensional effective field theory. We derive the equations of motion by varying (4.2)

with respect to g, φ,B, β considered as the fundamental fields,28 and obtain respectively

0 = Rmn −
1

2
gmnR+ 2gmn

(
|dφ|2 −∇2φ

)
+ 2∇m∇nφ +

1

4
gmn

(
|H|2 + |Q|2

)
(4.3)

−
1

4
HmpqHn

pq −
1

4
QmpqQn

pq +
1

2
Qp

mqQpn
q

0 = ∂k

(
8e−2φ

√
|g|gkm∂mφ

)
+ e−2φ

√
|g|
(
2R+ 8|dφ|2 − |Q|2 − |H|2

)
(4.4)

0 = ∂k

(
e−2φ

√
|g|
(
Hkmn + 3βp[mQk

pqβ
n]q
))

(4.5)

0 = ∂k

(
e−2φ

√
|g|Qk

mn

)
− 2e−2φ

√
|g|gqrgsnHk

pmβpqQk
rs , (4.6)

where indices are raised and lowered with g. We also trace the ten-dimensional Einstein

equation to obtain the Ricci scalar

R = −
9

2
∇2φ + 5|dφ|2 +

1

4
|H|2 +

3

4
|Q|2 . (4.7)

Let us make a few remark on the derivation of these equations. The equations of motion

for g,B, φ are the standard ones, to which one adds contributions by Q. In particular, the

equation for B deviates from its usual form by an extra term containing β and Q, since H

appears in (4.1). For the same reason, H appears in the equation for β. Note also that the

28We take β to be independent of B for the derivation of the equations of motion. We believe that in

this more general situation, enough restrictions would arise from the Bianchi identities (see section 4.3) to

constrain the fields, so that eventually no new degree of freedom is introduced. This reasoning is similar

in spirit to the democratic formalism of type II supergravities, where the equations of motion have to be

supplied with duality constraints to restore the correct number of degrees of freedom.
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derivation of the equations of motion for B and β requires integrations by parts involving

total derivatives on β. Even in the preferred basis, β is only locally defined, which means

that these total derivatives should be treated with care (see related discussion in 4.1). In

the following, we only need the dilaton equation of motion and the Einstein equation, so

we disregard these subtleties.

Using the above equations, we can now derive conditions that must be fulfilled for

compactifications to four-dimensional de Sitter or Minkowski space-time. For simplicity, we

specify the ten-dimensional space-time to be the unwarped29 product of a four-dimensional,

maximally symmetric space-time, and an internal six-dimensional manifold. Hence,

gmn(xm) =

(
gµν(xµ) 0

0 gij(x
i)

)
, (4.8)

where the ten-dimensional coordinates are denoted xm=0...9 = (xµ=0...3, xi=4...9). Note

that being in the preferred basis provides us with a well-defined metric, and a geometric

description of the internal space, see section 4.1. We can then speak of an internal manifold.

We furthermore choose purely internal fluxes. Using (4.3) and (4.7), we then obtain the

four-dimensional Ricci scalar

R4 = gµνRµν = 2|dφ|2 −∇2φ− 2∇µ∇
µφ−

1

2
|H|2 +

1

2
|Q|2 . (4.9)

Finally, taking the dilaton to be constant,30 the requirement of a non-negative four-

dimensional curvature then translates into

0 ≤ 2R4 = |Q|2 − |H|2 . (4.10)

Note that the non-geometric Q-flux contributes positively to the four-dimensional cosmo-

logical constant. For the unwarped metric (4.8), the ten-dimensional Ricci scalar is simply

the sum R = R4 + R6. Combining this with (4.7) and (4.9), |H|2 can be eliminated in

favour of R6, and R4 ≥ 0 translates into

0 ≤ |Q|2 −R6 . (4.11)

In summary, we find two constraints for the compactifications to a de Sitter or

Minkowski vacuum, which can be compared with requirements obtained from a four-

dimensional analysis. In section 4.4, we will perform a dimensional reduction allowing

us to define a four-dimensional potential (4.29), which in the vacuum consists of the terms

Vω = −R6 , VH̄3
= 1

2 |H|
2 , VQ = 1

2 |Q|
2 . (4.12)

Given these definitions, the conditions for a non-negative four-dimensional cosmological

constant (4.10) and (4.11) reproduce equation (5.3) in [8]. The other terms in this equation

should also be reproduced with a similar ten-dimensional reasoning, by including other

29In type IIB compactifications, this corresponds to taking a large volume limit.
30In type II supersymmetric solutions, a constant warp factor leads to a constant dilaton. This is not the

case in heterotic string.
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contributions not considered so far, namely RR fluxes, sources and warping, or the R-flux.

See for instance [59] for a similar derivation with other degrees of freedom.

The absence of other ingredients has a further consequence in our ten-dimensional

analysis. Still assuming a constant dilaton, we can solve the dilaton equation of motion (4.4)

for Q. This solution saturates the inequalities (4.10) and (4.11), i.e.

R4 = 0 , R6 = |H|2 = |Q|2 , (4.13)

and so the curvature of the internal manifold is positive and the four-dimensional cos-

mological constant is zero. Hereby we see that the non-geometric Q-flux is just enough

to balance the positive curvature of the internal manifold, creating a four-dimensional

Minkowski solution. Unfortunately, de Sitter solutions could only be obtained via the

inclusion of other ingredients.31

4.3 Bianchi identities and the generalized covariant derivative

After having obtained the ten-dimensional equations of motion from the rewritten action,

we now make a slight digression to discuss how the Bianchi identity dĤ = 0 translates to

the tilded basis. In order to do so, we recall from section 2.2.3 that the Bianchi identities

of a geometric setting can be recovered as a nilpotency condition on the twisted exterior

derivative d−H∧. Similarly, it was argued that the Bianchi identities of a non-geometric

configuration are obtained as a nilpotency condition for a generalized covariant derivative D

that also contains the non-geometric Q- and R-fluxes. Concretely, this generalized operator

acts on differential forms as [4]

D = H ∧+f ·+Q ·+Rx , (4.14)

where ∧ is the standard wedge product, x is a contraction and · is a combination of both.

Note that there is no derivative in the definition of D (see for example footnote 3 of [4] for

a discussion on this point). In particular, in the hatted and tilded field bases of section 3,

we obtain the operators

D̂ =
1

2!
f̂a

bc êb ∧ êc ∧ ιa +
1

3!
Ĥabc êa ∧ êb ∧ êc∧ , (4.15)

D̃ =
1

2!
f̃a

bc ẽb ∧ ẽc ∧ ιa +
1

2!
Qc

ab ẽc ∧ ιa ιb ,

where êa = êa
mdxm and similarly for ẽa. The contraction is defined by its action on a

form as ιae
b = δb

a. Note that here and in the following, the flat indices of hatted (tilded)

quantities correspond to the hatted (tilded) vielbeine. Since for a given local configuration,

the hatted and tilded field bases provide two different descriptions of the same setting (see

section 3.3.5), there should be a relation between D̂ and D̃. In the rest of this section, we

investigate what this relation is.

31We have checked that the inclusion of an R-flux, according to the conjectured action (5.1), does not

change this result: we still obtain a four-dimensional Minkowski space-time.
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As in section 3, the starting point of our study is the relations (3.3) and (3.4). Here, we

are interested in relations between f̂a
bc, Ĥabc and f̃a

bc, Qc
ab. Assuming that ĝ and g̃ have

the same signature, we deduce from (3.3) a relation between hatted and tilded vielbeine

ê = ẽF−1 , (4.16)

where we introduce

F = 1 + β̃g̃ ; F a
b = δa

b + β̃acηcb , (4.17)

and we denote by ηab, in this section only, the tangent space metric (in practice, it would

either be the Minkowski metric or the identity; it should not be confused with the GCG

metric η, which does not appear here). Strictly speaking, the relation between the vielbeine

is only defined up to an O(d) transformation, which we disregard here. Furthermore,

combining (3.4) with (4.16) we obtain

B̂ab = ηacβ̃
cdηdb . (4.18)

From the above equations, in combination with (A.3) and (C.26), it is straightforward

to express Ĥabc and f̂a
bc in terms of tilded quantities:

1

3
Ĥabc = ∂[aβ̃bc] − f̂d

[abβ̃c]d , (4.19)

f̂a
bc = f̃a

bc + (F−1)ah

(
2Q hd

[b ηc]d − β̃hdηdef̃
e
bc − 2β̃deηe[cf̃

h
b]d

)
.

After a few manipulations, these equalities can be shown to imply

ηd[af̂
d
bc] +

1

3
Ĥabc = ηd[af̃

d
bc] + ηd[aQb

deηc]e . (4.20)

This equality is very suggestive. Comparing with (4.15), we see that the left-hand

side is very similar to D̂ and the right-hand side is very similar to D̃. In particular, the

contractions ιa in (4.15) are represented by tangent space metrics ηab in (4.20). From this

similarity we infer that when going from the hatted to the tilded basis, we should replace

D̂ by D̃. Thus the NSNS Bianchi identity dĤ = 0, which corresponds to demanding that

D̂2 = 0, should translate into the nilpotency condition D̃2 = 0 in the tilded basis, just

as expected from previous studies of Bianchi identities in non-geometric situations [4, 64],

see section 2.2.3. To put this result on firmer ground it seems necessary to include also

the RR sector of the theory, since this sector contains the differential forms on which the

generalized exterior derivatives D̂ and D̃ operate. We hope to make this more precise in a

future publication.

4.4 Four-dimensional effective field theory

As discussed in section 2, string compactifications with non-geometric fluxes have been

extensively studied from a four-dimensional perspective. Here, we show that a dimensional

reduction of our ten-dimensional action (4.2) reproduces the expected non-geometric flux

terms in the four-dimensional effective theory (in particular its scalar potential). As in

section 4.2, we assume to be in a preferred basis, where the fields g, φ,H,Q are globally
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well-defined, making the Lagrangian single-valued (see section 4.1). This provides us with

a geometric (point-like) description of non-geometry, and we can in particular integrate

over the internal manifold without problem, and so perform the dimensional reduction.

In the following, we take as a compactification ansatz a metric of the form (4.8). In

addition, we take all the fields to depend only on four-dimensional coordinates, and we

take the fluxes to be purely internal. The latter are in addition restricted to their vacuum

expectation value (denoted in the following with an index (0)), since we will not consider

their fluctuations. We only focus on two moduli,32 namely the volume modulus ρ and

the four-dimensional dilaton σ. These fields are defined by perturbations around vacuum

expectation values of the internal volume and the dilaton. In particular, the former is

defined as

gij → g
(0)
ij ρ , (4.21)

where the arrow indicates the fluctuation we consider, while the latter is defined as

e−φ → e−φ(0)
e−ϕ = g−1

s e−ϕ . (4.22)

From the fluctuation ϕ we define the four-dimensional dilaton

σ = ρ3/2e−ϕ . (4.23)

Before we continue, let us emphasize that from the usual ten-dimensional point of view on

non-geometry, the volume of a non-geometric space, and hence its volume modulus, are

rather ill-defined notions. Some references used this argument to exclude this modulus from

the start, or to argue against a large volume limit [1, 4, 14, 71]. In this paper, we are not

talking of the same object: we performed a change of variables from an ill-defined to a well-

defined metric, and the volume modulus is the fluctuation with respect to this new metric.

Having defined the moduli, we determine how the terms in (4.2) scale with respect to

them. Taking into account the dependencies on the metric of the various terms, we obtain

R6 → ρ−1R
(0)
6 , |H|2 → ρ−3|H(0)|2, |Q|2 → ρ|Q(0)|2 . (4.24)

Additionally, after setting the vacuum expectation value of the internal volume to L6
0, we

have ∫
d6x
√
|gij | = L6

0 ρ3 , where

∫
d6x

√
|g

(0)
ij | = L6

0 . (4.25)

It is now only a matter of putting these definitions together to get the reduced four-

dimensional action. For convenience, we drop all indices (0) in the following. Also, as we

are only interested in the internal curvature and flux contributions, we do not give explicit

expressions for the scalar kinetic terms, and denote them as “kin”. The reduced action is

then

S =
L6

0

2κ2g2
s

∫
d4x
√
|gµν |ρ

3e−2ϕ

(
R4 + kin + ρ−1R6 −

1

2
ρ|Q|2 −

1

2
ρ−3|H|2

)
. (4.26)

32In the literature on string compactifications, it is by now customary to also call some scalar fields that

have a potential “moduli”. We stick to this admittedly confusing nomenclature.
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The four-dimensional Einstein frame action can be obtained by a simple Weyl rescaling

with the four-dimensional dilaton (4.23)

gµν = σ−2gE
µν . (4.27)

Eventually, we find the four-dimensional action in Einstein frame:

SE = M2
4

∫
d4x
√
|gE

µν |

(
RE

4 + kin + σ−2ρ−1R6 −
1

2
σ−2ρ|Q|2 −

1

2
σ−2ρ−3|H|2

)
, (4.28)

where the four-dimensional Planck mass M4 is given by M2
4 = L6

0/(2κ
2g2

s). The four-

dimensional scalar potential can then be read from this action

1

M2
4

V = −ρ−1σ−2R6 +
1

2
ρσ−2|Q|2 +

1

2
σ−2ρ−3|H|2 . (4.29)

This leads us to the following important result: the potential derived from our ten-

dimensional considerations agrees with the four-dimensional arguments in [72], where the

authors propose the dependencies33

Vω ∼ σ−2ρ−1 , VH ∼ σ−2ρ−3 , VQ ∼ σ−2ρ , VR ∼ σ−2ρ3 . (4.30)

For completeness, let us mention that extremizing the potential, together with the fact

that ρ = σ = 1 in the vacuum, leads to

1

M2
4

∂V

∂ρ

∣∣∣
ρ=σ=1

= R6 +
1

2
|Q|2 −

3

2
|H|2 = 0 (4.31)

1

M2
4

∂V

∂σ

∣∣∣
ρ=σ=1

= 2R6 − |Q|
2 − |H|2 = 0 . (4.32)

Considering (4.31) together with (4.29) allows us to recover the two conditions for a non-

negative four-dimensional cosmological constant (4.10) and (4.11). As in ten dimensions,

considering additionally the dilaton contribution (here (4.32)) leads to the vacuum values

R4 = V
∣∣
ρ=σ=1

= 0, R6 = |H|2 = |Q|2 . (4.33)

Thus, the internal manifold has positive curvature and the external space-time is

Minkowski, which agrees with the ten-dimensional results of section 4.2. As argued there,

extra ingredients are needed to obtain a four-dimensional vacuum with non-zero cosmolog-

ical constant.

4.5 Double field theory and non-geometry

In this section, we make a final digression, and comment on a relation between our rewriting

of the NSNS Lagrangian, and a possible double field theory description of non-geometry.

Double field theory (DFT) has been introduced in [20, 73–75] and developed in a series

of subsequent papers. Inspired by earlier results, in particular some work in string field

33Including an R-flux, as in the conjectured action (5.1), results in a potential term that scales as in (4.30).
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theory, an important achievement of this approach is to obtain a background independent

T-duality covariant action for the NSNS sector [20, 75]. Starting from the latter, and

given the rewriting performed in this paper, we propose a DFT Lagrangian to describe

non-geometric situations.

DFT considers the target space given by doubled geometry (see section 2.1) where one

doubles the coordinates, together with the derivatives, so that O(d, d) transformations act

linearly on them

XM =

(
ym

xm

)
, ∂M =

(
∂y

∂x

)
, X ′ = OX , ∂′ = O−1∂ , for O ∈ O(d, d) , (4.34)

where as previously we have m = 1 . . . d , M = 1 . . . 2d. The NSNS fields (of a d-dimensional

space-time) are considered in DFT to depend on both sets of coordinates. From these fields,

the following action is defined on the doubled space [20]

SDFT =

∫
dxdy LDFT(H,∆) (4.35)

=

∫
dxdy e−2∆

(
1

8
HMN∂MH

KL ∂NHKL −
1

2
HMN∂NH

KL ∂LHMK

− 2 ∂M∆ ∂NH
MN + 4HMN ∂M∆ ∂N∆

)
,

where e−2∆ = e−2φ
√
|g| is the standard NSNS measure, and H(ĝ, B̂) is the generalized

metric given (up to a change of conventions) by (2.4). In addition to an interesting gauge

symmetry, this action has the property to be written in a covariant way under an O(d, d)

transformation. Indeed, that ∆ is invariant under such a transformation can be seen

from (2.6), and the same goes for dxdy = 1
2dXT ηdX. We also know that H is transforming

(bi)linearly as in (2.5), so each term of the action is clearly invariant.

This action is of particular interest, because if the fields are now considered to depend

only on the standard coordinates xm, one recovers the standard NSNS action (see also [19]).

More precisely, setting ∂y = 0, one gets

LDFT(H(ĝ, B̂), ∆̂)
∂y=0

L̂+ ∂(. . . ) , (4.36)

where we recall from (1.6) that L̂ is the standard NSNS Lagrangian; the latter is then

obtained up to a total derivative term [20].

Combining this result with those of our paper, we deduce the following diagram

LDFT(H(ĝ, B̂), ∆̂)
(1.3)

(3.10)
LDFT(H(g̃, β̃), ∆̃)

L̂+ ∂(. . . )

(4.36)

(1.6)
L̃+ ∂(. . . )

�

�

�

�

�

�

(4.37)

The left column is the result of DFT [20] that we gave in (4.36). The bottom line is the

equality of Lagrangians derived in this paper. The top line is the proposal we make: since
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our change of variables from the hatted to the tilded basis leaves the generalized met-

ric H and ∆ invariant (see (1.3), (3.10)), one should consider the DFT Lagrangian given

in (4.35), but where H and ∆ are expressed in terms of the tilded variables g̃, β̃, φ̃.34 This

Lagrangian (in the top-right corner of (4.37)) should provide an interesting DFT descrip-

tion of non-geometry, up to global issues that we discussed in section 4.1. In addition, the

chain of equalities in (4.37) shows that the Lagrangians in the last column should be equal,

up to a total derivative term, once one considers ∂y = 0. Therefore, the DFT Lagrangian

LDFT(H(g̃, β̃), ∆̃) should give back the non-geometric Q-flux in the ten-dimensional La-

grangian, provided the assumption (1.4) is satisfied. It would be interesting to study this

DFT Lagrangian further, for instance its properties under DFT gauge transformations.

5 Conclusion

Although the idea that string theory compactifications are possible also on non-geometric

spaces is not new, the understanding of non-geometry is still incomplete. Over the years,

this subject has been studied from different angles. From a four-dimensional effective field

theory approach, non-geometry was first described in terms of non-geometric Q- and R-

fluxes, which are needed in order to write the four-dimensional theory covariantly with re-

spect to T-duality. On the other hand, from the ten-dimensional perspective, non-geometry

has primarily appeared as the failure of the NSNS fields to be globally well-defined, unless

a stringy symmetry is used to patch them. Since these global issues prevent a standard

dimensional reduction, no straightforward relation between the four- and ten-dimensional

descriptions of non-geometry has been obtained. In particular, no ten-dimensional inter-

pretation of the non-geometric fluxes has been given.

In this paper we make progress in establishing such a relation. Our work is inspired

by Generalized Complex Geometry (GCG), where it has been shown that it is always

possible to perform a local change of field variables, replacing the NSNS metric ĝ and B-

field B̂ by a new metric g̃ and an antisymmetric bivector β̃. This change of field basis is

permitted by an O(2d) action that leaves the generalized metric (a central object in GCG)

invariant (1.3). Defining as well a new dilaton φ̃ to replace the NSNS dilaton φ̂, we then

rewrite the ten-dimensional NSNS Lagrangian L̂ in terms of the tilded fields. Particularly,

by using a simplifying assumption (1.4) we show that

L̂=e−2φ̂
√
|ĝ|

(
R̂+ 4|dφ̂|2−

1

2
|Ĥ|2

)
=e−2φ̃

√
|g̃|

(
R̃+ 4|dφ̃|2−

1

2
|Q|2

)
+ ∂(. . . )= L̃+ ∂(. . . ),

where ∂(. . . ) is a total derivative term, and the terms that depend on β̃ in L̃ are collected in

|Q|2. Concretely, the rewriting results in a Q that is related to β̃ as in (1.5). Interestingly,

this agrees with relations (2.12), (2.14), that have been derived in the literature from alge-

braic considerations [24, 58]. It should be emphasized that this reformulation of the theory

is obtained without introducing any new degree of freedom; indeed we have only worked

34Given the discussion made in section 4.1, one should in general consider expressions in terms of the

fields in the preferred basis, where the Lagrangian is well-defined. In any case, the formal LDFT will still

be given by (4.35), since H and ∆ should remain invariant.

– 32 –



J
H
E
P
0
9
(
2
0
1
1
)
1
3
4

out what the change of field variables implies on the level of the Lagrangian. Nevertheless,

rewriting the Lagrangian results in a ten-dimensional formulation of the theory that

contains a term which could correspond to the four-dimensional non-geometric Q-flux.

The rewriting of the Lagrangian is valid in both geometric and non-geometric settings.

However, the most interesting aspects of the procedure become apparent when considering

non-geometric configurations, where the NSNS fields and Lagrangian L̂ are typically ill-

defined. For such configurations, the tilded metric, dilaton and Q-flux may very well be

single-valued, leading to a well-defined Lagrangian L̃. Indeed, this is the case for a well-

known non-geometric toroidal configuration. Consequently, the action S̃ associated with

L̃ is well-defined, and can be straightforwardly dimensionally reduced. After a discussion

on global aspects, we perform this exercise, and finally obtain a link between the ten-

and four-dimensional perspectives of non-geometry, at least for the cases that fulfill (1.4).

In particular, we show that the obtained ten-dimensional Q-flux does reduce to its four-

dimensional counterpart.

Furthermore, we advocate that a similar well-defined field basis and Lagrangian should

exist for any configuration, geometric or not. We then prescribe that this preferred field

basis should be used for the low-energy description of string theory. An argument in

favour of this prescription is that if a geometric string configuration has a low-energy

Lagrangian description, then such a point-like description should also exist for any dual of

the configuration. In the toroidal example, we find that the different preferred field bases

in geometric and non-geometric T-dual frames, lead to equal and well-defined Lagrangians.

It would be interesting to find a string world-sheet derivation of these arguments. For this

purpose, we derive the ten-dimensional equations of motion that should correspond to the

vanishing of the β functions of a world-sheet CFT.

As side results, we apply the change of field basis to the NSNS Bianchi identity. This

constraint on the H-flux can be reformulated as the nilpotency condition of a twisted

derivative. Similarly, it has been argued that demanding the nilpotency of a generalization

of this derivative should reproduce the flux constraints in non-geometric settings. Through

our rewriting, we find support for this idea. We also discuss a possible double field theory

description of non-geometry, and propose a Lagrangian which could serve this purpose. It

would be interesting to further pursue these studies.

In this paper we have restricted our studies of the NSNS action to the simplified

setting where β̃ fulfills (1.4). In particular, this means that we have been focusing on

locally geometric configurations with zero R-flux. Rewriting the NSNS action without the

simplifying assumption should also be possible, though technically more involved, and we

conjecture that the following holds:

L̂=e−2φ̂
√
|ĝ|

(
R̂+ 4|dφ̂|2 −

1

2
|Ĥ|2

)
=e−2φ̃

√
|g̃|

(
R̃+ 4|dφ̃|2 −

1

2
|Q|2 −

1

2
|R|2

)
+ ∂(. . .) ,

(5.1)

where the non-geometric fluxes should correspond to those defined in (2.12). Proving this

conjecture is work in progress [25]. Again, it is imaginable that the rewritten Lagrangian

on the right-hand side of (5.1) is well-defined for some configuration, and can then be

used for the dimensional reduction of the theory. It is also possible that both a B- and a
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β-field are present simultaneously in a preferred basis, adding an H-flux term to the above

Lagrangian. In that case, there should be extra constraints to restore the correct number

of degrees of freedom.

It would be interesting to extend our work to study the effects of non-geometry on

the RR sector, for example along the lines of [76]. Furthermore, some four-dimensional

arguments suggest that other non-geometric fluxes are needed in the RR sector, in addition

to the NSNS Q- and R-fluxes. Indeed, the introduction of Q- and R-fluxes spoils the S-

duality invariance of type IIB supergravity, and in order to reinstate it, a new set of fluxes

should be included [68, 77, 78]. Such fluxes are not contained in GCG, which focuses on the

NSNS sector, but they could be described in a framework such as Exceptional Generalized

Geometry (EGG) [79–83], or following [84, 85]. It would be interesting to investigate

whether there is a field redefinition that would also make the non-geometric fluxes of the RR

sector appear in the ten-dimensional action, in parallel to the discussion we have made here.

One of the main advantages of reformulating the NSNS sector of ten-dimensional su-

pergravity in terms of a new basis of fields is that, also for non-geometric configurations,

it can provide a globally well-defined Lagrangian which integrates to a well-defined action.

This action can be used to derive ten-dimensional equations of motion for the fields, and

it can also be dimensionally reduced to four dimensions. This is promising for the con-

struction of phenomenologically interesting four-dimensional theories and solutions, which

is one of the main reasons for studying non-geometry. Relating our rewriting to the GCG

tools, in particular the β-transform on pure spinors, should help in this respect [5, 61].

Also, in four-dimensional gauged supergravities, it has been shown that non-geometric

fluxes contribute positively to the four-dimensional cosmological constant, and that de

Sitter solutions can then be found [7, 8]. Through our dimensional reduction, we find that

the Q-flux gives the expected positive contribution to the cosmological constant. Although

this is encouraging for the construction of de Sitter solutions, a detailed inspection shows

that various fluxes balance and the four-dimensional space-time is Minkowski. Thus, while

focusing on the NSNS sector is enough to make the non-geometric fluxes appear in the

ten-dimensional formulation of the theory, the lack of additional ingredients prevents us

from making contact with concrete four-dimensional de Sitter solutions.

Finally, it would be interesting to relate L̃ to the non-commutative and non-associate

geometry, discussed in [9–11], where it was conjectured that the effective action of a non-

geometric closed string background is described by a non-associative version of gravity. We

hope to come back to these questions in future publications.
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A Conventions

In this appendix we summarize the conventions and notations we use.

Metric and structure constants. A metric g of a d-dimensional space-time is expressed

in a local basis of one-forms {dxm=0...d−1} as

ds2 = gmndxmdxn . (A.1)

We then denote by g the d × d matrix of coefficients gmn. The absolute value of its

determinant is denoted |g|. The metric can also be expressed in terms of the vielbein

matrix e, of coefficient ea
m, as

g = eT
1d e , (A.2)

when it is positive definite. A structure constant, with respect to a given vielbein ea
m and

its inverse e m
a , is given by

fa
bc = ea

m

(
e k
b ∂ke

m
c − e k

c ∂ke
m

b

)
= −2e k

[b e m
c] ∂ke

a
m . (A.3)

Forms and fluxes. Our convention for a p-form A on a basis of one-forms {dxm} is

A =
1

p!
Am1...mpdxm1 ∧ . . . ∧ dxmp . (A.4)

In particular, for the two-form B-field, we denote by B̂ the matrix of coefficients B̂mn. A

wedged form given by the wedge product of A and a q-form B is defined as

1

(p + q)!
(A ∧B)m1...mp+q

=
1

p!q!
A[m1...mp

Bmp+1...mp+q] , (A.5)

where the right-hand side indices are totally antisymmetrized. The antisymmetrization of

two one-forms a and b is given by a[mbn] = 1
2!(ambn − anbm), and so on for forms of higher

degrees. For a given metric gmn, we denote

|A|2 =
Am1...mpA

m1...mp

p!
=

1

p!
Am1...mpAn1...npg

m1n1 . . . gmpnp . (A.6)

This applies in particular to dφ̂ and Ĥ in the NSNS action. For the non-geometric fluxes

(taken as tensors), we denote similarly

|Q|2 =
1

2!
Qk

mnQp
qrgkpgmqgnr , |R|2 =

1

3!
RkmnRpqrgkpgmqgnr . (A.7)

B T-dualities on a toroidal example

In this section, we illustrate our general results with the well-known toroidal example, where

one applies T-dualities on a three-torus with non-zero B-field. This simple toy example has

been discussed at length in the literature (see section 2), and serves here as a pedagogical

introduction to the different bases for the generalized vielbeine and associated fields, in a

given T-duality frame. In particular, we write down the explicit field configurations, both
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in the B̂- and β̃-basis (the hatted and tilded basis), for three different T-duality frames.35

We then plug these fields into the hatted and tilded Lagrangians of equation (1.6) and

check if they are well-defined. We comment on the results in a final summary.

Our starting point is a square three-torus with coordinates x, y, z, that are periodically

identified

(x, y, z) ∼ (x + 2π, y, z) ∼ (x, y + 2π, z) ∼ (x, y, z + 2π) . (B.1)

We assume that no field depends on x and y, so T-dualizing along these directions is

allowed according to the Buscher rules [47, 48]. It is well-known that combining these two

transformations leads to a configuration that is not globally geometric [3, 15, 26]. As we

discuss in more detail below (see also (2.1)), we have the following T-duality chain:

A : Hxyz
x
←→ B : fx

yz
y
←→ C : Qz

xy z
←→ D : Rxyz ,

where A,B,C,D denote the T-duality frames and H, f,Q,R are background fluxes. The

non-geometric configurations occur in frames C and D; the former is still locally geometric,

whereas the latter lacks even a local geometric description [3, 13]. The last T-duality,

along z, is strictly speaking not allowed by the Buscher rules, since there is no isometry

in this direction. However, it can be argued that T-dualizing along z still makes sense

(see footnote 10), and leads to a configuration with an R-flux. In the rest of this section,

we focus on the first three T-duality frames, and describe their properties in detail. Our

observations are summarized in table 1 at the end of the section.

Frame A. We start with a square three-torus, with metric (ĝA)ij = δij along (x, y, z)

directions, and a dilaton and B-field with non-trivial z dependence:

B̂A =




0 −z 0

z 0 0

0 0 0


 , φ̂A = φ(z) . (B.2)

Here, the index A on the fields denotes the name of the T-duality frame, and the fields are

all in the hatted basis. All fields are globally well-defined when gauge transformations of

B̂ are allowed, so this is a geometric configuration. Consequently, the terms in the B̂-basis

Lagrangian are all well-defined:

L̂A = e−2φ̂A
√
|ĝA|

(
R̂A + 4|dφ̂A|

2 −
1

2
|ĤA|

2

)
= e−2φ

(
−

1

2
+ 4|dφ|2

)
. (B.3)

Switching to the β̃-basis (using the formulas of section 3.1.2) the fields are

g̃A =




1 + z2 0 0

0 1 + z2 0

0 0 1


 , β̃A =

1

1 + z2




0 −z 0

z 0 0

0 0 0


 , φ̃A = φ(z) +

1

2
ln(1 + z2) . (B.4)

35Although these configurations do not solve the supergravity equations of motion, one can view the three-

dimensional fields and Lagrangian as being components of ten-dimensional ones. Their ten-dimensional

completions can then be solutions.
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Neither of these fields are well-defined, as they do not respect the periodicity of the z

coordinate. Using (3.13) and (A.7), the terms in the β̃-basis Lagrangian can be computed:

L̃A =e−2φ̃A
√
|g̃A|

(
R̃A + 4|dφ̃A|

2−
1

2
|Q̃A|

2

)
=e−2φ

(
−

1

2
+ 4|dφ|2

)
+ 4∂z

(
e−2φβ̃xy

)
, (B.5)

which differs from the Lagrangian in the B̂-basis by a total derivative. Note that the

total derivative term is ill-defined, since β̃A does not respect the periodicity of z. In fact,

integrating this term over z gives

∫ 2π

0
dz∂z

(
e−2φβ̃xy

)
= −

2π

1 + 4π2
e−2φ(2π) , (B.6)

which is clearly non-vanishing. The total derivative term can also be computed directly

from the general formula (3.23), with the same result.

Frame B. T-dualizing along x leads to a twisted torus with zero B-field and unchanged

dilaton:

ĝB =




1 z 0

z 1 + z2 0

0 0 1


 , B̂B = 0 , φ̂B = φ(z) . (B.7)

This metric is globally well-defined, provided one allows for gauge transformations on the

off-diagonal connection. The configuration is then geometric, as we can also see through

the volume of the twisted torus being single-valued (detĝB = 1). Consequently, the terms

in the Lagrangian are all well-defined:

L̂B = e−2φ̂B
√
|ĝB |

(
R̂B + 4|dφ̂B |

2 −
1

2
|ĤB |

2

)
= e−2φ

(
−

1

2
+ 4|dφ|2

)
. (B.8)

Since the B-field is trivial, so is the β-field, and there is no difference between the

hatted and tilded fields and Lagrangians:

g̃B = ĝB , β̃B = B̂B = 0 , φ̃B = φ̂B = φ(z) , L̃B = L̂B . (B.9)

In particular, both the hatted and tilded Lagrangians are well-defined.

Frame C. We now perform a second T-duality, this time along y. In the B̂-basis, we

have the following fields:

ĝC =
1

1 + z2




1 0 0

0 1 0

0 0 1 + z2


 , B̂C =

1

1 + z2




0 z 0

−z 0 0

0 0 0


 , φ̂C = φ(z)−

1

2
ln(1 + z2) . (B.10)

All these fields are globally ill-defined, as is the determinant of the metric, detĝC = 1
(1+z2)2

.

But they can be patched, when going around the base circle, by a T-duality transforma-

tion which makes them single-valued [26]. Thus, this is a non-geometric configuration.

Computing the terms in the Lagrangian, we obtain

L̂C =e−2φ̂C
√
|ĝC |

(
R̂+ 4|dφ̂|2 −

1

2
|Ĥ|2

)
=e−2φ

(
−

1

2
+ 4|dφ|2

)
+ 4∂z

(
e−2φB̂xy

)
. (B.11)
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T-duality frame Fields and Lagrangian (B̂-basis) Fields and Lagrangian (β̃-basis)

A (Habc) ĝA, φ̂A (G), B̂A (L) g̃A, β̃A, φ̃A (L)

L̂A = L L̃A = L+ 4∂z

(
e−2φβ̃xy

)

B (fa
bc) ĝB , B̂B = 0, φ̂B (G) g̃B , β̃B = 0, φ̃B (G)

L̂B = L L̃B = L

C (Qc
ab) ĝC , B̂C , φ̂C (L) g̃C , φ̃C (G), β̃C (L)

L̂C = L+ 4∂z

(
e−2φB̂xy

)
L̃C = L

Table 1. T-duality frames and field bases for the three-torus toy example. Here “(G)” means that

a field is globally well-defined, and “(L)” means that a field is only locally defined. The Lagrangian

L is globally well-defined, whereas the total derivative terms contain locally defined fields.

Note that the total derivative term is not single-valued, and in fact integrates to the right-

hand side of (B.6), up to a sign. This term can also be computed using the general

expression for the total derivative term (3.23).

If we instead use the tilded basis, this configuration comprises the fields

g̃C =




1 0 0

0 1 0

0 0 1


 , β̃C =




0 z 0

−z 0 0

0 0 0


 , φ̃C = φ(z) . (B.12)

Here g̃C and φ̃C are both well-defined, so the non-geometricity only shows up in the non-

trivial β̃C , whose form was first derived in [12]. The non-zero components of Q̃C are

(Q̃C)z
xy = −(Q̃C)z

yx = 1. Thus, the Lagrangian only contains well-defined terms

L̃C = e−2φ̃C
√
|g̃C |

(
R̃C + 4|dφ̃C |

2 −
1

2
|Q̃C |

2

)
= e−2φ

(
4|dφ|2 −

1

2

)
. (B.13)

Summary. The configurations in the various T-duality frames and field bases for this toy

model are summarized in table 1. Let us highlight some interesting aspects of this example.

First, note that for each frame the difference between the hatted and tilded Lagrangians

is a total derivative, in agreement with the results of section 3. Indeed, we have checked

that (3.23) gives the right total derivative terms for this example. However, note also that

the total derivative terms are ill-defined, and it is not clear whether they can be neglected;

when integrating them we pick up boundary terms (B.6).

Second, note that for the different T-duality frames of this example, there is a pre-

ferred field basis in which all terms in the Lagrangian are well-defined. The preferred basis

is the B̂-basis for a geometric configuration (A), and the β̃-basis for a non-geometric con-

figuration (C). For frame B, where B = β = 0, both bases yield well-defined terms in the

Lagrangian. Furthermore, when expressed in these preferred field bases, table 1 shows that

the Lagrangians are the same in the three frames (they all equal L).

Finally, using this preferred field basis in every T-duality frame, we see that each time,

one field is only locally defined, while the others are well-defined. This local quantity,

– 38 –



J
H
E
P
0
9
(
2
0
1
1
)
1
3
4

which basically equals z, moves from one field to the other while acting with T-duality and

changing frames. Indeed, we could write a T-duality chain of the local quantity

B̂xy
x
−→ Ax

y
y
−→ β̃xy , (B.14)

where Ax
ydy is the connection one-form which encodes the non-trivial fibration of the

twisted torus in frame B: the metric can be written as dx+Ax
ydy. This chain is reminiscent

in many ways of the chain (2.1), where one also lifts the index along the T-duality direction.

All these observations inspired us to make a particular prescription, that we discuss at

length in section 4.1.

C Computational details

In this appendix, we give technical details on the rewriting of the NSNS Lagrangian,

discussed in section 3. As a convention, a derivative only acts on the first object on

its right, unless we put some brackets. Let us also mention that we extensively use the

following relation, on any invertible matrix A of coefficient Amp

Amp
(
∂kA

−1
pn

)
= −A−1

pn (∂kA
mp) . (C.1)

C.1 The Ricci scalar

For a generic metric gmn with Levi-Civita connection, one has for the connection coefficients

2Γmkn = (∂kgmn + ∂ngmk − ∂mgkn) , Γp
kn = gpmΓmkn = Γp

nk , Γpq
n = gqkΓp

kn . (C.2)

Then the Ricci scalar is given by

R = gln∂kΓ
k
nl − glm∂mΓk

kl + Γpn
nΓk

kp − Γpn
kΓ

k
np . (C.3)

Computed explicitly in terms of the metric, each of these terms and the Ricci scalar are

then given by

gln∂kΓ
k
nl =glmgku∂k∂mglu −

1

2
glugkm∂k∂mglu

− ∂kgrs∂mglu

(
glmgkrgsu −

1

2
glugkrgsm

)
, (C.4)

glm∂mΓk
kl =

1

2
gkmglp∂m∂kglp −

1

2
∂mgrs∂kglugkmglrgsu , (C.5)

Γpn
nΓk

kp =
1

4
∂mgnl∂kgpu

(
2gklgmngpu − gkmglngpu

)
, (C.6)

Γpn
kΓ

k
np =

1

4
∂mgnl∂kgpu

(
2gklgpmgnu − gkmglpgnu

)
, (C.7)

R =glmgku∂k∂mglu − glugkm∂k∂mglu (C.8)

+
1

2
∂mgln∂kgpu

(
2gklgmngpu −

1

2
gkmglngpu

+
3

2
gkmgnpglu − gmpgknglu − 2gmngkpglu

)
.
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Using (C.8), one directly gets the expression (3.17) for the Ricci scalar R̃ of g̃. Com-

puting R̂ in terms of g̃ and β̃ is more involved. To do so, we consider each of the four terms

of (C.3). We compute each of them by replacing in it ĝ by its expression (3.9), and making

use of the assumption (3.12) and the simplifications (3.14). We put everything together

and obtain

R̂−R̃=− ∂mg̃np∂kg̃rs

(
2g̃kmg̃nrg̃ps + 2g̃rsg̃mng̃pk +

1

2
g̃msg̃nrg̃pk

)
(C.9)

− g̃ln∂kβ̃
kl∂mβ̃mn −

1

2
g̃ln∂kβ̃

lm∂mβ̃nk

+ 2g̃kmg̃pq∂k∂mg̃pq + 2g̃km(G−1)pq∂k∂mGqp

+ ∂mGnp
(
− 2g̃rsg̃km(G−1)sn∂kg̃pr + 2g̃qsg̃mr(G−1)sn∂pg̃qr − 2g̃mr g̃ks(G−1)pn∂kg̃rs

− g̃rsg̃km(G−1)pn∂kg̃rs − g̃mr g̃qs(G−1)ps∂ng̃qr + g̃kmg̃rs(G−1)ps∂kg̃nr

)

+ ∂mGnp

(
(G−1)qn∂pG

mq + ĝqn∂pG
qm −

1

2
ĝqp∂nGmq

)

+ ∂mGnp∂kG
rs

(
− (G−1)pn(G−1)sr −

5

2
(G−1)pr(G

−1)sn − ĝrng̃ps +
1

2
ĝpsg̃nr

)
g̃km .

We left a few ĝmn when the terms could not be simplified further. Indeed, as can be seen

in (3.9), ĝmn contains two factors of (G−1) which we cannot always get rid of, and in that

case using ĝmn is shorter.

For later convenience, we would now like to rewrite slightly this expression for R̂ in a

more compact way. To do so, we first consider the following identities:

g̃rsg̃km∂mGnp
(
− 2(G−1)sn∂kg̃pr + (G−1)ps∂kg̃nr

)
=− ∂mGnpg̃kmg̃rs(G−1)ps∂kg̃nr

(C.10)

+ 2∂mGnpg̃rsg̃km
(
− (G−1)sn∂kg̃pr + (G−1)ps∂kg̃nr

)

g̃qsg̃mr∂mGnp
(
2(G−1)sn∂pg̃qr − (G−1)ps∂ng̃qr

)
=∂mGnpg̃mr g̃qs(G−1)ps∂ng̃qr (C.11)

+ 2∂mGnpg̃qsg̃mr
(
(G−1)sn∂pg̃qr − (G−1)ps∂ng̃qr

)

g̃km∂mGnp∂kG
rs

(
− ĝrng̃ps +

1

2
ĝpsg̃nr

)
=−

1

2
g̃kmĝpsg̃nr∂mGnp∂kG

rs (C.12)

+ 4g̃kmg̃psĝnr∂mg̃pn∂kβ̃
sr

∂mGnp

(
ĝqn∂pG

qm −
1

2
ĝqp∂nGmq

)
=

1

2
ĝpq∂mGkp∂kG

mq (C.13)

− 4ĝqn∂mg̃kn∂kβ̃
mq ,

where (C.12) is obtained by comparing ∂mGnp∂kG
rs with ∂mGpn∂kG

sr, and similarly

for (C.13). The first lines of (C.10), (C.11), (C.12), and (C.13) give on the left-hand

side terms of (C.9), and on the right-hand side the terms we want to keep. Therefore, let

us show that the sum of the second lines of (C.10), (C.11), (C.12), and (C.13) vanishes.
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More precisely, we can show that

∂mGnpg̃rsg̃km
(
− (G−1)sn∂kg̃pr + (G−1)ps∂kg̃nr

)
+ 2g̃kmg̃psĝnr∂mg̃pn∂kβ̃

sr = 0 (C.14)

∂mGnpg̃qsg̃mr
(
(G−1)sn∂pg̃qr − (G−1)ps∂ng̃qr

)
− 2ĝqn∂mg̃kn∂kβ̃

mq = 0 . (C.15)

To do so, one can first notice that in the first terms of (C.14) and (C.15), the symmetric part

of Gnp given by g̃np does not contribute: the terms vanish thanks to symmetry arguments.

Therefore, we are only left with ∂mβ̃np in these first terms. Then we can use the following

symmetric part (see (3.3)):

(G−1)(ps) =
1

2

(
(G−1)ps + (G−1)sp

)
= ĝps , (C.16)

and this shows that (C.14) and (C.15) do vanish. We conclude that only the right-hand side

of the first lines of (C.10), (C.11), (C.12), and (C.13) remain. We can then rewrite (C.9)

as

R̂ − R̃ =− ∂kg̃su∂mg̃pq

(
2g̃kmg̃uq g̃ps + 2g̃pq g̃ksg̃mu +

1

2
g̃uq g̃smg̃kp

)
(C.17)

− g̃pq∂kβ̃
pk∂mβ̃qm −

1

2
g̃pq∂kβ̃

qm∂mβ̃pk

+ 2g̃kmg̃pq∂k∂mg̃pq + 2g̃km(G−1)pq∂k∂mGqp

+ ∂mGvl
(
− 2g̃mr g̃ks(G−1)lv∂kg̃rs − g̃rsg̃km(G−1)lv∂kg̃rs

+ g̃msg̃ru(G−1)lu∂v g̃rs − g̃kmg̃rs(G−1)ls∂kg̃vr

)

+ ∂mGvl

(
(G−1)lq∂vG

qm +
1

2
ĝlq∂vG

mq

)

− ∂mGvl∂kG
ps 1

2
g̃km

(
2(G−1)lv(G

−1)sp + 5(G−1)sv(G
−1)lp + ĝslg̃pv

)
.

It is the same as (3.18). Let us note that the last formula is also the one we obtain, after

computing the expression R̂ − R̃ without using the assumption, and then plugging it in.

Finally, one can check that R̂ − R̃ vanishes for β̃ = 0.

C.2 The dilaton terms

We recall that the dilaton φ̃ is defined as (3.11)

φ̃ = φ̂ + 1
4tr(ln(1d − β̃g̃β̃g̃)) .

Using for an invertible matrix A

ln(det(A)) = tr(ln(A)) , ∂m ln(det(A)) = tr(A−1∂mA) , (C.18)

we compute

∂mtr(ln(1d − β̃g̃β̃g̃)) = tr((1d − β̃g̃β̃g̃)−1∂m(1d − β̃g̃β̃g̃)) (C.19)

= tr(G−1∂mβ̃ + g̃−1G−1β̃∂mg̃)− tr(G−T ∂mβ̃ + g̃−1G−T β̃∂mg̃) .
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Note that (C.18) is valid as long as A is invertible, whatever signature it has (one may

use a complex ln though if needed). In our case, the matrix is clearly invertible since

1d − β̃g̃β̃g̃ = ĝ−1g̃. In addition, according to footnote 19, its determinant is positive.

Using the invariance of the trace under transposition, the cyclicity of the trace and the

definition of G, one can show that

tr(g̃−1G−1β̃∂mg̃) = −tr(g̃−1G−T β̃∂mg̃) = (G−1)klg̃
ln∂mg̃npβ̃

pk . (C.20)

We introduce for convenience

Am = (G−1)kl∂mβ̃lk + (G−1)klg̃
ln∂mg̃npβ̃

pk , (C.21)

and putting everything together, we get

dφ̂ = dφ̃− 1
2Amdxm , (C.22)

4(|dφ̂|2 − |dφ̃|2) = 4(ĝkm − g̃km)∂kφ̃∂mφ̃ + ĝkmAkAm − 4ĝkmAk∂mφ̃ , (C.23)

where we mean |dφ̂|2 = ĝkm∂kφ̂∂mφ̂ and |dφ̃|2 = g̃km∂kφ̃∂mφ̃ . It turns out that

Am = g̃pq∂mg̃pq + (G−1)lk∂mGkl . (C.24)

Using this and the assumption (3.12), together with the simplifications (3.14), one finally

gets

|dφ̂|2 − |dφ̃|2 = 1
4 g̃kmg̃pq g̃uv∂mg̃pq∂kg̃uv (C.25)

+ 1
2 g̃kmg̃pq(G−1)uv∂mg̃pq∂kG

vu

+ 1
4 g̃km(G−1)pl(G

−1)uv∂mGlp∂kG
vu

− g̃kmg̃pq∂kg̃pq∂mφ̃

− g̃km(G−1)pq∂kG
qp∂mφ̃ ,

which is identical to (3.19). Note that the assumption makes the term ∂kφ̃∂mφ̃ in (C.23)

vanish. We could not get rid of it otherwise (meaning by another term in the Lagrangian).

C.3 The H-flux term

The NSNS H-flux is given by the three-form Ĥ = dB̂. Using (A.5), and (3.9) for the

coefficient of B̂, we get

1

3
Ĥkmn = ∂[kB̂mn] (C.26)

= −(G−1
−ǫ )p[m∂kβ̃

pq(G−1
ǫ )n]q − 2(G−1

−ǫ )p[m∂kG
pq
ǫ B̂n]q . (C.27)

We now want to compute |Ĥ|2 in which indices are raised with ĝ (see (A.6)). Using the

above, we get

|Ĥ |2 =
3

2
ĝk1k2 ĝm1m2 ĝn1n2

(
(G−1

ǫ1 )m1p1∂k1 β̃
p1q1(G−1

ǫ1 )n1q1 + 2(G−1
ǫ1 )m1p1∂k1G

p1q1
ǫ1 B̂n1q1

)

×
(
(G−1

−ǫ2)p2[m2
∂k2 β̃

p2q2(G−1
ǫ2 )n2]q2

+ 2(G−1
−ǫ2)p2[m2

∂k2G
p2q2
ǫ2 B̂n2]q2

)
, (C.28)
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where we antisymmetrize over k2,m2, n2 in the second bracket. Since we contract indices,

the antisymmetrization in the first bracket can be neglected. We then get three terms to

compute:
2

3
|Ĥ|2 = (I) + (II) + (III) , (C.29)

where

(I) = (ĝ−1)3(G−1
ǫ1 )m1p1∂k1 β̃

p1q1(G−1
ǫ1 )n1q1(G

−1
−ǫ2)p2[m2

∂k2 β̃
p2q2(G−1

ǫ2 )n2]q2
(C.30)

(II) = 4(ĝ−1)3(G−1
ǫ1 )m1p1∂k1G

p1q1
ǫ1 B̂n1q1(G

−1
−ǫ2)p2[m2

∂k2 β̃
p2q2(G−1

ǫ2 )n2]q2
(C.31)

(III) = 4(ĝ−1)3(G−1
ǫ1 )m1p1∂k1G

p1q1
ǫ1 B̂n1q1(G

−1
−ǫ2)p2[m2

∂k2G
p2q2
ǫ2 B̂n2]q2

. (C.32)

In this calculation, it is useful to leave ǫ = ±1 unspecified, and use G−1
ǫ1 Gǫ2

ǫ1=ǫ2→ 1 to

contract as many Gǫ as possible. In order to simplify expressions, let us introduce Dp
ǫ =

Gpq
ǫ ∂q , which allows us to write the final result as

3(I) = (g̃p1p2 g̃q1q2 g̃s1s2 − g̃p1s2 g̃q1q2 g̃s1p2 − g̃p1p2 g̃q1s2 g̃s1q2) Ds1
ǫ β̃p1q1Ds2

ǫ β̃p2q2 (C.33)

3(II) =4 (g̃p1p2 g̃t1q2 g̃s1s2−g̃p1s2 g̃t1q2 g̃s1p2−g̃p1p2 g̃t1s2 g̃s1q2) β̃t1t2(G−1
ǫ )q1t2D

s1
ǫ Gp1q1

ǫ Ds2
ǫ β̃p2q2

(C.34)

3(III)=2(g̃p1p2 g̃t1t2 g̃s1s2 − g̃p1s2 g̃t1t2 g̃s1p2 − g̃p1p2 g̃t2s2 g̃s1t1 (C.35)

− g̃p1t1 g̃p2t2 g̃s1s2 + g̃p1s2 g̃t2p2 g̃s1t1 + g̃p1t1 g̃t2s2 g̃s1p2)(
δt2
q1
− (G−1

ǫ )q1u2 g̃
u2t2
) (

δt1
q2
− (G−1

ǫ )q2u1 g̃
u1t1
)
Ds1

ǫ Gp1q1
ǫ Ds2

ǫ Gp2q2
ǫ .

Using the assumption (3.12) and the simplifications (3.14), the previous three terms

become

3(I) =g̃p1p2 g̃q1q2 g̃
s1s2∂s1 β̃

p1q1∂s2β̃
p2q2 − 2g̃q1q2∂p2 β̃

p1q1∂p1 β̃
p2q2 (C.36)

3(II) =4ǫ
(
g̃q1q2 − (G−1

ǫ )q1q2

) (
−g̃p1p2 g̃

s1s2∂s2G
p1q1
ǫ ∂s1β̃

p2q2 + ∂p2G
p1q1
ǫ ∂p1 β̃

p2q2

)
(C.37)

3(III) =2∂p2G
p1q1
ǫ ∂p1G

p2q2
ǫ (ĝq1q2 − g̃q1q2) + 2g̃s1s2∂s1G

p1q1
ǫ ∂s2G

p2q2
ǫ

(
g̃p1p2 g̃q1q2 (C.38)

− g̃p1q2 g̃q1p2 + 2g̃p1q2(G
−1
ǫ )q1p2

− g̃p1p2 ĝq1q2 − (G−1
ǫ )q2p1

(G−1
ǫ )q1p2

)
,

where in the last quantity we have used the symmetric part (C.16). Using in addition (3.15)

gives the simplified expressions

3(I) =g̃p1p2 g̃q1q2 g̃
s1s2∂s1 β̃

p1q1∂s2β̃
p2q2 (C.39)

3(II) =4g̃p1p2 g̃
s1s2∂s1 β̃

p2q2

(
−g̃q1q2∂s2 β̃

p1q1 + ǫ(G−1
ǫ )q1q2

∂s2G
p1q1
ǫ

)
(C.40)

3(III) =2(ĝq1q2 − g̃q1q2)∂p2 g̃
p1q1∂p1 g̃

p2q2 + 2g̃s1s2∂s1G
p1q1
ǫ ∂s2G

p2q2
ǫ

(
g̃p1p2 g̃q1q2 (C.41)

− g̃p1q2 g̃q1p2 + 2g̃p1q2(G
−1
ǫ )q1p2

− g̃p1p2 ĝq1q2 − (G−1
ǫ )q2p1

(G−1
ǫ )q1p2

)
.

Note that there was no need to assume (3.16) to arrive at the simplified expressions.

We now proceed to some rewriting. First, using the definition of Gǫ, we rewrite

3(II) =− 4g̃p1p2 g̃q1q2 g̃
s1s2∂s1 β̃

p1q1∂s2 β̃
p2q2 (C.42)

+ 4g̃p1p2 g̃
s1s2∂s1G

p1q1
ǫ

(
ĝq1q2∂s2G

p2q2
ǫ − (G−1

ǫ )q1q2
∂s2 g̃

p2q2

)
.

– 43 –



J
H
E
P
0
9
(
2
0
1
1
)
1
3
4

Second, we turn to term (III). Note that

g̃s1s2 g̃p1q2
(G−1

ǫ )q1p2
∂s1

Gp1q1

ǫ ∂s2
Gp2q2

ǫ =g̃s1s2 g̃p1p2
(G−1

ǫ )q1q2
∂s1

Gp1q1

ǫ ∂s2
Gq2p2

ǫ (C.43)

=g̃s1s2 g̃p1p2
(G−1

ǫ )q1q2
∂s1

Gp1q1

ǫ (2∂s2
g̃p2q2 − ∂s2

Gp2q2

ǫ )

=g̃s1s2 g̃p1p2
∂s1

Gp1q1

ǫ

(
2(G−1

ǫ )q1q2
∂s2

g̃p2q2−ĝq1q2
∂s2

Gp2q2

ǫ

)
.

In addition, we note that g̃p1p2 g̃q1q2 − g̃p1q2 g̃q1p2 is antisymmetric in p1, q1 and in p2, q2, so

we get

3(III)=4g̃p1p2
g̃q1q2

g̃s1s2∂s1
β̃p1q1∂s2

β̃p2q2 + 4g̃s1s2 g̃p1p2
∂s1

Gp1q1

ǫ

(
(G−1

ǫ )q1q2
∂s2

g̃p2q2− ĝq1q2
∂s2

Gp2q2

ǫ

)

+ 2g̃s1s2∂s1
Gp1q1

ǫ

(
2g̃p1p2

(G−1

ǫ )q1q2
∂s2

g̃p2q2 −
(
g̃p1p2

ĝq1q2
+ (G−1

ǫ )q2p1
(G−1

ǫ )q1p2

)
∂s2

Gp2q2

ǫ

)

+ 2(ĝq1q2
− g̃q1q2

)∂p2
g̃p1q1∂p1

g̃p2q2 ,

where the first line is simply −3(II). Combining all these results, we obtain from (C.29)

|Ĥ |2 =
1

2
g̃p1p2

g̃q1q2
g̃s1s2∂s1

β̃p1q1∂s2
β̃p2q2 (C.44)

+ (ĝq1q2
− g̃q1q2

)∂p2
g̃p1q1∂p1

g̃p2q2

+ g̃s1s2∂s1
Gp1q1

ǫ

(
2g̃p1p2

(G−1

ǫ )q1q2
∂s2

g̃p2q2 −
(
g̃p1p2

ĝq1q2
+ (G−1

ǫ )q2p1
(G−1

ǫ )q1p2

)
∂s2

Gp2q2

ǫ

)
.

We give again this expression in (3.25), and choose there ǫ = +1.
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