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1 Introduction and summary

Recently there have been new insight into the duality between integrable systems and 4D

N = 2 gauge theories. In [1–3] Nekrasov and Shatashvili (NS) have found that Yang-Yang

functions as well as Bethe Ansatz equations of a family of integrable models are indeed en-

coded in a variety of Nekrasov’s partition functions [4, 5] restricted to the two-dimensional

Ω-background.1 As a matter of fact, this mysterious correspondence can further be ex-

tended to the full Ω-deformation in view of the birth of AGT conjecture [10]. Let us briefly

refine the latter point.

Recall that AGT claimed that correlators of primary states in Liouville field theory

(LFT) can get re-expressed in terms of Nekrasov’s partition function ZNek of 4D N = 2

quiver-type SU(2) superconformal field theories (SCFTs). In particular, every Riemann

surface Cg,n (whose doubly-sheeted cover is called Gaiotto curve [11]) on which LFT dwells

is responsible for one specific SCFT called Tg,n(A1) such that the following equality

Conformal block w.r.t. Cg,n = Instanton part of ZNek

(
Tg,n(A1)

)

holds. Because of ǫ1 : ǫ2 = b : b−1 [10] the one-parameter version of AGT conjecture directly

leads to the semiclassical LFT at b → 0. Quote further the geometric Langlands corre-

spondence [12] which associates Gaudin integrable models on the projective line with LFT

at b → 0. It is then plausible to put both insights of NS and AGT into one unified scheme.

1See also recent [6–9] which investigated XXX spin-chain models along this line.
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Figure 1. Main idea: SU(N)/ SU(2)N−3 correspondence. L.h.s.: M-theory curve of SU(4)

Nf = 8 Yang-Mills theory embedded in C × C∗ parameterized by (u, w) (w = exp(−s/R), R =

ℓsgs : M-circle radius); r.h.s.: (ξ, ℓ) labeling (coordinate, weight) of each puncture on CP1 here

but indicating each flavor D6-brane location along u-plane before.

In this letter, we add a new element into the above 2D/4D correspondence. Starting

from Baxter’s T-Q equation of XXX spin-chain models we found a novel interpretation

of it. That is, under the semiclassical limit it possesses two aspects simultaneously. It

describes

• 4D N = 2 SU(Nc) Yang-Mills with Nf = 2Nc flavors T0,4(ANc−1) on the one hand

and

• SU(2)Nc−3 (Nc > 3) quiver-type Yang-Mills with Nc (four fundamental and Nc − 4

bi-fundamental) hyper-multiplets T0,Nc(A1) on the other hand.

It is helpful to have a rough idea through figure 1. Pictorially, a punctured CP1 (Gaiotto

curve) in r.h.s. results from the encircled part in l.h.s. after a π/2-rotation. In other words,

the conventional Type IIA Seiberg-Witten (SW) curve (see table 1) in fact contains another

important piece of information while seen from (u, v)-space (u = x4 + ix5, v = x7 + ix8).2

Here, “π/2-rotation” just means that SW differentials of the above two theories are related

by exchanging holomorphic coordinates (u, s = x6 + ix10) as will be found.

2This aspect of N = 2 curves is also stressed in [13].
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0, 1, 2, 3 u = x4 + ix5 6 7, 8, 9

D6 ◦ - - ◦
NS5 ◦ ◦ - -

D4 ◦ - ◦ -

Table 1. Type IIA D6-NS5-D4 brane configuration

# of UV parameter l.h.s. r.h.s.

Coulomb moduli Nc − 1 (ξ) ⊙Nc − 3 (a)

bare flavor mass Nc (ξ ± ℓ) Nc (m)

gauge coupling ⊙1 exp

(
∆x6 + i∆x10

R

)
Nc − 3 (q)

Table 2. Comparison of UV parameters of two gauge theories in figure 1.

This quite unexpected phenomenon will be explained later by combining a couple of

mathematical topics, say, Bethe Ansatz, Gaudin model and Liouville theory. The rela-

tionship between parameters is summarized in table 2. Roughly speaking, the spin-chain

parameter ℓ (ξ) is related to m (q). This implies that Nc Coulomb moduli ξ ∈ C (one

dummy U(1) factor) are mapped to Nc − 3 gauge coupling constants q = exp(2πiτ) ∈ C∗

where three of them are fixed to (0, 1,∞) on C∗. Those entries marked by ⊙ do not have

direct comparable counterparts. See section 4 for more complete discussion.

We organize this letter as follows. Section 2 is devoted to a further study of figure 2

on which our main idea figure 1 is based. Then section 3 unifies three elements: Gaudin

model, LFT and matrix model as shown in figure 3. Finally, in section 4 we complete our

proposal by examining λSW (SW differential) and shortly discuss XYZ Gaudin models.

2 XXX spin chain

Baxter’s T-Q equation [14, 15] plays an underlying role in various spin-chain models.

It emerges within the context of quantum inverse scattering method (QISM) or alge-

braic Bethe Ansatz. On the other hand, it has long been known that the low-energy

Coulomb sectors of N = 2 gauge theories are intimately related to a variety of integrable

systems [16–20]. Here, by integrable model (or solvable model) we mean that there exists

some spectral curve which gives enough integrals of motion (or conserved charges). In the

case of N = 2 SU(Nc) Yang-Mills theory with Nf fundamental hyper-multiplets, its SW

curve [21, 22] is identified with the spectral curve of an inhomogeneous periodic Heisenberg

XXX spin chain on Nc sites:

w +
1

w
=

PNc(u)√
QNf

(u)
. (2.1)

– 3 –
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Here, two polynomials PNc and QNf
encode respectively parameters of N = 2 vector- and

hyper-multiplets. Meanwhile, the meromorphic SW differential λSW = ud log w provides a

set of “special coordinates” through its period integrals. From table 2 one has

ξi =

∮

αi

λSW,
∂FSW

∂ξi
= ξD

i =

∮

βi

λSW, ξi ± ℓi =

∮

γi

λSW (2.2)

where FSW is the physical prepotential.

2.1 Baxter’s T-Q equation

Indeed, (2.1) arises from (up to w →√
QNf

w)

det
(
w − T (u)

)
= 0 → w2 − tr T (u)w + detT (u) = 0, T (u) : monodromy matrix,

det T (u) = QNf
(u) =

Nc∏

i=1

(u − m−
i )(u − m+

i ), m±
i = ξi ± ℓi.

tr T (u) = t(u) = PNc(u) = 〈det(u − Φ)〉, called transfer matrix, encodes the quantum vev

of the adjoint scalar field Φ. In fact, (2.1) belongs to the conformal case where Nf = 2Nc

bare flavor masses are indicated by m±
i . It is time to quote Baxter’s T-Q equation:

t(u)Q(u) = △+(u)Q(u − 2η) + △−(u)Q(u + 2η). (2.3)

Some comments follow:

• η is Planck-like and ultimately gets identified with ǫ1 (one of two Ω-background

parameters) in section 4.

• As a matter of fact, (2.3) boils down to (2.1) (up to w → √
QNf

w) as η → 0.

Curiously, its λSW signals the existence of another N = 2 theory. The situation is

pictorially shown in figure 1. Note that SW differentials of two theories are related by

exchanging two holomorphic coordinates (u, s) but their M-lifted [23] Type IIA NS5-

D4 brane systems3 are not. The π/2-rotated part is closely related to N = 2 Gaiotto

curves. A family of quiver-type SU(2) SCFTs T0,n(A1) discovered by Gaiotto [11] is

hence made contact with.

2.2 More detail

Let us refine the above argument. Consider a quantum spin-chain built over an N -fold

tensor product H = ⊗N
n=1Vn. Namely, at each site labeled by n we assign an irreducible

(ℓn + 1)-dimensional representation Vn of sl2 (ℓn: highest weight). Within the context of

QISM, monodromy and transfer matrices are defined respectively by

T (u) =

(
AN (u) BN (u)

CN (u) DN (u)

)
= LN (u − ξN ) · · ·L1(u − ξ1), (2.4)

t̂(u) = AN (u) + DN (u).

3In [24] this symmetry has been notified in the context of Toda-chain models because two kinds of Lax

matrices exist there.
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Baxter’s TQ eq

Bethe Ansatz eq O(η)

Fuchs eq

O(η)

Two aspects of
Baxter’s TQ eq

Lamé eq

Gaudin spectral curve

Figure 2. Mathematical description of figure 1.

Vn is acted on by the n-th Lax operator Ln. By inhomogeneous one means that the

spectral parameter u has been shifted by ξ. Conventionally, t̂(u) or its eigenvalue t(u) is

called generating function because a series of conserved charges can be extracted from its

coefficients owing to [t̂(u), t̂(v)] = 0. The commutativity arises just from the celebrated

Yang-Baxter equation.

As far as the inhomogeneous periodic XXX spin chain is concerned, its T-Q equation

reads

t(u)Q(u) = △+(u)Q(u − 2η) + △−(u)Q(u + 2η),

Q(u) =
K∏

k=1

(u − µk), △± =
N∏

n=1

(u − ξn ± ℓ̃nη), (2.5)

where each Bethe root µk satisfies a set of Bethe Ansatz equations (ηℓ̃ = ℓ):

△+(µk)

△−(µk)
=

N∏

n=1

(µk − ξn + ℓ̃nη)

(µk − ξn − ℓ̃nη)
=

K∏

l(6=k)

µk − µl + 2η

µk − µl − 2η
. (2.6)

Here, the η dependence enables us to carry out a semiclassical limit later on. Through

t(u)√
△+△−

=
Q(u − 2η)

Q(u)

√
△+

△−
+

Q(u + 2η)

Q(u)

√
△−

△+
(2.7)

and

w ≡
√

△+

△−
(1 − 2η

Q′

Q
) (2.8)
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as η → 0 and ℓ = fixed we arrive at

t(u)√
△+(u)△−(u)

= w +
1

w
(2.9)

which is nothing but (2.1). From now on we call λSW ≡ λη
SW = ud log w of (2.9) “η-

deformed” SW differential as in [25, 26] because

λη
SW = 2ηud

(
Ψ′

Ψ

)
+ O(η2), Ψ =

1

Q(u)

∏

n

(u − ξn)
eℓn/2. (2.10)

It is this form that signals the existence of r.h.s. in figure 1. As η → 0 the classical version

of (2.6) reads

N∑

n=1

ℓ̃n

2(µk − ξn)
=

K∑

l(6=k)

1

(µk − µl)
. (2.11)

Let us emphasize that the standard classical limit is taken by η → 0 with ℓ̃n fixed.

Comments on (2.9) follow:

• In M-theory D6-branes correspond to singular loci of xy = △+(u)△−(u). This simply

means that one incorporates flavors via replacing a flat R4 over (u, s) by a resolved

A2Nc−1-type singularity.

• Without flavors one sees that
∮

λη
SW reduces to a logarithm of the usual Vandermonde

evaluated over Bethe roots. This sounds like the familiar Dijkgraaf-Vafa story [27–

29] without any tree-level potential which brings N = 2 pure Yang-Mills to N = 1

descendants.

• Surely, this intuition is noteworthy because (2.11) manifests itself as the saddle-point

condition within the context of matrix models. To pursue this interpretation, one

should regard µ’s as diagonal elements of a Hermitian matrix M (of size K × K).

Besides, the tree-level potential now obeys

W ′(x) =

N∑

n=1

ℓn

(x − ξn)
.

In other words, we are equivalently dealing with “N = 2” Penner-type matrix models

which have been heavily investigated recently in connection with AGT conjecture due

to [30]. In what follows, our goal is to show that λη
SW does reproduce the ǫ1-deformed

SW prepotential w.r.t. T0,N (A1). This is accomplished by means of the chart drawn

in figure 3. This phenomenon is referred to as the advertised SU(N)/SU(2)N−3

(N > 3) correspondence.

– 6 –
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Bethe Ansatz equation ↔ 
Lamé equation ↔

Gaudin spectral curve 

Free-field conformal block

Penner-type matrix model

Gaudin Hamiltonian

Classical Liouville/G-oper

Langlands duality

Ω-deformed 
prepotential

Figure 3. Flow chart of section 3.

3 XXX Gaudin model

Momentarily, we turn to another well-studied integrable model: XXX Gaudin model. It

turns out that λη
SW naturally emerges as the holomorphic one-form (2.10) of Gaudin’s

spectral curve which captures Gaiotto’s curve of T0,N(A1).

The essential difference between Heisenberg and Gaudin models amounts to the defi-

nition of their generating functions. Following figure 3 we want to explain two important

aspects of Gaudin’s spectral curve.

3.1 R.h.s. of figure 3

Expanding around small η, we yield

Ln(u) = 1 + 2ηLn + O(η2), (3.1)

T (u) = 1 + 2ηT + η2T (2) + O(η3), (3.2)

t(u) = 1 + η2trT (2) + O(η3), (3.3)

τ(u) ≡ 1

2
trT 2, T =

∑

n

Ln =

(
A(u) B(u)

C(u) −A(u)

)
(3.4)

where

A(u) =

N∑

n=1

Jz
n

u − ξn
, B(u) =

N∑

n=1

J−
n

u − ξn
, C(u) =

N∑

n=1

J+
n

u − ξn
. (3.5)

– 7 –
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Instead of tr T (2) (tr T = 0) the generating function one would like to adopt is

(s = ℓ̃/2 = ℓ/2η)

τ(u)=
N∑

n=1

{η2sn(sn+1)

(u−ξn)2
+

cn

u−ξn

}
, cn =

N∑

i6=n

2 ~Jn · ~Ji

ξn−ξi
, ~Jn · ~Jn =η2sn(sn+1). (3.6)

~J = (Jz, J±) represents generators of sl2 Lie algebra while cn’s are called Gaudin Hamilto-

nians which commute with one another as a result of the classical Yang-Baxter equation. In

fact, the N -site Gaudin spectral curve is expressed by Σ : x2 = τ ⊂ T ∗C, a doubly-sheeted

cover of C = CP1\{ξ1, · · · , ξN}. According to the geometric Langlands correspondence,4

cn’s give exactly accessory parameters of a G-oper:

D = −∂2
z +

N∑

n=1

δn

(z − ξn)2
+

N∑

n=1

c̃n

z − ξn
, δ = s(s + 1), c = η2c̃

defined over C = CP1\{ξ1, · · · , ξN}. The non-singular behavior of D is ensured by

imposing

N∑

n=1

c̃n = 0,

N∑

n=1

(ξnc̃n + δn) = 0,

N∑

n=1

(ξ2
nc̃n + 2ξnδn) = 0.

Certainly, one soon recalls that τ(u) here is nothing but the holomorphic LFT stress-

tensor as the central charge 1 + 6Q2 goes to infinity (or b → 0). Namely,

τ =
1

2
∂2

zϕcl −
1

4
(∂zϕcl)

2 =

N∑

n=1

δn

(z − ξn)2
+

N∑

n=1

c̃n

z − ξn
.

Here, ϕcl which satisfies Liouville’s equation stands for the unique saddle-point w.r.t. Stot[ϕ]

being specified below. Meanwhile, Polyakov conjectured that one obtains c̃n by computing

LFT correlation functions of primary fields 〈∏n Vαn〉 subject to b → 0 with Vα = exp(2αφ)

(∆α = α(Q − α), Q = b + b−1). More precisely,

c̃n = −∂Stot[ϕcl]

∂ξn
, α̃n = bαn = sn + 1 (3.7)

where on a large disk Γ

Stot =

∫

Γ
d2z
( 1

4π
|∂zφ|2 + µe2bφ

)
+ boundary terms, Stot[φ] =

1

b2
Stot[ϕ].

3.2 L.h.s. of figure 3

As shown in [34], τ(u) has another form in terms of a(u),5 i.e. eigenvalue of A(u):

τ(u) = a2 − ηa′ − 2η
∑

k

a(u) − a(µk)

u − µk
, a(u) =

N∑

n=1

ηsn

(u − ξn)
(3.8)

4See [31–33] for more detail.
5We hope that readers will not confuse a(u) here with Coulomb moduli a.

– 8 –



J
H
E
P
0
9
(
2
0
1
1
)
1
2
5

with µk’s being Bethe roots. This expression is extremely illuminating in connection with

Penner-type matrix models. Borrowing Q(u) from (2.5) and defining

ℜ(u) ≡ Q(u) exp
(
− 1

η

∫ u

a(y)dy
)

=
∏

k

(u − µk)
∏

n

(u − ξn)−sn , (3.9)

we can verify that there holds

ηx′ + x2 = τ, x(u) = η
ℜ′(u)

ℜ(u)
= −a +

∑

k

η

u − µk
. (3.10)

This is the so-called Lamé equation in disguise. Equivalently, ℜ(u) satisfies a Fuchs-type

equation with N regular singularities on the projective line, i.e.
(
η2∂2

u−τ(u)
)
ℜ(u) = 0 (see

figure 2).

Imposing the semiclassical limit η → 0 with ηsn = O(η0) resembles that in LFT when

α̃ = bα is kept fixed during b → 0. Note that ǫ1 = η ≈ b has been claimed by AGT.6 By

omitting the term ηx′, we consequently arrive at Gaudin’s spectral curve

x2 = τ. (3.11)

In view of (3.10), it is tempting to introduce φKS, i.e. Kodaira-Spencer field of ZM in (3.14).

That is,

2x ≡ ∂φKS = −W ′ + 2η tr
〈 1

u −M
〉
. (3.12)

Subsequently, (3.11) becomes precisely the spectral curve of ZM . Because of (3.12) using
∮

∂φKSdu = −
∮

λη
SW (3.13)

we can obtain the tree-level free energy F0 of ZM :

ZM =

∫
DM exp

[
−1

η
W(M)

]
, W ′ =

N∑

n=1

ℓn

(u − ξn)
. (3.14)

Of course, the saddle-point of ZM is dictated by (2.11). We want to dispaly in section 4

that F0 thus yielded does characterize T0,N (A1).

Remark that ∂φKSdu = −λη
SW up to a total derivative term. Since (x, u) ∈ C×C∗ so

we introduce v = xu such that xdu here and the former ud log w look more symmetrical.

Besides, the proposed SU(N)/SU(2)N−3 correspondence does not rigorously mean just a

π/2-rotation noted in figure 1 which naively leads to SU(N)/SU(2)N−1 correspondence

instead.7

Rewriting ZM in terms of a multi-integral over diagonal elements of M is another

crucial step:

ZM ⇒
∮

dz1 · · ·
∮

dzK

∏

i<j

(zi − zj)
2
∏

i,n

(zi − ξn)−
eℓn

∏

n<m

(ξn − ξm)
eℓn

eℓm/2 (3.15)

6Bear in mind η = ~/b such that when b → 0 η is kept fixed and small.
7We thank Yuji Tachikawa for his comment on this point.
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which stands for the Dotsenko-Fateev type free-field realization of an N -point conformal

block of primary states in LFT subject to b → 0.8 In addition, K screening operators∮
dz exp 2b−1φ(z) and the free propagator

〈
φ(z1)φ(z2)

〉
free

= − log(z1 − z2)
1/2 were taken

into account. We then have (ℓn = ηℓ̃n, η = ~/b)

lim
b→0

log
〈
Vℓ1/2(ξ1) · · · VℓN/2(ξN )

〉
conformal block

= −η2F̃ ,

F̃ = − log ZM , ZM = exp(−η−2F0+· · · ).

F̃ is named classical conformal block in the pioneering work of Zamolodchikov and

Zamolodchikov [35]. Obviously, the tree-level free energy F0 gets equal to η2F̃ at small

enough η. Next, F̃ will be identified with the Ω-deformed SW prepotential of T0,N (A1)

such that our proposal becomes completed.

4 Application and discussion

By examining a concrete example, we display that F̃ and λη
SW = −∂φKSdu are indeed the

very ǫ1-deformed SW prepotential and differential of T0,N (A1), respectively.

Let us focus only on N = 4 and quote the known τ(u) from [35] with δ = α̃(1 − α̃):

1

η2
τ(u) =

δ1

u2
+

δ2

(u − q)2
+

δ3

(1 − u)2
+

δ1 + δ2 + δ3 − δ4

u(1 − u)
+

q(1 − q)c̃(q)

u(u − q)(1 − u)
(4.1)

where via projective invariance q represents the cross-ratio of four marked points

(ξ1, ξ2, ξ3, ξ4) ≡ (0, 1, q,∞) on CP1. According to Polyakov’s conjecture (3.7) as well

as (3.11) and the residue of τ around u = 1 we write down (v = xu)

qc̃(q) = −η−2

∮
ux2du = −1

2
η−2

∮
vλη

SW = −q
∂

∂q
F̃δ,δn

(q), n = 1, · · · , 4, (4.2)

~
2F̃δ,δn

(q) = (δ − δ1 − δ2) log q +
(δ + δ1 − δ2)(δ + δ3 − δ4)

2δ
q + O(q2).

Notice that only the holomorphic classical block F̃ survives ∂/∂q. Even without quoting

Polyakov’s conjecture the equality for accessory parameters, c = −∂qF0, arises directly once

the stress-tensor nature of the spectral curve (∂φKS)2 = 4τ in Hermitian matrix models is

recalled.

Another ingredient we need is the ǫ1-deformed version of Matone’s relation [36–38]

proposed in [25, 26, 39]:

〈tr Φ2〉ǫ1 = 2q̄∂q̄W, q̄ = exp(2πiτ̄UV ) (4.3)

for, say, N = 2 T0,4(A1) theory where

1

ǫ1ǫ2
W (ǫ1) ≡ lim

ǫ2→0
log ZNek

(
a, ~m, q̄, ǫ1, ǫ2

)
,

a : UV vev of Φ, ~m : linearly-combined bare flavor mass.

8One should be aware of the validity of the free-field approximation for LFT correlators. It is valid only

when the “momentum conservation” bK = Q −
P

αn (for generic b) is respected.
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Theory of r.h.s. in figure 1 (N = 4)

q =
(ξ1 − ξ3)(ξ2 − ξ4)

(ξ2 − ξ3)(ξ1 − ξ4)

ǫ1m ≡ ℓ̃

(ǫ1, ǫ2) = (η, 0)

a =
∮
α λη

SW

ǫ2
1

∂F̃

∂a
=
∮
β λη

SW

Table 3. Quantities of r.h.s. in figure 1 in terms of spin-chain variables.

Now, (4.2) and (4.3) together manifest λη
SW as the ǫ1-deformed SW differential for T0,4(A1)

if there holds in (4.2)

1

b2
F̃δ,δn

(q) = lim
ǫ2→0

1

ǫ1ǫ2
W (ǫ1) (4.4)

under q = q̄, ǫ1 = η and ǫ1ǫ2 = ~
2. In fact, (4.4) has alreay been verified in [40]. To

conclude, we have found that Baxter’s T-Q equation characterizes simultaneously two kinds

of N = 2 theories, T0,N (A1) and T0,4(AN−1), by examining λη
SW. We call this remarkable

property SU(N)/SU(2)N−3 correspondence.

4.1 Discussion

• At the level of λη
SW, based on (2.9) and (2.10) we have

log w = 2η
Ψ′

Ψ
, w =

A +
√

A2 − 4

2
, A =

PNc√
QNf

. (4.5)

Namely, all quantum SU(Nc) Coulomb moduli inside PNc(u) ≡ 〈det(u − Φ)〉 are

determined by spin-chain variabes (η, ξ, ℓ). This fact is consistent with (2.2).

• Besides, from table 3 we find that the transformation between FSW in (2.2) and

F̃ is quite complicated. Although sharing the same SW differential (up to a total

derivative term), two theories have diverse IR dynamics because both of their gauge

group and matter content differ. To pursue a concrete interpolation between them is

under investigation.

4.2 Other Gaudin models

There are still two other Gaudin models, say, hyperbolic and elliptic ones. Let us briefly

discuss the elliptic type because it sheds light on N = 2∗ T1,1(A1). Now Bethe roots satisfy

the following classical Bethe Ansatz equation:

N∑

n=1

snθ′11(µk − ξn)

θ11(µk − ξn)
= −πiν +

∑

l(6=k)

θ′11(µk − µl)

θ11(µk − µl)
, ν ∈ integer. (4.6)
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Regarding it as a saddle-point condition, we are led to the spectral curve analogous

to (3.11)

x2 =

[
N∑

n=1

snθ′11(u − ξn)

θ11(u − ξn)
−

K∑

k=1

θ′11(u − µk)

θ11(u − µk)

]2

=

N∑

n=1

℘(u − ξn)η2sn(sn + 1) +

N∑

n=1

Hnζ(u − ξn) + H0

where

Hn =
N∑

i6=n

3∑

a=1

wa(ξn − ξi)J
a
nJa

i ,

H0 =

N∑

n=1

3∑

a=1

{
−℘

(ω5−a

2

)
Ja

nJa
n

+
∑

i6=n

wa(ξi − ξn)
[
ζ
(
ξn − ξi +

ω5−a

2

)
− ζ
(ω5−a

2

)]
Ja

nJa
i

}
.

(4.7)

℘(u) and ζ(u) respectively denote Weierstrass ℘- and ζ-function. Periods of ℘(u) are (see

appendix A for wa)

ω1 = ω4 = 1, ω2 = τ, ω3 = τ + 1. (4.8)

Notice that Hn’s (
∑

Hn = 0) are known as elliptic Gaudin Hamiltonians [41, 42]. Since all

these are elliptic counterparts of those in the rational XXX model, according to the logic

of figure 3 it will be interesting to see whether the one-form xdu is λSW of the ǫ1-deformed

N = 2∗ SW theory when n = 1.9
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A Definition of wn

In appendix A, wn that appears in (4.7) will be defined according to [41, 42]. We choose

periods of ℘(u) as in (4.8). Weierstrass σ-function is as follows:

σ(u) = σ(u;ω1, ω2)

= u
∏

(n,m)6=(0,0)
n,m∈Z

(
1 − u

nω1 + mω2

)
exp

[
u

nω1 + mω2
+

1

2

(
u

nω1 + mω2

)2
]

. (A.1)

9See [43, 44] for related discussion about Ω-deformed N = 2∗ SW theory.
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Note that σ(u) satisfies

ζ(u) =
σ′(u)

σ(u)
, ℘(u) = −ζ ′(u). (A.2)

We introduce constants (ea, ηa, ςa) which are related to ωa/2 such that

ea = ℘(ωa/2), ηa = ζ(ωa/2), ςa = σ(ωa/2), a = 1, 2, 3. (A.3)

Using them we further have

σ00(u) =
exp [− (η1 + η2)u]

ς3
σ
(
u +

ω3

2

)
,

σ10(u) =
exp (−η1u)

ς1
σ
(
u +

ω1

2

)
,

σ01(u) =
exp (−η2u)

ς2
σ
(
u +

ω2

2

)
.

(A.4)

Jacobi’s ϑ-functions are defined by

ϑ00(u) = ϑ(u; τ) = ϑ(u) =

∞∑

n=−∞

exp
(
πin2τ + 2πinu

)
,

ϑ01(u) = ϑ

(
u +

1

2

)
,

ϑ10(u) = exp

(
1

4
πiτ + πiu

)
ϑ

(
u +

1

2
τ

)
,

ϑ11(u) = exp

(
1

4
πiτ + πi(u +

1

2
)

)
ϑ

(
u +

1

2
+

1

2
τ

)
,

(A.5)

from which Weierstrass σ-functions are listed as below:

ω1 exp

(
η1

ω1
u2

) ϑ11

(
u

ω1

)

ϑ′
11 (0)

= σ(u), exp

(
η1

ω1
u2

) ϑab

(
u

ω1

)

ϑ′
ab (0)

= σab(u) (ab = 0),

(A.6)

with ϑ′
ab(t) = dϑab(t)/dt. Finally, wa(u) is as follows:

w1(u) =

cn(u
√

e1 − e3;

√
e2 − e3

e1 − e3
)

sn(u
√

e1 − e3;
√

e2−e3

e1−e3
)

=
σ10(u)

σ(u)
=

ϑ′
11(0)

ϑ10(0)

ϑ10(u)

ϑ11(u)
,

w2(u) =

dn(u
√

e1 − e3;

√
e2 − e3

e1 − e3
)

sn(u
√

e1 − e3;
√

e2−e3

e1−e3
)

=
σ00(u)

σ(u)
=

ϑ′
11(0)

ϑ00(0)

ϑ00(u)

ϑ11(u)
,

w3(u) =
1

sn(u
√

e1 − e3;

√
e2 − e3

e1 − e3
)

=
σ01(u)

σ(u)
=

ϑ′
11(0)

ϑ01(0)

ϑ01(u)

ϑ11(u)
.

(A.7)
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