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1 Introduction

Physics and geometry have deep and far-reaching links. The connection between supersym-
metric gauge theories and Calabi-Yau spaces has been fertile territory for new discoveries
in recent years. The search for interesting interplays between string theory and number
theory, famously crowned by Gauss as the queen of mathematics, has motivated efforts
such as the study of Calabi-Yau manifolds over finite fields [1, 2] and the enumeration
of Calabi-Yau manifolds [3]. Connections between number theory and string theory have
also played a role in Matrix Models [4, 5], which are related to strings propagating in low
dimensions. The precise connections between these different appearances of number theory
in string physics should be a fascinating area of research for the future, but it is apparent
that non-obvious interplays between low dimensions and higher dimensional physics should
be involved. The work of Kapustin and Witten on the Langlands program [6], which has
deep number theoretic implications, indeed exploits two-dimensional sigma models that
are related to four-dimensional gauge theories.

The purpose of this paper is to develop and exploit a link between low dimensional
geometric combinatorics in two real dimensions and Calabi-Yau manifolds in three complex
dimensions, and indeed between D− 1 real and D complex dimensions. The framework is
provided by the systematic study of orbifolds in [7–9]. Abelian orbifolds of non-compact
Calabi-Yau singularities arising as moduli spaces of supersymmetric worldvolume theories
of D3-branes and M2-branes have been identified as further evidence for the appearance
of number theory in string theory. Abelian orbifolds of CD by Γ ⊂ SU(D) naturally
introduce the order parameters n = |Γ| and D. In [7, 9], it has been observed that the
problem of enumerating all distinct Abelian orbifolds for given D and n depends on the
number theoretic properties of the order parameters. By counting Abelian orbifolds that
are invariant under Abelian subgroups of the permutation group SD, one obtains sequences
indexed by n which are multiplicative.1

It is known that Abelian orbifolds of C3, and of other non-compact toric Calabi-
Yau spaces, are related to sublattices of a two-dimensional lattice [10]. Since T2 can be
viewed topologically as the complex plane C modded by identifications generated by a
lattice, these sublattices correspond to covering spaces of T2 by T2. More precisely, these
covering maps are unbranched and connected. The mathematics of covering spaces is a well-
developed subject in algebraic topology, where the fundamental group, here π1(T2) = Z⊕Z,
plays a central role. In particular homomorphisms from π1(T2) to symmetric groups Sn
yield a precise classification. The counting of orbifolds symmetric under subgroups of S3,
considered in [9], leads us to an investigation of an S3 action on these homomorphisms
from π1(T2) to Sn. We find that this provides a powerful method to count orbifolds with
specified symmetries.

These ideas extend simply from C3 to CD for general D. For CD with orbifold groups
Γ of degree |Γ| = n, with n specified to be a prime number p, we consider p-fold covers of
the torus TD−1. We use a simple parameterization of p-fold covers of TD−1, which is then

1Let two elements of the sequence f be given by f(n) and f(m) where n, m are coprime. Then multi-

plicativity implies that f(nm) = f(n)f(m).
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used to parameterize Abelian orbifolds. Considering Abelian orbifolds of the form CD/Zp,
which are invariant under subgroups of SD, leads to the derivation of polynomial equations
modulo p. The roots of the polynomial equations correspond to Abelian orbifolds of the
form CD/Zp, which are invariant under the corresponding subgroup of SD.

We introduce colored Young diagrams which capture the cycle structure of the sub-
group of SD as well as the cover of the torus are introduced to parameterize the polynomial
equations modulo p. As a result, we introduce a novel analytical tool in order to derive
the counting of Abelian orbifolds observed in [7, 9].

The work is structured as follows. Section 2 relates torus coverings to Abelian orbifolds,
gives an introduction to covering space theory, and introduces the description of covers us-
ing permutation tuples. Section 3 uses the description of orbifolds in terms of permutation
tuples to derive an explicit parameterization of all the orbifolds corresponding to distinct
covers of degree equal to a prime p. The derivation of polynomial equations modulo p is
outlined, and it is shown that roots of the polynomial equations correspond to Abelian
orbifolds which are invariant under Abelian subgroups of SD. This section provides the
foundations of a new analytic approach to orbifold counting. Sections 4 and 5 discuss poly-
nomial equations modulo p and their roots for covers of the tori T2 and T3, respectively.
We show agreement with earlier counting results based on algorithmic approaches [7, 9],
as consistency checks of the new method. Section 6 introduces colored Young diagrams in
order to parameterize all polynomial equations modulo p for a given torus TD, as well as to
compare the roots of the parameterized equations to the counting of orbifolds in [9]. Given
that covering space theory arises in topological string theory, we expect that the current
results can lead to new connections between orbifold counting and topological strings. This
and other avenues are discussed in the conclusions. The appendix summarizes results in
number theory which we use, as well as giving results for covers of the torus T4.

2 Covers of T2 and Abelian orbifolds of C3

In [7–9], distinct orbifolds of CD are counted. It is known that orbifolds of CD and more
generally of toric Calabi-Yau are related to sub-lattices of a lattice in RD−1 [7, 10]. We will
use this to connect orbifold counting to counting torus covers. We start by reviewing some
basic results in covering space theory, noting the key roles of the fundamental group and
symmetric groups Sn, with n being the degree of the cover. By looking at the automor-
phisms of the fundamental group, we arrive at GL(D− 1,Z) which acts on toric diagrams.
The SD subgroup plays a distinguished role when the Calabi-Yau is CD.

2.1 Review: covering spaces and fundamental group

A space X̃ is a covering space of X if there is a surjective map

p : X̃ → X , (2.1)

such that for any small neighborhood {U} around a point on X, p−1(U) is a disjoint union
of open sets in X̃. Each open set in p−1(U) is mapped homeomorphically to U . For
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Figure 1. Homomorphisms from π1(S1) to S3 for threefold coverings of S1.

example, an n-fold covering of S1 is given by the map p : S1 → S1 with p(z) = zn and
|z| = 1.

In general, for an n-fold covering of X, we can pick a base point on X, and label the
n inverse images by {1, 2, . . . , n}. Non-trivial closed paths on X, can be followed in the
inverse image to yield permutations in Sn. Thus, we have a group homomorphism

s : π1(X)→ Sn . (2.2)

For the case of X = S1, the fundamental group is π1(X) = Z. For threefold coverings
of S1, Figure 1 shows three example coverings, along with the permutations in S3 corre-
sponding to the generator of π1(S1).

Two n-fold coverings of X given by the maps p1 : X̃1 → X and p2 : X̃2 → X, are
defined to be equivalent if there is a homeomorphism φ : X̃1 → X̃2, such that

p1 = p2 ◦ φ . (2.3)

This can be expressed as the requirement that the diagram below commutes:

φ

X̃1 −→ X̃2

p1 ↘ ↙ p2

X

(2.4)

Two equivalent covers lead to homomorphisms s and s′ related by conjugation with
an element γ in Sn:

s′ = γ−1 s γ . (2.5)

– 4 –
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The last two entries at the top of figure 1 both describe connected degree 3 covers of S1

by S1, and the permutations shown are related by conjugation. A word of caution: the
covering space has no self-intersection, as is clear from the description z → zn; |z| = 1.
The intersection only arises in the picture because it is embedded in the plane of the paper.

2.2 Covering spaces for torus and sublattices

The fundamental group of the torus TD−1 = S1 × . . . × S1 is π1(TD−1) = Z ⊕ · · · ⊕ Z =
Z⊕(D−1). It is a group generated by commuting elements e1, . . . , eD−1. The generators of
the fundamental group of TD−1 commute under composition of paths. We are choosing to
write the commutative group composition as an addition. Equivalently, we can describe
the group as being generated by D elements, with one relation

e1 + e2 + . . .+ eD = 0 . (2.6)

To describe a homomorphism to Sn we specify

s : ei → si ∈ Sn for i = 1, . . . , D − 1 . (2.7)

The group composition in the symmetric group is written multiplicatively, so that

s : ei + ej → sisj (2.8)

The commutativity in π1(T2) translates into the requirement that

sisjs
−1
i s−1

j = 1 . (2.9)

Equivalent homomorphisms lead by (2.5) to

s′i = γ−1 si γ . (2.10)

The image of the homomorphism s : π1(TD−1)→ Sn is called the monodromy group, and
one notes that equivalent homomorphisms give the same monodromy group. The cover is
topologically connected if given any pair of integers K,L in the set {1, 2, . . . , n} there is
some permutation generated by the si which takes K to L. This is sometimes expressed
by saying that the monodromy group is a transitive subgroup of Sn.

Recall the description of a torus as quotient of C by two lattice displacements:

T2 = C/(Za + Zb) . (2.11)

The displacements a and b go along the edges of a unit cell. It is known that equivalence
classes of connected covers of degree n of the torus T2 are in one-to-one correspondence
with sublattices. The sublattices can be described by a set of integers [K,L, P ] obeying
some conditions:

K > 0 , L > 0 , K L = n , K > P ≥ 0 . (2.12)

The A and B generators of the sublattice of Z2 can be expressed as

A = K a , B = P a + Lb , (2.13)
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Figure 2. Covers of the torus and sublattices.

109 6 7 8 6109

15 2 3 4 215

610 7 8 9 7610

21 3 4 5 321

Figure 3. Sublattices and permutations.

where 0 ≤ P ≤ K − 1. The matrix

M =

(
L P

0 K

)
, (2.14)

is known as the Hermite normal form matrix (HNF) [11]. Figure 2 shows a sublattice
specified by [K,L, P ]. We have drawn the underlying unit cell as a square, but for the
purposes of this classification of covers, the shape of the underlying unit cell is immaterial.
The larger fundamental domain (in blue) contains KL lattice points of the underlying Z2.
To construct the permutations s1, s2 corresponding to a cover, we label the KL vertices
with integers running from 1, . . . ,KL.

The permutations of integer labels that one obtains from running along the e1 and
e2 cycles correspond to the permutations s1 and s2, respectively, and thus specify the n-
fold covering of T2. Figure 3 illustrates this in an example. Generators e1 and e2 run
along the horizontal and vertical respectively. They generate the fundamental group of the
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m 1 2 3 4 5 6
m(1, 2, 3) mod 6 (1, 2, 3) (2, 4, 0) (3, 0, 3) (4, 2, 0) (5, 4, 3) (0, 0, 0)

Table 1. Representation of the Abelian orbifold of the form C2/Z6 with orbifold action (1, 2, 3).

torus obtained from the square lattice. For the case at hand, shifts along e1 lead to the
permutation s1, while shifts along e2 lead to the permutation s2:

s1 = (1 2 3 4 5)(6 7 8 9 10) , s2 = (1 10 5 9 4 8 3 7 2 6) . (2.15)

2.3 Sublattices in R2 and orbifolds of C3

Having shown the connection between torus covers and sublattices, we are in a position
to make contact with sublattices in R2 arising in the description of orbifolds of C3 [7, 10].
More generally, sublattices in RD−1 correspond to orbifolds of CD. The Abelian orbifolds
take the form CD/Γ with Γ ⊂ SU(D), and Γ = Zn1 × Zn2 × . . . × ZnD−1 . For each Zn
factor the corresponding coordinate action takes the form zi ∼ ei2π

ai
n zi. The Calabi-Yau

condition implies that
∑

i ai mod n = 0.
A tuple (a1, . . . , aD) specifying the action of an element of Γ = Zn on CD generates Γ

if gcd(a1, . . . , aD) = 1. Such a tuple can be used to characterize the orbifold CD/Γ. With
gcd(a1, . . . , aD) = 1, the orbifold action (a1, . . . , aD) generates the complete representation
of the orbifold group by addition modulo n:

(a1, . . . , aD)m mod n , (2.16)

where m = 1, . . . , D. Two orbifold actions A1 = (a1, . . . , aD) and A2 = (a′1, . . . , a
′
D), both

with gcd = 1 generate the same group action if there exists m ∈ Z such that

A1 = mA2 mod n . (2.17)

When Γ is a product group Zn1 × Zn2 . . .ZnD−1 , then the above equivalence of orbifold
actions holds for the tuples in each factor. Since tuples in Γ and tuples in Sn are both
valid ways of describing orbifolds, the equivalence classes of tuples in Γ match equivalence
classes of permutations in Sn defined according to (2.5). However, explicit calculations
with the two methods are not trivially identical, and can complement each other.

Example. Let us consider the Abelian orbifold of the form C3/Z6 with orbifold action
(a1, a2, a3) = (1, 2, 3). The orbifold parameters satisfy gcd (1, 2, 3) = 1 and generate the
representation of the orbifold group shown in table 1.

One observes that (5, 4, 3) with gcd (5, 4, 3) = 1 generates the same representation of
the orbifold group, and since 5(1, 2, 3) mod 6 = (5, 4, 3) both orbifold actions are equivalent.
We further make note of the periodicity of each orbifold parameter as follows,

6a1 mod 6 = 0 , 3a2 mod 6 = 0 , 2a3 mod 6 = 0 . (2.18)

In comparison, let us consider permutations

s1 = (1 2 3)(4 5 6) , s2 = (1 4)(2 5)(3 6) , (2.19)

– 7 –
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54 6 4 5 6

21 3 1 2 3

54 6 4 5 6

21 3 1 2 3

Figure 4. Sublattice corresponding to the permutations s1 = (1 2 3)(4 5 6) and s2 = (1 4)(2 5)(3 6).

which relate to the sublattice shown in figure 4.
We note that the permutations s1 and s2 generate S6, and furthermore exhibit the

periodicities

s3
1 = 1 , s2

2 = 1 , (s1s2)6 = 1 . (2.20)

Having s1s2 = (1 5 3 4 2 6), we identify the tuple of permutations (s1s2, s1, s2) to the
orbifold action (1, 2, 3) of the Abelian orbifold C3/Z6.

To summarize, permutation tuples in Sn subject to conjugation equivalence can be
identified with tuples in the orbifold group, subject to the above-defined equivalence of
orbifold actions. The orbifold group can be identified with the monodromy group of the
corresponding torus cover.

2.4 Automorphisms of π1(T2) and symmetries of orbifolds

Having described the π1(T2) as Z ⊕ Z, which is an Abelian group with two commuting
generators, the automorphism group is observed to be GL(2,Z). This corresponds to
invertible integer matrices which relate one set of generators to another. For the case
π1(TD−1) = Z⊕(D−1) we have GL(D − 1,Z). The automorphism group acts on homomor-
phisms from π1(TD−1) to Sn, organizing them into orbits. The group GL(D−1,Z) contains
SD as a subgroup. This is manifest by realizing π1(TD−1) in terms of D generators and
one relation, as we did in section 2.2, and noting that the relation (2.6) is invariant under
permutations. Let us make explicit the action of a permutation σ ∈ SD on torus covers:

σ(s1, s2, . . . , sD) = (sσ(1), sσ(2), . . . , sσ(D)) . (2.21)

A torus covering is invariant under σ ∈ SD if for some γ ∈ Sn the permutation tuple
s = (s1, . . . , sD) satisfies the equivalence condition

s = σ(s) = (sσ(1), . . . , sσ(D)) = γ−1sγ . (2.22)

Given the connection to orbifolds, these automorphisms are of particular interest. For
C3 orbifolds, the S3 action on orbifolds and its invariants have been studied recently. Two

– 8 –
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Figure 5. The hexagonal lattice.

orbifold actions A and A′, are in the same S3 orbit if there exists m ∈ Z and a permutation
σ ∈ S3 such that

A′ = mσ(A) mod Γ = m(aσ(1), aσ(2), aσ(3)) mod n . (2.23)

The S3 subgroup of GL(2,Z) is of particular interest since it is also part of the SU(3) ⊂
SO(6) global symmetry of the gauge theory of D3-branes transverse to C3.

Given the above SD transformations, one can count orbifolds that are invariant under
some subgroup of SD. These define what we call symmetries of the corresponding Abelian
orbifold. In the context of orbifold actions of the form A = (a1, . . . , aD) with the Calabi-
Yau condition given by

∑
i ai mod n = 0, a symmetry σ ∈ SD satisfies the condition

(a1, a2, . . . , aD) = mσ(a1, a2, . . . , aD) mod n = m(aσ(1), aσ(2), . . . , aσ(D)) mod n , (2.24)

for some m ∈ Z.
Of particular interest are the Abelian subgroups of the permutation group SD. As

discussed in [7, 9], the number of Abelian orbifolds of CD at order n which are symmetric
under a given Abelian subgroup of SD corresponds to the number of distinct Abelian
orbifolds at order n.2 Motivated by this application, we focus in the sections below on the
Abelian subgroups of SD as symmetries of Abelian orbifolds of CD and coverings of TD−1.

2.5 Dimers and symmetry groups

The distinguished role of S3 as a symmetry of the brane worldvolume theory for the Calabi-
Yau C3 is reflected in the associated dimer model, which is a hexagonal lattice.

2Polya’s enumeration theorem and the cycle index of the permutation group SD play an important role

in obtaining the number of distinct Abelian orbifolds at order n from the number of orbifolds invariant

under subgroups of SD. The reader is encouraged to consult [7, 9] for more details.

– 9 –
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The hexagonal tiling in Figure 5 is known as a brane tiling or dimer [10, 12]. A brane
tiling specifies uniquely the superpotential and quiver of a supersymmetric gauge theory
living on a stack of D3-branes probing a singular Calabi-Yau threefold. The non-compact
Calabi-Yau threefold is the mesonic moduli space of the so called quiver gauge theory,
and is, for the case we are interested in, the Abelian orbifold of C3. The toric property
of the Calabi-Yau allows us to draw a polygon on Z2 which specifies the corresponding
toric variety. The polygon is called the toric diagram, and is a triangle of area 1/2 for the
case of C3. The procedure of obtaining the toric diagram from a given brane tiling is well
known and is called the Forward Algorithm [10, 12]. The Hermite normal form matrix
in (2.14) which specifies the sublattice of the enlarged fundamental domain of the torus
T2 also determines the toric diagram of the corresponding orbifold of C3. By acting on
the vectors (0, 0), (1, 0) and (0, 1) specifying the corner points of the C3 toric diagram, one
obtains the toric triangle of the corresponding orbifold of C3 with an area equal to n/2.

In this paper we focus on the subgroup SD of GL(D−1,Z), which plays a distinguished
role for CD orbifolds. We have explained the meaning of GL(D − 1,Z) ⊃ SD as automor-
phisms of π1(TD−1). Focusing for explicitness on case D = 3, the GL(2,Z) also acts on
toric triangles which are toric diagrams for the orbifolds. Since these toric triangles are
generated by Hermite normal forms acting on the basic triangle, and these same Hermite
normal forms determine the covers of tori, we can identify these two actions. While we
focus on the S3 subgroup and C3 here, other subgroups can be studied in connection with
other dimer models.

3 Parameterizing and counting symmetric orbifolds

Now that we have discussed covers of tori and their relationship to orbifolds, we move on to
the parameterization of distinct torus coverings in terms of permutation tuples. It is known
that there is a one-to-one correspondence between Hermite normal form matrices (HNF’s)
and torus coverings. In [7–9], the set of Abelian orbifolds of order n (for n equal to a prime
p) are parameterized by using HNF’s that reproduce the toric diagram of the corresponding
orbifold CD/Zp. HNF’s which are related by SD describe physically equivalent orbifolds.
The counting of SD orbits is related to the counting of HNF’s invariant under abelian
subgroups of SD by Polya’s theorem. By enumerating the torus coverings below, we are
able to derive polynomial equations modulo p whose roots are Abelian orbifolds which are
invariant under subgroups of SD.

Previous counting results are based on an algorithmic approach [8, 9] which starts
from tuples in the orbifold group and implements a systematic computer-aided recipe for
counting. The following section provides the foundations of an analytic approach using
commuting permutations, which lead to Diophantine equations. Explicit analytical deriva-
tions of counting results follow for D = 3 and D = 4 in sections 4 and 5.

3.1 Parameterization of torus coverings in D = 3

Let the covers of tori be parameterized in terms of permutation tuples. The tuples in
question are elements of the symmetric group Sn, where n is the order of the orbifold

– 10 –
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group Γ. We wish to emphasize that there is another symmetric group SD determined by
the dimension of CD, the space being orbifolded. These two groups should not be confused.

The prime numbers are the atoms of the integers. Let us restrict n = p to be prime.
The commutativity condition in (2.9) and transitivity condition are very restrictive in this
case and allow a simple parameterization of all tuples specifying the torus coverings. Let
ω = (12 . . . p) ∈ Sp be a cyclic permutation of order p such that ωp = 1.

For D − 1 = 2, the set of possible tuples is given by

(s1, s2) = (1, ω) ,

(s1, s2) = (ω, ωk) , k = 0, 1, . . . , p− 1 . (3.1)

Any other solution to (2.9) is related to one of the above by conjugation. To argue for this,
we make the following comments.

First, if one of s1, s2 is ω, then the other has to be a power of ω. This follows from
a general fact about the subgroup of Sn, which commutes with any given permutation.
Starting with a cycle decomposition of the permutation in question, the commutant is
generated by elements which cyclically permute the numbers within each cycle and the
elements which permute the cycles of equal length. In the case at hand, there is only one
cycle of maximal length. Therefore, there are just the powers of ω which are commuting
with the cycle.

Second, one has to show that there are no other solutions to (2.9) and (2.10). If
s1, s2 6= ω, or some power, and consists instead of more than one cycle, by itself this does
not generate a transitive subgroup of Sp. One might think that products involving s1, s2

can generate Sp. The process of multiplying s1 by s2 can be viewed in terms of splitting
and joining of the cycles of s1. If s2 commutes with s1, it can only join like-cycles into
longer cycles. But the cycle lengths of s1 have to add up to p. Since p has no divisors,
s1 cannot be some number of cycles of equal length. We therefore conclude that (3.1) is
exhaustive up to conjugation equivalence.

In the following section, we illustrate the generalization of the above parameterization
towards any dimension D.

3.2 Parameterization of torus coverings for general D and Abelian orbifolds

The set of distinct n-fold covers of TD−1 allows a straightforward parameterization for
prime n = p [7–9]. The enumeration of torus covers below exhausts the counting of HNF’s
used in the earlier papers.

The set of distinct covers. Let us parameterize the set of distinct p-fold covers directly
by their corresponding tuples (s1, . . . , sD).3 In analogy to (3.1), the set (adding the last

3We emphasize that the set of distinct covers corresponds to the set of Abelian orbifolds of the form

CD/Zp parameterized by Hermite normal form matrices. Distinct elements of this set can lead to theories

with the same fields and superpotentials, when they are related by permutations in SD. This leads to a

notion of physically equivalent orbifolds used in [7, 9]. The invariances of the Hermite normal forms under

subgroups of SD, under study here, are related by Polya’s theorem to the orbits of the SD action.
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entry in each tuple as the inverse product of the first D − 1 entries)

(1, . . . , 1, ω, ω−1)

(1, . . . , 1, ω, ωk, ω−1−k) , k = 0, . . . , p− 1

(1, . . . , 1, ω, ωk1 , ωk2 , ω−1−k1−k2) , ki = 0, . . . , p− 1
...

(1, ω, ωk1 , ωk2 , . . . , ωkD−3 , ω−1−k1−k2−···−kD−3) , ki = 0, . . . , p− 1

(ω, ωk1 , ωk2 , . . . , ωkD−2 , ω−1−k1−k2−···−kD−2) , ki = 0, . . . , p− 1 (3.2)

parameterizes all distinct p-fold covers of TD−1. There are pm tuples of the generic form
(1, . . . , ωk1 , . . . , ωkm , ω−1−k1−k2−···−km) since ki = 0, . . . , p−1. The näıve reader may set one
of the ki’s in (1, . . . , ωk1 , . . . , ωkm , ω−1−k1−k2−···−km) to zero and argue that it is equivalent
to another tuple by a permutation of coordinates. This however misses the point that we
are not parameterizing orbifold actions, but distinct covers of the torus corresponding to
Hermite normal form matrices. In fact, for large p, the number of Hermite normal form
matrices approaches pD−2, whereas the number of inequivalent abelian orbifolds of CD

behaves like pD−2/D!. The factorial behaviour originates from the action of the symmetric
group SD on the coordinates of CD when considering orbifold actions, but should not be
taken into account when parameterizing Hermite normal form matrices and torus coverings.

Let us have a closer look on why (3.2) parameterizes the entire set of distinct tuples
for a given dimension D. The transitivity condition for n = p restricts to tuples of the form

(s1, s2, . . . , sD−1) = (ωk1 , ωk2 , . . . , ωkD−1) . (3.3)

Note that the entry sD is omitted as it is determined by the first D− 1 entry as an inverse
product over them. Since ωp = 1, one has 0 ≤ ki ≤ p− 1 for any i. Because of transitivity,
ki = 0 for all i is not allowed. The other powers ωm for m = 2, 3, . . . , p−1 are all conjugate
to ω. That is to say, there is some γm ∈ Sn such that

γmωγ
−1
m = ωm . (3.4)

This is because the conjugacy classes in Sn are characterized completely by the cycle
lengths. Under this conjugation

γmω
kγ−1
m = ωmkmod p . (3.5)

So one is counting tuples of integers k1, . . . , kD−1 between 0, . . . , p − 1, not all zero, with
the equivalence

(k1, k2, . . . , kD−1) = (mk1,mk2, . . . ,mkD−1) mod p . (3.6)

Therefore, one is counting (D − 1)-tuples in Zp with no common factor modulo p.
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The orbifold action. For primes p, the tuples in (3.2) specify the corresponding Zp
orbifold action on the complex coordinates of CD. Let us consider the generic tuple
(ωk0 , ωk1 , ωk2 , . . . , ωkD−2 , ω−k0−k1−k2−...−kD−2). From the list (3.2), for some j ≥ 0, ki = 0
for all i < j, kj = 1, and ki ∈ {0, . . . , p − 1} for all i > j. The action on the coordinates
induced by this tuple is

(z1, . . . , zD) ∼ (ωk0
p z1, ω

k1
p z2, . . . , ω

kD−2
p zD−1, ω

−k0−k1−k2−...−kD−2
p zD) , (3.7)

where ωp is a p-th root of unity different from one.
It is important to distinguish between two types of permutations when combining the

notions of tuples specifying torus coverings and orbifold actions. These are:

• Conjugations of the chosen covering space tuple by an element of Sp correspond
to relabelling the sheets of the cover. Equivalently, conjugations correspond to a
re-parameterization of the covering surface. Tuples related by such conjugations
correspond to the same torus covering and the same Hermite normal form matrix.

• Permutations of CD coordinates of the orbifold action by an element of SD lead
to an isomorphic orbifold theory with the same matter content and superpotential.
The isomorphism involves a reshuffling of the fields of the original theory. The per-
mutation of CD coordinates acts non-trivially on the corresponding Hermite normal
form matrices. For example, the orbifold actions corresponding to the first line case
and the second line k = 0 case of the torus covering parameterization in (3.2) are
associated to distinct Hermite normal form matrices in the same SD orbit.

The number of distinct covers. For general D, the number of inequivalent tuples is
given by

D−2∑
i=0

pi =
pD−1 − 1
p− 1

. (3.8)

The left hand side of (3.8) is 1 + p + p2 + . . . + pD−2. Let us show this explicitly for
the case of D = 4, where one has 1 + p + p2. The 1 corresponds to the tuple of the form
(s1, s2, s3) = (1, 1, ω). The p corresponds to the tuples of the form (s1, s2, s3) = (1, ω, ωk1),
where 0 ≤ k1 ≤ p− 1. This is where the non-trivial covering is happening over a T2 inside
the T3. Next one has p2 tuples of the form (s1, s2, s3) = (ω, ωk2 , ωk1) with 0 ≤ k1, k2 ≤ p−1.

To show that these tuples exhaust the counting in Zp with the equivalence condition
in (3.6), one recalls that

i. 1 is conjugacy equivalent only to itself;

ii. by (3.4), any ωm, m 6= 0 is conjugacy equivalent to ω.

Thus, it can be seen that any tuple (1, 1, ωm 6= 1) is conjugacy equivalent to (1, 1, ω).
Similarly, suppose that s1 = 1 and s2 = ωm 6= 1. Conjugating s2 lets us recast this tuple as
(1, ω, ωk1) for some k1. Finally, if s1 = ωm 6= 1, one can use conjugation to bring the tuple
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to the form (ω, ωk2 , ωk1) for some k1 and k2. Since the commutativity and transitivity
conditions demand that all the si be powers of ω, the list provided above is exhaustive.

The generalization of this result to larger D proceeds by induction. In this way, one
can always write a tuple so that when si = 1 for i < j, sj = ω and sj+1, . . . , sD−1 range
over the powers of ω. Thus, we reproduce the list of tuples in (3.2).

We have therefore explicitly parameterized p-fold covers using tuples of the form
(s1, . . . , sD−1). The new parameterization is used in the following section in the context
of commuting permutations as an analytic tool for deriving counting results for Abelian
orbifolds of CD.

3.3 ZD-symmetric tuples and polynomial equations modulo p

Let a tuple corresponding to a p-fold cover of the torus TD−1 be denoted by the powers ki
of ω where ωp = 1. One recalls from the above section that under conjugation

(k1, . . . , kD−1, kD) = (mk1, . . . ,mkD−1,mkD) mod p , (3.9)

for all m. We shall often trade the multiplicative nomenclature where si is written as
ωki = (12 . . . p)ki = (1 ki . . . p − ki + 1) to an additive nomenclature where ki stands for
this element in Sp. Where ω appears explicitly, as in the explicit counting of orbifolds of
T2 and T3 in sections 4 and 5 below, we have expressed the permutations in terms of the
multiplicative nomenclature, whereas in what follows here, for ease of notation, we do the
opposite.

Symmetry. Let σ ∈ SD be a permutation of the elements ki in the tuple. If σ is a
symmetry, then under conjugation

(kσ(1), . . . , kσ(D−1), kσ(D)) ≡ (mk1, . . . ,mkD−1,mkD) mod p , (3.10)

is true for some m. Given σ = ZD, its action is to cycle the ki such that

(kσ(1), kσ(2), . . . , kσ(D−1), kσ(D)) = (k2, k3, . . . , kD, k1) . (3.11)

The number of invariant tuples and polynomial equations modulo p. Let us
count the number of tuples that are invariant under the cyclic action of σ = ZD. In order
to this, consider the tuple

s = (1, k1, . . . , kD−2, k0) , (3.12)

where k0 = −1−
∑D−2

i=1 ki mod p. Under the permutation by ZD this maps to

s′ = (k1, k2, . . . , k0, 1) . (3.13)

As seen above, there is an element γm ∈ Sn that acts by conjugation to send ω 7→ ωm for
any m 6= 0. Thus s′ is equivalent by conjugacy to

s′′ = (mk1,mk2, . . . ,mk0,m) mod p . (3.14)
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To have an invariant, one needs s ∼ s′′. Therefore, by identifying the exponents of ω, the
following set of equations is obtained,

k0 = m mod p ,

kD−2 = mk0 mod p ,

kD−3 = mkD−2 mod p ,
...

k2 = mk3 mod p ,

k1 = mk2 mod p ,

1 = mk1 mod p . (3.15)

The roots of the above polynomial equations correspond to ZD-invariant covers of TD−1.
The equations above are defined modulo p, or equivalently for Zp orbifolds over the finite
field Fp.

(3.15) is solved by,

k0 = m mod p ,

kD−2 = m2 mod p ,

kD−3 = m3 mod p ,
...

k1 = mD−1 mod p .

1 = mD mod p .

In general, the solutions take the form

ki = mD−i mod p , (3.16)

for i = 1, . . . , D − 2. Therefore,

0 = m− k0 mod p

= m+ 1 +
D−2∑
i=1

ki mod p (3.17)

= 1 +m+m2 + . . .+mD−1 mod p .

The first equality comes from the last line of (3.15). The second equality makes use of the
definition of k0. The last equality substitutes the result (3.16). The solutions to this are
the ZD invariants as claimed and therefore the number of ZD-invariant covers is given by
the number of solutions to the equation

0 =
D−1∑
j=0

mj mod p . (3.18)
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One can also consider Zd invariants for d < D by fixing D − d of the si. If there are
two tuples s = (s1, . . . , sD) and s′ = (s′1, . . . , s

′
D) that are both invariant under Zd, one

should not count these separately if they are related by a coordinate transformation on
the torus. In the section below, we shall see what this means from the perspective of the
symmetric group.

3.4 Invariance of counting under conjugation by elements of SD

The number of invariants under G ⊂ SD is the same as the number of invariants under
Gτ = τGτ−1 for τ ∈ SD. An element g ∈ G acts on s as follows:

g(s) = (sg(1), . . . , sg(D)) , (3.19)

with g(i) 6= g(j) for i 6= j. Suppose for all g ∈ G, there exists a σ ∈ Sp such that

sg(i) = σsiσ
−1 (3.20)

for all i. Then s is a G-invariant configuration.
The aim is to show that for every such G-invariant configuration, there is a Gτ -invariant

configuration. One acts on (3.19) by τ ,

τg(si) = τ(sg(i)) = τ(σsiσ−1) . (3.21)

The left hand side is
τgτ−1τ(si) = gτ (sτ(i)) = sgτ (τ(i)) . (3.22)

The τ acts on the i index and commutes with σ, which acts on si ∈ Sp. Thus

τ(σsiσ−1) = σsτ(i)σ
−1 . (3.23)

Therefore σsτ(i)σ
−1 = gτ (sτ(i)) and hence sτ = (sτ(1), . . . , sτ(d)) is a Gτ -invariant.

This explains, for example, why counting invariants under the group 〈1, (123)〉 gener-
ated by 1, (123) is the same as the counting of invariants under 〈1, (234)〉, which is generated
by 1 and (234). The two are related by the action of τ = (14),

(14)〈1, (123)〉(14) = 〈1, (234)〉 . (3.24)

Tuples under Gτ = τGτ−1 and G are related to each other by a coordinate reparameteri-
zation on the torus (z1 ↔ z4) and should not be enumerated separately.

The previous sections have outlined the main results of the paper. We have developed
a new explicit parameterization of Abelian orbifolds of CD through the use of permutation
tuples in conjunction with the parameterization of p-fold covers of the torus. Prior results
are based on counting Abelian orbifolds by analyzing the equivalences algorithmically. This
section provides the foundations of an analytic approach using commuting permutations,
which are explicitely illustrated in the following section for D = 3 and D = 4. The interplay
between counting commuting pairs in Sn and tuples in the orbifold group is expected to
be fruitful in the future.
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C3/Zp number of Z3 invariants
p = 3 1

p = 3l + 1 2
p = 3l + 2 0

C3/Zp number of Z2 invariants
p = 2 1
p 6= 2 2

Table 2. The number of Z2 and Z3 invariant tuples corresponding to covers of T2.

4 Example: covers of T2

Orbifolds of the form C3/Zn correspond to n-fold covers of T2. Given that n = p is prime
and defining ω = (12 . . . p), one can identify all distinct tuples as one of the following,

Type 1: (1, ω, ω−1) ,

Type 2: (ω, ωk, ω−1−k) , (4.1)

where k = 0, . . . , p−1. Accordingly, as identified in section 3, by cycling through the values
of k, we see that there are in total 1 + p distinct tuples at order n = p.

In D = 3, we will count distinct tuples that are symmetric under one of the Abelian
subgroups of S3 which are Z2 and Z3, deriving the results summarized in table 2. We thus
have analytically derived the results for D = 3 in [7, 9].

4.1 Z3-invariant covers of T2

In order to count invariants under Z3, one has to choose the σ ∈ Z3 action on the permu-
tations of the tuple, s = (s1, s2, s3). The two choices (123), (132) of σ are give the same
number of invariants, as explained in section 3.4. Let us pick σ(s) = (s2, s3, s1) for the
following discussion.

Type 1. The type 1 tuples cannot contribute to the number of Z3-invariant tuples. This is
because s1 = 1 and therefore the tuple cannot be Z3-permuted without breaking invariance
under conjugation.

Type 2. The type 2 tuples contribute to the number of Z3-invariant tuples. By applying
the Z3 action and taking the conjugation ω 7→ ωm one obtains the identification

(ω, ωk, ω−1−k) ≡ (ωmk, ω−m−mk, ωm) , (4.2)

which leads to the equations

0 = (mk − 1) mod p , 0 = (k +m(1 + k)) mod p , 0 = (m+ 1 + k) mod p , (4.3)

where k = 0, . . . , p− 1. The equations simplify to

0 = 1 +m+m2 mod p ⇔ 0 = (1−m3) mod p , m 6= 1 , (4.4)

where the number of solutions in m corresponds to the number of Z3-invariant tuples in
D = 3. As a result of Fermat’s Little Theorem and the related theorems on congruences,
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which are discussed in appendix A, there are three solutions for primes of the form p = 3q+1
out of which m = 1 is excluded by the simplification in (4.4). For p = 3, there is precisely
one solution m = 1 when 1 +m+m2 = 3. For p = 2, and in general for p = 3l + 2, there
are no solutions.

Total. In total, the number of solutions to the equations in (4.3) and hence the number
of Z3-invariant tuples is

1 if p = 3 ,

2 if p = 3l + 1 ,

0 otherwise . (4.5)

4.2 Z2-invariant covers of T2

Let the action of σ ∈ Z2 on the permutations of the tuples be σ(s) = (s1, s3, s2). The
counting of Z2-invariants is obtained as follows. One identifies that both types of tuples
contribute to the counting, in contrast to the discussion on Z3-invariants above.

Type 1. By Z2 permuting s2 and s3 in the type 1 tuple and by imposing equivalence
under conjugation, the following identification can be made

(1, ω, ω−1) ≡ (1, ω−m, ωm) . (4.6)

The above identification leads to the equation

0 = 1 +m mod p , (4.7)

which has the solution m = p−1. Accordingly, there is a single Z2-invariant tuple of type 1
for all p.

Type 2. Type 2 tuples allow three distinct σ ∈ Z2 permutations of the form
(sσ(1), sσ(2), sσ(3)) which are expected to give the same number of Z2-invariant tuples as
discussed in section 3.4. By taking σ(s) = (s1, s3, s2), one obtains

(ω, ωk, ω−1−k) ≡ (ωm, ω−m(1+k), ωmk) , (4.8)

which yields the following polynomial equations,

0 = m− 1 mod p , 0 = k +m(1 + k) mod p , 0 = 1 + k(1 +m) mod p . (4.9)

The solution for the first equation above, m = 1, substituted in the following two equations,
leads to 0 = 2k + 1 mod p. This admits a unique solution for k for all primes of the form
p = 2l + 1 or equivalently p 6= 2.

Total. As a result, in total the number of Z2-invariant tuples is

1 if p = 2 ,

2 if p 6= 2 . (4.10)
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C4/Zp number of Z4 invariants
p = 4q + 1 3
p 6= 4q + 1 1

C4/Zp number of Z2 × Z2 invariants
p = 2 3
p 6= 2 p+ 2

C4/Zp number of Z3 invariants
p = 2 1
p = 3 1

p = 3q + 1 3
p = 3q + 2 1

C4/Zp number of Z2 invariants
p = 2 3
p 6= 2 p+ 2

Table 3. The number of Z4, Z3, Z2 × Z2 and Z2 invariant tuples corresponding to covers of T3.

5 Example: covers of T3

Abelian orbifolds of the form C4/Zn correspond to n-fold covers of T3. Putting n = p prime
and defining ω = (1 2 . . . p), one can parameterize the torus coverings with the following
set of tuples (s1, s2, s3, s4),

Type 1: (1, 1, ω, ω−1) ,

Type 2: (1, ω, ωk, ω−1−k) ,

Type 3: (ω, ωk1 , ωk2 , ω−1−k1−k2) , (5.1)

where ki = 0, . . . , p − 1. The above parameterization is discussed in section 3. In total,
there are 1 + p+ p2 tuples.

We wish to count the number of tuples which are invariant under Abelian subgroups
of S4. The results are summarized in table 3 with q being a positive integer. The following
section provides the analytical derivation for D = 4 of the observations made in [7, 9].

5.1 Z4-invariant covers of T3

Let the σ ∈ Z4 action on the tuple be chosen as σ(s) = (s2, s3, s4, s1).

Types 1 & 2. The tuples of type 1 or 2 cannot contribute to the number of invariants
because they contain the identity permutation si = 1.

Type 3. By applying the Z4 action on a type 3 tuple of the form (ω, ωk1 , ωk2 , ω−1−k1−k2),
and by taking the conjugation ω 7→ ωm, one obtains

(ω, ωk1 , ωk2 , ω−1−k1−k2) ≡ (ωk1m, ωk2m, ω−m(1+k1+k2), ωm) . (5.2)

The above gives the following set of polynomial equations

0 = k1m− 1 mod p, 0 = k2m− k1 mod p ,

0 = k2 +m(1 + k1 + k2) mod p, 0 = 1 + k1 + k2 +m mod p , (5.3)

where ki = 0, . . . , p− 1. The equations can be solved to give

0 = 1 +m+m2 +m3 mod p⇔ 0 = m4 − 1 , m 6= 1 . (5.4)
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As a consequence of Fermat’s Little Theorem and the related theorems on congruences,
which are discussed in appendix A (see (A.1)), there are three solutions for primes of the
form p = 4q + 1, which are known as Pythagorean primes. These are primes that can be
the hypotenuse of a right triangle whose legs are integer length.

One of three solutions above is m = p− 1, which is also a solution for all other primes
which are of the form p = 4q + 2 and p = 4q + 3. This is because m = p− 1 ∼ −1, which
renders (5.4) an alternating sum of plus and minus.

Total. Hence in total one obtains the following number of Z4 invariants for covers of T3,

3 if p = 4q + 1 ,

1 if p = 4q + 2 ,

1 if p = 4q + 3 . (5.5)

5.2 Z3-invariant covers of T3

Let us extend the analysis to Z3 invariant choices of the tuples. By identifying the Z3 action
on the tuple as σ(s) = (s1, s2, s3, s1) one notices that the type 1 tuples do not contribute
to the number of invariants.

Type 2. Keeping s1 fixed among tuples of type 2, one has by demanding equivalence
under conjugation,

(1, ω, ωk, ω−1−k) ≡ (1, ωkm, ω−m(1+k), ωm) . (5.6)

The condition for this to occur is that there is a k such that

0 = 1 +m+m2 mod p . (5.7)

For p > 3, there are two solutions for primes of the form p = 3q + 1 and none otherwise.
This is a consequence of Fermat’s Little Theorem and related theorems on congruences
(see appendix A).

For p = 3, one has a single solution m = 1 which sets 1 + m + m2 mod p = 0.
Furthermore, for p = 2 there are no solutions. The counting is the same as when one solves
for Z3-invariant type 2 tuples corresponding to covers of T2.

Type 3. By applying the Z3 action on si of the type 3 tuple, conjugating s′, and de-
manding equivalence, one obtains

(ω, ωk1 , ωk2 , ω−1−k1−k2) ≡ (ωm, ωmk2 , ω−m(1+k1+k2), ωmk1) . (5.8)

The corresponding set of polynomial equations is

0 = 1−mmod p, 0 = k1 −mk2 mod p ,

0 = k2 +m(1 + k1 + k2) mod p , 0 = 1 + (m+ 1)k1 + k2 mod p , (5.9)
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where ki = 0, . . . , p − 1. The solution to the first equation is m = 1. It gives k1 = k2 and
simplifies the two last equations in (5.9) to

0 = 1 + 3k1 mod p (5.10)

This sets the condition p = 1 + 3k1 for which the solution m = 1 applies. However, as
this is a linear equation, there is always a value for k1 in the range 0 ≤ k1 ≤ p− 1, which
solves (5.11). For p = 3q + 1, k1 = p−1

3 is an integer which satisfies (5.10). Likewise, for
p = 3q + 2, k1 = 2p−1

3 is an integer which satisfies (5.10). Hence there is a contribution of
a single solution for all primes p > 3.

Total. In total one has three Z3 invariant tuples for primes of the form 3m + 1 and a
single Z3 invariant tuple for primes p > 3 not of this form,

3 if p = 3q + 1 ,

1 if p = 3q + 2 ,

1 if p = 3 . (5.11)

5.3 Z2 × Z2-invariant covers of T3

Only the first and third types of tuples in (5.1) contribute to the number of covers of T3

invariant under Z2 × Z2. Let the Z2 × Z2 action for all types of tuple be chosen to be
(sσ(1), sσ(2), sσ(3), sσ(4)) = (s2, s1, s4, s3).

Type 1. Since for type 1 tuples s1 = s2 = 1, invariance depends only on the permutation
of s3 and s4. After conjugation, one can make the identification

(1, 1, ω1, ω−1) ≡ (1, 1, ω−m, ωm) , (5.12)

which gives the polynomial equation

0 = 1 +m mod p . (5.13)

There is one solution to the above equation, m = p− 1, for all primes p. It corresponds to
one Z2 × Z2-invariant tuple of type 1 for all p.

Type 2. Type 2 tuples have a single identity permutation s1 = 1 which makes it impos-
sible for any tuple of this type to be invariant under Z2 × Z2.

Type 3. The type 3 tuples of the form s = (ω, ωk1 , ωk2 , ω−1−k1−k2) with k1, k2 =
0, . . . , p − 1 contribute to the counting of σ ∈ Z2 × Z2-invariant tuples. They, after the
action of σ ∈ Z2 × Z2 and conjugation, lead to the identification

(ω, ωk1 , ωk2 , ω−1−k1−k2) ≡ (ωmk1 , ωm, ω−m(1+k1+k2), ωmk2) . (5.14)

This gives the following set of polynomial equations

0 = mk1 − 1 mod p , 0 = k1 −m mod p ,

0 = b+m(1 + k1 + k2) mod p , 0 = 1 + k1 + (m+ 1)k2 mod p , (5.15)
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where ki = 0, . . . , p− 1. The equations simplify to

0 = m2 − 1 mod p ,

0 = (1 +m) + (1 +m)k2 , 0 = (1 +m)m+ (1 +m)k2 , (5.16)

where the first equation has two solutions m = 1 and m = p− 1.
Taking m = 1, the equations in (5.16) simplify to

0 = 1 + k2 mod p , (5.17)

which is satisfied by k2 = p− 1. Hence there is a single solution m = 1 for all values of p.
Taking the solution m = p − 1, the equations in (5.16) become independent of k2 =

0, . . . , p − 1. Since the solution m = p − 1 is valid for every value of k2 in the range
0 ≤ k2 ≤ p− 1, there are in total p solutions of the form m = p− 1. Because for p = 2 one
has m = 1 = p− 1, there are p solutions of the form m = p− 1 for p > 2.

Total. Accordingly, totaling the contributions from all types of tuples, the number of
Z2 × Z2 invariant tuples is given by

3 if p = 2 ,

p+ 2 if p 6= 2 . (5.18)

The above results are the analytical derivations of the observations in [7, 9].

5.4 Z2-invariant covers of T3

Let the Z2 action be σ(s) = (s1, s2, s3, s2). The number of Z2-invariant covers of T3 has
contributions from all three types of tuples in (5.1).

Type 1. By applying the Z2 action and by taking the conjugation, one makes the iden-
tification

(1, 1, ω, ω−1) ≡ (1, 1, ω−m, ωm) . (5.19)

This gives the following equation

0 = 1 +m mod p , (5.20)

which has the unique solution m = p− 1 for all prime p.

Type 2. Taking the same σ ∈ Z2 action on the type 2 tuples, the following identification
can be made after conjugation,

(1, ω, ωk, ω−1−k) ≡ (1, ωm, ω−m(1+k), ωmk) . (5.21)

The above gives the set of equations

0 = m− 1 mod p , 0 = k +m(1 + k) mod p , 0 = (m+ 1)k + 1 mod p , (5.22)
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where k = 0, . . . , p− 1. The first equation gives the solution m = 1, which inserted to the
other equations in (5.22) gives the condition

0 = 1 + 2k mod p (5.23)

on the prime orders p on which the solution m = 1 is valid. Accordingly, there is a single
contribution from m = 1 at orders p 6= 2 for tuples of type 2, no contributions at order
p = 2.

Type 3. Type 3 tuples of the form (ω, ωk1 , ωk2 , ω−1−k1−k2) where ki = 0, . . . , p− 1, also
contribute to the number of Z2-invariant tuples. Choosing the same σ ∈ Z2 action on
the permutations of the tuples as above, the following identification can be made after
conjugation

(ω, ωk1 , ωk2 , ω−1−k1−k2) ≡ (ωm, ωmk1 , ω−m(1+k1+k2), ωnk2) . (5.24)

The above gives the following set of polynomial equations

0 = m− 1 mod p, 0 = k1(m− 1) mod p ,

0 = k2 +m(1 + k1 + k2) mod p, 0 = 1 + k1 + (m+ 1)k2 mod p . (5.25)

The first equation above gives the solution m = 1, which inserted into the remaining
equations sets a condition

0 = 1 + k1 + 2k2 mod p , (5.26)

on the prime orders p. Since for all values of ki in the range 0 ≤ ki ≤ p− 1 satisfying the
above condition the solution m = 1 applies, one concludes that there are p solutions for all
values of p.

Total. In total, the number of solutions and hence the number of Z2-invariant covers of
T3 are

3 if p = 2 ,

p+ 2 of p 6= 2 . (5.27)

The number of Z2 invariants matches the number of Z2 × Z2 invariants discussed above.
The equations above are the analytical derivations of the observations in [7, 9].

6 Parameterization of polynomial equations modulo p

In the sections above, we have derived polynomial equations modulo p for a given Abelian
subgroup of SD and applied these to particular cases, T2 and T3. In general, the solutions
to the polynomial equations correspond to p-fold covers of TD−1, which are invariant
under the particular Abelian subgroup of SD. These covers of TD−1 correspond to Abelian
orbifolds of CD.
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Using the parameterization of p-fold covers of TD−1 in section 3.2, we have observed
that certain types of covers in the parameterization cannot be symmetric under a specific
subgroup of SD. This is because certain tuples contain the identity permutation si = 1
which cannot be mapped to non-identity permutations via conjugation. We wish to develop
a technology to filter out p-fold covers that are not invariant under a given subgroup of SD,
as well as parameterize completely the set of polynomial equations modulo p corresponding
to the SD subgroup.

In this section, we take the partitions of the subgroup of SD as a Young diagram and
represent the p-fold cover as colored boxes in the Young diagram. By doing so we combine
information of a given p-fold cover of the torus and of the Abelian subgroup of SD into a
single representation. We call the process Young diagram coloring.

Based on examples in the sections above for covers of T2 and T3, we observe that for ev-
ery consistent colored Young diagram, there is a unique set of polynomial equations modulo
p whose solutions correspond to symmetric Abelian orbifolds of CD. We give a dictionary
to translate a colored Young diagram into its corresponding set of polynomial equations.

6.1 Tuples and coloring Young diagrams

A Young diagram is a partition of a non-negative integer D. The symmetric group SD has
D! elements that fall in conjugacy classes labelled by the partitions of D. The number of
partitions enumerates the irreducible representations of SD. Let us consider a partition
of D into d parts. The length of the i-th row length of the Young diagram is ri, where
i = 1, . . . , d. The Young diagram orders the partition so that ri ≤ ri+1. Accordingly, ri
represents the i-th cycle of length ri in an element of the subgroup of SD.

In section 3.2, we parameterized Sp-tuples according to the number of non-identity
si 6= 1 elements of the p-tuple. Calling the number of non-identity elements of the tuple as
u, let u also be the number of colored boxes in the chosen Young diagram. We color boxes
in the Young diagram starting from the top left box and going along rows.

To illustrate the point, let us consider the following examples

The first colored Young diagram corresponds to the Abelian subgroup Z3 ⊂ S4 and the
p-tuples of type 1 (1, 1, ω, ω−1). Thus, in this instance, u = 2. The second colored Young
diagram correspond to Z2×Z3 ⊂ S6 and the p-tuple (1, ω, ωa, ωb, ωc, ω−1−a−b−c) of type 4
with u = 5.

The tuple of type 1 which we have written above does not admit a Z3 invariance.
This is because the identity permutation si = 1 cannot be mapped to an non-identity
permutation sj by means of conjugation by an element in Sp. In order to obtain the
polynomial equations modulo p, in section 4 and 5, we have used Young diagrams that
have no partially colored rows. Accordingly, from the above example diagrams, we regard
only the second diagram as consistent.
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Let the lengths of colored rows be given by r̄j where r̄j ≤ r̄j+1. The number of colored
rows is given by d̄ with j = 1, . . . , d̄. Because of the condition that the lengths of the rows
in a Young diagram are non-decreasing as we read from bottom to top, the first colored row
we encounter is of minimal length among all the colored rows. To this row, we associate the
number k0 = 1. Every subsequent colored row, i.e., all the rows to the top of the diagram,
are assigned a discrete variable. The row r̄j is associated to the variable kj−1. As an
example, consider the following consistent colored Young diagrams with the corresponding
variable assignment written next to the colored rows:

.

We are now in a position to define the dictionary which translates a consistent colored
Young diagram to a set of polynomial equations modulo p whose solutions correspond to
symmetric Abelian orbifolds.

6.2 Polynomial equations modulo p from colored Young diagrams

Let the number of rows of length greater than 1 be called dr>1. The number of rows with
ri > 1 divides the set of consistent Young diagrams into the following two classes, for which
we define dictionaries for polynomial equations modulo p.

Case 1: dr>1 < d̄. This case considers colored Young diagrams where the number of
colored rows is greater than the number of rows of length ri > 1. The following colored
Young diagrams are examples,

.

In the diagram on the left, there are two rows of length greater than one and three colored
rows, and so dr>1 = 2 < d̄ = 3. Similarly, for the diagram on the right, dr>1 = 2 < d̄ = 4.

For case 1 colored Young diagrams, there is a single solution with the condition on the
primes being

0 =
d̄∑
j=1

r̄jkj−1 mod p , (6.1)

where k0 = 1. For the above two example colored Young diagrams, the polynomial equa-
tions modulo p are respectively

0 = 1 + 2k1 + 3k2 mod p , (6.2)
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T2 C3

0 = 1 mod p

0 = 1 + k1 mod p

0 = 1 + k1 + k2 mod p

T2 C3

0 = 1 +m mod p

0 = 1 + 2k1 mod p

0 = 1 +m+m2 mod p

Table 4. The polynomial equations modulo p derived from colored Young diagrams for T2. The
equations correspond to Case 2 Young diagrams if dependent on m, and Case 1 otherwise. The
solutions of the equations correspond to symmetric Abelian orbifolds of C3.

and

0 = 1 + k1 + 3k2 + 3k3 mod p . (6.3)

The case where the partitions of D are into parts all of length one counts the total
number of orbifold actions. Consider the first column in table 4. We can have consistent
diagrams with either one box colored or two boxes colored or all three boxes colored.
The associated equations have 0, 1, and p solutions, respectively. Thus, we count 1 + p

inequivalent tuples, in accordance to (4.1). The remainder of the table enumerates Z2 and
Z3 invariants.

Case 2: dr>1 ≥ d̄. This case considers colored Young diagrams where the number of
colored rows is less than or equal to the number of rows with ri > 1. Two examples are
given below,

.

For the diagram on the left, dr>1 = 2 = d̄ = 2: there are as many colored rows as there
are rows of length greater than one. For the diagram on the right, dr>1 = 2 > d̄ = 1.
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T3 C4

0 = 1 mod p

0 = 1 + k1 mod p

0 = 1 + k1 + k2 mod p

0 = 1 + k1 + k2 + k3

mod p

0 = 1 +m mod p

0 = 1 + 2k1 mod p

T3 C4

0 = 1 + k1 + 2k2

mod p

0 = 1 +m mod p
0 = m2 − 1 mod p
0 = (1 +m) + k1(1 +m)

mod p
0 = m(1 +m)

+ k1(1 +m) mod p

0 = 1 +m+m2 mod p

0 = 1 + 3k1 mod p
0 = 1 +m+m2 +m3

mod p

Table 5. The polynomial equations modulo p derived from colored Young diagrams for T3. The
equations correspond to Case 2 Young diagrams if dependent on m, and Case 1 otherwise. The
solutions of the derived equations correspond to symmetric Abelian orbifolds of C4.

For this case of colored Young diagrams, the corresponding polynomial equations mod-
ulo p are given by

0 = mr̄j − 1 mod p , j = 1, . . . , d̄− 1 , (6.4)

and

0 =
d̄∑
j=1

kj−1

r̄j∑
l=1

ml−1 mod p ,

0 = m

d̄−1∑
j=1

kj−1

r̄j∑
l=1

ml−1 + kd̄−1

r̄d̄∑
l=1

ml−1 mod p . (6.5)

For the first colored Young diagram above, the polynomial equations are then

0 = m2 − 1 mod p ,

0 = (1 +m) + k(1 +m+m2) mod p , 0 = m(1 +m) + k(1 +m+m2) mod p .

(6.6)
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T2 C3

Y PY (p)

1 + p

1 + δp,2q+1

2δp,3q+1 + δp,3

T3 C4

Y PY (p)

1 + p+ p2

1 + p+ δp,2q+1

1 + (1 + p)δp,2q+1 + 2δp,2

1 + 2δp,3q+1

δp,2q+1 + 2δp,4q+1 + δp,2

Table 6. Functions on p, PY (p), which count the number of solutions of the polynomial equations
modulo p for the tori T2 and T3.

The second Young diagram above gives

0 = m3 − 1 mod p , 0 = 1 +m+m2 mod p , (6.7)

which simplifies to 0 = m3 − 1 mod p given m 6= 1. The roots of the above equations
can be found using Fermat’s Little Theorem and related theorems on congruences (see
appendix A, (A.1)).

6.3 Towards a general formula for the number of solutions

Let us summarize the number of solutions to the polynomial equations modulo p as func-
tions of p, PY (p), using the Dirac delta function of the form

δp,f(q) =

{
1 if p = f(q)
0 if p 6= f(q)

(6.8)

where q ∈ Z+. For the tori T2 and T3, these are shown in table 6.
Based on several examples up to Abelian orbifolds of C6 with p = 53, the work in [9]

gave a guess for the general form of the function PY (p) for a given Abelian subgroup for SD
denoted by the corresponding Young diagram Y . Let us define Qs(Y ) of a Young diagram
Y as the number of rows with length ri and s|ri. Using this definition, the observations
in [9] can be summarized by

PY (p) =
d(Y )−1∑
i=1

pi +
D∑
k=2

Qs(Y )∑
s=1

ps−1φ(s)δp,sq+1 +
∑
s|D

s=prime
Qs(Y )=d(Y )
ri(Y )>1

sQs(Y )−1δp,s , (6.9)

where φ(s) is the Euler totient function and d(Y ) the number of rows of Y .
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7 Summary and outlook

In this work, we have studied the relationship between covers of tori TD−1, Abelian orbifolds
of CD, and sets of polynomial equations and their solutions modulo p. These investigations
have shed light on the intricate number theoretical properties of the problem of enumerating
Abelian orbifolds of CD as well as their discrete Abelian symmetries.

The work leads to several interesting questions which we mention here. As we saw the
number of invariant orbifolds under a permutation in SD only depends on the conjugacy
class in SD of the permutation. The main interest in [7] was the case of Abelian subgroups
of SD. We can also consider non-Abelian subgroups of SD by using the present results.

The torus T2 whose coverings we have considered is relevant to other gauge theories
arising from brane tilings, which describe D3-branes at more general conical toric Calabi-
Yau singularities. Orbifolds of these are of interest in connection with the search for
the physical interpretation of Belyi maps associated with these tilings [13, 14]. Further
investigations of discrete symmetries of orbifolds we have studied here, for the case of
general toric Calabi-Yau manifolds, may well shed light on this search [15].

In moving to the higher dimensional torus T3, an analogy between brane tilings de-
scribing 2 + 1 dimensional Chern-Simons gauge theories of M2-branes [16] and T3 has not
yet been explicitly drawn. In fact, the problem is more intricate in that certain classes
of Abelian orbifolds of C4 have been found not to have a corresponding brane tiling. It
has to be seen whether further progress on the role of Belyi pairs in connection with toric
Calabi-Yau spaces along with the enumeration results in [8, 9] can shed further light on
this problem.

Coverings of tori have appeared in the past in the context of a string theory dual of
two-dimensional Yang-Mills gauge theory [17, 18]. Given the investigations in this paper,
it is natural to ask how to construct observables in the topological string theory setup
(e.g., in the actions proposed in [18–21]) such that the insertion of these observables would
implement the invariances under subgroups of S3 which we investigated here.
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A Counting invariants

In considering CD/Zp, we run across the condition

0 = 1 +m+ . . .+mD−1 mod p , (A.1)
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where p is a prime. In particular, solutions to this equation enumerate the ZD invariant
tuples. Multiplying both sides of (A.1) by (1−m), we can rewrite the equation as

1 = mD mod p . (A.2)

The order ordm(p) is the smallest positive integer value of D for which the above congruence
has a solution in m. ordm(p) is bounded by the Euler totient function which for primes
takes the value φ(p) = p − 1. In order for (A.2) to have solutions for some D and p, the
order ordm(p)|p− 1 and ordm(p)|D (see Theorem 88 in [22]).

Clearly, m = 1 is a trivial solution to (A.2), but as the rewriting only makes sense for
m 6= 1, we are after the non-trivial solutions. In proving the stated results, we must make
use of Fermat’s Little Theorem (FLT). Given a prime p,

1 = mp−1 mod p , (A.3)

for any integer m coprime to p.
Let us investigate the solutions of (A.1).

• If D = 1, no solution exists.

• If D = 2, then (A.1) reads
0 = 1 +m mod p . (A.4)

The unique solution is m = p− 1.

• Suppose D = p. It is easy to see that m = 1 is a solution to (A.1). Multiplying both
sides of (A.3) by m and comparing to (A.2), we conclude that m = 1 is in fact the
unique solution.

• Suppose D divides p−1. A result from the theory of congruences (see, e.g., Theorem
109 in [22]) states that there are D roots to (A.2). By inspection, one of these
solutions is m = 1, which is not a solution to (A.1) because D 6= 0 mod p. Thus,
there are D − 1 solutions to (A.1).

• Suppose D (6= 0 mod p) does not divide p− 1. There are no solutions to (A.1) if for
all possible values of ordm(p) of (A.2) in the range 0 < ordm(p) ≤ p−1 the conditions
ordm(p)|p− 1 and/or ordm(p)|D are not satisfied. For ordm(p) = 1, one has trivially
ordm(p)|p − 1 and ordm(p)|D, but the only solution to (A.2) in this case is m = 1
which is not a solution to (A.1) because D 6= 0 mod p.

• Consider arbitrary D. The solutions to (A.1) are the union of solutions to

0 = 1 +m+ . . .m`−1 mod p (A.5)

for all ` that divide D. This result implies, for example, that there is always a ZD
invariant of CD/Zp for any p whenever D is even.
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B Covers of T4

T4 C5

0 = 1 mod p

0 = 1 + k1 mod p

0 = 1 + k1 + k2 mod p

0 = 1 + k1 + k2 + k3

mod p

0 = 1 + k1 + k2 + k3 + k4

mod p

0 = 1 + m mod p

0 = 1 + 2k1 mod p

0 = 1 + k1 + 2k2 mod p

0 = 1 + k1 + k2 + 2k3

mod p

0 = 1 + m mod p

T4 C5

0 = m2 − 1 mod p

0 = (1 + m) + k1(1 + m)

mod p

0 = m(1 + m) + k1(1 + m)

mod p

0 = 1 + 2k1 + 2k2 mod p

0 = 1 + m + m2 mod p

0 = 1 + 3k1 mod p

0 = 1 + k1 + 3k2 mod p

0 = 1 + m + m2 mod p

0 = m2 − 1 mod p

0 = (1 + m)

+ k1(1 + m + m2) mod p

0 = m(1 + m)

+ k1(1 + m + m2) mod p

0 = 1 + m + m2 + m3 mod p

0 = 1 + 4k1 mod p

0 = 1 + m + m2 + m3

+ m4 mod p

Table 7. The polynomial equations modulo p derived from colored Young diagrams for T4.
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