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1 Introduction

The infrared singularities of scattering amplitudes [1–40] are important both for pragmatic
collider phenomenology applications and for theoretical reasons. The singularities govern
the structure of large logarithmic corrections to cross sections to all orders in perturbation
theory, allowing the possibility to resum such terms, see e.g. [41–71]. They have also been
explored in a variety of more formal contexts, such as supersymmetric gauge theories and
quantum gravity [72–81], in order to examine the higher loop structure of those theories
and to elucidate the relationships between them.

It is well known that infrared (IR) singularities can be traced to the emission of soft
and collinear gluons, where the latter contribute only in the case of massless partons.
Consequently an amplitude may be factorised into hard, soft and jet functions, in such
a way that the hard function, describing high-virtuality exchanges at any loop order, is
infrared finite, the soft function collects all non-collinear long-distance singularities, while a
jet is assigned to each massless parton, collecting the corresponding collinear singularities.
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This separation is useful because the soft and jet functions which carry the singularities
have a simple and universal structure, which does not depend on the details of the hard
process. Most importantly, these functions exponentiate. It is this property that provides
the basis for resummation, allowing multiple emissions to be derived from a single emission.

In non-Abelian gauge theories there is a crucial distinction between scattering ampli-
tudes with two coloured partons, and those involving several coloured partons. In the for-
mer case, only one possible colour flow is present, such that the two partons must necessarily
be coupled by a colour singlet hard interaction. In the latter case, more than one possible
colour flow may be present. If there are L partons, one may decompose the amplitude as

Mi1···iL =
∑
I

MI (cI)i1···iL (1.1)

where the {cI} are a basis of colour tensors, and in the colour index associated with the nth

parton. In this colour flow basis the amplitude is represented by a vector with components
MI . Consequently, the factorization between hard and soft modes turns into a matrix
problem [10, 13–18, 20–35]: the soft function becomes a matrix in colour-flow space, which
acts on the hard interaction, itself a vector in this space. This adds a degree of combi-
natoric complexity which is absent in the two parton case, and as a consequence the IR
singularity structure of multiparton amplitudes has been explored only recently relative to
that of the colour-singlet case.

In this paper we study soft-gluon exponentiation in multiparton amplitudes. The basic
tool is the soft (or eikonal) approximation, in which each external hard parton i is replaced
by a corresponding semi-infinite Wilson line, extending from the origin — where the hard
interaction takes place — to infinity, in a direction βi, the direction of motion of parton
i. The eikonalized amplitude so obtained is much simpler than the original one, and yet
it has the exact same soft singularities. The simplicity of the eikonal amplitude is due to
the fact that it only depends on the (Minkowskian) angles between the hard partons and
on their colours — but neither on their energies, nor their spins. Collinear singularities do
depend on these, and they are not fully captured by the eikonal approximation. Impor-
tantly, however, collinear singularities — in contrast to soft ones — are associated with
individual massless partons: they do not depend on the colour flow in the hard process
and can be computed using two-parton amplitudes (the Sudakov form factor). Thus, for
the purpose of studying the exponentiation of soft gluons and addressing the complication
posed by colour in the multiparton case, we may indeed use the eikonal approximation. In
our analysis it will be useful to avoid collinear singularities altogether, and we do this by
tilting the Wilson lines off the lightcone, such that β2

i < 0 for any i. At the end one may
return to the massless case by considering the β2

i → 0 limit.
The conventional approach to soft-gluon exponentiation is based on the fact that prod-

ucts of Wilson lines renormalize multiplicatively [82–85]. Exponentiation is obtained as a
solution of a renormalization-group equation involving a finite anomalous dimension func-
tion, the so-called soft anomalous dimension. This approach underlies much of our present
understanding of the infrared singularity of amplitudes [1–14, 16, 17, 19–38]. Significant
progress was made in recent years in determining the soft anomalous dimension to two-loop
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order and furthermore, gaining some insight into its all order properties in the massless
case [33–35, 37, 38]. It is clear, however, that new techniques are needed to push this
programme further.

A complementary approach to exponentiation is the diagrammatic one. This approach
aims at a direct computation of the exponent of the eikonal amplitude. In the two parton
case, it has long been established that the exponent may be written as a sum of a restricted
set of Feynman diagrams — so-called webs — which are irreducible with respect to cutting
the external parton lines [86–88].1 A direct consequence of irreducibility is that, aside from
running coupling corrections, each web has only a single pole in dimensional regulariza-
tion. This goes hand in hand with the fact that the exponent must be expressible as an
integral over a finite anomalous dimension. Recently, the diagrammatic picture has been
extended to the multiparton case by two independent groups of authors [89–91]. Both
groups find that multiparton webs are no longer irreducible, and as a consequence may
contain higher-order poles, corresponding to subdivergences of the multi-eikonal vertex. It
is not a priori clear how the singularity structure of multiparton webs can be consistent
with multiplicative renormalizability and a finite anomalous dimension.

The main goal of the present paper is to combine the renormalization picture with
that of webs, in order to gain further insight into the singularity structure of the soft
gluon exponent in multiparton scattering. We will see in particular that renormalization
of the eikonal amplitude implies a set of constraint equations for multiparton webs, which
determine all multiple poles in any given web in terms of lower-order webs. Single poles
remain the only genuinely new content of webs which is needed to determine the soft
anomalous dimension at a given order. We will explicitly examine these constraints up to
four-loop order, and then study how they are realised in a number of non-trivial examples.
In order to do this, we will introduce a new exponential regulator for disentangling UV and
IR poles in eikonal calculations at arbitrary orders in perturbation theory. We will also use
what we learn from this analysis to formulate a new conjecture on the web mixing matrices
which govern the mixing of colour and kinematic information in multiparton webs [89, 91].

The structure of the paper is as follows. In the rest of this introduction, we review
known results relating to renormalization of products of Wilson lines (section 1.1) and mul-
tiparton webs (section 1.2), which will be useful in what follows. In section 2 we discuss the
renormalization of multiparton webs in detail, and formulate constraint equations relating
the singularities of webs across different orders in perturbation theory, alongside expressions
for the soft anomalous dimension coefficients in terms of webs. In section 3 we introduce
the infrared regulator we use in order to compute ultraviolet singularities in eikonal ampli-
tudes, and then examine how the renormalization constraints of the previous section are
realised using specific three-loop examples, where certain technical details are collected in
appendices. We show that for the leading singularity, O(ε−3), the kinematic dependence
of each diagram factorises into three one-loop kinematic factors, while the next-to-leading
singularity, O(ε−2), can be written as a sum of products of lower-order diagrams. These

1See [40] for a rederivation of these results, which provides a more elegant solution for the exponentiated

colour factors.
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properties, in conjunction with the action of the web mixing matrix, provide the key to
understanding how the renormalization constraints are satisfied. Next, in section 4 we show
that the factorization of the leading singularity can be generalised to all orders for the class
of diagrams made exclusively of individual gluon exchanges. Leading singularities in differ-
ent diagrams D in such webs differ only by a combinatorial factor s(D) counting the number
of orders in which gluon subdiagrams can be sequentially shrunk to the origin. In section 5,
we formulate a new conjecture regarding web mixing matrices, involving a sum rule over
column entries, weighted by the above s(D). For the class of webs made of single-gluon ex-
changes this sum-rule directly explains the cancellation of the leading singularities required
by renormalization. It appears, however, that the sum rule itself is completely general, and
holds for any web, similarly to other properties of the web mixing matrices [89] which
already have general combinatorial proofs [91]. In section 6 we summarize our conclusions.

1.1 Wilson lines in multiparton scattering

As stated in the previous section, the conventional approach to soft-gluon exponentiation
in scattering amplitudes is based on multiplicative renormalizability of the corresponding
eikonal amplitude. In this section, we review this subject, preparing for the analysis in
section 2. Throughout this paper we consider fixed-angle scattering amplitudes with hard
momenta pi, such that |pi · pj | � Λ2

QCD, where all invariants are taken simultaneously
large. The emission of soft gluons corresponds to the eikonal approximation, in which
the momenta of the emitted gauge bosons may be neglected with respect to the hard
momenta pi. In this limit, each external particle may be replaced, as far as the interaction
with soft gluons is concerned, by the semi-infinite Wilson line

Φβi ≡ P exp
{

igs
∫ ∞

0
dλβ ·A(λβ)

}
, (1.2)

where the direction βi is set by the respective hard parton momentum pi. Similarly, the
colour representation in which the gauge field is defined is determined by that of parton i.
The eikonal approximation is useful because it simplifies the calculation while capturing
all soft singularities. Throughout this paper we consider Wilson lines which are off the
lightcone, β2

i 6= 0 (corresponding to massive external particles), thus avoiding any collinear
singularities. The soft singularities are then captured by the eikonal amplitude

Sren. (γij , εIR) ≡ 〈0 |Φβ1 ⊗ Φβ2 ⊗ . . .⊗ ΦβL | 0〉ren. (1.3)

where the colour indices of different Wilson lines remain open. Upon projecting on the
colour tensors introduced in (1.1), eq. (1.3) becomes a matrix in colour flow space. This
matrix acts on the hard interaction (finite as ε→ 0) which is a vector in this space:

MI(pi, εIR) = SIJren. (γij , εIR)HJ(pi) . (1.4)

In contrast to the full amplitude or the hard function, which depend on the momenta pi, the
kinematic dependence of the soft function (1.3) is entirely through the cusp parameters,2

γij = 2βi · βj/
√
β2
i β

2
j , (1.5)

2The dependence on γij at leading order is often expressed via the corresponding cusp angle, see eq. (3.9).
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which, similarly to the eikonal Feynman rules, are invariant under rescaling of the velocities.
Furthermore the soft function is independent of the spins of the emitting particles.

Note that the operator in (1.3) has been renormalized: all its ultraviolet singularities,
including in particular those related to the multi-eikonal vertex, have been removed. Fol-
lowing refs. [82–85] we know that it renormalizes multiplicatively, namely there exists a
factor Z which collects ultraviolet counterterms at each order, and such that Sren. = S Z
is ultraviolet finite. Similarly to S, the Z factor is a matrix in colour flow space, so
their product should be understood as a matrix product (we suppress the colour space
indices throughout). Clearly, upon renormalization the eikonal amplitude must acquire
some renormalization-scale dependence. Furthermore, it will be convenient to distinguish
between the renormalization scale of the coupling µR and the renormalization scale µ in-
troduced through the Z factor in the process of renormalizing the multi-eikonal vertex.

Considered in pure dimensional regularization, all loop corrections in S involve just
scaleless integrals, and therefore vanish identically. Therefore before renormalization, the
result is trivial, and one has

Sren.

(
γij , αs(µ2

R), εIR, µ
)

= SUV+IR Z
(
γij , αs(µ2

R), εUV, µ
)

= Z
(
γij , αs(µ2

R), εUV, µ
)
.

(1.6)

Thus, in dimensional regularization the soft (infrared) singularities we seek to know are
given by the Z factor. As recognized by different authors [1, 3, 13, 14, 33], this allows one
to explore soft singularities to all loops by studying the ultraviolet renormalization factor
of the multi-eikonal vertex in (1.3).

The analysis of the renormalization of cusp or cross singularities of Wilson lines forms
the basis of much theoretical work in recent years leading to substantial progress in un-
derstanding the structure of infrared singularities in multi-leg amplitudes. As we review
below, these singularities may be encoded in an integral over a so-called ‘soft anomalous
dimension’ Γ. The soft anomalous dimension has been fully determined to two-loop order,
with both massless [17, 18] and massive partons [23–32, 39]. Moreover, in the massless
case, stringent all-order constraints were derived [33–35] based on factorization and rescal-
ing symmetry, leading to a remarkable possibility, namely that all soft singularities in any
multi-leg amplitude take the form of a sum over colour dipoles formed by any pair of hard
coloured partons. Despite recent progress [33–38, 92, 93], the basic questions of whether
the sum-over-dipoles formula receives corrections, and at what loop order, remain so far
unanswered. Further progress in understanding the singularity structure of multiparton
scattering amplitudes in both the massless and massive cases requires new techniques to
facilitate higher-loop computations, or a new viewpoint to give further insight into the
all-loop structure of the anomalous dimension.

Our discussion leading to (1.6) has been quite formal. In order to explicitly compute the
counterterms entering Z, and as suggested by eq. (1.6), we need to introduce an infrared reg-
ulator which disentangles UV and IR singularities, and which does not break the symmetries
of the problem. With the regulator in place, all poles in ε ≡ εUV are strictly of ultraviolet
origin, and using D = 4− 2ε with ε > 0 will render the integrals well defined. The infrared
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regulator we use in this paper will be described in section 3.1 below. For our general dis-
cussion here it is sufficient to assume that such a regularization exists. Denoting the energy
scale associated with the infrared regulator by m, and the scale associated with the renor-
malization of the multi-eikonal vertex by µ, the regulated version of eq. (1.6) takes the form:

Sren.

(
γij , αs(µ2

R), µ,m
)

= S
(
γij , αs(µ2

R), ε,m
)
Z
(
γij , αs(µ2

R), ε, µ
)
. (1.7)

We emphasize that while the m-dependent S and Sren. here are different from their nonregu-
larized counterparts in eq. (1.6), the Z factor, which by definition depends on the ultraviolet
only, is identically the same. By acting on S the Z factor removes its ε → 0 singularities,
while making it µ dependent. Although not indicated in (1.7), Sren., while finite, usually
retains some dependence of ε through positive powers. This is precisely the situation we
will encounter here using a minimal subtraction scheme, where counterterms are pure poles.

To proceed one introduces an anomalous dimension Γ, defined by

dZ

d lnµ
= −ZΓ . (1.8)

Similarly to Z itself, Γ is a function of the kinematic variables, γij , as well as of αs(µ2
R)

and µ. Importantly, however, Γ must be finite, as we now show. In section 2 we will further
show that in a minimal subtraction scheme, Γ (unlike Sren.) is independent of ε, aside from
its dependence through the running coupling; thus the perturbative coefficients Γ(n) at any
order αns are truly ε-independent.

To show that Γ must be finite let us first invert (1.7) getting

S (ε,m) = Sren. (µ,m)Z−1 (ε, µ) , (1.9)

where we suppressed the dependence on γij and αs(µ2
R). We note that while both Sren. and

Z−1 on the r.h.s. depend on µ, the l.h.s. does not: µ is only introduced through the renor-
malization procedure of the multi-eikonal vertex. Therefore, differentiating with respect to
µ we have:

0 =
dSren(µ,m)

d lnµ
Z−1(ε, µ) + Sren(µ,m)

dZ−1(ε, µ)
d lnµ

. (1.10)

From (1.8) we have:

Γ ≡ −Z−1 dZ

d lnµ
=
dZ−1

d lnµ
Z =⇒ dZ−1

d lnµ
= ΓZ−1 .

Substituting this into (1.10) and multiplying by Z from the right we obtain:

dSren(µ,m)
d lnµ

= −Sren(µ,m) Γ . (1.11)

This implies that Γ also describes the scale dependence of the renormalized correlator,
which is by construction free of any ultraviolet singularities. It follows that

Γ = −S−1
ren(µ,m)

dSren(µ,m)
d lnµ

– 6 –
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must itself be ultraviolet finite (finite in 4 dimensions). Since Z is composed of ultraviolet
poles, the fact that Γ in (1.8) is ultraviolet finite is a strong constraint on the singularity
structure of Z.

The next observation is that the only scales on which Γ can depend are renormaliza-
tion scales:3 the renormalization scale of the coupling, µR, and µ (in particular, given the
definition (1.8) Γ cannot depend on the infrared scale m). Therefore, if we choose µR = µ,
the only scale dependence that survives in Γ is through the argument of the coupling. Thus
we have:

Γ = Γ
(
γij , αs(µ2, ε)

)
, (1.12)

where we have emphasised that working in D = 4 − 2ε dimensions, epsilon depen-
dence occurs through the running coupling αs = αs(µ2, ε), which obeys the following
renormalization-group equation:

dαs
d lnµ2

= −αs
[
ε+ b0αs + b1α

2
s + b2α

3
s + · · ·

]
, b0 =

1
4π

(
11
3
CA −

4
3
TRNf

)
. (1.13)

Having established the finiteness of the anomalous dimension, the exponentiation of
soft-gluon singularities is a direct consequence of the defining evolution equation (1.8).
However, the situation is complicated in multiparton amplitudes by the fact that Γ is a
matrix in colour space. This issue was addressed in section 3 of [90] (see also section
6 in [89]) and will be developed further here, in section 2. Before addressing the general
multiparton case it is useful to first recall the structure of the exponent in the colour singlet
case. Equation (1.8) can then be readily integrated to yield an exponential form:

Zcolour singlet = exp
{

1
2

∫ ∞
λ2

dλ2

λ2
Γ
(
γij , αs(λ2, ε)

)}
, (1.14)

where we used the initial condition at µ2 → ∞, where the coupling vanishes due to
asymptotic freedom.

Similarly to [94] the singularities in the exponent are generated here through integra-
tion over the D-dimensional coupling (note that in our case these are ultraviolet singular-
ities). Substituting the expansion of the anomalous dimension

Γ =
∞∑
n=1

Γ(n)αns (1.15)

it is easy to see that in the conformal case, where bi = 0, namely where dαs/d lnµ2 = −αs ε,
one obtains:

Zcolour singlet|bi=0 = exp

{
1
2ε

∞∑
n=1

1
n
αns Γ(n)

}
. (1.16)

Thus, put simply, in the colour singlet case, the exponent (in a conformal theory) has only
simple poles in ε to all orders in perturbation theory. This result, which is straightforward

3Our argument is nothing but the standard ‘separation of variables’ argument, where the anomalous

dimension admitting both (1.8) and (1.11) can only depend on the common arguments of the ultraviolet

object Z and the infrared one Sren.
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to derive, is central to our understanding of the infrared singularity structure of gauge
theory amplitudes.

As we show in detail in section 2, upon relaxing the two simplifying assumptions we
took above, namely including running-coupling corrections, and going to the multiparton
case, this structure gets modified, giving rise to higher-order poles in the exponent as
follows:

Z = exp
{

1
2ε

Γ(1) αs +
(

1
4ε

Γ(2) − b0
4ε2

Γ(1)

)
α2
s

+
(

1
6ε

Γ(3) +
1

48ε2
[
Γ(1),Γ(2)

]
− 1

6ε2
(
b0Γ(2) + b1Γ(1)

)
+

b20
6ε3

Γ(1)

)
α3
s + O(α4

s)
}
.

(1.17)

Indeed, running-coupling corrections generate multiple poles starting from two loops, and
in addition, due to the non-commuting nature of Γ(n) in the multiparton case, one finds
multiple pole terms involving commutators starting at three loops. Importantly, however,
all multiple poles in ε, at any order, are determined by lower-order coefficients. This in
turn implies non-trivial relations between the webs of different orders, relations we shall
determine in section 2 and explore through examples in section 3.

1.2 Multiparton webs

Having reviewed the use of Wilson lines in multiparton scattering in the previous section,
in this section we discuss the recently developed diagrammatic approach to soft gluon expo-
nentiation, briefly describing the results of [89–91]. In the case of Wilson loops — or alter-
natively amplitudes with a colour-singlet hard interaction — diagrammatic exponentiation
was first studied in the 1980s by Gatheral [86] and by Frenkel and Taylor [87]. In this case,
as already mentioned briefly above, only irreducible4 diagrams contribute to the exponent.
By contrast, in the multiparton case, the exponent receives contributions from reducible
diagrams as well. Refs. [89–91] have shown that these contributions are formed through
mixing between kinematic factors F(D) and colour factors C(D′) of closed sets of dia-
grams, thus generalizing the concept of webs to the multiparton case. A web W(n1,n2,...,nL)

represents the contribution to the exponent from a set of diagrams which are related to
each other by permutations of the gluon attachments to each Wilson line, where nl is the
number of attachments to line l, with l = 1, . . . , L. A multiparton web is then given by

W(n1,n2,...,nL) ≡
∑
D

F(D) C̃(D) =
∑
D,D′

F(D)RDD′ C(D′) , (1.18)

where C̃(D) is the so-called Exponentiated Colour Factor (ECF) corresponding to diagram
D and the sums are over all the diagrams in the set. A general algorithm for computing
the relevant web mixing matrices R was developed in [89], and a corresponding closed-form

4We distinguish between reducible and irreducible (or colour-connected) diagrams. Reducible diagrams

are ones whose colour factor can be written as a product of the colour factors of its subdiagrams; see

e.g. [89, 91, 95].
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combinatoric expression was established in terms of a sum over decompositions of a
diagram into complete sets of its subdiagrams (eq. (10) in [91]).

In [89] the web mixing matrices were computed for a range of non-trivial 3 and 4-loop
examples, revealing interesting mathematical properties: these matrices are idempotent,
R2 = R, and have zero-sum rows,

∑
D′ RDD′ = 0, ∀D. These properties, which were later

proven to be completely general [91], are crucial for understanding the colour structure of
the exponent, the interplay between colour and kinematic dependence, and the singularity
structure.

The generalization of the familiar properties of colour-singlet webs, namely their
“maximal non-Abelian” colour structure and the absence of subdivergences, to the
multiparton case is non-trivial. Recall that colour-singlet webs are individually irreducible
(or colour-connected) diagrams. Each diagram that enters the exponent does so with
a “maximally non-Abelian” ECF. These diagrams have just one overall ultraviolet pole
which is associated with the cusp, and any other subdivergence may only contribute to
the renormalization of the strong coupling. Indeed there is a one-to-one correspondence
between the irreducibility of the colour structure and the absence of subdivergences: as
one can easily verify graphically, any diagram which has a reducible colour structure can
be shown to have subdivergences, since its innermost subdiagrams can be sequentially
shrunk towards the cusp (the hard interaction) without affecting the attachments of the
outer gluons. Each such shrinking step gives rise to an ultraviolet singularity, a 1/ε pole
in dimensional regularization. The converse is also true, namely any irreducible diagram
would have just a single overall divergence associated with the cusp.

On the face of it this picture is entirely broken in the multiparton case. As shown
in [89–91] only some multiparton webs are individual irreducible diagrams, while most are
instead formed as in (1.18) through a sum over a set of diagrams, many of which have a
reducible colour structure, and therefore have subdivergences. One of the most interesting
observations in [89], however, was that web properties do generalise to the multiparton case
upon considering the set of diagrams, rather than individual ones. These properties are
realised through the action of the web mixing matrix. Being idempotent, R acts as a pro-
jection operator on the space of colour and kinematic factors of the diagrams in the set, thus
has eigenvalues 0 and 1 (each with nontrivial multiplicity in general). Equation (1.18) then
states that contributions to the exponents are formed through particular linear combina-
tions of kinematic factors multiplying corresponding linear combinations of colour factors.
The number of such combinations is determined by the rank of R, corresponding to the
multiplicity of its unit eigenvalue, while the remaining combinations, corresponding to its
zero eigenvalue, are projected out. The non-Abelian nature of these colour factors is re-
alised by forming anti-symmetric combinations; in particular, the fully symmetric part of
the colour factor in each web is projected out owing to the zero-sum rows property. This
property is expected to hold separately for subsets of diagrams with different planarity [91].

The pole structure of multiparton webs is rather intricate, but crucially, it is strongly
constrained by renormalization. The simplest case to analyse is that of the leading singu-
larities, namely O(1/εn) poles at O(αns ), corresponding to the maximal subdivergence of
each diagram. As already noted in [89] the only O(1/εn) singularities are the ones purely
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[[1,2],[2,1,3],[3]]=(3A) [[1,2],[2,3,1],[3]]=(3B) [[1,2],[3,2,1],[3]]=(3C)

[[1,2],[1,2,3],[3]]=(3D) [[1,2],[1,3,2],[3]]=(3E) [[1,2],[3,1,2],[3]]=(3F)

Figure 1. The six 3-loop diagrams forming the 2-3-1 web in which three eikonal lines are linked
by three gluon exchanges.

associated with the running coupling (specifically, they are given by eq. (2.16) below).
Therefore, the maximal subdivergences in webs with two or more connected pieces must
cancel between different diagrams through the operation of the web mixing matrix. For
example, in W(2,3,1) of figure 1 one expects [89] cancellation of O(ε−3) poles among the
lower three diagrams (diagrams (3A)–(3C) have only subleading divergences), and we shall
verify these cancellations explicitly in section 3 below. We shall revisit this in section 5,
where we provide a general explanation of the cancellation mechanism noting a general
property of the web mixing matrices in the form of a weighted sum over column entries.

A more complicated structure arises for subleading poles. Starting at O(1/εn−1) at
O(αns ), for n ≥ 3, renormalization of multiparton webs involves commutators of lower-order
terms, as in eq. (1.17). This implies that very particular multiple poles should survive in
multiparton webs. As we shall see below, to be consistent with renormalization, these must
correspond to commutators between lower-order webs, which are formed from subdiagrams
of the diagrams in the set. We shall see how this structure arises in section 3.

In summary, multiparton webs are crucially different to the two parton case in that
they are closed sets of diagrams rather than single diagrams. Each individual diagram may
be reducible, and thus may contain subdivergences associated with the renormalization of
the multi-eikonal vertex. While in the two parton case all multiple poles in ε arise from the
running of the coupling, in the multiparton case additional multiple poles appear due to
the non-commutativity of the multi-eikonal vertex counterterms. Nevertheless, similarly
to the two parton case, all multiple poles at a given order are fully determined by lower
orders. This highly constrained singularity structure must be matched by diagrammatic
exponentiation, and therefore by the web mixing matrices. The main aim of the present
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paper is to investigate how this structure is realised. We begin by deriving the singularity
structure of webs from the renormalization of the multi-eikonal vertex, which is the subject
of the following section.

2 Renormalization of multiparton webs

In the previous section, we reviewed the present state of knowledge regarding soft gluon
exponentiation in multiparton amplitudes, including the recently developed diagrammatic
approach. In this section, we will further develop the analysis of the renormalization of
the multi-eikonal vertex that originated in [90], and was also discussed in [89]. We will
see in particular that the requirement of multiplicative renormalizability of the eikonal
scattering amplitude places severe constraints on the singularity structure of multiparton
webs. These lead to a series of consistency relations expressing the multiple poles of webs
at a given order in terms of commutators of lower-order web poles. We will develop such
equations explicitly, and check these in the following section.

Let us now examine the renormalization of the eikonal vertex along the lines of
section 3 in [90] and 6.1 in [89]. As already remarked above, eikonal diagrams are them-
selves scaleless, and thus give zero in dimensional regularization due to the cancellation
of UV and IR poles. At one-loop order it is relatively straightforward to disentangle these
singularities. At higher loop orders, the identification of UV and IR contributions becomes
ambiguous, and in order to compute the UV singularities which comprise the Z factor
in dimensional regularization, it becomes necessary to implement an additional regulator
which eliminates all IR divergences. We will indeed introduce such a regulator in section 3,
where we explicitly set about calculating specific diagrams. With this regulator in place
all integrals are mathematically well-defined for D < 4 namely for ε = (4 −D)/2 > 0. In
this section, we assume that such a regulator has already been introduced, such that any
remaining poles are of UV origin.

As described in the introduction, multiplicative renormalizability of the multi-eikonal
vertex implies that one may introduce a renormalization factor Z according to eq. (1.7)
such that Z absorbs all the ultraviolet singularities of S(ε), making the renormalized
eikonal amplitude Sren(µ) finite, and at the same time µ-dependent. Note that both S
and Z are matrix-valued in colour flow space, consistently with the left-hand side. The
ordering of the factors on the right-hand side of eq. (1.7) is important because of their
non-commuting nature. This equation constrains the singularity structure that S(ε) may
have, thus effectively constraining the corresponding webs.

Let us see how these constraints arise. Both the eikonal amplitude S(ε) and the Z
factor exponentiate. That is, one may write [90]

S(ε) = ew, Z(ε, µ) = eζ , (2.1)

where the first exponent can be decomposed in perturbation theory as

w =
∞∑
n=1

w(n) αns , (2.2)
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and αs (here and below) denotes the renormalized coupling in D = 4 − 2ε dimensions
αs = αs(µ2, ε). The coefficients on the right-hand side collect all non-renormalized webs
at a given order in αs, i.e.

w(n) αns =
∑

n1,...,nL

W
(n)
(n1,...,nL) , (2.3)

where we have used the notation of section 1.2, adding a superscript to indicate the loop
order, W (n)

(n1,...,nL) = O(αns ). At any given order O(αns ) one must have n1 + · · ·nL ≤ 2n due
to the fact that each gluon emission from an external (eikonal) line carries a factor of gs.
The inequality arises from the fact that gluons may also be connected (by multiple gluon
vertices or fermion bubbles) away from the external lines, which introduces extra powers
of the coupling.

The second exponent in eq. (2.1) may also be decomposed in perturbation theory, as

ζ =
∞∑
n=1

ζ(n) αns , (2.4)

where ζ(n) is the counterterm at O(αns ). In general the finite part of the counterterms
depends on the renormalization scheme. Here we use the MS scheme throughout, meaning
in particular that ζ(n) does not have any finite parts: it is comprised of only negative
powers of ε.

As first observed in [90], combining the exponents in eq. (2.1) according to eq. (1.9)
leads to an exponential form for Sren, where the exponent contains an infinite number of
commutator terms arising from the Baker-Campbell-Hausdorff formula:

Sren(µ) = exp {w(ε)} exp {ζ(ε, µ)}

= exp
{
w + ζ +

1
2

[w, ζ] +
1
12

(
[w, [w, ζ]]− [ζ, [w, ζ]]

)
− 1

24
[ζ, [w, [w, ζ]]] + · · ·

}
.

(2.5)

This complication is completely absent in the case of two partons connected by a colour
singlet interaction, as in that case both S(ε) and Z are not matrix-valued. All commutators
in eq. (2.5) then vanish, consistent with the fact that, aside from running-coupling terms,
webs in two-parton scattering have only single poles (a consequence of their irreducibility).
In the multiparton case, the commutators are non-zero in general, and lead to a rich
structure of multiple epsilon poles even in the conformal case.

Let us now examine the exponent of eq. (2.5) at the first few orders in perturbation the-
ory. In terms of the quantities introduced in eqs. (2.2), (2.4) one finds, up to four loop order,

w(1)
ren = w(1) + ζ(1); (2.6a)

w(2)
ren = w(2) + ζ(2) +

1
2

[
w(1), ζ(1)

]
; (2.6b)

w(3)
ren = w(3) + ζ(3) +

1
2

([
w(1), ζ(2)

]
+
[
w(2), ζ(1)

])
+

1
12

[
w(1) − ζ(1),

[
w(1), ζ(1)

]]
(2.6c)
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w(4)
ren = w(4) + ζ(4) +

1
2

([
w(1), ζ(3)

]
+
[
w(2), ζ(2)

]
+
[
w(3), ζ(1)

])
+

1
12

([
w(1) − ζ(1),

[
w(1), ζ(2)

]
+
[
w(2), ζ(1)

]]
+
[
w(2) − ζ(2),

[
w(1), ζ(1)

]])
− 1

24

[
ζ(1),

[
w(1),

[
w(1), ζ(1)

]]]
.

(2.6d)

These equations express the sum of renormalized webs at each order in terms of lower-
order counterterms and non-renormalized webs. We can already see how this constrains
multiparton webs: the right-hand side of each equation must be finite as ε → 0, implying
the cancellation of all ε poles in the particular combinations which occur. The real
power of these relations, however, is the fact the counterterm ζ is associated with a finite
anomalous dimension. This implies that ζ must have a very particular pole structure,
which in turn constrains the singularities of the webs. Our next task is therefore to inject
this information into (2.6). To do this, we begin by defining the anomalous dimension
matrix according to eq. (1.8)

Γ ≡ −Z−1 dZ

d lnµ
= −

∫ 1

0
dτ e−τζ

dζ

d lnµ
eτζ (2.7a)

= − dζ

d lnµ
+

1
2!

[
ζ,

dζ

d lnµ

]
− 1

3!

[
ζ,

[
ζ,

dζ

d lnµ

]]
+ · · · . (2.7b)

We have used a known operator identity to relate the derivative of Z = eζ to that of ζ and
then the Hadamard lemma to express the result in terms of commutators, see e.g. [96, 97].
As for the webs and counterterms, one may expand the anomalous dimension matrix in
an analogous way, defining

Γ =
∞∑
n=1

Γ(n)αns = Γ(1)αs + Γ(2)α2
s + Γ(3)α3

s + Γ(4)α4
s + · · · . (2.8)

One may calculate the first few orders explicitly in terms of the expansion coefficients of
ζ and the QCD beta function (1.13). To this end we first write

dζ

d lnµ
= 2

dαs
d lnµ2

dζ

dαs

= −2αs
[
ε+ b0αs + b1α

2
s + b2α

3
s + · · ·

] (
ζ(1) + 2αsζ(2) + 3α2

sζ
(3) + 4α3

sζ
(4) + · · ·

)
= −2

[
εζ(1)αs +

(
2εζ(2) + ζ(1)b0

)
α2
s +

(
3εζ(3) + 2ζ(2)b0 + ζ(1)b1

)
α3
s

+
(

4εζ(4) + 3ζ(3)b0 + 2ζ(2)b1 + ζ(1)b2

)
α4
s + · · ·

]
. (2.9)

Using (2.7b) we now obtain:

1
2

Γ(1) = εζ(1) (2.10a)

1
2

Γ(2) = 2εζ(2) + b0ζ
(1) (2.10b)

– 13 –



J
H
E
P
0
9
(
2
0
1
1
)
1
1
4

1
2

Γ(3) = ε

(
3ζ(3) − 1

2

[
ζ(1), ζ(2)

])
+ 2ζ(2)b0 + ζ(1)b1 (2.10c)

1
2

Γ(4) = ε

(
4ζ(4) −

[
ζ(1), ζ(3)

]
+

1
6

[
ζ(1),

[
ζ(1), ζ(2)

]])
+
(

3ζ(3) − 1
2

[
ζ(1), ζ(2)

])
b0 + 2ζ(2)b1 + ζ(1)b2 .

(2.10d)

According to the standard separation of variables argument, hard-soft factorization implies
that Γ, as defined in (2.7a), must be independent of both an infrared cutoff and an ultravi-
olet cutoff, thus it must be finite in four dimensions5 (ε→ 0). Knowing that Γ(n) are finite,
and working in a minimal subtraction scheme where the counterterms ζ(n) include, by
definition, only negative powers of ε (no O(εi) for i ≥ 0), we see that Γ(n) are independent
of ε: neither negative nor positive powers are allowed. It is therefore very convenient to
express the singularity structure of ζ(n) (and also w(n) below) in terms of Γ(n).

Inverting the relations in (2.10) we get:

ζ(1) =
1
2ε

Γ(1) (2.11a)

ζ(2) =
1
4ε

Γ(2) − b0
4ε2

Γ(1) (2.11b)

ζ(3) =
1
6ε

Γ(3) +
1

48ε2
[
Γ(1),Γ(2)

]
− 1

6ε2
(
b0Γ(2) + b1Γ(1)

)
+

b20
6ε3

Γ(1) (2.11c)

ζ(4) =
1
8ε

Γ(4) +
1

48ε2
[
Γ(1),Γ(3)

]
− b0

8ε2
Γ(3) +

1
8ε2

(
b20
ε
− b1

)
Γ(2)

+
1

8ε2

(
−b

3
0

ε2
+

2b0b1
ε
− b2

)
Γ(1) − b0

48ε3
[
Γ(1),Γ(2)

]
,

(2.11d)

where we note that owing to a cancellation there are no nested commutator terms in ζ(4).
Finally substituting the expressions for ζ(n) from (2.11) into eqs. (2.6) we extract the
following results for the singularity structure of the non-renormalized webs w(n):

w(1) = w(1)
ren −

1
2ε

Γ(1) (2.12a)

w(2) = w(2)
ren −

1
4ε

Γ(2) − 1
4ε

[
w(1)

ren,Γ
(1)
]

+
b0
4ε2

Γ(1) (2.12b)

w(3) = w(3)
ren −

1
6ε

Γ(3) − 1
8ε

[
w(1)

ren,Γ
(2)
]
− 1

4ε

[
w(2)

ren,Γ
(1)
]
− 1

24ε

[
w(1)

ren,
[
w(1)

ren,Γ
(1)
]]

− 1
48ε2

[
Γ(1),Γ(2)

]
− 1

48ε2
[
Γ(1),

[
w(1)

ren,Γ
(1)
]]

+
b0
8ε2

[
w(1)

ren,Γ
(1)
]

+
1

6ε2
(
b0Γ(2) + b1Γ(1)

)
− b20

6ε3
Γ(1)

(2.12c)

5Recall that we consider Wilson lines which are off the light cone, so that no collinear singularities are

present.
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w(4) = w(4)
ren −

1
8ε

Γ(4) − 1
12ε

[
w(1)

ren,Γ
(3)
]
− 1

4ε

[
w(3)

ren,Γ
(1)
]
− 1

8ε

[
w(2)

ren,Γ
(2)
]

− 1
24 ε

[
w(2)

ren,
[
w(1)

ren,Γ
(1)
]]
− 1

48 ε

[
w(1)

ren,
[
w(1)

ren,Γ
(2)
]]
− 1

24 ε

[
w(1)

ren,
[
w(2)

ren,Γ
(1)
]]

− 1
48 ε2

[
Γ(1),Γ(3)

]
+

b0
8ε2

Γ(3) − 1
8ε2

(
b20
ε
− b1

)
Γ(2) +

1
8ε2

(
b30
ε2
− 2b1b0

ε
+ b2

)
Γ(1)

− 1
96 ε2

[
w(1)

ren,
[
Γ(1),

[
w(1)

ren,Γ
(1)
]]]

+
b0

12ε2
[
w(1)

ren,Γ
(2)
]

+
b1

12ε2
[
w(1)

ren,Γ
(1)
]

+
b0
8ε2

[
w(2)

ren,Γ
(1)
]

+
b0

48ε2
[
w(1)

ren,
[
w(1)

ren,Γ
(1)
]]
− 1

48 ε2
[
Γ(1),

[
w(1)

ren,Γ
(2)
]]

− 1
48 ε2

[
Γ(1),

[
w(2)

ren,Γ
(1)
]]

+
b0

48ε3
[
Γ(1),Γ(2)

]
− b20

12ε3
[
w(1)

ren,Γ
(1)
]

+
b0

48ε3
[
Γ(1),

[
w(1)

ren,Γ
(1)
]]

.

(2.12d)

In eqs. (2.12) one can see that higher-order powers in ε (i.e. not just single poles) are
indeed present in the non-renormalized webs, as we described in the previous section.
However, these are fully determined by lower orders. Indeed, as we see below, one can
explicitly express all multiple poles at any given order in terms of lower-order webs.
Finally, the new anomalous dimension coefficient Γ(n) will be determined at each order
from the coefficient of the single O(1/ε) pole in the non-renormalized webs w(n) of that
order. To explicitly determine this structure we introduce a further notation for the ε

expansion of (non-renormalized) webs:

w(n) =
n∑
k=1

w(n,−k) ε−k +
∞∑
k=0

w(n,k) εk, (2.13)

such that w(n,−k) and w(n,k) are the coefficients of the kth negative and positive powers of
ε at O(αns ). By inserting (2.13) into (2.12) and extracting the coefficients of ε−k for k ≥ 2
we obtain the relations

w(2,−2) = −1
2
b0w

(1,−1) (2.14a)

w(3,−3) =
1
3
b20w

(1,−1) (2.14b)

w(3,−2) =
(
−2

3
w(2,−1) − 1

12

[
w(1,−1), w(1,0)

])
b0 −

1
3
b1w

(1,−1) +
1
6

[
w(2,−1), w(1,−1)

]
(2.14c)

w(4,−4) = −1
4
b30w

(1,−1) (2.14d)

w(4,−3) =
(

1
2
w(2,−1) − 1

12

[
w(1,0), w(1,−1)

])
b20 +

(
−1

6

[
w(2,−1), w(1,−1)

]
+

1
2
b1w

(1,−1)

)
b0

(2.14e)
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w(4,−2) = − 1
48

[
w(1,1), w(1,−1)

]
b20 +

(
1
24

[
w(1,0), w(2,−1)

]
+

1
8

[
w(2,0), w(1,−1)

]
− 3

4
w(3,−1)

+
1
48

[
w(1,−1),

[
w(1,1), w(1,−1)

]])
b0 +

(
−1

2
w(2,−1) − 1

12

[
w(1,−1), w(1,0)

])
b1

− 1
4
b2w

(1,−1) +
1
4

[
w(3,−1), w(1,−1)

]
+

1
24

[
w(1,−1),

[
w(2,0), w(1,−1)

]]
− 1

24

[
w(1,−1),

[
w(1,0), w(2,−1)

]]
.

(2.14f)

These achieve the above objective of encapsulating the constraints derived from renormal-
ization in a set of consistency conditions involving only coefficients of non-renormalized
webs. Equations (2.14) can be checked explicitly in specific examples, which forms the
subject of the following section.

Before doing this, however, we give explicit expressions for the first few orders of the
anomalous dimension matrix in terms of the web coefficients of eq. (2.13). These can be
calculated after extracting the coefficient of ε−1 in eqs. (2.12), and one finds

Γ(1) = −2w(1,−1) (2.15a)

Γ(2) = −4w(2,−1) − 2
[
w(1,−1), w(1,0)

]
(2.15b)

Γ(3) = −6w(3,−1) +
3
2
b0

[
w(1,−1), w(1,1)

]
+ 3

[
w(1,0), w(2,−1)

]
+ 3

[
w(2,0), w(1,−1)

]
+
[
w(1,0),

[
w(1,−1), w(1,0)

]]
−
[
w(1,−1),

[
w(1,−1), w(1,1)

]] (2.15c)

Γ(4) = −8w(4,−1) +
4
3

[
w(1,2), w(1,−1)

]
b20 +

(
−2
[
w(2,1), w(1,−1)

]
− 8

3

[
w(1,1), w(2,−1)

]
+
[
w(1,1),

[
w(1,0), w(1,−1)

]]
− 2

3

[
w(1,0),

[
w(1,−1), w(1,1)

]]
+

4
3

[
w(1,−1),

[
w(1,−1), w(1,2)

]])
b0

+
4
3

[
w(1,−1), w(1,1)

]
b1 + 4

[
w(1,0), w(3,−1)

]
+ 4

[
w(3,0), w(1,−1)

]
+ 4

[
w(2,0), w(2,−1)

]
+2
[
w(1,1),

[
w(2,−1), w(1,−1)

]]
+

8
3

[
w(1,−1),

[
w(1,1), w(2,−1)

]]
− 4

3

[
w(2,0),

[
w(1,0), w(1,−1)

]]
− 4

3

[
w(1,0),

[
w(2,0), w(1,−1)

]]
+

4
3

[
w(1,−1),

[
w(2,1), w(1,−1)

]]
− 4

3

[
w(1,0),

[
w(1,0), w(2,−1)

]]
− 1

3

[
w(1,−1),

[
w(1,−1),

[
w(1,0), w(1,1)

]]]
− 1

3

[
w(1,−1),

[
w(1,0),

[
w(1,−1), w(1,1)

]]]
+
[
w(1,0),

[
w(1,−1),

[
w(1,−1), w(1,1)

]]]
+

1
3

[
w(1,0),

[
w(1,0),

[
w(1,0), w(1,−1)

]]]
− 1

3

[
w(1,−1),

[
w(1,−1),

[
w(1,−1), w(1,2)

]]]
.

(2.15d)

As mentioned above, the coefficients Γ(n) themselves contain neither positive nor negative
powers of ε. However, an important observation is that higher-order coefficients in the
webs, suppressed by positive powers of ε, do in fact enter the expressions for the anomalous
dimension coefficients. For example, both w(1,1) and w(1,2) appear in eq. (2.15).
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Let us now discuss the emerging picture for the pole structure of webs (w) at the multi-
loop level. According to (2.14a), at two loops only running coupling corrections can gener-
ate a double pole. In fact, it is true to all-loop orders that the maximal divergence w(n,−n) is
simply given by the one-loop web (single gluon exchange) with running coupling insertions:

w(n,−n) =
1
n

(−b0)n−1 w(1,−1) , (2.16)

where b0 is the leading coefficient of the beta function defined in eq. (1.13). In particular,
as explained in [89], commutator terms cannot contribute to the leading singularity, and
in a conformal theory we have, at any order,

w(n,−n)
∣∣∣
bn=0

= 0 . (2.17)

Equations (2.16) and (2.17) can be proven by induction. While we do not present a
detailed proof, we briefly explain why it holds, repeating the argument already given in
section 6.1 of [89]. According to eq. (2.6a) above, the one-loop counterterm is just the
negative of the simple pole of the one-loop web,

ζ(1) = −1
ε
w(1,−1) =

1
2ε

Γ(1). (2.18)

Consequently at two loops the commutator term in eq. (2.6b)
[
w(1), ζ(1)

]
does not

contribute at O(ε−2). Indeed ζ(2) in (2.11b) receives no commutator contribution, and
the O(ε−2) on the r.h.s of (2.6b) must be a pure running coupling term, proportional to
b0Γ(1), which cancels between w(2) and ζ(2). Proceeding to three loops, one can easily
see using eq. (2.6c) how this iterates: none of the commutator terms can contribute to
the maximal singularity, O(ε−3), and indeed the only O(ε−3) term that appears in ζ(3)

in (2.11c) is proportional to Γ(1), with two insertions of b0.
With eq. (2.17) at hand it is useful to return to the diagrammatic picture of the webs

via (2.3), and recall that the contribution of each set of diagrams to w(n) takes the form
of a linear combination of kinematic factors times the corresponding linear combination of
colour factors, as determined by the mixing matrix R(n)

(n1,...,nL):

w(n) αns =
∑

n1,...,nL

W
(n)
(n1,...,nL) =

∑
n1,...,nL

∑
D,D′

F(D)R(n)
(n1,...,nL)(D,D

′)C(D′) . (2.19)

Thus, the vanishing of the leading singularity in the conformal limit, eq. (2.17), clearly
invites the conjecture that∑

D

F(D)|O(ε−n) R
(n)
(n1,...,nL)(D,D

′) = 0 , ∀D′ , (2.20)

namely that the entries of the mixing matrix are precisely such that the leading poles
cancel out. This deduction relies upon the fact that the colour factors of individual
diagrams in the web are linearly independent, and on the assumption that there are no
further cancellations between different webs contributing at a given order (n). Although
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this has not been proven in general, one does not expect cancellation of poles between
webs. In particular, connected multiparton webs readily admit eq. (2.17) on their own,
and, as will be verified in non-trivial three-loop examples in the next section, so do
reducible webs composed of single-gluon exchange subdiagrams.

As we shall see in section 5, owing to the factorization properties of the leading singular-
ities in a special class of diagrams consisting of individual gluon exchanges, the conjecture
of (2.20) directly translates into a sum-rule on the columns of the mixing matrix itself,
which we also verify in a variety of examples.

Let us now proceed to consider subleading singularities. According to the above anal-
ysis, at each order n, commutator terms start contributing at O(εn−1). The first such
contribution is at three loops where a double pole is present in the non-renormalized web
even when bn = 0; in (2.14c) we have:

w(3,−2)
∣∣∣
bn=0

= −1
6

[
w(1,−1), w(2,−1)

]
. (2.21)

This simple relation applies to webs that do not include running coupling corrections. We
will verify it explicitly for two three-loop examples in the following section.

Considering four-loop webs, one sees directly from eq. (2.12d) that only running cou-
pling corrections generate poles at O(ε−4) and O(ε−3), namely

w(4,−4)
∣∣∣
bn=0

= 0 , (2.22a)

w(4,−3)
∣∣∣
bn=0

= 0 . (2.22b)

While the absence of the leading singularity (2.22a) in the conformal case is expected
according to (2.17), the absence of the next-to-leading one in (2.22b) looks surprising.
Indeed, a term such as [w1,−1, [w1,−1, w2,−1]] could have a priori appeared in w(4,−3),
but the calculation shows that it is absent. The cancellation of this term appears to be
coincidental, and does not generalise to higher loops. We have checked explicitly that for
five-loop webs6 one has

w(5,−4)
∣∣∣
b0=0

=
1

360
[w1,−1, [w1,−1, [w1,−1, w2,−1]]], (2.23)

thus showing that O(ε−4) poles at five loops are present even in the conformal case.
Finally, the O(ε−2) terms at four loops, in (2.14f), without running coupling

corrections read:

w(4,−2)
∣∣∣
bn=0

=
1
4

[
w(3,−1), w(1,−1)

]
+

1
24

[
w(1,−1),

[
w(2,0), w(1,−1)

]]
− 1

24

[
w(1,−1),

[
w(1,0), w(2,−1)

]]
.

(2.24)

In this section, we have examined in detail the consequences of the multiplicative
renormalizability of multi-eikonal vertices, and have derived a number of important results.

6The expression for the five-loop anomalous dimension coefficient is rather lengthy, however, and we do

not report this here.
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The expressions (2.15) show explicitly how the soft anomalous dimension matrix may be
constructed, up to four loops, from the coefficients of multiparton webs, thus clarifying
how the diagrammatic approach to soft gluon exponentiation can be used in practice
to compute the soft anomalous dimension governing soft singularities in multiparton
amplitudes. Furthermore, we have gained detailed understanding of the singularity
structure of multipartons webs. We formulated consistency relations which determine all
multiple pole terms in webs in terms of lower-order webs. We have seen that multiple
poles are generated both by running coupling contributions and by commutators. The
simplest example of the latter is given by eq. (2.21) which expresses the double pole of
three-parton webs (which do not contribute to running coupling corrections) in terms of
single poles of lower-order webs. In the next section we will examine how this relation is
satisfied in the context of specific three-loop webs. The ensuing calculations will also allow
us to study leading poles at arbitrary order for a special class of diagrams in section 4.

3 The singularity structure of multiparton webs: examples

In the previous section, we examined in detail the renormalization of multiparton webs,
and found that it was possible to relate all multiple poles of multiloop webs to poles
of lower-order webs. The main difference with respect to the colour singlet case is
that multiple poles remain non-trivial in the conformal limit owing to the presence of
commutators. The first non-trivial example is the double pole at three loops, where
renormalization implies the relation of eq. (2.21).

In this section we focus on two specific examples of three-loop webs, compute their
singularities, and confirm that these are consistent with the relations of the previous
section. Beyond illustrating the relations per se, this investigation is important to reaffirm
the general picture proposed in [89] that multiparton webs, namely the closed sets of
diagrams whose colour and kinematic factors mix, do indeed share the same properties of
connected webs. In particular, each such web has on its own, a singularity structure that is
consistent with renormalization, eq. (2.14) above. Equivalently, no cancellations between
webs are needed. This is not a priori guaranteed, since webs are defined based on diagrams,
and as such do not in general form gauge-invariant objects. Discussing the cancellation of
the leading singularities in (2.19) in the previous section, we have already seen that it is
crucial to verify that the properties of w(n), the sum of all webs at a given order, which
follow from renormalization, are indeed realised on a web-by-web basis. The question we
address here is more general: we expect that all the renormalization constraints will be
fulfilled by individual webs, such that it would be possible to renormalize individual webs.
We must therefore check that also subleading poles are consistent with the constraints,
and to this end we will examine in detail how eq. (2.21) is satisfied.

As we have already mentioned, any calculation of a multiloop eikonal diagram requires
the use of a regulator for disentangling infrared and ultraviolet singularities. For the pur-
poses of this paper, we introduce a method for doing this, which we describe in the following
subsection. It will likely be useful for future calculations and thus of general interest.
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3.1 Calculating webs: an exponential regulator

As discussed in eq. (1.6) the calculation of Wilson line amplitudes gives rise to scaleless
integrals, which vanish in dimensional regularisation. This can be understood as the can-
cellation of IR and UV singularities, where the coefficients of the latter are relevant for
determining the renormalization of the multi-eikonal vertex. At one loop, it is possible to
separate unambiguously the IR and UV poles. At higher loops, this separation can become
ambiguous. Indeed, previous two-loop calculations of the cusp anomalous dimension [3],
and 2 → 2 eikonal scattering in forward kinematics [10], have employed regulators which
explicitly suppress IR divergences, such that all remaining poles in dimensional regulari-
sation are manifestly of UV origin. The advantage of such an approach is clear: one may
then calculate higher loop diagrams including multiple variable transformations without
having to keep track of how such transformations mix UV and IR behaviour. Most im-
portantly, the obtained UV poles, leading as well as subleading, are unambiguous. To this
end refs. [3, 10] have employed a fictional gluon mass up to two-loop order.

In this paper we introduce a regulator which is convenient for multiloop, multi-eikonal
calculations. We work directly in configuration space and introduce an exponential
regulator along each of the Wilson lines by changing the Feynman rule representing the
emission of a gluon from a Wilson line as follows:

(igs)β
µ
i

∫ ∞
0

dλ (· · · ) −→ (igs)β
µ
i

∫ ∞
0

dλ e−mλ
√
−β2

i (· · · ) (3.1)

where the integral is defined in the region where m
√
−β2

i > 0, so that the extra exponential
factor smoothly cuts off any long distance (λ → ∞) contribution. This prescription is
guaranteed to yield an infrared-finite result because the rest of the integrand in any
Feynman diagram can never diverge exponentially for λ → ∞. The exponential damping
thus removes all IR singularities, such that all remaining poles are of UV (λ → 0) origin.
These UV singularities and the corresponding Z factor remain unaffected by the regulator.

This Feynman rule can be formally obtained from a modified definition of the Wilson
line of eq. (1.2):

Φ(m)
βi
≡ P exp

{
igs
∫ ∞

0
dλ βi ·A(λβi) e−mλ

√
−β2

i

}
, (3.2)

where the exponential damping is now built into the Wilson line which provides the
source for the soft gluon field. Thus instead of computing the webs with ordinary Wilson
lines, we compute them starting with a product of exponentially-damped Wilson lines, all
involving the same infrared scale m:

S (γij , αs(µ, ε), ε,m) ≡
〈

0
∣∣∣Φ(m)

β1
⊗ Φ(m)

β2
⊗ . . .⊗ Φ(m)

βL

∣∣∣ 0〉 . (3.3)

We emphasise that (3.3) and (3.2), in contrast to (1.3) and (1.2), are not thought of as
an effective physical description of the interactions of the hard partons with soft gluons.
Rather the modified Wilson line (3.2) is merely a technical tool that allows one to compute
the UV singularities that comprise the Z factor one seeks to determine. Feynman diagrams
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i j

Figure 2. One loop web, where the gluon is emitted between partons i and j, whose kinematic
part is given by eq. (3.7).

and webs corresponding to (3.3) will acquire the m dependence through the Feynman
rule (3.1), but, as already emphasised in (1.7) the Z factor will not.

The chief advantages of this regulator are twofold. Firstly, there are no problems ap-
plying it at any loop order. Secondly, the regulator does not break the important symmetry
of Wilson loop computations, namely invariance under rescaling:

λ→ κλ, βi → βi/κ . (3.4)

As an illustration, and in order to introduce notation that will be used later on in
multiloop diagrams, we consider here the calculation of the one-loop diagram in figure 2
with this regulator in place. We denote the one-loop diagram with a gluon exchanged
between legs i and j by

1ij = Ti · Tj F (1)
ij (γij , µ2/m2, ε) , (3.5)

where we have explicitly written the colour factor. Using the eikonal Feynman rule of
eq. (3.1) as well as the configuration-space gluon propagator

Dµν(x) = −N gµν
(
−x2

)ε−1
, N ≡ Γ(1− ε)

4π2−ε , (3.6)

the kinematic factor takes the form:

F (1)
ij (γij , µ2/m2, ε)=µ2εg2

s N βi · βj
∫ ∞

0
ds

∫ ∞
0

dt
(
− (sβi − tβj)2

)ε−1
e−m

“
s
√
−β2

i+t
q
−β2

j

”

=
(
µ2

m2

)ε
g2
s

2
N Γ(2ε) γij

∫ 1

0
dxP (x, γij)

=
(
µ2

m2

)ε
g2
s

2
N Γ(2ε) γij 2F1

(
[1, 1− ε], [3/2],

1
2

+
γij
4

)
,

(3.7)

where, for later convenience, we defined the propagator-related function,

P (x, γij) ≡
[
x2 + (1− x)2 − x(1− x)γij

]ε−1
. (3.8)

The kinematic dependence is expressed in terms of the cusp parameter γij , defined in
eq. (1.5). A more elaborate example of a three-loop calculation is given in section 3.2.1.
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In the following sections we shall make use of the leading term in the ε expansion of
eq. (3.7), which we denote by

F (1,−1)(1ij) =
g2
sγij

16π2ε

∫ 1

0
dx P 0(x, γij)

=
g2
s

16π2ε

[
− 2 ξij coth(ξij)

]
, where ξij = cosh−1(−γij/2) ,

(3.9)

and in the first line P 0(x, γij) is the ε → 0 limit of P (x, γij) in (3.8). This is the familiar
result in the one-loop calculation of the cusp anomalous dimension (see e.g. [3]) where ξij
is the Minkowski space cusp angle.

It is straightforward to expand the hypergeometric function in (3.7) to subleading
orders in ε. Thanks to the IR regulator this expansion is under control, and yields a
unique result.

Having described the exponential regulator, we can now set about studying the singu-
larity structure of specific three-loop webs. This is the subject of the following sections.

3.2 The three-leg three-loop web W
(3)
(2,3,1)

In this section we consider the three-loop web composed of the six diagrams in figure 1.
This web was first studied in [89], and has a number of interesting properties which make
it useful as a testing ground for studying renormalization constraints. In particular, not all
diagrams have a leading divergence: whereas diagrams (3D)–(3F ) are O(ε−3), diagrams
(3A)–(3C) are both O(ε−2), and diagram (3B) is O(ε−1) i.e. has no subdivergences at
all. The contribution of this web to the exponent of the eikonal scattering amplitude,
including the relevant mixing matrix, is [89]

W
(3)
(2,3,1) =



F(3A)
F(3B)
F(3C)
F(3D)
F(3E)
F(3F )



T

1
6



3 0 −3 −2 −2 4
−3 6 −3 1 −2 1
−3 0 3 4 −2 −2

0 0 0 1 −2 1
0 0 0 −2 4 −2
0 0 0 1 −2 1





C(3A)
C(3B)
C(3C)
C(3D)
C(3E)
C(3F )


. (3.10)

We now need to calculate the kinematic parts F(3A) etc. of each diagram. After combining
these as in eq. (3.10), we should find that the leading divergence of the web cancels, and
the remaining terms are such that eq. (2.21) is verified, where the right-hand side of that
equation contains only those lower-order webs that combine to make the diagrams of fig-
ure 1. This will then amount to the statement that the renormalization of the exponent is
consistent on a web-by-web basis, with no mixing between different closed sets of diagrams.

All of the kinematic integrals we need to compute in this paper can be computed
using the same general recipe. We thus outline this in detail for one specific example
in the following subsection and summarise the results for the other kinematic factors in
appendix A. The details of this method will be useful in section 4.
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u

1 2

34

s1

s
2

t3

t1

t
2

Figure 3. Diagram (3D) from figure 1 showing the labels for gluon emissions used in eq. (3.11).

3.2.1 Calculation of F(3D)

In order to illustrate how to calculate the kinematic factors needed throughout the paper,
we consider the explicit example of (3D) from figure 1, which has a leading (O(ε−3))
divergence. Using the eikonal Feynman rule of eq. (3.1) as well as the configuration space
gluon propagator (3.6) one finds

F(3D) = g6
s(µ

2)3εN 3(β1 · β2)2(β2 · β3)
∫ ∞

0
ds1

∫ ∞
0

ds2

∫ ∞
0

dt1

∫ ∞
0

dt2

∫ ∞
0

dt3

∫ ∞
0

du

× e−m
“√
−β2

1(s1+s2)+
√
−β2

2(t1+t2+t3)+
√
−β2

3u
”

×
[
(s1β1 − t1β2)2(s2β1 − t2β2)2(t3β2 − uβ3)2

]ε−1
Θ[s1 − s2] Θ[t1 − t2] Θ[t2 − t3],

(3.11)

where µ is the dimensional regularisation scale, and we have labelled the gluon emissions
according to figure 3. Here the variables si, ti and u measure the distance along each Wilson
line at which gluons are emitted, and we use Heaviside functions to implement the ordering
constraints implied by the topology of the diagram. Equation (3.11) can be made more
symmetric by rescaling the distance parameters according to si → si/

√
−β2

1 etc. to give

F(3D) =
g6
s

8
(µ2)3εN 3γ2

12γ23

∫ ∞
0

ds1

∫ ∞
0

ds2

∫ ∞
0

dt1

∫ ∞
0

dt2

∫ ∞
0

dt3

∫ ∞
0

du

× e−m(s1+s2+t1+t2+t3)
[
(s21 + t21 − s1 t1γ12)(s22 + t22 − s2 t2γ12)(t23 + u2 − t3 uγ23)

]ε−1

×Θ[s1 − s2] Θ[t1 − t2] Θ[t2 − t3], (3.12)

where we have used again the cusp parameters defined in eq. (1.5).
As a next step, one may transform according to(

s1
t1

)
= λ

(
x

1− x

)
,

(
s2
t2

)
= µ

(
y

1− y

)
,

(
t3
u

)
= α

(
w

1− w

)
, (3.13)

after which eq. (3.12) becomes

F(3D) =
g6
s

8
(µ2)3εN 3γ2

12γ23

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dw P (x, γ12)P (y, γ12)P (w, γ23)
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×
∫ ∞

0
dλ

∫ ∞
0

dµ

∫ ∞
0

dα (λµα)2ε−1e−m(λ+µ+α)

×Θ[λx− µy] Θ[λ(1− x)− µ(1− y)] Θ[µ(1− y)− αw], (3.14)

where P (x, γij) is defined in eq. (3.8).
One may proceed further using the additional transformations(

µ

λ

)
= σ

(
z

1− z

)
,

(
α

σ

)
= β

(
r

1− r

)
, (3.15)

so that eq. (3.14) becomes

F(3D) =
g6
s

8
(µ2)3εN 3γ2

12γ23

∫ ∞
0

dβ β6ε−1 e−mβ

×
∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dw P (x, γ12)P (y, γ12)P (w, γ23)

×
∫ 1

0
dz[z(1− z)]2ε−1

∫ 1

0
dr r2ε−1(1− r)4ε−1

×Θ
[
x

y
− z

1− z

]
Θ
[

(1− x)
(1− y)

− z

1− z

]
Θ
[
z(1− y)

w
− r

1− r

]
.

(3.16)

The β integral gives a singular gamma function Γ(6ε). This represents the overall
singularity obtained by simultaneously shrinking all gluons to the origin in figure 3. The
remaining integrals over z and r both give additional singularities, as expected from
the fact that diagram (3D) has subdivergences. One may carry out the r integral by
transforming to ρ = r/(1− r), and one finds∫ 1

0
dr r2ε−1 (1− r)4ε−1 Θ

[
z(1− y)

w
− r

1− r

]
=
∫ z(1−y)/w

0
dρ ρ2ε−1(1 + ρ)−6ε

=
1
2ε

(
z(1− y)

w

)2ε

2F1

(
2ε, 6ε; 2ε+ 1;−z(1− y)

w

)
=

1
2ε

(
z(1− y)

w

)2ε [
1 +O(ε2)

]
,

(3.17)

where 2F1(a, b; c; z) is the hypergeometric function. Note that, for the purposes of this
paper in which we wish to check the relation (2.21) for the first subleading pole, we may
neglect higher order ε terms from the hypergeometric function as shown in the last line of
eq. (3.17). This leads to a drastic simplification.

The z integral in eq. (3.16) may be carried out in a similar fashion after transforming
to ζ = z/(1− z), and one ultimately finds

F (3)(3D) = C3
γ2

12γ23

8ε2

∫ 1

0
dxdydw

(
1− y
w

)2ε(
min

(
x

y
,
1− x
1− y

))4ε

× P (x, γ12)P (y, γ12)P (w, γ23)
(
1 +O(ε2)

)
, (3.18)
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where C3 is the overall normalisation factor:

C3 =
(
µ2

m2

)3ε
g6
s

8
Γ(1− ε)3Γ(6ε)

(4π2−ε)3
. (3.19)

In calculating F(3D), eq. (3.18) is already sufficient to express the multiple poles of diagram
(3D) in terms of poles of lower-order webs, which is all that is needed to verify eq. (2.21).

Before proceeding with this analysis, let us summarise the method we have used above,
which can be generally applied in calculating any multi-eikonal diagram comprising of
individual gluon exchanges. The general recipe for extracting F(D) up to and including
the first subleading pole for a general diagram D belonging to this class is

1. Insert a factor e−mt
√
−β2 for all gluon emissions from an external line of 4-velocity β,

where t is the appropriate distance parameter.

2. Represent the ordering of successive emissions along a given line by Heaviside
functions.

3. Rescale all distance parameters t→ t/
√
−β2.

4. If s1 and s2 are parameters associated with the same gluon exchange, transform to
the variables s1 = λx, s2 = λ(1 − x). Thus, for each separate subdiagram (here a
single gluon exchange) we have a λ-type variable which measures the distance of
this subdiagram from the hard interaction in units of the infrared regulator 1/m.

5. Repeat a similar transformation, as in (3.15), for each successive pair of λ-type
variables, until only one remains. The integral over this parameter will give an
overall gamma function representing the overall UV divergence of the diagram. At
each stage in this process, one trades two dimensionful parameters representing the
distance of two separate subdiagrams into one common dimensionful parameter and
one dimensionless parameter z measuring the relative distance.

6. Eliminate the Heaviside functions by integrating over the z-type variables introduced
in the previous step. This introduces hypergeometric functions, which can be
expanded in ε in order to extract the leading and first subleading pole of F(D).

Using the above prescription, we have calculated the leading and subleading poles of all of
the diagrams which we need for the rest of the paper. These results are collected in ap-
pendix A. We shall further apply this technique in section 4 to derive a factorised expression
for the leading pole of any diagram consisting exclusively of single gluon exchanges.

This method can also be extended to the next subleading order in epsilon so as to
compute the contribution of these webs to the soft anomalous dimension coefficient Γ(3)

according to eq. (2.15c). Note that this calculation is technically more involved owing to
the presence of higher-order terms from the expansion of hypergeometric functions such
as that of eq. (3.17).
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(2a) (2b) (2f) (2g)

Figure 4. The two-loop webs which contribute to W(2,3,1), labelled as in [89].

3.2.2 Expansion of poles

In the previous section we showed in detail how to calculate the kinematic parts of all
web diagrams encountered throughout the paper, collecting other necessary results in
appendix A. In this section, we expand these expressions, and show that the multiple
poles of the three-loop web of figure 1 can be expressed in terms of sums of products of
poles of lower-order webs. These results will then be used in the following section to verify
the relation (2.21).

We use a notation for the expansion of the n-loop kinematic factor F (n) which is
analagous to eq. (2.13):

F (n)(D) =
∞∑

k=−n
F (n,k)(D) εk. (3.20)

Then from eq. (A.4) one finds

F (3,−3)(3A) = F (3,−3)(3B) = F (3,−3)(3C) = 0, (3.21)

as expected from the fact that these diagrams are not maximally reducible. Furthermore
one finds

F (3,−3)(3D) = F (3,−3)(3E) = F (3,−3)(3F )

=
g6
sγ

2
12γ23

213 × 3π6ε3

∫ 1

0
dx dy dw P 0(x, γ12)P 0(y, γ12)P 0(w, γ23),

(3.22)

where, as above, P 0(x, γij) is shorthand for P (x, γij) evaluated at ε = 0.
Comparing this with the leading pole for the one-loop diagram of figure 2, where the

gluon connects lines i and j, eq. (3.9), we may rewrite eq. (3.22) as

F (3,−3)(3D) = F (3,−3)(3E) = F (3,−3)(3F ) =
1
6

(
F (1,−1)(112)

)2
F (1,−1)(123). (3.23)

This result exemplifies the fact that the leading poles of maximally-reducible diagrams
can be expressed as products of poles of their irreducible subdiagrams. Furthermore,
we observe that in this particular case each of the diagrams (3D)–(3F ) has the same
numerical coefficient in front of the product of one-loop subgraphs. We will see the reason
for this in section 4.
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Analogous results are obtained for the two-loop results in this web shown in figure 4
and labelled as in [89]. The full results are given in appendix A. Their leading pole is at
O(ε−2) and can be written in terms of the poles of one-loop diagrams as follows:

F (2,−2)(2a) = F (2,−2)(2b) =
1
2
F (1,−1)

12 F (1,−1)
23 , (3.24a)

F (2,−2)(2f) =
1
2

(
F (1,−1)

12

)2
, F (2,−2)(2g) = 0 . (3.24b)

Note that diagram (2g) has zero contribution at O(ε−2) as we expect from irreducibility.
Again we see a factorisation by which higher-order poles can be written in terms of lower-
order web diagrams, where at leading pole a unique product occurs on the right-hand side.
By comparing eq. (3.24) with eq. (3.23), one sees that the coefficient of the product of
lower-order web poles appears to be given by 1/n!, where n is the number of single-gluon
subdiagrams. We return to this point in section 4.

Having examined the leading divergence, we now consider the web of figure 1 at the
first subleading pole ∼ O(ε−2). Looking at the kinematic factors in eq. (A.4), the next-to-
leading pole contributions can be divided into three distinct categories, arising from

1. the expansion of C3;

2. the expansion of the propagator functions P (x, γij);

3. the expansion of the abε terms in the integrand, where a is a function of {x, y, z, w}.

The first two of these are identical for the diagrams in the web, and only contribute at
O(ε−2) for the diagrams which have non-zero ε−3 poles. They will then be proportional
to ε times that leading pole contribution in each case. The observed cancellation of the ε−3

poles therefore means that the contributions from (1) and (2) above will also cancel when
the diagrams are combined and we therefore do not consider them further here.

We instead focus on the contributions from (3) and write these in terms of P 0(x, γij)
and the residue of the pole in C3,

C(−1)
3 =

g6
s

210 × 3π6
. (3.25)

The results are:

F (3,−2)(3A) = C(−1)
3

γ2
12γ23

2ε2

∫ 1

0
dxdydw

(
log
(
x

y

)
− log

(
1− x
1− y

))
×Θ(x− y) P 0(x, γ12)P 0(y, γ12)P 0(w, γ23);

(3.26a)

F (3,−2)(3B) = 0; (3.26b)

F (3,−2)(3C) = C(−1)
3

γ2
12γ23

4ε2

∫ 1

0
dxdydw

(
log
(
x

y

)
− log

(
1− x
1− y

))
×Θ(x− y) P 0(x, γ12)P 0(y, γ12)P 0(w, γ23);

(3.26c)
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F (3,−2)(3D) = C(−1)
3

γ2
12γ23

4ε2

∫ 1

0
dxdydw

(
log
(

1− y
w

)
+ 2 log

(
min

(
x

y
,
1− x
1− y

)))
× P 0(x, γ12)P 0(y, γ12)P 0(w, γ23);

(3.26d)

F (3,−2)(3E) = C(−1)
3

γ2
12γ23

4ε2

∫ 1

0
dxdydw

(
2 log

(
1− x
w

)
− log

(
1− y
w

))
× P 0(x, γ12)P 0(y, γ12)P 0(w, γ23);

(3.26e)

F (3,−2)(3F ) = C(−1)
3

γ2
12γ23

4ε2

∫ 1

0
dxdydw

(
2 log

(
w

1− x

)
+ log

(
min

(
x

y
,
1− x
1− y

)))
× P 0(x, γ12)P 0(y, γ12)P 0(w, γ23).

(3.26f)

We expect the contribution from (3B) at this order to be zero given that the diagram
is completely irreducible, thus has only a single epsilon pole. As was the case at leading
pole, one may write the above expressions in terms of poles of lower-order diagrams i.e.
in terms of the relevant F (1,−1)(1ij) and F (2,−1)(2n) contributions. To this end we first
consider the subleading poles of the two-loop webs, whose leading poles have already
been written as products of one-loop leading poles in eq. (3.24). Again at two-loops, the
contributions at next-to-leading pole from the expansion of C2 and P (x, γij) cancel among
themselves, as was discussed at three-loops. We therefore concentrate here on the type-(3)
contributions above, written in terms of P 0(x, γij) and the residue of the ε−1 pole in C2

C(−1)
2 =

g4
s

28π4
. (3.27)

The two-loop subleading poles are then

F (2,−1)(2a) = C(−1)
2

γ12γ23

ε

∫ 1

0
dxdw log

(
1− x
w

)
P 0(x, γ12)P 0(w, γ23) (3.28a)

F (2,−1)(2b) = C(−1)
2

γ12γ23

ε

∫ 1

0
dxdw log

(
w

1− x

)
P 0(x, γ12)P 0(w, γ23) (3.28b)

F (2,−1)(2f) = C(−1)
2

γ2
12

ε

∫ 1

0
dxdy log

(
min

(
x

y
,
1− x
1− y

))
P 0(x, γ12)P 0(y, γ12) (3.28c)

F (2,−1)(2g) = C(−1)
2

γ2
12

ε

∫ 1

0
dxdy

(
log
(
x

y

)
− log

(
1− x
1− y

))
×Θ(x− y)P 0(x, γ12)P 0(yγ12).

(3.28d)

By inspection, F (2,−1)(2a) = −F (2,−1)(2b) and by explicit calculation, one can also show
that F (2,−1)(2f) = −F (2,−1)(2g).

Using these results, we can express the three-loop results at this order in terms of
diagrams with fewer loops as follows:

F (3,−2)(3A) =
2
3
F (2,−1)(2g) F (1,−1)(123) (3.29a)

F (3,−2)(3B) = 0 (3.29b)
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Figure 5. The two possible decompositions of diagram 3D into a product of a two-loop subdiagram
times a one-loop one, corresponding to the two terms in (3.29d). Note that the latter equation is
expressed in terms of (2g), while the actual subdiagram is (2f). However, the two are related by
F (2,−1)(2f) = −F (2,−1)(2g).

F (3,−2)(3C) =
1
3
F (2,−1)(2g) F (1,−1)(123) (3.29c)

F (3,−2)(3D) =
1
3

(
F (2,−1)(2a)F (1,−1)(112) − 2F (2,−1)(2g)F (1,−1)(123)

)
(3.29d)

F (3,−2)(3E) =
1
3
F (2,−1)(2a)F (1,−1)(112) (3.29e)

F (3,−2)(3F ) =
1
3

(
−2F (2,−1)(2a)F (1,−1)(112) − F (2,−1)(2g)F (1,−1)(123)

)
. (3.29f)

This confirms the statement made above that poles of higher loop webs can be written
as sums of products of poles of lower-order webs. Unlike the case of the leading pole,
however, there is in general more than one permissible product on the right-hand side
of each equation corresponding to the different ways of decomposing each web diagram
into subdiagrams. This decomposition is illustrated in figure 5 for the case of diagram
3D. Furthermore, the coefficients in front of each product of lower-order diagrams are not
simple factorials, as they were in the leading pole case. Armed with eq. (3.29), we now
have everything necessary to verify the relation (2.21) for this particular three-loop web.

3.2.3 Verifying the renormalization constraint

In the previous section, we used the results collected in appendix A to decompose
the higher-order poles of the web diagrams in figure 1 in terms of pole coefficients of
lower-order webs. In this section, we use these results to verify the renormalization
constraint expressed in eq. (2.21).

To proceed, one may first expand eq. (3.10) and collect coefficients of each kinematic
factor to get

W
(3)
(2,3,1) =

1
6
[
3C(3A)− 3C(3C)− 2C(3C)− 2C(3E) + 4C(3F )

]
F(3A)

+
1
6
[
− 3C(3A) + 6C(3B)− 3C(3C) + C(3D)− 2C(3E) + C(3F )

]
F(3B)

+
1
6
[
− 3C(3A) + 3C(3C) + 4C(3D)− 2C(3E)− 2C(3F )

]
F(3C)

+
1
6
[
C(3D)− 2C(3E) + C(3F )

]
F(3D)
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C C=C

Figure 6. Illustration of the multiplication rule for colour factors of multiparton diagrams, as given
in eq. (3.32).

+
1
3
[
− C(3D) + 2C(3E)− C(3F )

]
F(3E)

+
1
6
[
C(3D)− 2C(3E) + C(3F )

]
F(3F ). (3.30)

It can be seen immediately after substituting the results of eqs. (3.21), (3.23) that
the leading poles do indeed cancel to give zero contribution at O(ε−3). That is, this
cancellation is purely a consequence of the properties of web mixing matrices, and does
not depend on additional commutators of lower-order webs, which only start to contribute
at next-to-leading pole.

We now consider the next-to-leading pole contributions and find by substituting
eq. (3.29) into eq. (3.30):

W
(3,−2)
(2,3,1) =− 1

6

(
C(3D)− 2C(3E) + C(3F )

)
F (2,−1)(2a)F (1,−1)(112)

+
1
6

(
C(3A)− C(3C)− C(3D) + C(3F )

)
F (2,−1)(2g)F (1,−1)(123).

(3.31)

Whilst many cancellations have taken place, a non-zero contribution remains which we
expect from the renormalisation arguments of section 2.

We may simplify eq. (3.31) by using the multiplication rule

C(AB) = C(A)C(B) (3.32)

for colour factors of diagrams, where AB is the diagram obtained by ordering subdiagram
B, then A, outwards from the hard interaction (see e.g. figure 6). This allows us to write the
colour factors for the three loop web diagrams in terms of the colour factors of lower-order
diagrams. In particular, for the combinations of colour factors appearing in (3.31), one has

C(3D)− 2C(3E) + C(3F ) =
(
C(3D)− C(3E)

)
−
(
C(3E)− C(3F )

)
= C(112)

(
C(2a)− C(2b)

)
−
(
C(2a)− C(2b)

)
C(112)

=
[
C(112), C(2a)− C(2b)

]
(3.33a)

C(3A)− C(3C)− C(3D) + C(3F ) = C(2g)C(123)− C(123)C(2g)

− C(2f)C(123) + C(123)C(2f)

=
[
C(123), C(2f)− C(2g)

]
.

(3.33b)
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We now have the pieces required to independently evaluate the left- and right-hand side
of eq. (2.21):

w(3,−2)
∣∣∣
bn=0

= −1
6

[
w(1,−1), w(2,−1)

]
(3.34)

for this set of diagrams. We use W(2,3,1) in place of w when we only consider the
contributions corresponding to this particular subset. The left-hand side comes directly
from eq. (3.31)

W
(3,−2)
(2,3,1) = −1

6

[
C(112), C(2a)− C(2b)

]
F (2,−1)(2a)F (1,−1)(112)

+
1
6

[
C(123), C(2f)− C(2g)

]
F (2,−1)(2g)F (1,−1)(123).

(3.35)

We now turn to the right-hand side. At one-loop, there are two diagrams which will
contribute to this specific three-loop web:

w(1,−1) = C(112)F (1,−1)(112) + C(123)F (1,−1)(123) + . . . , (3.36)

where here and in subsequent equations the ellipsis stands for those additional webs which
do not eventually contribute to the three-loop web of interest. At two-loops, the four
diagrams in figure 4 are relevant. For each of these the corresponding web is obtained by
combining the kinematic factor with the corresponding exponentiated colour factors (see
e.g. eq. (5.65) in [89]) as follows:

w(2,−1) =
1
2

(
C(2a)− C(2b)

)(
F (2,−1)(2a)−F (2,−1)(2b)

)
+
(
C(2g)− C(2f)

)
F (2,−1)(2g) + . . . ,

=
(
C(2a)− C(2b)

)
F (2,−1)(2a) +

(
C(2g)− C(2f)

)
F (2,−1)(2g) + . . . ,

(3.37)

where in the second line we have used F (2,−1)(2b) = −F (2,−1)(2a) as follows from
eqs. (3.28a) and (3.28b). Now substituting these into eq. (2.21) and restricting to
contributions corresponding to the W(2,3,1) configuration gives

W
(3,−2)
(2,3,1) = −1

6

[
C(112), (C(2a)− C(2b))

]
F (1,−1)(112)F (2,−1)(2a)

− 1
6

[
C(123), (C(2g)− C(2f))

]
F (1,−1)(123)F (2,−1)(2g).

(3.38)

This exactly matches eq. (3.35), and so for this web, the constraints from renormalization
have been shown to be satisfied. Note, in particular, that they have been satisfied for this
web by itself, implying no mixing with other webs. This feature is important in that it
shows that the notion of individual webs as closed sets of diagrams, first proposed in [89],
survives after renormalization of the multi-eikonal vertex.

In the following section, we illustrate the validity of eq. (2.21) using a second three-loop
example, this time for a web that involves four eikonal lines, W (3)

(1,2,2,1).
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(3a) (3b) (3c) (3d)

Figure 7. The four 3-loop diagrams forming the 1-2-2-1 web in which four eikonal lines are linked
by three gluon exchanges, with labels as in [89].

3.3 The four-leg three-loop web W
(3)
(1,2,2,1)

In the previous sections, we have analysed the web of figure 1 in detail, showing how to
extract the leading and subleading poles in explicit calculations. We saw that multiple
poles of web diagrams can be decomposed into sums of products of poles of lower-order
web diagrams. Furthermore, we explicitly verified that the leading poles, O(ε−3), cancel
through the action of the web mixing matrix, while the next-to-leading pole, O(ε−2) is
consistent with the renormalization constraint of eq. (2.21).

In this section, we repeat this analysis for a second example, this time considering a
three-loop web involving four eikonal lines, W (3)

(1,2,2,1). This will provide more evidence that
the renormalization constraints of section 2 are indeed realised on a web-by-web basis.
Given that most of the techniques and results have already been shown in the previous
section (and in appendix A), we will be much briefer here.

The web W (3)
(1,2,2,1) is composed of four diagrams, depicted in figure 7. This web was first

studied in [89], where its contribution to the exponent of the eikonal scattering amplitude,
including the relevant web mixing matrix, was shown to be:

W
(3)
(1,2,2,1) =


F(3a)
F(3b)
F(3c)
F(3d)


T

1
6


1 −1 −1 1
−2 2 2 −2
−2 2 2 −2

1 −1 −1 1



C(3a)
C(3b)
C(3c)
C(3d)

 . (3.39)

The kinematic factors for each diagram are given in appendix A, and the leading poles are

F (3,−3)(3a) = 2F (3,−3)(3b) = 2F (3,−3)(3c) = F (3,−3)(3d)

=
1
3
F (1,−1)(112)F (1,−1)(123)F (1,−1)(134).

(3.40)

The web mixing matrix tells us that these only appear in the combination

F(3a)− 2F(3b)− 2F(3c) + F(3d)

and therefore the leading poles automatically cancel among themselves, as they must. As
in the previous case, this means that the contributions at O(ε−2) from pieces common
to all diagrams, e.g. the Γ(6ε) and the P -functions will also cancel between themselves.
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We therefore do not consider them further here. The remaining contributions to the
subleading pole are given by

F (3,−2)(3a) = C̃3
Γ(6ε)

4ε

∫ 1

0
dxdydz P 0(x, γ12)P 0(y, γ23)P 0(z, γ34)

× (log(1− x)− log(y)− log(1− y) + log(z))
(3.41a)

F (3,−2)(3b) = C̃3
Γ(6ε)

4ε

∫ 1

0
dxdydz P 0(x, γ12)P 0(y, γ23)P 0(z, γ34)

× (2 log(x)− 2 log(y) + log(1− y)− log(1− z))
(3.41b)

F (3,−2)(3c) = C̃3
Γ(6ε)

4ε

∫ 1

0
dxdydz P 0(x, γ12)P 0(y, γ23)P 0(z, γ34)

× (2 log(z)− 2 log(1− y) + log(y)− log(1− x))
(3.41c)

F (3,−2)(3d) = C̃3
Γ(6ε)

2ε

∫ 1

0
dxdydz P 0(x, γ12)P 0(y, γ23)P 0(z, γ34)

× (log(1− y)− log(z) + log(y)− log(1− x)) ,
(3.41d)

which can again be decomposed in terms of the poles of lower-order diagrams.

The relevant two-loop diagrams are (2a) and (2b) from eq. (3.28) and their mirror
images about the horizontal. We introduce the new labelling 2ijk where i, j, k label the
ordering of the legs to which gluons are attached, considered from outside in. So (2a)
becomes 2123, (2b) is 2321, and their mirror images are respectively 2432 and 2234. The
correspondence between x, y, z and γij can be seen from the arguments of the P -functions.
This notation introduces some ambiguity since by eqs. (3.28a) and (3.28b)

F (2,−1)(2ijk) = −F (2,−1)(2kji) (3.42)

and so we restrict ourselves to 2123 and 2432 here. We find

F (3,−2)(3a) = +
1
3
F (2,−1)(2123)F (1,−1)(134) +

1
3
F (2,−1)(2432)F (1,−1)(112) (3.43a)

F (3,−2)(3b) = +
2
3
F (2,−1)(2123)F (1,−1)(134)− 1

3
F (2,−1)(2432)F (1,−1)(112) (3.43b)

F (3,−2)(3c) = −1
3
F (2,−1)(2123)F (1,−1)(134) +

2
3
F (2,−1)(2432)F (1,−1)(112) (3.43c)

F (3,−2)(3d) = −2
3
F (2,−1)(2123)F (1,−1)(134)− 2

3
F (2,−1)(2432)F (1,−1)(112) . (3.43d)

Expanding eq. (3.39) gives

W
(3)
(1,2,2,1) =

1
6

(
C(3a)− C(3b)− C(3c) + C(3d)

)(
F(3a)− 2F(3b)− 2F(3c) + F(3d)

)
(3.44)
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and so

W
(3,−2)
(1,2,2,1) = −1

6

(
C(3a)− C(3b)− C(3c) + C(3d)

)
×
(
F (2,−1)(2123)F (1,−1)(134) + F (2,−1)(2432)F (1,−1)(112)

)
= −1

6

[
C(134), C(2123)− C(2321)

]
F (2,−1)(2123)F (1,−1)(134)

− 1
6

[
C(112), C(2432)− C(2234)

]
F (2,−1)(2432)F (1,−1)(112)

(3.45)

at this subleading pole order, where the following relationships between the colour factors
(obtained using eq. (3.32)) have been used:

C(3a)− C(3b)− C(3c) + C(3d) =
[
C(134), C(2123)− C(2321)

]
=
[
C(112), C(2432)− C(2234)

]
.

(3.46)

Equation (3.45) is the contribution of this web to the left-hand side of equation (2.21). We
now turn to the right-hand side,

−1
6

[
w(1,−1), w(2,−1)

]
. (3.47)

The relevant one-loop pieces are

w(1,−1) = C(112)F (1,−1)(112) + C(134)F (1,−1)(134) + . . . . (3.48)

The 123 piece does not contribute because there is no corresponding two-loop web which
it can combine with.7 At two-loops, the diagrams are combined with the following expo-
nentiated colour factors (see e.g. eq. (5.38) in [89]):

w(2,−1) =
1
2

(C(2123)− C(2321))
(
F (2,−1)(2123)−F (2,−1)(2321)

)
+

1
2

(C(2432)− C(2234))
(
F (2,−1)(2432)−F (2,−1)(2234)

)
+ . . .

= (C(2123)− C(2321))F (2,−1)(2123) + (C(2432)− C(2234))F (2,−1)(2432) + . . . ,

(3.49)

where in the second line we used eq. (3.42). Substituting eqs. (3.48), (3.49) into (3.47) and
keeping only the parts which correspond to this web then gives

W
(3,−2)
(1,2,2,1) = −1

6

[
C(112), C(2432)− C(2234)

]
F (2,−1)(2432)F (1,−1)(112)

− 1
6

[
C(134), C(2123)− C(2321)

]
F (2,−1)(2123)F (1,−1)(134) ,

(3.50)

which agrees exactly with equation (3.45). We have thus verified in a second example that
the renormalization constraints of section 2 are satisfied on a web-by-web basis.

7There is of course a two-loop diagram where two gluons are exchanged between two distinct pairs of

legs, [[1], [1], [2], [2]], but this is not a web [89], and thus not part of w(2,−1).
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4 Factorization of the leading pole of maximally reducible diagrams

In the previous section we considered two specific three-loop webs and investigated how the
renormalization constraints are satisfied. In the webs we considered, each diagram was com-
posed exclusively of individual gluon exchanges. We saw that for the leading singularity of
these diagrams, O(ε−3), the kinematic dependence factorises into three one-loop kinematic
factors, corresponding to sequentially shrinking the three gluon subdiagrams to the origin.
The next-to-leading singularity, O(ε−2), can be written as a sum of products of two-loop
times one-loop subdiagrams. These factorization properties have proven crucial in satisfy-
ing the renormalization constraints, namely the cancellation of the leading singularity and
the non-trivial relation (2.21) between three-loop webs and one- and two-loop webs.

In this section we take a step towards an all-order generalization of these results. We
consider multi-eikonal diagrams at any order O(αns ), but restrict ourselves to ones that
are composed exclusively of individual gluon exchanges. For this class of diagrams we
will show that a similar factorization property holds for the leading singularity O(ε−n):
in a given web, for all diagrams that have an O(ε−n) pole, this singularity factorizes
into n one-loop integrals. Moreover, these leading singularities are all the same up to a
combinatorial symmetry factor s(D), a non-negative integer number which determines
how many different ways there are in a given diagram D to sequentially shrink the
individual subdiagrams to the origin. The quantity s(D) is defined to be zero for those
diagrams which do not have a leading singularity. A more general definition and some
examples for the symmetry factor will be given in section 5 (and in appendix B) where
we explain its role in the context of the web mixing matrix.

Our first observation is that a web of diagrams which are made of individual gluon
exchanges satisfies the requirement:

∑
D

F(D) =
n∏
k=1

F (1)(γikjk) , (4.1)

where the sum is over all the diagrams in the web. This relation, which holds to any order
in epsilon, may be derived as follows. Each diagram has a kinematic part, after rescaling
the distance variables associated with each gluon emission according to s1

√
−β2

1 → s1
etc., of the form

F(D) =
(
g2
s(µ

2)εN
2

)n
(γi1j1 . . . γinjn)

∫ ∞
0

ds1 . . .

∫ ∞
0

dsn

∫ ∞
0

dt1 . . .

∫ ∞
0

dtn

× e−
Pn
j=1m(sj+tj)

[ (
s21 + t21 − s1 t1γi1j1

)
. . .
(
s2n + t2n − sn tnγinjn

) ]ε−1

×
[∏

Θ
]

({si}, {ti}). (4.2)

Here we have assumed that the kth gluon is exchanged between parton lines ik and jk,
and is labelled by distance parameters (sk, tk). The last line denotes the fact that there
is a product of Heaviside functions, whose role is to order the gluons proceeding outwards
from the hard interaction vertex. This is the only difference between the diagrams {D},
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and summing over all D gives the complete sum of Heaviside functions∑
D

[∏
Θ
]

({si}, {ti}) = 1 , (4.3)

such that one has∑
D

F(D) =
n∏
k=1

g2
s

2
(µ2)εNγikjk

∫ ∞
0

dsk

∫ ∞
0

dtk e
−m(sk+tk)

[
s2k + t2k − sk tkγikjk

]ε−1
. (4.4)

This is recognisable as the product of one-loop graphs occurring on the right-hand side of
eq. (4.1). This result will be useful in what follows.

Let us now consider a particular maximally reducible diagram D, namely one having
an O(ε−n) pole, thus a non-zero symmetry factor s(D) as defined above. Contributions
to the leading singularity of this diagram come only from the s(D) different integration
regions for which the n single-gluon subdiagrams are ordered, and can thus be sequentially
shrunk to the multi-eikonal vertex (the origin, where the hard interaction takes place).

To illustrate this point, consider the web diagram (2a) shown in figure 4. We redraw
this in figure 8, labelling the gluon emissions by Ai, such that the corresponding distance
parameters for the two ends of the gluon are (si, ti). The Heaviside functions in this case im-
pose s1 < t2, and there are then two distinct integration regions for s2, namely s2 > s1 and
s2 < s1. These conditions operate on distance variables on different parton lines. However,
it is meaningful to compare distances on different lines given that we have rescaled distance
variables according to s1 → s1/

√
−β2

1 etc. The two regions are shown schematically in fig-
ure 8(a) and (b). Although these diagrams are topologically equivalent, they have different
properties as the gluon A1 is shrunk to the origin. In the first case (s2 > s1), A1 may be
shrunk to the origin independently of A2, which generates a leading singularity (in this case
an ε−2 pole). In the second case, the requirement s2 < s1 means that as A1 is shrunk to the
origin, the end of A2 labelled by s2 is “trapped” at the hard interaction vertex, such that the
gluonA2 becomes collinear to β2, as shown schematically in figure 8(c). This would generate
an additional (collinear) singularity were the parton lines massless. However, we consider
massive parton lines in this paper, so that the contribution from figure 8(c) has no further
singular behaviour, thus has only a single pole, corresponding to the shrinking of A1.

Let us now denote by A1 < A2 the integration region in which

s1 < s2, t2 , and t1 < s2, t2 , (4.5)

corresponding to the ordered region of figure 8(a). From the above discussion, we see
that the region A1 < A2 generates the leading pole of the web diagram, but that not
all subleading poles will be captured, as for the latter, one would also need to include
configurations such as that shown in figure 8(b). Armed with this notation, we can now
proceed to analyse the leading pole of a general diagram consisting of single gluon emissions.

The above argument is straightforwardly generalised to diagrams containing any num-
ber n of individual gluon exchanges, which contribute at leading pole, O(ε−n). That is,
the leading pole only receives contributions from the integration region in which all sub-
diagrams are ordered in the manner of figure 8(a). Denoting the gluon subdiagrams by
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(a) (b) (c)

s2

A2

t2

s1

A1

t1

s2

s1

t2

t1

A1

A2 A2

Figure 8. The web diagram (2a) of figure 4, where we depict: (a) the integration region s2 > s1;
(b) the integration region s2 < s1; (c) the effect of shrinking gluon A1 to the origin when s2 < s1.

Ak with associated distance parameters sk and tk along the Wilson lines, a given ordering
can be written as Aπ1 < Aπ2 < . . . < Aπn where π = (π1, π2, . . . πn) is a permutation of
(1, 2, . . . , n) and where the “<” symbol has the same meaning as described in eq. (4.5).

We may then write the contribution to diagram D from the ordering π as

F(D|π) ≡
(
g2
s(µ

2)εN
2

)n [ n∏
k=1

γikjk

] ∫∫
Aπ1<Aπ2<...<Aπn

d{sk} d{tk}

× e−
Pn
j=1m(sj+tj)

[ (
s21 + t21 − s1 t1γi1j1

)
. . .
(
s2n + t2n − sn tnγinjn

) ]ε−1
. (4.6)

This definition is such that ∑
π∈D
F(D|π) = F(D) (1 +O(ε)) , (4.7)

where the sum is over all orderings π which are consistent with diagram D. In this way one
recovers the full leading pole of D by combining ordered regions as defined above. Note,
however, that the sum does not exactly reproduce the Heaviside functions in eq. (4.2) due
to the fact that it neglects contributions from integration regions such as that shown in
figure 8(b). These regions will only contribute at subleading orders in ε, hence the O(ε)
corrections in eq. (4.7).

We now argue that each such unique ordering gives the same leading pole. First we
make n paired variable transformations of the form(

sk
tk

)
= λk

(
xk

1− xk

)
, (4.8)

such that eq. (4.6) becomes

F(D|π) =
(
g2
sN
2

µ2ε

m2ε

)n n∏
k=1

γikjk

∫ 1

0
dxk P (xk, γikjk)

∫ λmax
k

0
dλk λ

2ε−1
k e−λk , (4.9)

where we have scaled λk → λk/m, and λmax
k is determined from the Heaviside functions,

depending upon the parameters λk+1, xk+1 and xk occurring in (4.8).
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The next step is to consider the product of λk integrals on the right-hand side. These
may be written as

n∏
k=1

∫ λmax
k

0
dλk λ

2ε−1
k e−λk =

∫ ∞
0

dλn

∫ λnαn

0
dλn−1 . . .

∫ λ2α2

0
dλ1 (λ1λ2 . . . λn)2ε−1 e−

Pn
k=1 λk .

(4.10)

Here we have used the strict ordering Aπ1 < Aπ2 < . . . < Aπn , where from dimensional
considerations each upper limit of integration has been expressed as

λmax
k = λk+1 αk+1 , (4.11)

where αk+1 is a function of xk+1 and xk, and for later convenience we define α1 = 1.
Equation (4.10) can be computed by making the following change of variables, by

analogy with (3.15):

σk =
k∑
i=1

λk , zk−1 ≡
σk−1

σk
(4.12)

where, for convenience, z0 ≡ 0. It then follows that the original variables λk can be
expressed as

λk = σk (1− zk−1) = zkzk+1 . . . zn−1 σn (1− zk−1) . (4.13)

The Jacobian is

∂(λ1, λ2, . . . , λn)
∂(z1, z2, . . . , zn−1, σn)

= σ2σ3 . . . σn = z2z
2
3z

3
4 . . . z

n−2
n−1 σ

n−1
n (4.14)

and one also has

λ1λ2 . . . λn = z1z
2
2z

3
3 . . . z

n−1
n−1 (1− z1)(1− z2) . . . (1− zn−1)σnn

so that eq. (4.10) becomes:

n∏
k=1

∫ λmax
k

0
dλk λ

2ε−1
k e−λk =

∫ ∞
0

dσn σ
2nε−1
n e−σn

×
n−1∏
k=1

∫ 1

0
dzk z

2kε−1
k (1− zk)2ε−1 Θ

(
zk

1− zk
<

αk+1

1− zk−1

)
.

(4.15)

The σn integral represents the overall UV divergence corresponding to simultaneously
shrinking all gluons to the origin. The remaining product of zk integrals can be sequen-
tially evaluated starting from zn−1 and working backwards to z1. Each such integral de-
pends upon a single Heaviside function, and may be carried out using the transformation
ρk = zk/(1− zk). Similarly to (3.17) each integration results in a hypergeometric function,
which becomes trivial upon expansion in ε. One ultimately finds

n∏
k=1

∫ λmax
k

0
dλk λ

2ε−1
k e−λk = Γ(2nε)

α2ε
2

2ε
α4ε

3

4ε
. . .

α
2(n−2)ε
n−1

2(n− 2)ε
α

2(n−1)ε
n

2(n− 1)ε
(
1 +O(ε2)

)
. (4.16)
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Substituting this back into (4.9) yields

F(D|π) =
(
g2
sN
2

µ2ε

m2ε

)n 1 +O(ε2)
(2ε)n n!

n∏
k=1

γikjk

∫ 1

0
dxk P (xk, γikjk) (αk(xk, xk−1))2(k−1)ε ,

(4.17)

where we explicitly wrote the arguments of αk = αk(xk, xk−1). At leading pole one may
ignore subleading contributions from the factors α2(k−1)ε

k , and by comparing with (3.7) one
observes that the leading singularity arising from this ordering is

F(D|π) =
1 +O(ε)

n!

∏
k

F (1)(γikjk) . (4.18)

Given that there are s(D) such orderings, eq. (4.7) yields the following leading singularity
of D:

F (n,−n)(D) =
s(D)
n!

n∏
k=1

F (1,−1)(γikjk) . (4.19)

Note that this result is consistent with the expression obtained above for the sum over
all diagrams D in the set, eq. (4.1), given that the total number of orderings of the n

subdiagrams is ∑
D

s(D) = n! . (4.20)

Equation (4.19) is the main result of this section. It shows that the leading pole of a
maximally reducible diagram composed of single-gluon exchanges can be explicitly related
to the product of the n constituent one-loop diagrams. The leading poles of different
diagrams in the web are equal up to the factor s(D) which counts the number of orders of
sequentially shrinking the different subdiagrams to the origin. In the next section we will
see that this property, in conjunction with the structure of the web mixing matrix, explains
the cancellation of the leading poles in these webs, as required by renormalization.

Before doing so, it is worth noting that there is an interesting constraint on the
structure of subleading poles, stemming from eq. (4.1). This relation implies that the sum
over all kinematic parts of a given web gives a complete factorised product of connected
subdiagrams. Consequently, whereas individual diagrams have subleading poles which
depend upon the ordering of their connected subdiagrams, the sum does not. This in
turn implies that subleading poles associated with non-connected subdiagrams such as
those on the r.h.s. of eqs. (3.29) must vanish upon summing over all diagrams in the web.
One may indeed check that the coefficients of the products F (2,−1)(2A)F (1,−1)(γ12) and
F (2,−1)(2G)F (1,−1)(γ23) sum separately to zero after substituting the results into eq. (4.1).
Likewise, the coefficients of F (2,−1)(2123)F (1,−1)(134) and F (2,−1)(2432)F (1,−1)(112) sum
to zero in eqs. (3.43). Note that this cancellation is not specific to the particular
class of diagrams considered here. For webs containing nc connected subdiagrams that
may be non-trivial (containing three gluon vertices etc.) one may use the appropriate
generalization of eq. (4.1), which is∑

D

F(D) =
nc∏
k=1

F(Ak) , (4.21)

where Ak is a connected subdiagram with kinematic part F(Ak).
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5 A new conjecture for web mixing matrices

The main aim of this paper has been to investigate the renormalization of multiparton webs
using the renormalizability of Wilson-line correlators. We have seen how to renormalize
webs, and learned that a tight singularity structure is realised on a web by web basis. The
explicit examples considered in section 3 confirm our expectation that the leading pole
of any given web cancels as a consequence of the properties of web mixing matrices in
conjunction with the factorization properties of the kinematic factors. We further saw in
section 4 that the factorization of the leading poles generalises to all orders for a particular
class of diagrams made of individual gluon exchanges. Since we also expect the cancellation
of leading singularities to persist to all orders — see eq. (2.20) — it is clear that the cancel-
lation mechanism we observed at three loops must be general. Building upon this insight,
in this section we formulate a new conjecture for web mixing matrices which explains these
cancellations. This conjecture, which we formulate below as a weighted column sum-rule,
appears to be a general combinatorial property of the web mixing matrices.

First, we need to precisely define the notion of maximal reducibility. In a given
web, not all diagrams have leading poles. One example is the web of figure 1, where
only three of the six diagrams are O(ε−3). A maximally reducible diagram has a number
of irreducible subdiagrams equal to the number of connected subdiagrams. It is easily
checked that this condition is verified by diagrams (3D)–(3F ) in figure 1, but not by
the first three diagrams: (3A) and (3C) have two irreducible subdiagrams and (3B) has
only one. All diagrams, though, have three connected pieces, which in this case are all
individual gluons. Another three-loop example, one with a three-gluon vertex, is that
of figure 12. These diagrams have just two connected pieces. The leftmost and central
diagrams are maximally reducible, as the two subdiagrams may be sequentially shrunk to
the origin. This is not the case for the rightmost diagram.

Having established the terminology, we may state our conjecture as follows:

Consider a single web W . For a given diagram D in W , let s(D) be the number
of distinct ways in which the irreducible subdiagrams of D may be shrunk to
the origin, where s(D) = 0 if D is not maximally reducible. Then the web
mixing matrix satisfies the weighted column sum rule∑

D

s(D)RDD′ = 0 ∀D′ , (5.1)

where the sum is over all the diagrams in W .

As an illustration of this result, consider the web of figure 1. This web has three
maximally reducible diagrams: (3D)–(3F ). Each of these has three irreducible subdia-
grams, each of which is a single gluon exchange. Furthermore, there is only one sequence
in each diagram by which one may shrink all the gluons to the origin: one must start with
the innermost gluon, and work sequentially outwards. The set of values s(D) for the six
diagrams may then be written as the row vector

s
(2,3,1)
D =

(
0 0 0 1 1 1

)
. (5.2)
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Equation (5.1) then amounts to the statement

(
0 0 0 1 1 1

)


3 0 −3 −2 −2 4
−3 6 −3 1 −2 1
−3 0 3 4 −2 −2

0 0 0 1 −2 1
0 0 0 −2 4 −2
0 0 0 1 −2 1


=
(

0 0 0 0 0 0
)
, (5.3)

where we have taken the web mixing matrix from eq. (3.10). A second, and perhaps less
trivial, example is provided by the web of figure 7, all of whose diagrams are maximally
reducible. However, whereas diagrams (3b) and (3c) have only one ordering by which one
may shrink the gluons to the origin, in diagrams (3a) and (3d) this ordering is not unique.
This is because the upper and lower gluons act on completely different parton lines, so that
the corresponding subdiagrams commute with each other. In both cases one may choose
either to shrink the upper gluon followed by the lower one, or vice versa. Thus, the vector
of multiplicity factors s(D) is given in this case by

s
(1,2,2,1)
D =

(
2 1 1 2

)
, (5.4)

and eq. (5.1) for this web is

(
2 1 1 2

)
1 −1 −1 1
−2 2 2 −2
−2 2 2 −2

1 −1 −1 1

 =
(

0 0 0 0
)
. (5.5)

Further examples of these symmetry factors may be found in appendix B.
As justification for this conjecture, let us first consider the special class of diagrams

considered in section 4, consisting entirely of individual gluon exchanges. There we were
able to derive a result for the leading pole of any maximally-reducible diagram. We saw
in eq. (4.19) that the leading pole for any such diagram D reduces to the product of the n
corresponding one-loop subdiagrams times a symmetry factor s(D). Thus, the leading poles
of the maximally-reducible diagrams in the set are all equal up to this symmetry factor.

One may then use the fact, discussed in section 2, that in order to satisfy the renormal-
ization constraints in the conformal limit, eq. (2.17), leading poles, O(ε−n), must cancel.
Assuming that there is no cancellation between different webs (which looks rather unlikely
given the different kinematic dependence) eq. (2.17) translates into a constraint on indi-
vidual webs, and given the independence of colour factors of different diagrams in a web,
this can only be realised if the mixing matrix admits eq. (2.20),∑

D

F (n,−n)(D)R(n)
(n1,...,nL)(D,D

′) = 0 , ∀D′ . (5.6)

Substituting the leading singularities according to (4.19) into (5.6) then immediately im-
plies that ∑

D

s(D)R(n)
(n1,...,nL)(D,D

′) = 0 , ∀D′ . (5.7)
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This is the weighted column sum rule of eq. (5.1) which, for this class of diagrams, is
implied by renormalization. The above argument does not extend, however, to diagrams
with non-trivial connected subdiagrams involving three or four gluon vertices or fermion
loops, in which case the number of connected pieces in the diagrams, nc, is smaller than
the order n. There are two reasons for this. Firstly, the maximal pole obtained by
shrinking individual subdiagrams to the origin would be in this case O(ε−nc); therefore
this singularity does not relate to the constraint (2.17) corresponding to O(ε−n) in w,
but rather to renormalization constraints of lower orders, as displayed in (2.14), which
necessarily involve commutator terms. Secondly, the factorization of the O(ε−nc) pole
obtained upon shrinking all subdiagrams to the origin for such a diagram takes a more
complicated form, which does not depend solely on the symmetry factor s(D).

Nevertheless, it is interesting to examine whether the weighted column sum rule of
eq. (5.1) still applies, even in the case of webs containing gluon interactions off the eikonal
lines. Some examples are shown in appendix B, and we find, somewhat remarkably, that
the sum rule holds in all cases! Given that we presently lack an explanation for this from
renormalization properties alone, it would be interesting to study the implications of this
result in more detail. The weighted column sum rule is analagous to other properties of
web mixing matrices (e.g. idempotence and zero sum rows) whose physical implications are
better understood, and which have been demonstrated to be general using combinatoric
methods [89, 91]. Two clear goals for future study are thus to attempt to understand the
physics embodied by eq. (5.1), and also to seek a combinatoric proof, which may involve
methods similar to those utilised in [91].

Note that even the justification of eq. (5.1) for the special case of diagrams with
individual gluon emissions falls short of a rigorous proof. The reason for this, as stated
above, is that we have assumed that no cancellations occur between different webs in writ-
ing eq. (2.20). This complication would be circumvented upon producing a combinatoric
proof which relies purely on the properties of individual webs, as has been carried out for
the zero sum row property in [91].

In this section, we have used the insight gained in previous sections from explicit
calculation of multiparton webs in order to arrive at a general conjecture regarding the
columns of web mixing matrices. This complements the zero sum row property, and hints
at the existence of further combinatoric structures underlying web mixing matrices. This
concludes, however, the analysis which we will undertake in this paper. In the following
section, we discuss our results and conclude.

6 Conclusions

In this paper, we have considered the renormalization properties of multiparton webs,
taking a further step in developing the diagrammatic approach [89–91] to soft-gluon expo-
nentiation in multiparton scattering. Webs constitute an efficient way of calculating the
exponents of eikonal amplitudes directly. They are therefore an important tool in the study
of multiparton amplitudes, and in particular their infrared singularity structure.
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Building upon [89, 90], we combined in this paper two complementary approaches to
soft-gluon exponentiation, one which stems from the multiplicative renormalizability of
Wilson-line correlators and one which utilises a diagrammatic interpretation.

According to the diagrammatic approach the fundamental objects composing the ex-
ponent at any given order in perturbation theory are webs. In the multiparton case, these
are not individual diagrams, but rather closed sets of diagrams that are related to each
other by permuting the gluon attachments to the Wilson lines. The colour and kinematic
factors of these diagrams are entangled through mixing matrices.

The problem of determining soft singularities in amplitudes is equivalent to the
problem of computing the renormalization of a corresponding eikonal amplitude. Mul-
tiplicative renormalizability implies that all soft singularities are encodable in a finite
anomalous dimension. Owing to recent progress the soft anomalous dimension in mul-
tiparton scattering is known to two-loop order. Determining its higher-loop corrections
and understanding its all-order properties is important from both a general field-theory
perspective, and a pragmatic collider-physics one. The present paper paves the way for
such calculations. There are several different aspects to this:

• Firstly, eikonal calculations in dimensional regularization suffer from an inherent
problem of giving rise to scaleless integrals involving both infrared and ultraviolet
singularities. Here we provide a prescription to disentangle these singularities at
any loop order: by using non-lightlike eikonal lines we avoid collinear poles, and by
introducing an exponential regulator along the Wilson lines (3.1) we eliminate soft
ones. This facilitates a direct computation of the anomalous dimension associated
with the multi-eikonal vertex.

• We have shown that multiplicative renormalizability, and the subsequent finite
anomalous dimension, imply a highly constrained singularity structure for the
exponent of the eikonal amplitude. Specifically, all multiple poles at any given
order are fully determined by lower-loop webs. Higher-order poles appear due to
two distinct reasons: running coupling corrections and, in the multi-eikonal case,
the non-commuting nature of the colour generators. Both these effects are fully
understood and are incorporated in the renormalization constraints, which are
summarised in eqs. (2.14) through four loops. These relations offer powerful checks
on any multiloop eikonal computation.

• Furthermore, we have demonstrated that these renormalization constraints are
satisfied on a web by web basis. Thus, the combinations formed through the
operation of the web mixing matrices have a singularity structure that is determined
by renormalization, where all multiple poles can be computed using lower-order
webs. Only the single pole terms at each order contain new information, which in
turn allows one to determine the corresponding contribution to the soft anomalous
dimension coefficient Γ(n) according to eqs. (2.15).

• A major difficultly in multiloop computations in dimensional regularization is the
increasingly high power in ε to which the expansion needs to be made. Being able to
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characterize, a priori, the singularity structure of webs, and consequently isolate the
single-pole contributions to the anomalous dimension facilitates efficient higher-loop
computations by both analytical and numerical methods.

We investigated in this paper the way in which the renormalization constraints of
eqs. (2.14) are satisfied focusing on the class of diagrams composed of individual gluon
exchanges. This class of diagrams has been convenient in that all divergences in any
diagram are related to the renormalization of the multi-eikonal vertex, rather than to the
renormalization of the strong coupling. As a consequence, this analysis is directly valid in
any gauge theory.

Our main findings can be summarised as follows: the renormalization constraints are
realised on a web-by-web basis through the operation of the web mixing matrix, in con-
junction with the fact that multiple poles in each diagram reduce to sums of products of
lower-order diagrams. Each term in this sum corresponds to a particular decomposition of
the original diagram into subdiagrams. At leading pole, any diagram reduces to a product
of all connected subdiagrams (single gluon exchanges in the case considered here) while
at subleading poles several terms occur, corresponding to different decompositions of the
diagram into its subdiagrams, where the latter may be reducible.

At subleading pole, and starting from three-loop order, the renormalization of the
multi-eikonal amplitude exponent becomes more complicated owing to the non-commuting
nature of the colour generators. As a consequence the renormalization constraints include
commutators of lower-order webs. The first non-trivial relation of this kind, eq. (2.21),
expresses the next-to-leading pole of three-loop contributions to the exponent in terms of a
commutator of two-loop and one-loop webs. In section 3 we verified by explicit calculations
that this relation is satisfied on a web-by web basis. A key ingredient is the fact that the
next-to-leading poles can indeed be written as a sum over decompositions of any three-loop
diagrams into two-loop times one-loop subdiagrams. The coefficients in front of each prod-
uct are clearly combinatoric in nature, and are still somewhat mysterious. A full analysis
of subdivergences would benefit from a more detailed investigation of these numbers.

The factorization property of the leading singularity has been established in section 4
for a general n-loop multi-eikonal diagram composed of individual gluon exchanges. We
found that in a given web, the leading singularities of all maximally reducible diagrams
are the same up to an overall symmetry factor, s(D), which counts the number of ways
of shrinking individual subdiagrams to the multi-eikonal vertex. We have seen that the
cancellation of the leading singularities in this class of webs can be understood through a
property of the corresponding mixing matrix: the zero column sum rule of eq. (5.1).

Furthermore, the sum rule (5.1) itself appears to be completely general, working also
for web diagrams which contain non-trivial connected subdiagrams. It is not yet clear what
the physics of this result is in terms of renormalization properties. Further insight may be
gained by corroborating the sum rule via a combinatoric proof, as has been achieved for
the zero sum row property in [91]. In any case, the weighted column sum rule may act as
a useful springboard for further investigation of the combinatorics underlying webs.
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In summary, soft-gluon exponentiation can both be derived from the renormalizability
of Wilson-line correlators and be constructed diagrammatically via webs. Putting these
two pictures together allowed us to determine the singularity structure of webs and gain
further insight to the structure of subdivergences. This understanding and the methods we
have developed pave the way for higher-loop computation of the soft anomalous dimension
and for a more complete understanding of infrared singularities in scattering amplitudes.

Acknowledgments

We are grateful to Eric Laenen and Gerben Stavenga for correspondence during early
stages of this project, and to Gregory Korchemsky, Lorenzo Magnea and George Sterman
for useful discussions. CDW is supported by the STFC Postdoctoral Fellowship “Collider
Physics at the LHC”, and thanks the School of Physics and Astronomy at the University
of Edinburgh for hospitality on a number of occasions.

A Results for kinematic factors

In this appendix, we collect results for the kinematic factors of various web diagrams up
to three loops, which are used throughout the paper in order to verify the renormalization
constraint of eq. (2.21). All results have been obtained using the method outlined in
section 3.2.1.

Firstly, one may consider the one-loop web of figure 2, whose kinematic part is given
by (3.7),

F (1)(1ij) =
(
µ2

m2

)ε
g2
s

2
Γ(1− ε)Γ(2ε)

4π2−ε γij

∫ 1

0
dx P (x, γij) . (A.1)

Next up are various two-loop webs, shown in figure 4, where we use labels introduced
in [89]. Their kinematic parts for the leading and first sub-leading poles are given by

F (2)(2a) = C2
γ12γ23

2ε

∫ 1

0
dxdw

(
1− x
w

)2ε

P (x, γ12)P (w, γ23)
(
1 +O(ε2)

)
(A.2a)

F (2)(2b) = C2
γ12γ23

2ε

∫ 1

0
dxdw

(
w

1− x

)2ε

P (x, γ12)P (w, γ23)
(
1 +O(ε2)

)
(A.2b)

F (2)(2f) = C2
γ2

12

2ε

∫ 1

0
dxdy

(
min

(
x

y
,
1− x
1− y

))2ε

P (x, γ12)P (y, γ12)
(
1 +O(ε2)

)
(A.2c)

F (2)(2g) = C2
γ2

12

2ε

∫ 1

0
dxdy

((
x

y

)2ε

−
(

1− x
1− y

)2ε
)

Θ(x− y)P (x, γ12)P (y, γ12)

×
(
1 +O(ε2)

)
, (A.2d)

where we defined the common factor

C2 =
(
µ2

m2

)2ε
g4
s

4
Γ(1− ε)2Γ(4ε)

(4π2−ε)2
. (A.3)
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These expressions, and those that follow in eqs. (A.4) and (A.6), are valid up to O(ε2) cor-
rections, which is all we require in this study. We note in passing that there is zero contribu-
tion at O(ε−2) for diagram (2g) as we expect from the fact that this diagram is irreducible.

In section 3.2 we consider the three-loop web shown in figure 1. The kinematic parts
of each diagram for leading and first subleading pole are found to be

F (3)(3A) = C3
γ2

12γ23

4ε2

∫ 1

0
dxdydw

(
1− x
w

)2ε
((

x

y

)2ε

−
(

1− x
1− y

)2ε
)

×Θ(x− y) P (x, γ12)P (y, γ12)P (w, γ23)
(
1 +O(ε2)

) (A.4a)

F (3)(3B) = C3
γ2

12γ23

8ε2

∫ 1

0
dxdydw

[(
1− y
w

)2ε
((

x

y

)4ε

−
(

1− x
1− y

)4ε
)

−2
(

1− x
w

)2ε
((

x

y

)2ε

−
(

1− x
1− y

)2ε
)]

×Θ(x− y) P (x, γ12)P (y, γ12)P (w, γ23)
(
1 +O(ε2)

)
(A.4b)

F (3)(3C) = C3
γ2

12γ23

8ε2

∫ 1

0
dxdydw

(
1− y
w

)−4ε
((

1− x
1− y

)−2ε

−
(
x

y

)−2ε
)

×Θ(x− y) P (x, γ12)P (y, γ12)P (w, γ23)
(
1 +O(ε2)

) (A.4c)

F (3)(3D) = C3
γ2

12γ23

8ε2

∫ 1

0
dxdydw

(
1− y
w

)2ε(
min

(
x

y
,
1− x
1− y

))4ε

× P (x, γ12)P (y, γ12)P (w, γ23)
(
1 +O(ε2)

) (A.4d)

F (3)(3E) = C3
γ2

12γ23

8ε2

∫ 1

0
dxdydw

[
2
(

1− x
w

)2ε(
min

(
x

y
,
1− x
1− y

))2ε

−
(

1− y
w

)2ε(
min

(
x

y
,
1− x
1− y

))4ε
]

× P (x, γ12)P (y, γ12)P (w, γ23)
(
1 +O(ε2)

)
(A.4e)

F (3)(3F ) = C3
γ2

12γ23

8ε2

∫ 1

0
dxdydw

(
w

1− x

)4ε(
min

(
x

y
,
1− x
1− y

))2ε

× P (x, γ12)P (y, γ12)P (w, γ23)
(
1 +O(ε2)

) (A.4f)

where the common factor C3 is as in eq. (3.19):

C3 =
(
µ2

m2

)3ε
g6
s

8
Γ(1− ε)3Γ(6ε)

(4π2−ε)3
. (A.5)

– 46 –



J
H
E
P
0
9
(
2
0
1
1
)
1
1
4

In section 3.3 we consider the three-loop web of figure 7. The kinematic parts in this
instance at leading and first subleading pole are found to be

F(3a) = C̃3
Γ(6ε)
8ε2

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)

×

(
3
(

1− x
y

)2ε

−
(

1− y
z

)2ε(1− x
y

)4ε
)(

1 +O(ε2)
) (A.6a)

F(3b) = C̃3
Γ(6ε)
8ε2

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)

(
x

y

)4ε(1− y
1− z

)2ε (
1 +O(ε2)

)
(A.6b)

F(3c) = C̃3
Γ(6ε)
8ε2

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)

(
z

1− y

)4ε( y

1− x

)2ε

×
(
1 +O(ε2)

) (A.6c)

F(3d) = C̃3
Γ(6ε)
4ε2

∫ 1

0
dxdydz P (x, γ12)P (y, γ23)P (z, γ34)

(
1− y
z

)2ε( y

1− x

)2ε

×
(
1 +O(ε2)

)
,

(A.6d)

where

C̃3 =
(
µ2

m2

)3ε
g6
s

8
Γ(1− ε)3

(4π2−ε)3
γ12γ23γ34 (A.7)

differs from eq. (3.19) only in the γij factors.

B Further examples of symmetry factors

In section 5 we formulate a weighted column sum rule for web mixing matrices, eq. (5.1).
This involves the symmetry factors s(D), which for a given diagram D quantify the
number of ways in which individual connected subdiagrams may be shrunk to the origin.
In this appendix, we give some further examples of these symmetry factors for various
webs together with the corresponding mixing matrices. We shall see that in each case the
weighted column sum rule of eq. (5.1) is admitted.

Firstly, we consider the web shown in figure 9, whose diagrams are labelled as in [89].
The web mixing matrix is

1
6



2 −1 −1 2 −1 −1

−1 2 −1 −1 −1 2

−1 −1 2 −1 2 −1

2 −1 −1 2 −1 −1

−1 −1 2 −1 2 −1

−1 2 −1 −1 −1 2





[[1], [2, 3, 1], [2], [3]]

[[1], [2, 3, 1], [3], [2]]

[[1], [2, 1, 3], [3], [2]]

[[1], [1, 2, 3], [3], [2]]

[[1], [2, 1, 3], [2], [3]]

[[1], [1, 2, 3], [2], [3]]


, (B.1)
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[[1],[2,3,1],[2],[3]] [[1],[2,3,1],[3],[2]] [[1],[2,1,3],[3],[2]]

[[1],[1,2,3],[3],[2]] [[1],[2,1,3],[2],[3]] [[1],[1,2,3],[2],[3]]

Figure 9. Web whose mixing matrix is given by eq. (B.1).

where we include the vector of labels on the right-hand side so as to define the ordering
of the diagrams in the matrix. The symmetry factors {s(D)} for this web are

s
(1,3,1,1)
D =

[
1 1 1 1 1 1

]
.

It is straightforward to see that with this s(D), the mixing matrix of (B.1) satisfies eq. (5.1).
Next, we consider the four loop web of figure 10, whose web mixing matrix is given by

1

24

266666666666666666666666666666666666666666666664

24 0 −18 −6 −6 −18 −18 −6 −18 −6 12 12 12 12 12 12

0 24 −6 −18 −18 −6 −6 −18 −6 −18 12 12 12 12 12 12

0 0 6 −6 2 −2 −2 2 −2 2 4 4 −4 −4 −4 4

0 0 −6 6 −2 2 2 −2 2 −2 −4 −4 4 4 4 −4

0 0 2 −2 6 2 −6 −2 2 −2 −4 4 −4 4 −4 4

0 0 −2 2 2 6 −2 −6 −2 2 −4 4 −4 4 4 −4

0 0 −2 2 −6 −2 6 2 −2 2 4 −4 4 −4 4 −4

0 0 2 −2 −2 −6 2 6 2 −2 4 −4 4 −4 −4 4

0 0 −2 2 2 −2 −2 2 6 −6 −4 −4 4 4 −4 4

0 0 2 −2 −2 2 2 −2 −6 6 4 4 −4 −4 4 −4

0 0 2 −2 −2 −2 2 2 −2 2 4 0 0 −4 0 0

0 0 2 −2 2 2 −2 −2 −2 2 0 4 −4 0 0 0

0 0 −2 2 −2 −2 2 2 2 −2 0 −4 4 0 0 0

0 0 −2 2 2 2 −2 −2 2 −2 −4 0 0 4 0 0

0 0 −2 2 −2 2 2 −2 −2 2 0 0 0 0 4 −4

0 0 2 −2 2 −2 −2 2 2 −2 0 0 0 0 −4 4

377777777777777777777777777777777777777777777775

266666666666666666666666666666666666666666666664

[[1, 2], [3, 1], [4, 3], [2, 4]]

[[1, 2], [2, 3], [3, 4], [4, 1]]

[[1, 2], [3, 1], [4, 3], [4, 2]]

[[1, 2], [2, 3], [3, 4], [1, 4]]

[[1, 2], [1, 3], [3, 4], [4, 2]]

[[1, 2], [3, 1], [3, 4], [2, 4]]

[[1, 2], [3, 2], [4, 3], [1, 4]]

[[1, 2], [2, 3], [4, 3], [4, 1]]

[[1, 2], [1, 3], [4, 3], [2, 4]]

[[1, 2], [3, 2], [3, 4], [4, 1]]

[[1, 2], [1, 3], [3, 4], [2, 4]]

[[1, 2], [2, 3], [4, 3], [1, 4]]

[[1, 2], [3, 1], [3, 4], [4, 2]]

[[1, 2], [3, 2], [4, 3], [4, 1]]

[[1, 2], [1, 3], [4, 3], [4, 2]]

[[1, 2], [3, 2], [3, 4], [1, 4]]

377777777777777777777777777777777777777777777775

.

(B.2)
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[[1,2],[3,1],[3,4],[2,4]] [[1,2],[2,3],[4,3],[4,1]] [[1,2],[3,2],[3,4],[4,1]] [[1,2],[2,3],[3,4],[1,4]]

[[1,2],[3,2],[4,3],[1,4]] [[1,2],[1,3],[4,3],[4,2]] [[1,2],[3,2],[3,4],[1,4]] [[1,2],[1,3],[3,4],[4,2]]

[[1,2],[3,1],[4,3],[4,2]] [[1,2],[1,3],[4,3],[2,4]] [[1,2],[1,3],[3,4],[2,4]] [[1,2],[2,3],[4,3],[1,4]]

[[1,2],[3,1],[3,4],[4,2]] [[1,2],[3,2],[4,3],[4,1]] [[1,2],[3,1],[4,3],[2,4]] [[1,2],[2,3],[3,4],[4,1]]

Figure 10. Web whose mixing matrix is given by eq. (B.2).

The symmetry factors in this case are more complicated, and are given by

s
(2,2,2,2)
D =

[
0 0 1 1 1 1 1 1 1 1 2 2 2 2 4 4

]
.

Again, one can easily verify that with this s(D), the mixing matrix of (B.2) satisfies
eq. (5.1). Note that two diagrams are not maximally reducible, as already pointed out
in [89]. Furthermore, there are 3 topologies of maximally reducible diagram equivalent
under reflections and rotations, which give rise to 3 possible values for s(D), each with a
nontrivial multiplicity.

Next we consider a second four loop example, namely the web of figure 11. In this
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[[1],[1,2],[2,3],[3,4],[4]] [[1],[2,1],[3,2],[4,3],[4]] [[1],[2,1],[2,3],[3,4],[4]] [[1],[2,1],[3,2],[3,4],[4]]

[[1],[1,2],[2,3],[4,3],[4]] [[1],[1,2],[3,2],[4,3],[4]] [[1],[2,1],[2,3],[4,3],[4]] [[1],[1,2],[3,2],[3,4],[4]]

Figure 11. Web whose mixing matrix is given by eq. (B.3).

case the mixing matrix is

1
24



6 −6 −6 6 −6 6 6 −6

−6 6 6 −6 6 −6 −6 6

−2 2 2 −2 2 −2 −2 2

2 −2 −2 2 −2 2 2 −2

−2 2 2 −2 2 −2 −2 2

2 −2 −2 2 −2 2 2 −2

2 −2 −2 2 −2 2 2 −2

−2 2 2 −2 2 −2 −2 2





[[1], [1, 2], [2, 3], [3, 4], [4]]

[[1], [2, 1], [3, 2], [4, 3], [4]]

[[1], [2, 1], [2, 3], [3, 4], [4]]

[[1], [2, 1], [3, 2], [3, 4], [4]]

[[1], [1, 2], [2, 3], [4, 3], [4]]

[[1], [1, 2], [3, 2], [4, 3], [4]]

[[1], [2, 1], [2, 3], [4, 3], [4]]

[[1], [1, 2], [3, 2], [3, 4], [4]]



, (B.3)

and the corresponding symmetry factors are

s
(1,2,2,2,1)
D =

[
1 1 3 3 3 3 5 5

]
.

There are again three different possible values of s(D). Interestingly in this case, these
values are all odd numbers. Also here the sum rule of eq. (5.1) is satisfied.

Let us now consider a few examples of multiparton webs that contain one or more
three-gluon vertices. A simple one is the three-loop web W

(3)
(1,3,1) shown in figure 12. The

mixing matrix is given by

1
6


3 −3 0

−3 3 0

−3 −3 6




[[1], [1, 2, 2], [2], []]

[[1], [2, 2, 1], [2], []]

[[1], [2, 1, 2], [2], []]

 (B.4)

and the symmetry factors by
s
(1,3,1)
D =

[
1 1 0

]
,
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[[1],[1,2,2],[2],[]] [[1],[2,2,1],[2],[]] [[1],[2,1,2],[2],[]]

Figure 12. Diagrams contributing to eq. (B.4).

[[1,2],[2,1],[1,2],[]] [[1,2],[1,2],[1,2],[]] [[1,2],[2,1],[2,1],[]] [[1,2],[1,2],[2,1],[]]

Figure 13. Diagrams contributing to eq. (B.5).

admitting the sum rule of eq. (5.1).

Next consider the four-loop webs involving two three-gluon vertices, W (4)
(2,2,2), shown in

figure 13. The mixing matrix in this case is given by:

1
24


24 −24 0 0

0 0 0 0

0 −24 24 0

0 −24 0 24




[[1, 2], [2, 1], [1, 2], []]

[[1, 2], [1, 2], [1, 2], []]

[[1, 2], [2, 1], [2, 1], []]

[[1, 2], [1, 2], [2, 1], []]

 (B.5)

and the symmetry factors are

s
(1,3,1)
D =

[
0 1 0 0

]
.

Because three out of the four diagrams have no subdivergences, leaving just one maximally
reducible diagram, [[1,2],[1,2],[1,2],[]], the sum rule of eq. (5.1) reduces to the statement
that each element in the second row of (5.1) must vanish. This is indeed the case.
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[[1,2],[1,3,1],[2,3]] [[1,2],[2,3,2],[1,3]] [[1,2],[1,3,1],[3,2]] [[1,2],[2,3,2],[3,1]]

[[1,2],[3,1,1],[3,2]] [[1,2],[3,2,2],[3,1]] [[1,2],[3,1,1],[2,3]] [[1,2],[3,2,2],[1,3]]

[[1,2],[1,1,3],[3,2]] [[1,2],[2,2,3],[3,1]] [[1,2],[1,1,3],[2,3]] [[1,2],[2,2,3],[1,3]]

Figure 14. Diagrams contributing to eq. (B.6).

Next, consider the four loop example of figure 14 with mixing matrix

1
24



24 0 0 0 −12 −12 −16 −4 8 −4 8 8

0 24 0 0 −12 −12 8 8 −4 8 −16 −4

0 0 24 0 0 0 −16 −16 8 −16 8 8

0 0 0 24 0 0 8 8 −16 8 −16 −16

0 0 0 0 12 −12 −4 8 −4 −4 −4 8

0 0 0 0 −12 12 −4 −4 8 8 −4 −4

0 0 0 0 0 0 8 −4 −4 −4 8 −4

0 0 0 0 0 0 −4 8 8 −4 −4 −4

0 0 0 0 0 0 −4 8 8 −4 −4 −4

0 0 0 0 0 0 −4 −4 −4 8 −4 8

0 0 0 0 0 0 8 −4 −4 −4 8 −4

0 0 0 0 0 0 −4 −4 −4 8 −4 8





[[1, 2], [1, 3, 1], [2, 3]]

[[1, 2], [2, 3, 2], [3, 1]]

[[1, 2], [3, 1, 1], [2, 3]]

[[1, 2], [2, 2, 3], [3, 1]]

[[1, 2], [2, 3, 2], [1, 3]]

[[1, 2], [1, 3, 1], [3, 2]]

[[1, 2], [1, 1, 3], [2, 3]]

[[1, 2], [3, 1, 1], [3, 2]]

[[1, 2], [2, 2, 3], [1, 3]]

[[1, 2], [3, 2, 2], [1, 3]]

[[1, 2], [3, 2, 2], [3, 1]]

[[1, 2], [1, 1, 3], [3, 2]]



(B.6)

and symmetry factors
s
(2,3,2)
D =

[
0 0 0 0 0 0 1 1 1 1 1 1

]
, (B.7)
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[ [1],[1,2],[2,3,2],[3]] [[1],[2,1],[2,3,2],[3]] [[1],[2,1],[3,2,2],[3]]

[[1],[1,2],[2,2,3],[3]] [[1],[2,1],[2,2,3],[3]] [[1],[1,2],[3,2,2],[3]]

Figure 15. Diagrams contributing to eq. (B.8).

such that the column sum rule is satisfied. All of the examples involving three gluon vertices
that we have so far considered involve s(D) values of 1 or 0 only. As a final non-trivial
example, it is thus instructive to consider the web of figure 15. Here the mixing matrix is

1
24



12 −12 8 −4 4 −8

−12 12 −4 8 −8 4

0 0 8 8 −8 −8

0 0 8 8 −8 −8

0 0 −4 −4 4 4

0 0 −4 −4 4 4





[[1], [1, 2], [2, 3, 2], [3]]

[[1], [2, 1], [2, 3, 2], [3]]

[[1], [2, 1], [3, 2, 2], [3]]

[[1], [1, 2], [2, 2, 3], [3]]

[[1], [2, 1], [2, 2, 3], [3]]

[[1], [1, 2], [3, 2, 2], [3]]


(B.8)

and the symmetry factors are

s
(1,2,3,1)
D =

[
0 0 1 1 2 2

]
. (B.9)

Even in this case, the weighted column sum rule is satisfied.
Beyond presenting evidence for the sum rule of eq. (5.1), we believe that these

examples will be useful for further study of the symmetry factors and the role the sum
rule plays in constraining the corresponding web mixing matrices. It is clear that some
interesting combinatoric patterns underly the possible values of these objects. It would be
both interesting and useful to know what these are.
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