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1 Introduction

Our understanding of heavy flavour physics is incomplete without a deeper insight in the

processes with heavy-flavoured baryons. The (electro)weak decays of Λb, Λc and other

b- or c-baryons, such as Λb → pℓνℓ, Λc → Λℓνℓ, Λb → Λℓℓ̄ and Λb → Λγ, can provide

valuable information on the underlying quark-flavour operators, in particular, on their spin

structure. Some exclusive decay channels of heavy baryons are already being investigated

at Tevatron and LHC (see e.g., [1–4]). For a comprehensive analysis of these processes the

heavy-to-light baryon form factors have to be calculated in QCD. These form factors are

also used in the factorization estimates for nonleptonic decays e.g., for Λb → pπ.

Another topical problem, which stems from a different physical context, concerns the

charmed baryon and meson strong couplings to the nucleon, for example, the ΛcDN or

ΛcD
∗N couplings. These strong interaction parameters can be used as normalization inputs

in the models of charm production in the proton-antiproton collisions, such as the future

experiment PANDA [5].

The lattice QCD studies do not yet access the heavy-to-light baryon form factors,

whereas strong couplings in general remain a problem for the lattice simulations. The sit-

uation is more advanced for the non-lattice techniques. Among them, the method of QCD

light-cone sum rules [6–8] (LCSR), well developed to calculate the heavy-to-light meson

form factors [9–12], is flexible enough to predict also the baryonic matrix elements. One

possibility to derive LCSR for the baryon form factors is to consider, in full analogy with

the meson case, the vacuum → nucleon correlation function and express the result of the

operator-product expansion (OPE) near the light-cone in terms of the nucleon distribu-

tion amplitudes (DA’s). The latter have been worked out in [13, 14]. This approach was

applied to the nucleon electromagnetic form factors [15–17], where the second nucleon in

the correlation function was interpolated with the three-quark current e.g., with the Ioffe

current [18]. In order to access heavy baryons, e.g., Λc or Λb, one has to use a three-quark

current with one heavy c or b quark. Matching the QCD calculation result for the cor-

relation function to the hadronic dispersion relation in the variable of the heavy-baryon

momentum squared, one obtains the LCSR for a heavy-to-light form factor. Furthermore,

a sum rule for the (heavy baryon)-(heavy meson)-nucleon strong coupling can be obtained

from the double dispersion relation for the same correlation function. Originally, this

method was used to calculate the D∗Dπ coupling in [19].

The aim of this paper is to calculate the heavy-to-light baryon form factors and strong

couplings from the LCSR with the nucleon DA’s. In the literature, one can find several ap-

plications of LCSR [20–24] or other QCD sum rule techniques [25–28] to the heavy-baryon

form factors and strong couplings. There is however an important problem in the sum rules

for baryons which is absent in the case of mesons. Whatever three-quark current one uses to

interpolate a given baryon, not only the ground state with the positive parity (JP = 1/2+),

but also a heavier baryon resonance with the negative parity (JP = 1/2−) couples to that

current. As a result, e.g., in the hadronic dispersion relation for the isospin-zero charmed

baryons, the ground state Λc is accompanied by a ≃ 300 MeV heavier negative-parity res-

onance Λc(2595) [29], which we hereafter denote as Λ∗
c . In the b-baryon spectrum, the Λ∗

b
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resonance with JP = 1/2− is expected to have a similar mass difference with respect to Λb.

Note that Λ∗
c(b) is a P -wave state in terms of quark model, and not a radial excitation of

Λc(b). Also the mass difference of heavy-light baryons with JP = 1/2− and JP = 1/2+ is

smaller, than in the case of light-quark baryons. Consequently, the influence of negative-

parity states on the sum rules for heavy-light baryon matrix elements is expected to be

more significant than in the case of the nucleon form factors. Hence, a usual quark-hadron

duality ansatz for the hadronic spectral density in QCD sum rules — one lowest Λc(b) res-

onance plus continuum approximated with OPE — is not accurate. Moreover, we expect

that this simplified ansatz is one of the main reasons why there is a substantial depen-

dence of the sum rule results on the choice of the interpolating heavy-baryon current in

the correlation function.

Several approaches were suggested in the literature to isolate the negative-parity

baryons in QCD sum rules. In [30], the heavy quark limit was employed, making use

of the fact that the contributions of positive (negative) parity baryons in the two-point

sum rules are proportional to [1+ 6v] ([1− 6v]), where v is the 4-velocity vector of the heavy

baryon. Hence, one can introduce a parity projection matrix for the correlation function

and construct two separate sum rules for the positive and negative parity baryons. How-

ever, such a procedure only works for infinitely heavy baryons, hence, at finite masses it

cannot guarantee a clean separation of the negative parity states, especially in the case of

charmed baryons. Another possibility suggested in [31] is to introduce the step function

θ(x0) in the correlation function and separate the contributions from baryons with different

parities. One advantage of this ansatz is that it also works for light baryons.

In what follows, we adopt a new approach, including the contributions of negative

parity baryons explicitly in the hadronic dispersion relations. The idea is very simple: we

use a linear combination of the sum rules obtained from different kinematical structures of

the same correlation function, so that the negative-parity baryon terms are cancelled out

and only the ground-state baryon contribution is retained. The advantage of this procedure

is that it does not rely on the heavy quark limit. Also, as we shall see from the numerical

results, the form factor determination from LCSR becomes largely insensitive (within the

uncertainties of our calculation) to the choice of the interpolating baryonic current.

The main phenomenological results obtained in this paper include the form factors

of Λb → p transition and the strong couplings ΛcND
(∗) and ΣcND

(∗). The plan of the

paper is as follows. In section 2 we introduce the correlation functions and discuss the

choice of the quark currents. In section 3 we derive the hadronic dispersion relations for

these correlation functions. In section 4 the LCSR for the heavy-baryon → nucleon form

factors are obtained, calculating the correlation functions in terms of the nucleon DA’s and

matching them to the dispersion relations. Since the form factors enter LCSR together

with the decay constants of heavy baryons, in section 5 we describe the two-point QCD

sum rules used for these constants. In section 6, the LCSR for the strong couplings are

derived. The details of the numerical analysis of the form factors and strong couplings

are collected in section 7. Section 8 contains our predictions for the exclusive semileptonic

Λb → pℓνℓ and nonleptonic Λb → pπ decays based on the form factors obtained from LCSR.

Section 9 is reserved for the concluding discussion. The paper contains several appendices

– 3 –
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where the bulky expressions of the nucleon DA’s (appendix A), LCSR for the form factors

(appendices B, C), the two-point sum rules for the decay constants (appendix D) and the

double spectral densities used in LCSR for the strong couplings (appendix E) are collected.

2 Correlation function and interpolating currents

As a first step to derive the LCSR, we introduce the following vacuum-to-nucleon correlation

function:

Πa(P, q) = i

∫
d4z eiq·z 〈0|T {η(0), ja(z)} |N(P )〉 . (2.1)

In the above, the current η interpolating a heavy-light baryon and the current ja of the

heavy-light transition (a indicates a certain Lorentz structure) enter the T -product, sand-

wiched between the nucleon on-shell state |N〉 with the four-momentum P (P 2 = m2
N )

and the vacuum. The heavy-quark mass mQ is finite, and the calculation is applicable to

both charmed (mQ = mc) and beauty (mQ = mb) baryons. Moreover, a generalization to

the case of strange baryons is possible in the same framework (mQ → ms), provided the

external momentum transfer q is deep spacelike. For the heavy quarks this condition is ful-

filled if q2 ≪ m2
Q. Note that the N -state is taken as an initial one in (2.1) for simplicity, in

order to directly use the definitions of the nucleon DA’s from [13]. In the phenomenological

applications of our interest N is a proton.

For definiteness, in what follows we consider the correlation function (2.1) with the

c-quark, selecting the flavour configuration udc for the baryon interpolating current and,

correspondingly, c̄u for the transition current. With this choice, we first derive LCSR for

the Λc → p and Σc → p form factors. Switching from c to b quark in the Λc → p sum rules

(and accordingly adjusting the relevant scales in the correlation function), we obtain the

LCSR for Λb → p form factors, our first phenomenological goal. Furthermore, the flavour

configuration chosen in (2.1) leads, via double dispersion relations, to LCSR for the strong

couplings of charmed baryons Λc,Σc with the nucleon and D(∗)-mesons.

In what follows, we consider the heavy-light transition currents with pseudoscalar,

vector and axial-vector quantum numbers:

ja = c̄Γau , with Γa = mciγ5, γµ, γµγ5 , (2.2)

respectively. For the sake of renormalization invariance, the quark mass is inserted in the

pseudoscalar current.

For the heavy-light baryon interpolating current we have the following general struc-

ture:

η = ǫijk (uiC Γb dj) Γ̃b ck , (2.3)

where the first fermion field ui should be hereafter understood as uT
i , C is the charge

conjugation matrix, and the sum goes over the colour indices i, j, k. There are multiple

choices for the Dirac structures Γb and Γ̃b in the above current. The discussion of the

optimal choice of the baryon interpolating current goes back to the early papers [18, 32, 33].

In the Λc-baryon, the isospin of the light diquark [ud] is zero, excluding the structures γµ

– 4 –
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and σµν for Γb in the η current. Still there is a freedom to choose in (2.3) the following

combinations: Γb = γ5, Γ̃b = 1, leading to

η = η
(P)
Λc

= (uC γ5 d) c, (2.4)

or Γb = γ5γλ, Γ̃b = γλ, for which

η = η
(A)
Λc

= (uC γ5γλ d) γ
λ c . (2.5)

In addition, a simpler current

η
(S)
Λc

= (uC d) γ5 c , (2.6)

is also possible, as well as any linear combination of all three above currents.

The heavy-quark limit [32] provides another guiding principle for choosing an optimal

heavy baryon current, at least at the qualitative level. In particular, since the light diquark

system in the current (2.6) is in the P -wave, this current is not expected [30] to have

a considerable overlap with the ground-state Λc. Hence, in what follows we will only

leave (2.4) and (2.5) under consideration, which we denote as the pseudoscalar and axial-

vector currents, respectively. The correlation functions (2.1) with the pseudoscalar (axial-

vector) interpolating current and with the transition currents listed in (2.2) are denoted as

Π
(P)
5 , Π

(P)
µ , Π

(P)
µ5 (Π

(A)
5 , Π

(A)
µ , Π

(A)
µ5 ), respectively.

Turning to the Σc baryon where the light diquark [ud] has isospin one, we again adopt

two different currents: the Ioffe current [18] with Γb = γλ, and Γ̃b = γλγ5:

η
(I)
Σc

= (uC γλ d) γ
λγ5 c , (2.7)

and the tensor current with Γb = σµν and Γ̃b = σµνγ5:

η
(T )
Σc

= (uσµν d) σ
µνγ5c . (2.8)

The Ioffe current is used in the LCSR for the nucleon form factors [16]. One advantage

of this current is that the power corrections terms are small. On the other hand, the tensor

current provides a reduced continuum contributions, at least in the sum rules with light

baryons [33].

3 Accessing the form factors with hadronic dispersion relations

We begin with the hadronic transitions involving Λc. Following the usual procedure of

the QCD sum rule derivation, we insert in the correlation function (2.1) a total set of

charmed-baryon states between the interpolating current η = η
(i)
Λc

(where i = P or A) and

the transition current ja. In the resulting hadronic dispersion relation the contributions of

the lowest state Λc and its negative-parity partner Λ∗
c enter. The residue of the Λc-pole

contains the product of two hadronic matrix elements. The first one is the coupling of Λc

with the interpolating current η
(i)
Λc

(the decay constant), defined as

〈0| η(i)
Λc

|Λc(P − q)〉 = mΛcλ
(i)
Λc
uΛc(P − q) , (3.1)

– 5 –
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where uΛc(P −q) is the Λc-bispinor with the four-momentum (P −q). The second hadronic

matrix element 〈Λc(P − q)| ja |N(P )〉 is defined in terms of N → Λc form factors which are

equal to the Λc → N form factors of our interest, up to an inessential general phase.

For the pseudoscalar transition current there is only one form factor, which we define

as:

〈Λc(P − q)|mcc̄ iγ5 u |N(P )〉 = (mΛc +mN )G(q2)ūΛc(P − q)iγ5 uN (P ) , (3.2)

where the mass-dependent factor on r.h.s. is introduced to keep the form factor G(q2)

dimensionless. The hadronic matrix elements with the vector and axial-vector transition

currents contain three form factors each:

〈Λc(P − q)| c̄ γµ u |N(P )〉= ūΛc(P−q)
{
f1(q

2) γµ + i
f2(q

2)

mΛc

σµνq
ν +

f3(q
2)

mΛc

qµ

}
uN (P ) ,

(3.3)

〈Λc(P−q)| c̄ γµγ5 u |N(P )〉= ūΛc(P−q)
{
g1(q

2) γµ + i
g2(q

2)

mΛc

σµνq
ν +

g3(q
2)

mΛc

qµ

}
γ5uN (P ) .

(3.4)

Taking the divergence of the axial-vector current one obtains the following relation:

G(q2) = g1(q
2) − q2

mΛc(mΛc +mN )
g3(q

2) . (3.5)

The Λ∗
c-pole term in the dispersion relation contains the decay constant

〈0| η(i)
Λc

|Λ∗
c(P − q)〉 = mΛ∗

c
λ

(i)
Λ∗

c
γ5uΛ∗

c
(P − q) , (3.6)

which is multiplied with the form factor of the N → Λ∗
c transition. For the pseudoscalar

transition current we define this form factor as

〈Λ∗
c(P − q)|mcc̄ iγ5 u |N(P )〉 = (mΛ∗

c
−mN )G̃(q2)iūΛ∗

c
(P − q)uN (P ) . (3.7)

For the vector and axial-vector currents the definitions of the corresponding form factors

f̃1,2,3(q
2) and g̃1,2,3(q

2) are obtained from (3.3) and (3.4), respectively, adding γ5 after the

Λc bispinor and replacing Λc → Λ∗
c.

Taking into account the equation of motion (/P − mN )uN (P ) = 0, we decompose

the correlation function (2.1) in independent invariant amplitudes. In the case of the

pseudoscalar transition current j5 there are two amplitudes:

Π
(i)
5 (P, q) =

[
Π

(i)
1 ((P − q)2, q2) + /qΠ

(i)
2 ((P − q)2, q2)

]
iγ5uN (P ) , (3.8)

for both i = P or A. In the case of the vector current jµ there are six invariant amplitudes:

Π(i)
µ (P, q) =

(
Π̃

(i)
1 Pµ + Π̃

(i)
2 Pµ/q + Π̃

(i)
3 γµ + Π̃

(i)
4 γµ/q + Π̃

(i)
5 qµ + Π̃

(i)
6 qµ/q

)
uN (P ) ,(3.9)

where the dependence of Π̃
(i)
1−6 on (P − q)2 and q2 is not shown for brevity; a similar

decomposition for the correlation function Π
(i)
µ5 with the axial-vector current jµ5 reads:

Π
(i)
µ5(P, q)=

(
Π̄

(i)
1 Pµ + Π̄

(i)
2 Pµ/q + Π̄

(i)
3 γµ + Π̄

(i)
4 γµ/q + Π̄

(i)
5 qµ + Π̄

(i)
6 qµ/q

)
γ5uN (P ) . (3.10)

– 6 –
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Employing the above definitions of decay constants and form factors, and summing

over the helicities of the Λc and Λ∗
c, we obtain the hadronic dispersion relations for each

invariant amplitude in (3.8), (3.9) and (3.10). In the case of the pseudoscalar current one

has:

Π
(i)
1 ((P − q)2, q2) =

mΛc(m
2
Λc

−m2
N )λ

(i)
Λc
G(q2)

m2
Λc

− (P − q)2

+
mΛ∗

c
(m2

Λ∗

c
−m2

N )λ
(i)
Λ∗

c
G̃(q2)

m2
Λ∗

c
− (P − q)2

+

∞∫

sh
0

ds
ρ
(i)
1 (s, q2)

s− (P − q)2
, (3.11)

and

Π
(i)
2 ((P − q)2, q2) = −

mΛc(mΛc +mN )λ
(i)
Λc
G(q2)

m2
Λc

− (P − q)2

+
mΛ∗

c
(mΛ∗

c
−mN )λ

(i)
Λ∗

c
G̃(q2)

m2
Λ∗

c
− (P − q)2

+

∞∫

sh
0

ds
ρ
(i)
2 (s, q2)

s− (P − q)2
, (3.12)

where the hadronic spectral densities of all excited and continuum states with the quantum

numbers of Λc and Λ∗
c are denoted as ρ

(i)
1,2, and sh

0 is the corresponding threshold. Possible

subtractions are neglected, having in mind the subsequent Borel transformation.

In the case of the vector transition current the dispersion relations for the six indepen-

dent invariant amplitudes have the same structure as (3.11) and (3.12). Instead of writing

them down one by one, we present one combined expression for the correlation function,

written in terms of the hadronic contributions:

Π(i)
µ (P, q)=

λ
(i)
Λc
mΛc

m2
Λc

− (P − q)2

[
2f1(q

2)Pµ − 2
f2(q

2)

mΛc

Pµ 6q

+(mΛc−mN)

(
f1(q

2) − mΛc +mN

mΛc

f2(q
2)

)
γµ+

(
f1(q

2) − mΛc +mN

mΛc

f2(q
2)

)
γµ 6q

+

(
− 2f1(q

2)+
mΛc +mN

mΛc

(f2(q
2)+f3(q

2))

)
qµ+

1

mΛc

(f2(q
2)−f3(q

2))qµ 6q
]
uN (P )

+
λ

(i)
Λ∗

c
mΛ∗

c

m2
Λ∗

c
− (P − q)2

[
− 2f̃1(q

2)Pµ + 2
f̃2(q

2)

mΛ∗

c

Pµ 6q

+(mΛ∗

c
+mN)

(
f̃1(q

2) +
mΛ∗

c
−mN

mΛ∗

c

f̃2(q
2)

)
γµ−

(
f̃1(q

2) +
mΛ∗

c
−mN

mΛc

f̃2(q
2)

)
γµ 6q

+

(
2f̃1(q

2) +
mΛ∗

c
−mN

mΛ∗

c

(f̃2(q
2)+f̃3(q

2))

)
qµ − 1

mΛ∗

c

(f̃2(q
2)−f̃3(q

2))qµ 6q
]
uN (P )

+

∞∫

sh
0

ds

s− (P − q)2

(
ρ̄
(i)
1 (s, q2)Pµ + ρ̃

(i)
2 Pµ/q

+ρ̃
(i)
3 γµ + ρ̃

(i)
4 γµ/q + ρ̃

(i)
5 qµ + ρ̃

(i)
6 qµ/q

)
uN (P ) . (3.13)
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Collecting the coefficients at each bispinor structure in the above, we equate their sum to

the amplitude Π̃
(i)
1,...,6 which multiplies the same structure in the decomposition (3.9). The

analogous hadronic decomposition for the correlation function Π
(i)
µ5(P, q) with the axial-

vector current can be obtained from (3.13) by replacing fi → gi, f̃i → g̃i, changing the sign

of mN and adding γ5 before the nucleon spinor.

The hadronic dispersion relations for the correlation function with the Σc interpolating

currents are obtained from the relations for the Λc presented above by simple replacements

Λc → Σc and Λ∗
c → Σ∗

c . We identify the Σ∗
c(1/2

−) state with the resonance Σc(2800) [29]

whose mass is close to the expected one:

mΣ∗

c
≃ mΣc + (mΛ∗

c
−mΛc) ≃ 2764 MeV. (3.14)

The dispersion relations obtained above will be used in the following section to derive

the LCSR.

4 Light-cone sum rules for the form factors

We now turn to the computation of the correlation function (2.1) for the Λc → p transition,

employing two different interpolating currents for Λc and, in each case, the three transition

currents listed in (2.2). Throughout this calculation we neglect the light-quark masses

everywhere; the only two mass parameters in the correlation function are the c-quark

mass mc and the nucleon mass mN , the latter entering the nucleon DA’s. The external

4-momenta P − q and q are taken spacelike, (P − q)2, q2 ≪ m2
c , to justify the expansion

of the product of the two currents in (2.1) near the light-cone (z2 ∼ 0). The OPE result is

obtained as a sum over nucleon DA’s of growing twist, convoluted with the hard-scattering

amplitudes formed by the virtual c-quark propagator, as shown in the diagram of figure 1.

We include all three-particle nucleon DA’s from twist 3 to twist 6. The contributions of soft

gluons emitted from the c-quark and absorbed by the nucleon, demand the knowledge of

the four-particle (three-quark-gluon) nucleon DA’s. Their analysis has just started [34, 35].

In fact, the soft-gluon contributions to OPE are expected to be suppressed by extra powers

of the virtual c-quark propagator. Another future improvement of LCSR is possible, if

one calculates the O(αs) corrections to the correlation function corresponding to the hard

gluon exchanges between the quark lines in the diagram of figure 1.

The nucleon DA’s at z2 → 0 are defined according to [13]:

〈0| ǫijkui
α(0)uj

β(z)dk
γ(0) |N(P )〉 = V1 (6PC)αβ (γ5uN )γ + A1 (6Pγ5C)αβ (uN )γ

+T1 (P νiσµνC)αβ (γµγ5uN )γ + . . . (4.1)

where α, β, γ are Dirac indices. The terms shown above receive their contributions from the

lowest twist-3 DA’s. The complete, rather bulky decomposition is presented in appendix A.

In (4.1), the calligraphic notations F = {V1,A1,T1} denote the integrals over the twist-3

nucleon DA’s:

F =

∫
dx1dx2dx3δ(1 − x1 − x2 − x3)e

−ix2P ·zF (xi, µ) , (4.2)
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N(P )

0 z

u d u

c

P − q q

Figure 1. Diagrammatic representation of the correlation function (2.1). The wavy lines (oval)

represent the external currents (the nucleon DA).

denoted by the same noncalligraphic letters F = {V1, A1, T1}, where xi = {x1, x2, x3},
(0 ≤ xi ≤ 1) are the longitudinal momentum fractions of the quarks in the nucleon and µ

is the normalization scale. The twist-3 DA’s:

V1(xi, µ) = 120x1x2x3[φ
0
3(µ) + φ+

3 (µ)(1 − 3x3)] ,

A1(xi, µ) = 120x1x2x3(x2 − x1)φ
−
3 (µ) ,

T1(xi, µ) = 120x1x2x3[φ
0
3(µ) − 1

2
(φ+

3 (µ) − φ−3 (µ))(1 − 3x3)] . (4.3)

are derived in [13] where one can find the details. The expressions for the nucleon DA’s of

twist 4, 5, 6 as well as the relations for their normalization and shape parameters, such as

φ0,±
3 in (4.3), are presented in appendix A.

Substituting the decomposition (4.1) in the correlation functions Π
(i)
5, µ, µ5, we isolate

the invariant amplitudes. The integration over the variable x1 is performed easily, while the

virtual c-quark momentum in the chosen configuration is equal to (x2P − q) and contains

no x1-dependence. The result is represented as a sum of integrals over the remaining

variable x2 ≡ x.

For the correlation function with the pseudoscalar transition current, the invariant

amplitudes defined in (3.8) can be transformed to the following form:

Π
(i)
j ((P − q)2, q2) =

mc

4

∑

n=1,2,3

1∫

0

dx
ω

(i)
jn(x, (P − q)2, q2)

Dn
(4.4)

with the denominator

D = m2
c − (xP − q)2 = m2

c − x(P − q)2 − x̄q2 + xx̄m2
N , (4.5)
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and x̄ = 1 − x. The functions ω
(i)
jn are distinguished by their indices: i = P,A (baryon

current), j = 1, 2 (the number of the invariant amplitude) and n = 1, 2, 3 (the power of the

denominator). They depend linearly on (P − q)2, q2 and polynomially or logarithmically

on x. Note that in (4.4) we do not show the terms which vanish after Borel transformation

in (P − q)2. Since the invariant amplitudes in the form (4.4) will now be used in the LCSR

for the form factors, we also replace (P − q)2 in the numerators ω
(i)
jn(x, (P − q)2, q2) by

s(x) −D/x, where

s(x) = (m2
c − x̄q2 + xx̄m2

N )/x . (4.6)

The transformed functions ω
(i)
jn(x, q2) are presented in appendix B. For the correlation

functions with the vector and axial-vector transition currents, expressions similar to (4.4)

(without the factor mc) are obtained for the invariant amplitudes Π̃
(i)
j and Π̄

(i)
j (j =

1, . . . , 6). The corresponding numerator functions ω̃
(i)
jn and ω̄

(i)
jn , respectively, are also given

in appendix B. Furthermore, appendix C contains the numerator functions ω
(i)
jn , ω̃

(i)
jn and

ω̄
(i)
jn (i = I,T ) for the correlation functions with the Σc interpolating currents.

After computing the OPE expressions for all invariant amplitudes in the integral

form (4.4), we use the hadronic dispersion relations for these amplitudes presented in

the previous section. At this point, we notice that each form factor enters more than one

dispersion relation. E.g., in the case of pseudoscalar current, there are two linearly inde-

pendent relations (3.11) and (3.12) for Π
(i)
1 and Π

(i)
2 , respectively, both containing the Λc-

and Λ∗
c -pole terms. Combining them, we eliminate the Λ∗

c contributions, obtaining a linear

combination of dispersion relations containing only the hadronic matrix elements for the

ground-state Λc-baryon:

mΛc(mΛc +mN )(mΛc +mΛ∗

c
)λ

(i)
Λc
G(q2)

m2
Λc

− (P − q)2
+

∞∫

sh
0

ds
ρ
(i)
1 (s, q2) − (mΛ∗

c
+mN )ρ

(i)
2 (s, q2)

s− (P − q)2

=
[
Π

(i)
1 ((P − q)2, q2) − (mΛ∗

c
+mN )Π

(i)
2 ((P − q)2, q2)

]
. (4.7)

The contributions of the hadronic states above the threshold sh
0 are approximated using

quark-hadron duality:

∞∫

sh
0

ds

s− (P − q)2

[
ρ
(i)
1 (s, q2) − (mΛ∗

c
+mN )ρ

(i)
2 (s, q2)

]

=
1

π

∞∫

s0

ds

s− (P − q)2

[
ImsΠ

(i)
1 (s, q2) − (mΛ∗

c
+mN )ImsΠ

(i)
2 (s, q2)

]
, (4.8)

where s0 is the effective threshold parameter. The spectral densities ImsΠ
(i)
1,2 are calculated

from the OPE result (4.4). To this end, the integrals in (4.4) are transformed to the

dispersion form in (P −q)2, transforming the integration variable x to s(x) defined in (4.6),

so that

x(s) =
1

2m2
N

[
m2

N + q2 − s+
√

(s− q2 −m2
N )2 + 4m2

N (m2
c − q2)

]
. (4.9)
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The final step in obtaining LCSR is the Borel transformation (P − q)2 → M2, intro-

ducing the Borel parameter M2 in the charmed baryon channel. The resulting sum rule

for the form factor reads:

G(q2) =
em

2
Λc

/M2

mΛc(mΛc +mN )(mΛc +mΛ∗

c
)λ

(i)
Λc

1

π

s0∫

m2
c

dse−s/M2
[
ImsΠ

(i)
1 (s, q2)

−(mΛ∗

c
+mN )ImsΠ

(i)
2 (s, q2)

]
. (4.10)

In the case of the vector transition current, the same procedure of eliminating the

Λ∗
c-contributions yields the following LCSR for the two most important form factors:

f1(q
2) =

em
2
Λc

/M2

2mΛc(mΛc +mΛ∗

c
)λ

(i)
Λc

1

π

s0∫

m2
c

ds e−s/M2
[
(mΛc +mN )

(
ImsΠ̃

(i)
1 (s, q2) (4.11)

−(mΛ∗

c
−mN )ImsΠ̃

(i)
2 (s, q2)

)
+ 2ImsΠ̃

(i)
3 (s, q2) + 2(mΛ∗

c
−mΛc)ImsΠ̃

(i)
4 (s, q2)

]
,

f2(q
2) =

em
2
Λc

/M2

2(mΛc +mΛ∗

c
)λ

(i)
Λc

1

π

s0∫

m2
c

ds e−s/M2
[
ImsΠ̃

(i)
1 (s, q2) (4.12)

−(mΛ∗

c
−mN )ImsΠ̃

(i)
2 (s, q2) − 2ImsΠ̃

(i)
4 (s, q2)

]
.

The LCSR for the axial-vector form factors g1(q
2) and g2(q

2) can be obtained from the

above sum rules for f1(q
2) and f2(q

2), respectively, by replacing ImsΠ̃
(i)
j → ImsΠ̄

(i)
j and

changing the sign of mN . Furthermore, the LCSR obtained above are easily transformed to

the case of Λb → p transition by replacing the c-quark by b-quark in the correlation function.

Finally, to obtain LCSR for the Σc → p form factors we repeat the whole procedure for

the correlation functions with the Σc-interpolation currents.

In practice, all three procedures: transformation to the dispersion integral form, sub-

traction of continuum and Borel transformation are unified in the following substitution

rules for the integrals in (4.4), similar to the ones used in [16]:

∫
dx
ω(x)

D
→

1∫

x0

dx

x
ω(x) exp

(
−s(x)
M2

)
,

∫
dx
ω(x)

D2
→ 1

M2

1∫

x0

dx

x2
ω(x) exp

(
−s(x)
M2

)
+

ω(x0) e
−s0/M2

m2
c + x2

0m
2
N − q2

,

∫
dx
ω(x)

D3
→ 1

2M4

1∫

x0

dx

x3
ω(x) exp

(
−s(x)
M2

)
+

1

2M2

ω(x0) e
−s0/M2

x0

(
m2

c + x2
0m

2
N − q2

)

−1

2

x2
0 e

−s0/M2

(m2
c + x2

0m
2
N − q2)

d

dx

(
ω(x)

x
(
m2

c + x2m2
N − q2

)
) ∣∣∣∣∣

x=x0

. (4.13)

with x0 = x(s0) and for any numerator function ω(x) in (4.4). The surface terms appearing

on r.h.s. of the above relations originate from the transformations of the integrals with the
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power of denominator n = 2, 3 to the “canonical” dispersion form with the first power of

s− (P − q)2 in denominator.

5 Decay constants of charmed baryons

To obtain decay constants of the Λc baryon, the following two-point correlation function

of the interpolating current and its Dirac-conjugate is considered:

F (i)(q) = i

∫
d4z eiq·z 〈0|T

{
η

(i)
Λc

(z), η
(i)
Λc

(0)
}
|0〉

= F
(i)
1 (q2) 6q + F

(i)
2 (q2) , (5.1)

where i = P,A. At q2 ≪ m2
c this correlation function containing two invariant amplitudes

is calculated from local OPE in terms of the perturbative and vacuum-condensate contri-

butions up to dimension 6. The OPE results will be taken from the literature. Note that

it is consistent to use two-point sum rules without the αs corrections, since the latter are

also not taken into account in LCSR. The hadronic dispersion relation for (5.1) reads:

F (i)(q) =
|λ(i)

Λc
|2m2

Λc

m2
Λc

− q2
(6q +mΛc) +

|λ(i)
Λ∗

c
|2m2

Λ∗

c

m2
Λ∗

c
− q2

(6q −mΛ∗

c
) +

∞∫

sh
0

ds

s−q2
[
ρ
(i)
1 (s) 6q + ρ

(i)
2 (s)

]
. (5.2)

Here again the Λ∗
c-contribution “contaminates” the sum rules. To tackle this problem we

use the linear combination of the dispersion relations for the invariant amplitudes F
(i)
1 and

F
(i)
2 and eliminate the Λ∗

c-state contribution, obtaining the following QCD sum rule:

|λ(i)
Λc
|2 =

em
2
Λc

/M2
2pt

m2
Λc

(mΛc +mΛ∗

c
)

1

π

s2pt
0∫

m2
c

ds e−s/M2
2pt

[
mΛ∗

c
ImF

(i)
1 (s) + ImF

(i)
2 (s)

]
, (5.3)

where M2
2pt and s2pt

0 are the Borel and threshold parameters.

For the decay constant λ
(P)
Λc

induced by the pseudoscalar interpolation current, the

OPE results for the spectral densities of the invariant amplitudes F
(P)
1,2 are taken from [36]

and presented in appendix D. To access the decay constant of Λc induced by the axial-

vector current, we employ the results from [30] where a linear combination of two different

interpolating currents J
(1)
Λc

+ bJ
(2)
Λc

were used. At b = −1/5 we recover a superposition of

the currents of our choice:

J
(1)
Λ − 1

5
J

(2)
Λ =

√
6

10

(
η

(A)
Λc

+ 4η
(P)
Λc

)
. (5.4)

The correlation function of this combined current with its conjugate has a decomposition

similar to (5.1), with two invariant amplitudes which we denote as F̃1,2. From that we

derive the sum rule for the linear combination of the decay constants:

∣∣∣λ(A)
Λc

+ 4λ
(P)
Λc

∣∣∣
2

=
50 em

2
Λc

/M2
2pt

3m2
Λc

(mΛc +mΛ∗

c
)

1

π

s2pt
0∫

m2
c

ds e−s/M2
2pt [mΛ∗

c
ImF̃1(s) + ImF̃2(s)] . (5.5)

– 12 –



J
H
E
P
0
9
(
2
0
1
1
)
1
0
6

The OPE expressions for the spectral densities ImF̃1,2(s) combined from the results

obtained in [30] are collected in appendix D. To resolve the ambiguity of the relative

sign between λ
(A)
Λc

and λ
(P)
Λc

in this sum rule, we assume that they are of the same order

of magnitude. The numerical analysis reveals that this is only possible if the two decay

constants in (5.5) have the same sign. This allows us to obtain λ
(A)
Λc

using the value of

λ
(P)
Λc

calculated above.

Decay constants of the Σc baryon have been calculated in ref. [37] from the similar

two-point QCD sum rules. Using Fierz transformation, we relate the mixed current JΣc

used in that paper with a linear combination of the two currents of our choice:

JΣc = (uTCγ5c)u+ b(uTCc)γ5u =
1 − b

4
η

(I)
Σc

+
1 + b

8
η

(T )
Σc

, (5.6)

where b is the mixing parameter. The following sum rule for the combination of decay

constants is then obtained:

∣∣∣2(1 − b)λ
(I)
Σc

+ (1 + b)λ
(T )
Σc

∣∣∣
2

=
64 em

2
Σc

/M2
2pt

m2
Σc

(mΣc +mΣ∗

c
)

1

π

s2pt
0∫

m2
c

dse−s/M2
2pt

[
mΣ∗ImF̄1(s) + ImF̄2(s)

]
, (5.7)

where the spectral densities F̄1(s) and F̄2(s) obtained from [37] are given in appendix D.

Choosing subsequently b = 1 and b = −1 we obtain separate sum rule for λ
(I)
Σc

and for λ
(T )
Σc

.

Finally, the two-point QCD sum rules for the decay constants of Λb-baryon are obtained

from the Λc-sum rules, replacing c→ b.

6 LCSR for the strong couplings

The strong coupling constants of Λc-baryon with nucleon and D- or D∗-meson are formally

defined as hadronic matrix elements:

〈Λc(P − q)|D(−q)N(P )〉 = gΛcND ūΛc(P − q) iγ5 uN (P ),

〈Λc(P − q)|D∗(−q)N(P )〉= ūΛc(P − q)

(
gV
ΛcND∗/ǫ + i

gT
ΛcND∗

mΛc +mN
σµνǫ

µqν

)
uN (P ). (6.1)

Different from the D∗Dπ coupling that can be measured in kinematically allowed

D∗ → Dπ decays, a direct measurement of the baryonic strong couplings is not possible

because at least one of the hadrons has to be off-shell. E.g., in the hadronic dispersion

relation for the Λc → N form factor, the residue of the D- or D∗-pole (for pseudoscalar or

vector transition current) is proportional to the ΛcND
(∗) coupling. This pole is located at

q2 = m2
D(∗) , beyond the physical regions q2 ≤ (mΛc −mN )2 (for semileptonic decays and

scattering) and q2 ≥ (mΛc +mN )2 (for the baryon pair production).

In the heavy mass limit for the c-quark we may obtain relations between the coupling

constants appearing in (6.1). In this case the masses of the Λc and D(∗) become equal to
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mc. The heavy mesons D and D∗ form a spin symmetry doublet which can be represented

by

D(v) = N (1 + /v)
(
−iγ5D + γµD∗

µ

)
with vµD∗

µ = 0 (6.2)

where D and D∗ represent the charmed meson fields and N is a normalization factor.

Likewise, the spinor of the Λc is equal to the c-quark spinor, since the light degrees of

freedom are in a spinless state. Thus in the mc → ∞ limit, the two hadronic amplitudes

in (6.1) can be unified in one:

A = ūΛc(v)D(v)MuN (P ) , (6.3)

with a Dirac-structure M and the nucleon bispinor uN accumulating the light degrees of

freedom in the process. The quantity M may be expanded in the basis Dirac matrices 1,

γ5, γµ, γµγ5 and σµν ; due to parity and Lorentz invariance only the unit matrix remains.

Hence we obtain

A = gūΛc

(
−iγ5D + γµD∗

µ

)
uN (P ) , (6.4)

where g is the strong coupling in the heavy quark limit. Comparing this with (6.1) we

obtain the heavy mass relations

gΛcND = −gV
ΛcND∗ and gT

ΛcND∗ = 0 . (6.5)

Following the same procedure, one can also derive the following relation for the three strong

couplings involving Σc baryon:

gΣcND + 3gV
ΣcND∗ =

3mΣc +mN − 2P · v
mΣc +mN

gT
ΣcND∗ . (6.6)

Here, the four-velocity vector is defined as v = −q/m(∗)
D ; hence, up to O(1/mc) corrections,

P · v = (m2
Σc

−m2
D(∗))/(2mD(∗)).

The couplings (6.1) play an important role in various models of strong interactions

formulated in terms of virtual hadron exchanges, like e.g., in the production of a charmed

baryon pair in the pp̄ collision, with a virtual D(∗) exchange in t- channel. In the forth-

coming publication [38] we shall consider this process in the PANDA energy region. It

is tempting to formulate the hadronic exchange models in terms of effective Lagrangians

involving propagation and couplings of hadronic fields rather than quarks and gluons. An

effective Lagrangian involving the hadronic couplings discussed above has the following

form:

LΛcD(∗)N = Λ̄c

[
iaΛcNDγ5D +

(
aV

ΛcND∗γµ +
aT

ΛcND∗

mΛc +mN
σµν∂ν

)
D∗

µ

]
N + h. c. (6.7)

where we have defined new couplings ai. However, these couplings are not necessarily the

same as gi appearing in (6.1), since this depends on the kinematic region where the effective

Lagrangian (6.7) is applied. The latter assumes point-like baryons, and hence it can only

be used at impact parameters large compared to the size of the baryons, which means it

is restricted to small momentum transfers t = q2. This in turn means that the exchanged
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D(∗) meson is far off shell and thus for such an application the couplings ai will be different

from gi. Nevertheless, one may use the coupling constants calculated here as an input for

a more elaborated hadronic models based on Regge poles.

The possibility to calculate strong couplings from LCSR is based on the fact that

they enter double dispersion relations for the same correlation function (2.1). E.g., to

access the ΛcND coupling, we employ the hadronic double dispersion relation for the

correlation function Π
(i)
5 (P, q) with the pseudoscalar transition current (3.8), choosing one

of the interpolating currents i = P,A. The double dispersion relation is obtained by

analytically continuing the imaginary parts of the invariant amplitudes ImsΠ
(i)
1,2(s, q

2) in

the second variable q2. The result is given by the following expression containing the

{Λc,D} double pole (the ground-state contribution), and, in addition, the {Λ∗
c,D} double

pole:

Π
(i)
5 (P, q) =

λ
(i)
Λc
m2

DfDmΛcgΛcND

(m2
Λc

− (P − q)2)(m2
D − q2)

[
(mΛc −mN ) − /q

]
iγ5uN (P )

+
λ

(i)
Λ∗

c
m2

DfDmΛ∗

c
gΛ∗

cND

(m2
Λ∗

c
− (P − q)2)(m2

D − q2)

[
(mΛ∗

c
+mN ) + /q

]
iγ5uN (P )

+ . . . , (6.8)

where the ellipses indicate the contributions of excited and continuum states in both Λc

and D channels which have a generic form of dispersion integrals over the hadronic double

spectral density.

Similarly, for the ΛcD
∗N couplings we employ the hadronic double dispersion relation

for the correlation function with the vector transition current:

Π(i)
µ (P, q) =

mΛcmD∗fD∗λ
(i)
Λc

(m2
Λc

− (P − q)2)(m2
D∗ − q2)

{
− 2gV

ΛcND∗Pµ + 2
gT
ΛcND∗

mΛc +mN
Pµ 6q

−(gV
ΛcND∗ − gT

ΛcND∗)
[
(mΛc −mN )γµ + γµ 6q

]

+

[(
2 −

m2
Λc

−m2
N

m2
D∗

)
gV
ΛcND∗ − gT

ΛcND∗

]
qµ

+

[
−

gT
ΛcND∗

mΛc +mN
+
mΛc −mN

m2
D∗

gV
ΛcND∗

]
qµ 6q

}
uN (P )

+
mΛ∗

c
mD∗fD∗λ

(i)
Λ∗

c

(m2
Λ∗

c
− (P − q)2)(m2

D∗ − q2)

{
2gV

Λ∗

cND∗Pµ − 2
gT
Λ∗

cND∗

mΛ∗

c
+mN

Pµ 6q

−
[
gV
Λ∗

cND∗ +
mΛ∗

c
−mN

mΛ∗

c
+mN

gT
Λ∗

cND∗

][
(mΛ∗

c
+mN )γµ − γµ 6q

]

+

[(
− 2 +

m2
Λ∗

c
−m2

N

m2
D∗

)
gV
Λ∗

cND∗ − mΛ∗

c
−mN

mΛ∗

c
+mN

gT
Λ∗

cND∗

]
qµ

+

[
gT
Λ∗

cND∗

mΛ∗

c
+mN

+
mΛ∗

c
+mN

m2
D∗

gV
Λ∗

cND∗

]
qµ 6q

}
uN (P )

+ . . . . (6.9)
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Decomposition of the relations (6.8) and (6.9) in terms of invariant amplitudes and

elimination of the Λ∗
c contributions are similar to the steps done in the derivation of the

LCSR for the form factors.

The OPE results for the invariant amplitudes obtained in section 4 have now to be

considered in the deep spacelike region for both variables (P − q)2, q2 ≪ m2
c . The new

elements needed for the quark-hadron duality approximation of the higher states are the

double spectral densities of the invariant amplitudes. These amplitudes were already ob-

tained in the form (4.4). It suffices to find double spectral representations for the master

integrals of the type
∫
dxxkD−n with k ≥ 0 and n = 1, 2 , 3. For n = 1, we obtain

1∫

0

dx
xk

D
=

1

2π

k∑

j=0

∞∫

m2
c

ds

s− (P − q)2

t2(s)∫

t1(s)

ds′

s′ − q2
(−1)k+j/2[1 + (−1)j ]

× 1

(2m2
N )k

Cj
k(s− s′ −m2

N )k−j[(s′ − t1)(t2 − s′)]
j−1
2 , (6.10)

where Cj
k are the binomial coefficients and the integration limits are

t1,2(s) = (s+m2
N ) ∓ 2mN

√
s−m2

c . (6.11)

The double spectral representations for the master integrals with n = 2 and 3, being

more lengthy, are collected in appendix E. Using these integrals it is easy to find the

double dispersion representation for all integrals in (4.4), where the numerators depend

polynomially on x, and linearly on (P − q)2 and q2, so that the latter variables can simply

be replaced by s and s′ respectively.

Equating the OPE results to the double hadronic dispersion relations, adopting the

quark-hadron duality approximation for the hadronic spectral densities and performing the

double Borel transformation, (P − q)2 → M2, q2 → M̃2, we derive LCSR for the three

strong couplings of our interest:

gΛcND =
em

2
Λc

/M2

em
2
D

/fM2

mΛc(mΛc +mΛ∗

c
)m2

DfDλ
(i)
Λc

1

π2

s0∫

m2
c

ds e−s/M2

×
t2(s)∫

t1(s)

ds′ e−s′/fM2
Ims Ims′ [Π

(i)
1 (s, s′) − (mΛ∗

c
+mN )Π

(i)
2 (s, s′)] , (6.12)

gV
ΛcND∗ =− em

2
Λc

/M2

em
2
D∗/fM2

2mΛc(mΛc +mΛ∗

c
)mD∗fD∗λ

(i)
Λc

1

π2

s0∫

m2
c

ds e−s/M2

×
t2(s)∫

t1(s)

ds′ e−s′/M̃2
Ims Ims′

[
(mΛc +mN )

(
Π̄

(i)
1 (s, s′) − (mΛ∗

c
−mN )Π̄

(i)
2 (s, s′)

)

+2Π̄
(i)
3 (s, s′) + 2(mΛ∗

c
−mΛc)Π̄

(i)
4 (s, s′)

]
, (6.13)
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gT
ΛcND∗ =− (mΛc +mN )em

2
Λc

/M2

em
2
D∗/fM2

2mΛc(mΛc +mΛ∗

c
)mD∗fD∗λ

(i)
Λc

1

π2

s0∫

m2
c

ds e−s/M2
(6.14)

×
t2(s)∫

t1(s)

ds′ e−s′/fM2
Ims Ims′

[
Π̄

(i)
1 (s, s′) − (mΛ∗

c
−mN )Π̄

(i)
2 (s, s′) − 2Π̄

(i)
4 (s, s′)

]
.

The D and D∗ decay constants entering these sum rules are defined in a standard way:

〈0|mcc̄ iγ5u |D(p)〉 = m2
D fD , 〈0| c̄ γµu |D∗(p, ǫ)〉 = mD∗ fD∗ ǫµ . (6.15)

Instead of fixing their numerical values we will use the two-point QCD sum rules for fD(∗)

taken for consistency in O(α0
s) (see e.g., [19]). The region in the {s, s′} plane occupied

by the double spectral density of the correlation function calculated in OPE in the limit

mN → 0, is reduced to the diagonal s = s′, very similar to LCSR for D∗Dπ coupling [19].

In that case it was sufficient to use one effective threshold s0 for the duality approximation.

Here we adopt a similar ansatz reflected in the integration limits in the above sum rules.

Clearly, it is possible to use different borders of the duality region. The sensitivity of

the LCSR results to this region is lowered by the Borel transformation, still an additional

uncertainty is introduced. Hence, as far as the quark-hadron duality is concerned, the sum

rules for the strong couplings are generally less accurate than the ones for the form factors.

7 Numerical results

We begin the numerical analysis with specifying the choice of the input for nucleon DA’s,

collected in appendix A. Their normalization parameters have been calculated from two-

point QCD sum rules [13]:

fN = (5.0 ± 0.5) × 10−3 GeV2 ,

λ1 = −(27 ± 9) × 10−3 GeV2 , λ2 = (54 ± 19) × 10−3 GeV2 . (7.1)

For the remaining five dimensionless parameters determining the shapes of the nucleon

DA’s, we use the model suggested in [16] in which the QCD 2-point sum rule estimates are

adjusted, via LCSR, to the data on the nucleon electromagnetic form factors:

Au
1 = 0.13 , V d

1 = 0.30 , fd
1 = 0.33 , fu

1 = 0.09 , fd
2 = 0.25 . (7.2)

The masses of baryons are taken from [29]: mN = mp = 0.938GeV, mΛc = 2.286GeV,

mΛ∗

c
= 2.595GeV, mΣc = 2.454GeV, mΣ∗

c
= 2.801GeV, mΛb

= 5.620GeV, and the

estimated mass of the negative parity b-baryon: mΛ∗

b
= 5.85GeV, is taken according to the

QCD sum rule estimate [39].

For the virtual c and b quarks in the correlation functions, the MS mass is preferable.

We use m̄b(m̄b) = 4.16 ± 0.03GeV, m̄c(m̄c) = 1.28 ± 0.03GeV, taking the central values

from the precise determination [40] based on the quarkonium sum rules and twice inflating

the uncertainties. In the absence of gluon corrections the only renormalization scale which
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QCD sum rule Borel parameter (GeV2) eff. threshold (GeV2)

LCSR, form factor M2 s0

Λc(Σc) → p 7.5 ± 2.5 10.0 ± 0.5

Λb → p 20.0 ± 5.0 40.0 ± 1.0

LCSR, strong coupling M2 M̃2 s0

Λc(Σc)ND 4.5 ± 1.5}
7.5 ± 2.5

}
10.0 ± 0.5

Λc(Σc)ND
∗ 5.0 ± 1.5

2-point SR, decay constant M2
2pt s2pt

0

Λc(Σc) 2.5 ± 0.5 10.0 ± 0.5

Λb 5.0 ± 1.0 40.0 ± 1.0

D 2.0 ± 0.5 6.5 ± 0.5

D∗ 2.0 ± 0.5 8.0 ± 0.5

Table 1. Borel parameters and effective thresholds used in various sum rules.

enters our calculation is the factorization scale µ of the nucleon DA’s. We adopt the same

scale for the quark masses, using the intervals µc = 1.5±0.5GeV and µb = 4.0±1.0GeV for

LCSR with c and b quarks, respectively. The evolution of the scale dependent parameters

in the nucleon DA’s is taken according to [34]. We also adopt the same vacuum condensates

as in [41, 42], in particular, the quark condensate density 〈q̄q〉(1GeV) = −(246+28
−19MeV)3.

The intervals of Borel parameters used in the sum rules considered here are listed in

table 1. Their choice is based on the usual criteria, that is, both power corrections and

continuum contributions in the sum rules have to be sufficiently suppressed. The corre-

sponding effective thresholds (see table 1) are adjusted so that the differentiated sum rules

reproduce the measured mass of the lowest baryon or meson with at least a 10 % accuracy.

Furthermore, instead of substituting in LCSR a certain fixed value for the Λc(b) or Σc

decay constants, we use the corresponding two-point sum rules. This somewhat reduces

the overall uncertainties. Still, to give an idea of the magnitude of the decay constants, let

us quote their numerical values:

λ
(A)
Λc

= 1.51+0.37
−0.39 × 10−2 GeV2 , λ

(P)
Λc

= 1.19+0.19
−0.28 × 10−2 GeV2 ,

λ
(A)
Λb

= 1.27+0.35
−0.34 × 10−2 GeV2 , λ

(P)
Λb

= 1.09+0.31
−0.30 × 10−2 GeV2 ,

λ
(I)
Σc

= 3.08+0.49
−0.74 × 10−2 GeV2 , λ

(T )
Λc

= 6.08+0.90
−1.48 × 10−2 GeV2 . (7.3)

After specifying all input parameters, we compute the numerical values of the Λc(Σc) → p

form factors at q2 = 0 and the Λc(Σc)ND
(∗) strong couplings. The results are collected in

table 2, where the total uncertainties are estimated by varying separate input parameters

within their ranges and adding the resulting separate uncertainties of the form factors and
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Current η
(A)
Λc

η
(P)
Λc

η
(I)
Σc

η
(T )
Σc

Form factor Λc → p Σc → p

G(0) 0.39+0.11
−0.09 0.48+0.13

−0.13 0.066+0.035
−0.032 0.061+0.011

−0.011

f1(0) 0.46+0.15
−0.11 0.59+0.15

−0.16 −0.22+0.07
−0.07 −0.23+0.04

−0.05

f2(0) −0.32+0.08
−0.07 −0.43+0.13

−0.12 −0.24+0.05
−0.05 −0.25+0.06

−0.06

g1(0) 0.49+0.14
−0.11 0.55+0.14

−0.15 0.11+0.05
−0.05 0.060+0.007

−0.008

g2(0) −0.20+0.09
−0.06 −0.16+0.08

−0.05 −0.002+0.054
−0.044 −0.030+0.039

−0.039

Strong coupling ΛcD
(∗)N ΣcD

(∗)N

gΛc(Σc)ND 13.8+5.2
−4.1 10.7+5.3

−4.3 1.3+1.0
−0.9 1.3+1.2

−0.8

gV
Λc(Σc)ND∗ −7.9+2.7

−3.3 −5.8+2.1
−2.5 1.0+1.3

−0.6 0.74+1.08
−0.45

gT
Λc(Σc)ND∗ 4.7+2.7

−2.0 3.6+2.9
−1.8 2.1+1.9

−1.0 1.8+1.6
−0.8

Table 2. Numerical results for the transition form factors and strong couplings of charmed baryons

obtained from LCSR with different interpolating currents.

strong couplings in quadrature. Correlations between different form factors and strong

couplings with respect to the input variation make the sum rule predictions for the ratios

of these hadronic matrix elements even more accurate.

Replacing c-quark with the b-quark in LCSR we calculate the phenomenologically

important Λb → p form factors. They are collected in table 3. In this case, not only

the zero momentum transfer but also small and intermediate q2 ≪ m2
b are available from

LCSR. We estimate the maximal value of q2 accessible with LCSR to lie in the interval

q2 = 11−15GeV2 and adopt, conservatively, the lowest value q2max = 11GeV2. At larger q2

light-cone OPE is not reliable, in particular the contribution of the highest twist-6 nucleon

DA’s starts to grow with respect to the lower twists. Note that the contributions of all

twist 3, 4, 5 components of nucleon DA’s are numerically important in LCSR.

Several additional comments on the numerical results obtained above are in order.

• We found that form factors and strong couplings are (within uncertainties) insensitive

to the interpolating current of the heavy baryon, once the contribution of the negative-

parity baryon is included in the hadronic dispersion relation. We have checked that

if the negative-parity baryon is simply absorbed in the duality-approximated contin-

uum, the sum rules yield numerical predictions that are considerably more sensitive

to the choice of the interpolating current.

• The achieved accuracy of LCSR for the form factors of heavy baryons is well illus-

trated by the equation-of-motion relation (3.5) which yields G(0) = g1(0). Comparing

the numerical results for both form factors calculated from two different LCSR, we

see that this relation is violated numerically at the level of 20 % which is also in the

ballpark of the estimated uncertainty of the LCSR.
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form factors η
(A)
Λb

η
(P)
Λb

f1(0) 0.14+0.03
−0.03 0.12+0.03

−0.04

b1 −1.49+1.68
−1.88 −9.13+0.88

−1.12

f2(0) −0.054+0.016
−0.013 −0.047+0.015

−0.013

b2 −14.0+1.2
−1.8 −18.5+1.7

−2.0

g1(0) 0.14+0.03
−0.03 0.12+0.03

−0.03

b̃1 −4.05+1.38
−1.81 −9.18+0.75

−1.06

g2(0) −0.028+0.012
−0.009 −0.016+0.007

−0.005

b̃2 −20.2+1.0
−2.1 −22.5+1.3

−1.7

Table 3. Numerical results of Λb → p transition form factors at zero momentum transfer and their

slope parameters obtained from LCSR with different interpolating currents.

• In the infinitely heavy quark limit, the relation f1(q
2) = g1(q

2) is valid for ΛQ → N

form factors and it is well reproduced by our numerical results for both Q = c, b.

Note that this relation holds for any q2, since only the heavy-quark spin symmetry

is employed in its derivation.

• The heavy-mass relations for the three strong couplings of Λc baryon, shown in (6.5),

are only qualitatively supported by the LCSR predictions obtained for the finite c

quark mass. In particular, the magnitude of gT
ΛcND∗ characterizes the size of 1/mc

correction. Interestingly, the results for ΣcND
(∗) couplings are in a better agreement

with the heavy mass relation (6.6).

Concluding this section we make a few comments on the earlier sum rule calculations

of the heavy-baryon form factors and couplings in the literature.

The Λb → p form factors were calculated [26] in a different approach, using three-point

QCD sum rules (see also [28]), where Λb was interpolated by the pseudoscalar current and

the tensor interpolating current for the nucleon was adopted. The form factors predicted

in [26] are in agreement with our results. However, the other interpolating currents, as

well as the role of negative-parity partners of both Λb and proton remain obscure, bringing

unaccounted uncertainties in the numerical predictions.

The strong coupling gΛcND was calculated from three-point QCD sum rules in ref. [27].

In fact this approach radically differs from the one we use here, first of all, in the definition

of the coupling itself. The starting point is the correlation function with two baryon interpo-

lating currents and one pseudoscalar transition current. The latter is then simply replaced

by the D meson. The relation of this definition of the strong coupling to the one used here

is difficult to assess. Again, the problem of negative-parity baryons in both nucleon and

Λc channels was practically ignored absorbing these states into the hadronic continuum.

Light-cone sum rules in HQET with Λb-distribution amplitudes worked out in [43] was

employed in [22] to calculate the Λb → p form factors. The nucleon was interpolated by
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the CZ current (uC 6z u) γ5 6z d suggested in [44]. The form factor f1(0) obtained in [22] is

about an order of magnitude smaller than the one obtained here from LCSR with nucleon

distribution amplitudes. Note that the CZ current can also couple to I = 3/2 and J = 3/2

states so that the sum rules for the Λb → p transition form factors are probably influenced

by large and unaccounted ∆- resonance contribution. It is known [16] that, e.g., the isospin

relations between nucleon form factors are violated when one uses LCSR with CZ current.

Note that a similar current was employed also in [20, 21].

The Λb,c → N transitions were investigated in [23, 24] using LCSR with the nucleon

DA’s. As opposed to our choice, the most general interpolating current for the Λb,c baryon

was employed introducing an arbitrary parameter β for the mixing of different components

in this current. The stability of the calculated form factors with respect to the variation of β

was used as a criterion for choosing a working interval of β. In our opinion, such a procedure

introduces a sort of a new systematic error related with the choice of the mixing parameter.

Most importantly, the problem of separating the negative parity baryon contributions in

LCSR remains unsolved, because the latter are again attributed to the continuum estimated

with the usual quark-hadron duality ansatz. This may explain the substantial difference

of our predictions from the ones presented in [23].

8 Applications to exclusive Λb decays

With the results for the Λb → p form factors obtained from LCSR we are now in a position

to predict the differential decay distribution for the exclusive semileptonic Λb → pℓνℓ

decay, which is a b → u transition with the CKM parameter Vub. In the massless lepton

approximation, the form factors f3(q
2) and g3(q

2) do not contribute to the decay width,

hence it is sufficient to use the results for the four form factors f1,2 and g1,2 given in the

previous section. Since the form factors are only available at q2 ≤ q2max, we apply the

conformal mapping q2 → z and z-series parametrization to extrapolate the form factors

to the whole semileptonic region q2 ≤ (mΛb
−mN )2. More specifically, we use the z-series

parametrization in the BCL-version suggested in [45]. The mapping transformation reads:

z(q2, t0) =

√
t+ − q2 −√

t+ − t0√
t+ − q2 +

√
t+ − t0

, (8.1)

where t± = (mΛb
±mN )2, and t0 = t+−√

t+ − t−
√
t+ − tmin is chosen to maximally reduce

the interval of z obtained after the mapping of the interval tmin < q2 < t−, where tmin =

q2min < q2 < q2max is the LCSR validity region. In the numerical analysis, tmin = −6GeV2

is adopted. Furthermore, we employ the following parametrization

fi(q
2) =

fi(0)

1 − q2/m2
B∗(1−)

{
1 + bi

(
z(q2, t0) − z(0, t0)

)}
,

gi(q
2) =

gi(0)

1 − q2/m2
B∗(1+)

{
1 + b̃i

(
z(q2, t0) − z(0, t0)

)}
. (8.2)

where i = 1, 2, mB∗(1−) = 5.325GeV and mB∗(1+) = 5.723GeV [29]. Fitting the shape

parameters bi and b̃i to LCSR predictions at q2 ≤ q2max, we obtained the Λb → p form factors
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f1
Lb ® p Hq2L
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0.0

0.5
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f2
Lb ® p Hq2L

0 5 10 15 20

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

q2 HGeV2L

g1
Lb ® p Hq2L
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0.0

0.2

0.4

0.6

0.8

1.0

1.2

q2 HGeV2L

g2
Lb ® p Hq2L

0 5 10 15 20
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

q2 HGeV2L

Figure 2. Λb → p transition form factors obtained from LCSR at q2 ≤ 11 GeV 2 and extrapolated

to larger q2 using the series-parametrization: black (grey) solid lines correspond to the axial-vector

(pseudoscalar) interpolating current for Λb, black long-dashed (grey short-dashed) lines indicate

uncertainties.

shown in figure 2. The shape parameters (see table 3) turn out to be more sensitive to the

choice of the interpolating current, also the uncertainties of these parameters (correlated

with the uncertainties of the form factor normalization) are larger. This however plays role

only at large q2, beyond the region of validity of LCSR.

Finally, we calculate the differential width of Λb → pℓν decay using the following

expression.

dΓ

dq2
(Λb → plνl) =

G2
Fm

3
Λb

192π3
|Vub|2λ1/2(1, r2, t)

{
[(1 − r)2 − t][(1 + r)2 + 2t]|f1(q

2)|2

+[(1+r)2 − t][(1−r)2 + 2t]|g1(q2)|2 − 6t[(1−r)2 − t](1+r)f1(q
2)f2(q

2)

−6t[(1+r)2 − t](1−r)g1(q2)g2(q2) + t[(1−r)2 − t][2(1+r)2 + t]|f2(q
2)|2

+t[(1 + r)2 − t][2(1 − r)2 + t]|g2(q2)|2
}
, (8.3)

where r = mN/mΛb
, t = q2/m2

Λb
and λ(a, b, c) = a2 +b2 +c2−2ab−2ac−2bc. Substituting
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Figure 3. Normalized differential width of Λb → pℓνℓ calculated with the form factors obtained

from LCSR and extrapolated to larger q2 using the series-parametrization. The notation is the

same as in figure 2.

the form factors (8.2) and integrating over q2 we obtain the total branching fraction

BR(Λb → plνl) =





(
3.3+1.5

−1.2

∣∣
th.

± 0.1
∣∣
exp.

)

(
4.0+2.3

−2.0

∣∣
th.

± 0.1
∣∣
exp.

)





( |Vub|
3.5 · 10−3

)2

× 10−4 , (8.4)

where the upper (lower) interval corresponds to the form factors obtained from LCSR

with the axial-vector (pseudoscalar) Λb-interpolating current, and the lifetime τΛb
=

(1.391+0.038
−0.037) ps from [29] is used. The normalized q2 distribution is plotted in figure 3. The

enhancement in the region of large q2 due to the growth of the form factors is in this case

quite pronounced because the width of this decay contains only the S-wave phase-space

factor λ1/2, as opposed to the B → πlν decay width, where there is a P -wave factor λ3/2.

Following our recent analysis of semileptonic B → πlν decay [46], we also calculate the

specific integral

∆ζ(0, q2max) =
1

|Vub|2
∫ q2

max

0
dq2

dΓ

dq2
(Λb → plνl) , (8.5)

where the form factors directly calculated from LCSR are used, independent of their

parametrization and/or extrapolation. Our prediction for the above integral from LCSR
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with the axial-vector Λb- interpolating current is:

∆ζ(0, 11GeV2) = 5.5+1.1
−0.9

∣∣
fN

+0.5
−0.4

∣∣
λ1

+0.1
−0.0

∣∣
mb

+0.0
−0.1

∣∣
µ

+0.5
−0.2

∣∣
M2

+0.5
−0.4

∣∣
s0

+0.4
−0.4

∣∣
M2

2pt

+0.1
−0.0

∣∣
s2pt
0

+2.1
−1.7

∣∣
〈qq̄〉

ps−1 = 5.5+2.5
−2.0 ps−1 , (8.6)

where also the uncertainties due to the variations of separate input parameters are shown

(only those which are larger than O(1%)). The total error quoted above is obtained by

adding all separate uncertainties in quadrature. A very close interval is obtained in the

case of the pseudoscalar Λb-interpolating current:

∆ζ(0, 11GeV2) = 5.6+2.0
−1.7

∣∣
λ1

+2.3
−1.9

∣∣
λ2

+0.0
−0.1

∣∣
mb

+0.2
−0.4

∣∣
µ

+0.6
−0.2

∣∣
M2

+0.3
−0.3

∣∣
s0

+0.4
−1.2

∣∣
M2

2pt

+0.3
−0.3

∣∣
s2pt
0

+0.7
−1.2

∣∣
〈qq̄〉

ps−1 = 5.6+3.2
−2.9 ps−1 . (8.7)

Note that the accuracy of this prediction is not yet competitive with the one for B →
πℓνl [46]. Still the exclusive semileptonic decay of Λb offers a possibility of |Vub| determi-

nation independent of the B-meson semileptonic decays.

Another interesting possibility to use the Λb → p form factors, is to estimate the

rate of the nonleptonic Λb → pπ decay in the factorization approximation and to compare

the result with the recently measured branching fraction. We write down the factorizable

amplitude in the same form as in [47]:

Mf (Λb → pπ) =
GF√

2
fπūN

{[
VubV

∗
uda1 − VtbV

∗
td(a4 + a10 +Rπ

1 (a6 + a8))
]

[
f1(m

2
π)(mΛb

−mN )−f3(m
2
π)m2

π

]
+
[
VubV

∗
uda1−VtbV

∗
td(a4 + a10 −Rπ

2 (a6 + a8))
]

[
g1(m

2
π)(mΛb

+mN ) − g3(m
2
π)m2

π

]
γ5

}
uΛb

, (8.8)

where ai are the combinations of Wilson coefficients of the effective weak Hamiltonian and

Rπ
1 =

2m2
π

(mb −mu)(mu +md)
, Rπ

2 =
2m2

π

(mb +mu)(mu +md)
. (8.9)

The pion mass is neglected, hence we only use f1(0) and g1(0) in the numerical analysis.

Our prediction for the branching fraction:

BR(Λb → pπ) × 106 = 3.8+1.3
−1.0

(
2.8+1.1

−0.9

)
, (8.10)

obtained with the axial-vector (pseudoscalar) interpolating current is consistent with the

experimental measurement [48] BR(Λb → pπ) × 106 = 3.5 ± 0.6 ± 0.9, indicating that

nonfactorizable contributions in this decay are at least moderate. This is in agreement

with the expectations based on QCD factorization for a nonleptonic decay of a heavy

hadron in two light hadrons. On the other hand, our prediction is in a sharp contrast to

the analysis of Λb → pπ done in [47] where the kT -factorization approach was applied to the

Λb → p form factors in the “conventional PQCD” scenario, hence the soft form factors were

not taken into account. As a result the form factors predicted in that approach are almost

two orders of magnitude smaller than the ones obtained from LCSR. On the contrary,
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the nonfactorizable contributions in Λb → pπ calculated in [47] applying the same PQCD

approach, are considerably enhanced, so that their predicted branching fraction is also in

the same ballpark as the experimental one.

Further applications to semileptonic, radiative and nonleptonic decays of heavy baryons

demand also the Λc,b → Λ form factors. In this respect our results can only be used in the

SU(3)flavour approximation.

9 Discussion

In this paper, we considered the form factors and strong couplings of heavy baryons. These

non-perturbative quantities are important inputs for a rich variety of phenomenological

applications, from the Λb,c (electro)weak decays relevant for the flavour physics to the esti-

mates of charmed hadron production. The calculation we have done is based on the method

of QCD LCSR, where we use the light-cone DA’s of the nucleon and interpolate the heavy

baryons by appropriate currents. These sum rules are more complicated than the ones for

the meson form factors and strong couplings. First, the number of independent DA’s to be

included in the OPE is much larger. These DA’s are nevertheless well under control due to

twist and conformal-spin expansion, and the resulting number of relevant input parameters

is in fact not that large. The other complication is more serious because little is known

about the background contributions of negative-parity baryons in the hadronic dispersion

relations. We proposed a novel method to eliminate these “contamination” by combining

sum rules obtained from different kinematical structures. As a by-product, our results

are less sensitive to the particular choice of the interpolating currents. Furthermore, as a

step forward with respect to the procedure used in [19] we worked out the double spectral

density for the power suppressed contributions in the correlation functions where also the

finite mass of the nucleon is taken into account. Our numerical results for Λc(Σc) → p and

Λb → p form factors and Λc(Σc)ND
(∗) strong couplings provide a nontrivial test of self-

consistency of different sum rules, and also of the reliability of our procedure of eliminating

the negative parity states.

We also obtained the predictions for semileptonic and nonleptonic Λb decays using

the LCSR form factors. In particular, the partially integrated width of Λb → pℓνl can

be used for the |Vub| determination from the future data on this decay. Furthermore, in

a forthcoming publication [38] we will employ the LCSR results for the strong couplings

of charmed baryons to estimate their production in proton-antiproton collisions in the

PANDA energy region.

Future improvements of the nucleon DA’s, and the calculation of gluon radiative cor-

rections to the correlation functions will make the sum rule results obtained here more

accurate. A considerable step forward will be to work out and incorporate in LCSR the

Λ-baryon DA’s. This will make possible an accurate calculation of the form factors needed

in the FCNC decays such as Λb → Λγ and Λb → Λℓ+ℓ−. Finally, a very important task is

to confront the LCSR predictions with the relations for the heavy baryon form factors and

couplings derived from heavy-quark symmetries. In this paper we only made one step in

this direction, by comparing the LCSR predictions with the relations for the form factors
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and strong couplings which follow from the heavy-quark spin symmetry. A more elaborated

study including the quantitative analysis of HQET relations for the baryonic form factors

based on LCSR calculations will be presented elsewhere.
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A Nucleon distribution amplitudes

The nucleon → vacuum matrix element of a three-quark operator with light-like separations

(z2 → 0) has the following decomposition [13, 17]:

4 〈0| ǫijkui
α(a1z)u

j
β(a2z)d

k
γ(a3z) |N(P )〉

= S1mNCαβ (γ5uN )γ + S2m
2
NCαβ (6zγ5uN )γ + P1mN (γ5C)αβ (uN )γ

+P2m
2
N (γ5C)αβ (6zuN )γ +

(
V1 +

z2m2
N

4
VM

1

)
(6PC)αβ (γ5uN )γ

+V2mN (6PC)αβ (6zγ5uN )γ + V3mN (γµC)αβ (γµγ5uN )γ

+V4m
2
N (6zC)αβ (γ5uN )γ + V5m

2
N (γµC)αβ (iσµνzνγ5uN )γ

+V6m
3
N (6zC)αβ (6zγ5uN )γ +

(
A1 +

z2m2
N

4
AM

1

)
(6Pγ5C)αβ (uN )γ

+A2mN (6Pγ5C)αβ (6zuN )γ + A3mN (γµγ5C)αβ (γµuN )γ

+A4m
2
N (6zγ5C)αβ (uN )γ + A5m

2
N (γµγ5C)αβ (iσµνzνuN )γ

+A6m
3
N (6zγ5C)αβ (6zuN )γ +

(
T1 +

z2m2
N

4
T M

1

)
(P νiσµνC)αβ (γµγ5uN )γ

+T2mN (zµP νiσµνC)αβ (γ5uN )γ + T3mN (σµνC)αβ (σµνγ5uN )γ

+T4mN (P νσµνC)αβ (σµρzργ5uN )γ + T5m
2
N (zνiσµνC)αβ (γµγ5uN )γ

+T6m
2
N (zµP νiσµνC)αβ (6zγ5uN )γ + T7m

2
N (σµνC)αβ (σµν 6zγ5uN )γ

+T8m
3
N (zνσµνC)αβ (σµρzργ5uN )γ , (A.1)

including the O(z2) corrections to the lowest twist-3 part of this decomposition. In the

above, the gauge links maintaining gauge invariance are not shown for brevity.

The calligraphic coefficients S1,2, P1,2, V1,...,6, A1,...,6, T1,...,8, VM
1 ,AM

1 ,T M
1 at different

Dirac structures, are related to the integrals containing the nucleon DA’s depending on the

longitudinal momentum fractions xi. The general relation reads

F(a1, a2, a3, (P · z)) =

∫
dx1dx2dx3δ(1−x1−x2−x3)e

−i(P ·z)
P

i xiaiF (xi) , (A.2)

where our choice of the three-quark configuration on the light-cone corresponds to a1,3 =

0, a2 = 1. The function F and the integrand on r.h.s. for all coefficients in (A.1) are

collected in table 4.
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F integrand on r.h.s. of (A.2) F integrand on r.h.s. of (A.2)

S1 S1 2(P ·z)S2 S1 − S2

P1 P1 2(P ·z)P2 P2 − P1

V1 V1 2(P ·z)V2 V1 − V2 − V3

2V3 V3 4(P ·z)V4 −2V1 + V3 + V4 + 2V5

4(P ·z)V5 V4 − V3 4 (P ·z)2 V6 −V1 + V2 + V3 + V4 + V5 − V6

A1 A1 2(P ·z)A2 −A1 +A2 −A3

2A3 A3 4(P ·z)A4 −2A1 −A3 −A4 + 2A5

4(P ·z)A5 A3 −A4 4 (P ·z)2 A6 A1 −A2 +A3 +A4 −A5 +A6

T1 T1 2(P ·z)T2 T1 + T2 − 2T3

2T3 T7 2(P ·z)T4 T1 − T2 − 2T7

2(P ·z)T5 −T1 + T5 + 2T8 4 (P ·z)2 T6 2T2−2T3−2T4+2T5+2T7+2T8

4(P ·z)T7 T7 − T8 4 (P ·z)2 T8 −T1 + T2 + T5 − T6 + 2T7 + 2T8

VM
1 VM

1 AM
1 AM

1

T M
1 TM

1

Table 4. Terms of the decomposition (A.1) and their relation to the nucleon DA’s via eq. (A.2).

The resulting decomposition contains altogether 27 DA’s. We use their expressions

obtained in [14, 17] to the next-to-leading order in the conformal spin expansion. The

three twist-3 DA’s V1, A1, T1 are presented in eq. (4.3) and the others are:

• twist-4 DA’s:

V2(xi) = 24x1x2[φ
0
4 + φ+

4 (1 − 5x3)] , A2(xi) = 24x1x2(x2 − x1)φ
−
4 ,

T2(xi) = 24x1x2[ξ
0
4 + ξ+4 (1 − 5x3)] ,

V3(xi) = 12x3[ψ
0
4(1 − x3) + ψ+

4 (1 − x3 − 10x1x2) + ψ−
4 (x2

1 + x2
2 − x3(1 − x3))] ,

A3(xi) = 12x3(x2 − x1)[(ψ
0
4 + ψ+

4 ) + ψ−
4 (1 − 2x3)] ,

T3(xi) = 6x3[(φ
0
4 + ψ0

4 + ξ04)(1 − x3) + (φ+
4 + ψ+

4 + ξ+4 )(1 − x3 − 10x1x2)

+(φ−4 − ψ−
4 + ξ−4 )(x2

1 + x2
2 − x3(1 − x3))] , (A.3)

T7(xi) = 6x3[(φ
0
4 + ψ0

4 − ξ04)(1 − x3) + (φ+
4 + ψ+

4 − ξ+4 )(1 − x3 − 10x1x2)]

+(φ−4 − ψ−
4 − ξ−4 )(x2

1 + x2
2 − x3(1 − x3))] ,

S1(xi) = 6x3(x2 − x1)[(φ
0
4 + ψ0

4 + ξ04 + φ+
4 + ψ+

4 + ξ+4 ) + (φ−4 − ψ−
4 + ξ−4 )(1 − 2x3)] ,

P1(xi) = 6x3(x1 − x2)[(φ
0
4 + ψ0

4 − ξ04 + φ+
4 + ψ+

4 − ξ+4 ) + (φ−4 − ψ−
4 − ξ−4 )(1 − 2x3)] ,

• twist-5 DA’s:

V4(xi) = 3[ψ0
5(1 − x3) + ψ+

5 (1 − x3 − 2(x2
1 + x2

2)) + ψ−
5 (2x1x2 − x3(1 − x3))] ,

A4(xi) = 3(x2 − x1)[−ψ0
5 + ψ+

5 (1 − 2x3) + ψ−
5 x3] ,
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T4(xi) =
3

2
[(φ0

5 + ψ0
5 + ξ05)(1 − x3) + (φ+

5 + ψ+
5 + ξ+5 )(1 − x3 − 2(x2

1 + x2
2))]

+(φ−5 − ψ−
5 + ξ−5 )(2x1x2 − x3(1 − x3)) ,

T8(xi) =
3

2
[(φ0

5 + ψ0
5 − ξ05)(1 − x3) + (φ+

5 + ψ+
5 − ξ+5 )(1 − x3 − 2(x2

1 + x2
2))

+(φ−5 − ψ−
5 + ξ−5 )(2x1x2 − x3(1 − x3))] ,

V5(xi) = 6x3[φ
0
5 + φ+

5 (1 − 2x3)] , A5(xi) = 6x3(x2 − x1)φ
−
5 ,

T5(xi) = 6x3[ξ
0
5 + ξ+5 (1 − 2x3)] ,

S2(xi) =
3

2
(x2 − x1)[−(φ0

5 + ψ0
5 + ξ05) + (φ+

5 + ψ+
5 + ξ+5 )(1 − 2x3)

+(φ−5 − ψ−
5 + ξ−5 )x3] ,

P2(xi) =
3

2
(x1 − x2)[−(φ0

5 + ψ0
5 − ξ05) + (φ+

5 + ψ+
5 − ξ+5 )(1 − 2x3)

+(φ−5 − ψ−
5 − ξ−5 )x3] ,

• twist-6 DA’s:

V6(xi) = 2[φ0
6 + φ+

6 (1 − 3x3)] , A6(xi) = 2(x2 − x1)φ
−
6 ,

T6(xi) = 2[φ0
6 −

1

2
(φ+

6 − φ−6 )(1 − 3x3) . (A.4)

The expressions for the remaining three DA’s (V M
1 , AM

1 , TM
1 ) determining the z2-

corrections are shown below.

Furthermore, following ref. [16], shorthand notations for the combinations of nucleon

DA’s are used:

S12 = S1 − S2 , P21 = P2 − P1 ,

V1345 = −2V1 + V3 + V4 + 2V5 , V43 = V4 − V3 ,

V123456 = −V1 + V2 + V3 + V4 + V5 − V6 , V123 = V1 − V2 − V3

A1345 = −2A1 −A3 −A4 + 2A5 , A34 = A3 −A4

A123456 = A1 −A2 +A3 +A4 −A5 +A6 , A123 = −A1 +A2 −A3

T78 = T7 − T8 , T123 = T1 + T2 − 2T3 ,

T234578 = 2T2 − 2T3 − 2T4 + 2T5 + 2T7 + 2T8 , T127 = T1 − T2 − 2T7 ,

T125678 = −T1 + T2 + T5 − T6 + 2T7 + 2T8 , T158 = −T1 + T5 + 2T8 . (A.5)

In addition, the following notations are introduced for the integrals:

F̃ (x2) =

∫ 1−x2

0
dx1F (x1, x2, 1 − x1 − x2) ,

˜̃F (x2) =

∫ x2

1
dx′2

∫ 1−x′

2

0
dx1F (x1, x

′
2, 1 − x1 − x′2) ,

˜̃̃
F (x2) =

∫ x2

1
dx′2

∫ x′

2

1
dx′′2

∫ 1−x′′

2

0
dx1F (x1, x

′′
2 , 1 − x1 − x′′2) (A.6)

where F is one of the DA’s.
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Finally, the DA’s originating from z2 corrections enter in the integrated form denoted

as ṼM
1 (x2), Ã

M
1 (x2) and T̃M

1 (x2), where

Ṽ M
1 (x2) =

x2
2

24
[fNC

u
f (x2) + λ1C

u
λ (x2)] ,

ÃM
1 (x2) =

x2
2

24
(1 − x2)

3[fND
u
f (x2) + λ1D

u
λ(x2)] ,

T̃M
1 (x2) =

x2
2

48
[fNE

u
f (x2) + λ1E

u
λ(x2)] , (A.7)

with

Cu
f (x2) = (1 − x2)

3[113 + 495x2 − 552x2
2 − 10Au

1 (1 − 3x2)

+2V d
1 (113 − 951x2 + 828x2

2)] ,

Cu
λ(x2) = −(1 − x2)

3[13 − 20fd
1 + 3x2 + 10fu

1 (1 − 3x2))] ,

Du
f (x2) = 11 + 45x2 − 2Au

1 (113 − 951x2 + 828x2
2) + 10V d

1 (1 − 30x2) ,

Du
λ(x2) = 29 − 45x2 − 10fu

1 (7 − 9x2) − 20fd
1 (5 − 6x2) ,

Eu
f (x2) = −[(1 − x2)(3(439 + 71x2 − 621x2

2 + 587x3
2 − 184x4

2)

+4Au
1 (1 − x2)

2(59 − 483x2 + 414x2
2)

−4V d
1 (1301 − 619x2 − 769x2

2 + 1161x3
2 − 414x4

2))]

−12(73 − 220V d
1 ) lnx2 ,

Eu
λ(x2) = −[(1 − x2)(5 − 211x2 + 281x2

2 − 111x3
2

+10(1 + 61x2 − 83x2
2 + 33x3

2)f
d
1

−40(1 − x2)
2(2 − 3x2)f

u
1 )] − 12(3 − 10fd

1 ) lnx2 . (A.8)

The terms proportional to lnx2 in the above DA T̃M
1 (x2) are the only non-polynomial

ones in the whole OPE expressions. In the case of LCSR for the form factors their trans-

formation to a dispersion form is straightforward. However, for the strong coupling sum

rules a double dispersion form of such nonpolynomial terms demands a separate deriva-

tion. In fact, these terms turn out to have negligible coefficients with our choice of the DA

parameters V d
1 and fd

1 and hence are simply neglected.

The coefficients φ
(±,0)
i , ψ

(±,0)
i and ξ

(±,0)
i (i = 3, 4, 5, 6) determining the normalization

and shape of DA’s can be expressed through the eight independent parameters listed in (7.1)

and (7.2). The corresponding relations for the leading conformal spin in DA’s are

φ0
3 = φ0

6 = fN , φ0
4 = φ0

4 =
1

2
(fN + λ1) ,

ξ04 = ξ05 =
1

6
λ2 , ψ0

4 = ψ0
5 =

1

2
(fN − λ1) . (A.9)

For the next-to-leading conformal spin,

• in twist-3 DA’s:

φ−3 =
21

2
fNA

u
1 , φ+

3 =
7

2
fN (1 − 3V d

1 ) , (A.10)
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• in twist-4 DA’s:

φ+
4 =

1

4
[fN (3 − 10V d

1 ) + λ1(3 − 10fd
1 )] ,

φ−4 = −5

4
[fN (1 − 2Au

1) − λ1(1 − 2fd
1 − 4fu

1 )] ,

ψ+
4 = −1

4
[fN (2 + 5Au

1 − 5V d
1 ) − λ1(2 − 5fd

1 − 5fu
1 )]

ψ−
4 =

5

4
[fN (2 −Au

1 − 3V d
1 ) − λ1(2 − 7fd

1 + fu
1 )]

ξ+4 =
1

16
λ2(4 − 15fd

2 ) , ξ−4 =
5

16
λ2(4 − 15fd

2 ) , (A.11)

• in twist-5 DA’s:

φ+
5 = −5

6
[fN (3 + 4V d

1 ) − λ1(1 − 4fd
1 )] ,

φ−5 = −5

3
[fN (1 − 2Au

1) − λ1(f
d
1 − fu

1 )] ,

ψ+
5 = −5

6
[fN (5 + 2Au

1 − 2V d
1 ) − λ1(1 − 2fd

1 − 2fu
1 )] ,

ψ−
5 =

5

3
[fN (2 −Au

1 − 3V d
1 ) + λ1(f

d
1 − fu

1 )] ,

ξ+5 =
5

36
λ2(2 − 9fd

2 ) , ξ−5 = −5

4
λ2f

d
2 , (A.12)

• in twist-6 DA’s:

φ+
6 =

1

2
[fN (1 − 4V d

1 ) − λ1(1 − 2fd
1 )] ,

φ−6 =
1

2
[fN (1 + 4Au

1 ) + λ1(1 − 4fd
1 − 2fu

1 )] . (A.13)

B Correlation function in the LCSR for Λc → N form factors

B.1 Pseudoscalar transition current

The invariant amplitudes Π
(i)
j ((P−q)2, q2) of the correlation function with the pseudoscalar

transition current j5 are given in (4.4), where the coefficient functions ω̃
(i)
jn with i = P,A,

j = 1, 2 and n = 1, 2, 3, (after replacement of (P − q)2 described in section 4) are listed

below for:

• the pseudoscalar interpolating current

ω
(P)
11 =

mN

2

[
(mc − xmN )Φ

(P)
1 −mNΦ

(P)
2

]
,

ω
(P)
12 = −m

2
N

2

[
mc

(
mc − xmN

)
Φ

(P)
2 + 2xm2

NΦ
(P)
3

]
,

ω
(P)
13 = 2m3

Nm
2
c

(
mc − xmN

)
Φ

(P)
3 ,

ω
(P)
21 = −mN

2
Φ

(P)
1 , ω

(P)
22 =

m2
N

2

(
mcΦ

(P)
2 − 2mNΦ

(P)
3

)
,

ω
(P)
23 = −2m3

Nm
2
cΦ

(P)
3 , (B.1)
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where the functions Φ
(P)
i in the above equations are

Φ
(P)
1 = 2Ã1 + 4Ã3 + 2Ã123 + 2P̃1 + 2S̃1 + 6T̃1 − 12T̃7 − T̃123 − 5T̃127

−2Ṽ1 + 4Ṽ3 + 2Ṽ123 ,

Φ
(P)
2 = 3 ˜̃A34 + 2 ˜̃A123 − ˜̃A1345 − 2 ˜̃P21 + 2 ˜̃S12 − 12 ˜̃T78 − 2 ˜̃T123 − 4 ˜̃T127

−6 ˜̃T158 + ˜̃T234578 − 3 ˜̃V43 + 2 ˜̃V123 + ˜̃V1345 ,

Φ
(P)
3 = −ÃM

1 − 3T̃M
1 + ṼM

1 +
˜̃̃
A123456 − 3

˜̃̃
T125678 +

˜̃̃
T234578 +

˜̃̃
V123456 ;

• the axial-vector interpolating current

ω
(A)
11 = 2

m2
c − q2

x
Φ

(A)
1 + xm2

N

[
2Φ

(A)
1 + Φ

(A)
2

]
+mNmcΦ

(A)
3 +m2

N

[
Φ

(A)
4 +

2Φ
(A)
5

x

]
,

ω
(A)
12 = −m2

N

[
2(x2m2

N − q2)Φ
(A)
6 + xmNmcΦ

(A)
7 +m2

cΦ
(A)
8 − 2

q2 +m2
c

x
Φ

(A)
5

+2xm2
NΦ

(A)
9

]
,

ω
(A)
13 = 4

m2
N

x

[
m2

c(q
2 −m2

c)Φ
(A)
5 − x2m2

Nm
2
cΦ

(A)
9 + xmNm

3
cΦ

(A)
10

]
,

ω
(A)
21 =

mN

x

[
2Φ

(A)
6 + xΦ

(A)
2

]
, ω

(A)
23 = 4m3

Nm
2
cΦ

(A)
11 ,

ω
(A)
22 =

mN

x

[
2(q2 −m2

c − x2m2
N )Φ

(A)
6 − xmNmcΦ

(A)
7 + 2xm2

NΦ
(A)
11

]
, (B.2)

where the functions Φ
(A)
i are

Φ
(A)
1 = Ã1 + 2T̃1 + Ṽ1 ,

Φ
(A)
2 = 2Ã3 − 2P̃1 + 2S̃1 − 2T̃1 + T̃123 + T̃127 − 2Ṽ3 ,

Φ
(A)
3 = 2Ã1 + 4Ã3 + 2Ã123 − 4P̃1 + 4S̃1 + 2Ṽ1 − 4Ṽ3 − 2Ṽ123 ,

Φ
(A)
4 = −2 ˜̃A1345 + 2 ˜̃P21 + 2 ˜̃S12 − 2 ˜̃T123 + 4 ˜̃T127 − 6 ˜̃T158 + 3 ˜̃T234578 − 2 ˜̃V1345 ,

Φ
(A)
5 = ÃM

1 + 2T̃M
1 + ṼM

1 − ˜̃̃
T234578 ,

Φ
(A)
6 = ˜̃A123 − ˜̃T123 − ˜̃T127 − ˜̃V123 ,

Φ
(A)
7 = −3 ˜̃A34 − 2 ˜̃A123 + ˜̃A1345 − 4 ˜̃P21 − 4 ˜̃S12 − 3 ˜̃V43 + 2 ˜̃V123 + ˜̃V1345 ,

Φ
(A)
8 = 2 ˜̃A123 + 2 ˜̃A1345 − 2 ˜̃P21 − 2 ˜̃S12 − 6 ˜̃T127 + 6 ˜̃T158 − 3 ˜̃T234578 − 2 ˜̃V123 + 2 ˜̃V1345 ,

Φ
(A)
9 = ÃM

1 + T̃M
1 + ṼM

1 − 2
˜̃̃
A123456 + 3

˜̃̃
T125678 − 2

˜̃̃
T234578 + 2

˜̃̃
V123456 ,

Φ
(A)
10 = −ÃM

1 − Ṽ M
1 +

˜̃̃
A123456 −

˜̃̃
V123456 ,

Φ
(A)
11 = T̃M

1 + 2
˜̃̃
A123456 − 3

˜̃̃
T125678 +

˜̃̃
T234578 − 2

˜̃̃
V123456 .
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B.2 Vector transition current

The invariant amplitudes Π̃
(i)
j ((P − q)2, q2) for the correlation function with the vector

transition current jµ are given by eq. (4.4) with the replacement of the coefficient mc/4 →
1/4. The coefficient functions ω̃

(i)
jn with i = P,A, j = 1, 2, . . . 6 and n = 1, 2, 3 are listed

below for:

• the pseudoscalar interpolating current

ω̃
(P)
11 = xmN Φ̃

(P)
1 , ω̃

(P)
12 = xm3

N

[
x Φ̃

(P)
2 + 2Φ̃

(P)
3

]
,

ω̃
(P)
13 = 4xm3

Nm
2
cΦ̃

(P)
3 ,

ω̃
(P)
21 = ω̃

(P)
23 = 0 , ω̃

(P)
22 = −xm2

N Φ̃
(P)
2 ,

ω̃
(P)
31 =

mN

2
(mc − xmN )Φ̃

(P)
1 ,

ω̃
(P)
32 = −m

2
N

2

[
mc(mc − xmN )Φ̃

(P)
2 + 2xm2

N Φ̃
(P)
3

]
,

ω̃
(P)
33 = 2m3

Nm
2
c(mc − xmN ) Φ̃

(P)
3 ,

ω̃
(P)
41 =

mN

2
Φ̃

(P)
1 , ω̃

(P)
42 =

m2
N

2

[
−mcΦ̃

(P)
2 + 2mN Φ̃

(P)
3

]
,

ω̃
(P)
43 = 2m3

Nm
2
cΦ̃

(P)
3 ,

ω̃
(P)
51 = −mN Φ̃

(P)
1 , ω̃

(P)
52 = −m3

N

[
x Φ̃

(P)
2 + 2Φ̃

(P)
3

]
,

ω̃
(P)
53 = −4m3

Nm
2
cΦ̃

(P)
3 ,

ω̃
(P)
61 = ω̃

(P)
63 = 0 , ω̃

(P)
62 = m2

N Φ̃
(P)
2 , (B.3)

where the functions Φ̃
(P)
i are given by

Φ̃
(P)
1 = 2Ã1 + 4Ã3 + 2Ã123 + 2P̃1 + 2S̃1 + 6T̃1 − 12T̃7 − T̃123 − 5T̃127

−2Ṽ1 + 4Ṽ3 + 2Ṽ123 ,

Φ̃
(P)
2 = 3 ˜̃A34 + 2 ˜̃A123 − ˜̃A1345 − 2 ˜̃P21 + 2 ˜̃S12 − 12 ˜̃T78 − 2 ˜̃T123 − 4 ˜̃T127

−6 ˜̃T158 + ˜̃T234578 − 3 ˜̃V43 + 2 ˜̃V123 + ˜̃V1345 ,

Φ̃
(P)
3 = −ÃM

1 − 3T̃M
1 + ṼM

1 +
˜̃̃
A123456 − 3

˜̃̃
T125678 +

˜̃̃
T234578 +

˜̃̃
V123456 ;

• the axial-vector interpolating current

ω̃
(A)
11 = 2

[
2mcΦ̃

(A)
1 − xmN (2Φ̃

(A)
1 + Φ̃

(A)
2 ) + 2mN Φ̃

(A)
3

]
,

ω̃
(A)
12 = 2mN

[
x2m2

N Φ̃
(A)
4 + xmNmcΦ̃

(A)
5 + 2m2

cΦ̃
(A)
3 + 2xm2

N Φ̃
(A)
6

]
,

ω̃
(A)
13 = 8m2

Nmc

[
m2

cΦ̃
(A)
7 + xmNmcΦ̃

(A)
6 + x2m2

N Φ̃
(A)
8

]
,
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ω̃
(A)
21 = 4Φ̃

(A)
1 , ω̃

(A)
23 = 8m2

Nmc

[
mcΦ̃

(A)
7 − xmN Φ̃

(A)
8

]
,

ω̃
(A)
22 = 2mN

[
2mcΦ̃

(A)
3 − xmN Φ̃

(A)
4 + 2mN Φ̃

(A)
7

]
,

ω̃
(A)
31 = 2

m2
c − q2

x
Φ̃

(A)
1 +mNmcΦ̃

(A)
2 +m2

N Φ̃
(A)
9 − 2xm2

N Φ̃
(A)
10 − 2

m2
N

x
Φ̃

(A)
7 ,

ω̃
(A)
32 = m2

N

[
2(q2 − x2m2

N )Φ̃
(A)
3 − 2

q2 +m2
c

x
Φ̃

(A)
7 + xmNmcΦ̃

(A)
11

+m2
c(Φ̃

(A)
5 − 2Φ̃

(A)
3 ) + 2mN (mc + xmN )Φ̃

(A)
8

]
,

ω̃
(A)
33 =

4m2
cm

2
N

x

[
(m2

c − q2)Φ̃
(A)
7 + xmNmcΦ̃

(A)
12 + x2m2

N Φ̃
(A)
8

]
,

ω̃
(A)
41 = 2mN

[
(Φ̃

(A)
1 + Φ̃

(A)
10 ) − Φ̃

(A)
3

x

]
, ω̃

(A)
43 = 4m3

Nm
2
cΦ̃

(A)
13 ,

ω̃
(A)
42 =

mN

x

[
2(m2

c + x2m2
N − q2)Φ̃

(A)
3 − xmNmcΦ̃

(A)
11 + 2xm2

N Φ̃
(A)
13

]
,

ω̃
(A)
51 = 2mN Φ̃

(A)
2 , ω̃

(A)
53 = 8m3

Nmc

[
mcΦ̃

(A)
14 − xmN Φ̃

(A)
8

]
,

ω̃
(A)
52 = 2m2

N

[
− xmN Φ̃

(A)
4 −mc(Φ̃

(A)
5 + 2Φ̃

(A)
3 ) + 2mN Φ̃

(A)
14

]
,

ω̃
(A)
61 = 0 , ω̃

(A)
62 = 2m2

N Φ̃
(A)
4 , ω̃

(A)
63 = 8m3

NmcΦ̃
(A)
8 . (B.4)

The functions Φ̃
(A)
i are given by

Φ̃
(A)
1 = Ã1 + 2T̃1 + Ṽ1 ,

Φ̃
(A)
2 = 2Ã3 − 2P̃1 + 2S̃1 − 2T̃1 + T̃123 + T̃127 − 2Ṽ3 ,

Φ̃
(A)
3 = ˜̃A123 − ˜̃T123 − ˜̃T127 − ˜̃V123 ,

Φ̃
(A)
4 = − ˜̃A34 + ˜̃A1345 − 2 ˜̃P21 − 2 ˜̃S12 − 2 ˜̃T127 + 2 ˜̃T158 − ˜̃T234578 − ˜̃V43 + ˜̃V1345 ,

Φ̃
(A)
5 = − ˜̃A34 − 2 ˜̃A123 − ˜̃A1345 + 4 ˜̃T127 − 4 ˜̃T158 + 2 ˜̃T234578 − ˜̃V43 + 2 ˜̃V123 − ˜̃V1345 ,

Φ̃
(A)
6 = ÃM

1 + T̃M
1 + ṼM

1 − ˜̃̃
A123456 +

˜̃̃
T125678 −

˜̃̃
T234578 +

˜̃̃
V123456 ,

Φ̃
(A)
7 = −ÃM

1 − 2T̃M
1 − ṼM

1 +
˜̃̃
T234578 ,

Φ̃
(A)
8 =

˜̃̃
A123456 − 2

˜̃̃
T125678 +

˜̃̃
T234578 −

˜̃̃
V123456 ,

Φ̃
(A)
9 = −2 ˜̃A34 − 2 ˜̃A123 − 2 ˜̃P21 − 2 ˜̃S12 + 2 ˜̃T127 − 2 ˜̃T158 + ˜̃T234578 − 2 ˜̃V43 + 2 ˜̃V123 ,

Φ̃
(A)
10 = Ã123 − T̃123 − T̃127 − Ṽ123 ,

Φ̃
(A)
11 = 2 ˜̃A34 + 2 ˜̃P21 + 2 ˜̃S12 + 2 ˜̃T123 + 2 ˜̃T158 − ˜̃T234578 + 2 ˜̃V43 ,

Φ̃
(A)
12 = T̃M

1 +
˜̃̃
T125678 −

˜̃̃
T234578 ,

Φ̃
(A)
13 = −ÃM

1 − 2T̃M
1 − ṼM

1 − ˜̃̃
A123456 + 2

˜̃̃
T125678 +

˜̃̃
V123456 ,

Φ̃
(A)
14 = T̃M

1 +
˜̃̃
A123456 −

˜̃̃
T125678 −

˜̃̃
V123456 .
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B.3 Axial-vector transition current

The invariant amplitudes Π̄
(i)
j ((P − q)2, q2) for the correlation function with the axial-

vector transition current jµ5 are given by (4.4) where mc/4 → 1/4, with i = P,A and j =

1, 2, . . . 6. The coefficient functions ω̄
(i)
jn can be obtained from ω̃

(i)
jn in the above subsection

by changing the sign at mc and at ω̃
(P)
2n , ω̃

(P)
3n , ω̃

(P)
6n , ω̃

(A)
1n , ω̃

(A)
4n and ω̃

(A)
5n .

C Correlation function in the LCSR for Σc → N form factors

C.1 Pseudoscalar transition current

The invariant amplitudes Π
(i)
j ((P − q)2, q2) for the correlation function with the pseu-

doscalar transition current j5 are given by eq. (4.4) with i = I,T and j = 1, 2. Here we

specify the corresponding coefficient funcitons for:

• Ioffe current:

The functions ω
(I)
jn can be obtained from ω

(A)
jn given in previous appendix B by chang-

ing the sign of the terms involving scalar S1,2(xi), pseudoscalar P1,2(xi) and tensor

T1,...,8(xi) DA’s and also mc → −mc;

• tensor interpolating current:

ω
(T )
11 = 2

[
4
m2

c − q2

x
Φ

(T )
1 +mNmcΦ

(T )
2 + 2xm2

N (Φ
(T )
1 + Φ

(T )
3 )

+m2
NΦ

(T )
4 +

4m2
N

x
Φ

(T )
5

]
,

ω
(T )
12 = 2m2

N

[
4(x2m2

N − q2)Φ
(T )
6 + xmNmcΦ

(T )
7 +m2

cΦ
(T )
4 − 2

x
(2(q2 +m2

c)

+x2m2
N )Φ

(T )
5 − 6xm2

NΦ
(T )
8

]
,

ω
(T )
13 =

8m2
Nm

2
c

x

[
2(q2 −m2

c)Φ
(T )
5 + xmNmcΦ

(T )
9 − x2m2

N (3Φ
(T )
8 + Φ

(T )
5 )

]
,

ω
(T )
21 = 4mN

[
− Φ

(T )
1 + Φ

(T )
3 − 2

x
Φ

(T )
6

]
, ω

(T )
23 = 8m3

Nm
2
c

[
Φ

(T )
5 − 3Φ

(T )
8

]
,

ω
(T )
22 =

2mN

x

[
4(m2

c + x2m2
N − q2)Φ

(T )
6 + xmNmcΦ

(T )
7

−2xm2
N (3Φ

(T )
8 + Φ

(T )
5 )

]
, (C.1)

where the functions Φ
(T )
i are

Φ
(T )
1 = Ṽ1 − Ã1 , Φ

(T )
3 = Ṽ123 + Ã123 ,

Φ
(T )
2 = 6P̃1 + 6S̃1 − 6T̃1 + 12T̃7 + T̃123 + 5T̃127 ,

Φ
(T )
4 = 3 ˜̃A34 + 2 ˜̃A123 + 3 ˜̃A1345 − 3 ˜̃V43 + 2 ˜̃V123 − 3 ˜̃V1345 ,

Φ
(T )
5 = ṼM

1 − ÃM
1 , Φ

(T )
6 = ˜̃V123 + ˜̃A123 ,

Φ
(T )
7 = −6 ˜̃P21 + 6 ˜̃S12 + 12 ˜̃T78 + 2 ˜̃T123 + 4 ˜̃T127 + 6 ˜̃T158 − ˜̃T234578 ,

Φ
(T )
8 =

˜̃̃
V123456 +

˜̃̃
A123456 , Φ

(T )
9 = 3T̃M

1 + 3
˜̃̃
T125678 −

˜̃̃
T234578 .
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C.2 Vector transition current

The invariant amplitudes Π̃
(i)
j ((P − q)2, q2), with i = I,T and j = 1, 2, . . . 6, for the

correlation function with the vector transition current jµ are given by eq. (4.4) with the

replacement mc/4 → 1/4, where the coefficient ω̃
(i)
jn functions are given below for:

• Ioffe current:

The functions ω̃
(I)
jn can be obtained from ω̃

(A)
jn presented in appendix B by changing

the sign of the terms involving vector V1,...,6(xi) and axial-vector A1,...,6(xi) DA’s as

well as mc → −mc;

• tensor interpolating current

ω̃
(T )
11 = 4

[
− 4mcΦ̃

(T )
1 + xmN Φ̃

(T )
2 + 4mN Φ̃

(T )
3

]
,

ω̃
(T )
12 = 4mN

[
4q2Φ̃

(T )
3 − x2m2

N (4Φ̃
(T )
3 + 2Φ̃

(T )
4 + 3Φ̃

(T )
5 ) + 2xmNmc(Φ̃

(T )
6 − 2Φ̃

(T )
7 )

+2xm2
N (Φ̃

(T )
8 + Φ̃

(T )
9 )

]
,

ω̃
(T )
13 = 16m2

N

[
xmNm

2
cΦ̃

(T )
8 + 2x2m2

NmcΦ̃
(T )
10 + xmN

(
2(q2 − x2m2

N ) −m2
c

)
Φ̃

(T )
9

+2m3
cΦ

(T )
11

]
,

ω̃
(T )
21 = 0 , ω̃

(T )
23 = 32m2

N

[ (
x2m2

N − q2
)
Φ̃

(T )
9 − xmNmcΦ̃

(T )
10

]
,

ω̃
(T )
22 = 4mN

[
4mcΦ̃

(T )
12 + xmN (2Φ̃

(T )
4 + 3Φ̃

(T )
5 ) − 8mN Φ̃

(T )
9

]
,

ω̃
(T )
31 = 2mN

[
2mc(Φ̃

(T )
1 − Φ̃

(T )
13 ) + xmN (Φ̃

(T )
2 + 4Φ̃

(T )
14 )

+2mN (−2(Φ̃
(T )
3 + Φ̃

(T )
4 ) + Φ̃

(T )
5 )

]
,

ω̃
(T )
32 = 2m2

N

[
− xmNmc(Φ̃

(T )
6 + 2Φ̃

(T )
12 ) + 4mNmcΦ̃

(T )
10 + 2xm2

N (Φ̃
(T )
8 + Φ̃

(T )
9 )

+m2
c

(
−2Φ̃

(T )
4 + 5Φ̃

(T )
5 − 8

x
Φ̃

(T )
9

)
+ 4(x2 m2

N − q2)Φ̃
(T )
3

]
,

ω̃
(T )
33 =

8m2
Nm

2
c

x

[
2
(
x2m2

N − q2 +m2
c

)
Φ̃

(T )
9 + x2m2

N (Φ̃
(T )
8 + Φ̃

(T )
9 )

−xmNmc(Φ̃
(T )
10 + Φ̃

(T )
11 )

]
,

ω̃
(T )
41 =

2mN

x

[
4Φ̃

(T )
3 − x(Φ̃

(T )
2 + 4Φ̃

(T )
14 )

]
,

ω̃
(T )
42 =

2mN

x

[
4
(
q2 − x2m2

N −m2
c

)
Φ̃

(T )
3 + xmNmc(Φ̃

(T )
6 + 2Φ̃

(T )
7 )

−2xm2
N (Φ̃

(T )
8 + Φ̃

(T )
9 )

]
,

ω̃
(T )
43 = −8m3

Nm
2
c(Φ̃

(T )
8 + Φ̃

(T )
9 ) ,
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ω̃
(T )
51 = −4mN

[
Φ̃

(T )
2 +

4Φ̃
(T )
3

x

]
,

ω̃
(T )
52 =

4mN

x

[
4
(
m2

c − q2
)
Φ̃

(T )
3 + x2m2

N (4Φ̃
(T )
3 + 2Φ̃

(T )
4 + 3Φ̃

(T )
5 )

−2xmNmcΦ̃
(T )
6 − 2xm2

N (Φ̃
(T )
8 + Φ̃

(T )
9 )

]
,

ω̃
(T )
53 = 16m3

N

[
2
(
x2m2

N − q2
)
Φ̃

(T )
9 +m2

c(3Φ̃
(T )
9 − Φ̃

(T )
8 ) − 2xmNmcΦ̃

(T )
10

]
,

ω̃
(T )
61 = 0 , ω̃

(T )
62 = 4m2

N

[
− 2Φ̃

(T )
4 − 3Φ̃

(T )
5 +

8

x
Φ̃

(T )
9

]
,

ω̃
(T )
63 =

32m2
N

x

[ (
q2 − x2m2

N −m2
c

)
Φ̃

(T )
9 + xmNmcΦ̃

(T )
10

]
, (C.2)

where the functions Φ̃
(T )
i are

Φ̃
(T )
1 = Ṽ1 − Ã1 , Φ̃

(T )
2 = 2P̃1 + 2S̃1 − 2T̃1 + 4T̃7 − T̃123 + 3T̃127 ,

Φ̃
(T )
3 = ˜̃T123 − ˜̃T127 , Φ̃

(T )
4 = ˜̃P21 − ˜̃S12 − 2 ˜̃T78 − ˜̃T123 − ˜̃T158 ,

Φ̃
(T )
5 = ˜̃T234578 , Φ̃

(T )
6 = ˜̃V43 + ˜̃V1345 − ˜̃A34 − ˜̃A1345 ,

Φ̃
(T )
7 = ˜̃V123 + ˜̃A123 , Φ̃

(T )
8 = T̃M

1 +
˜̃̃
T125678 ,

Φ̃
(T )
9 =

˜̃̃
T234578 , Φ̃

(T )
10 =

˜̃̃
V123456 +

˜̃̃
A123456 ,

Φ̃
(T )
11 = ṼM

1 − ÃM
1 , Φ̃

(T )
12 = ˜̃V123 + ˜̃A123 ,

Φ̃
(T )
13 = Ṽ123 + Ã123 , Φ̃

(T )
14 = T̃123 − T̃127 .

C.3 Axial-vector transition current

The invariant amplitudes Π̄
(i)
j ((P − q)2, q2), with i = I,T and j = 1, 2, . . . 6, for the

correlation function with the axial-vector transition current jµ5 are given by eq. (4.4) with

the replacement mc/4 → 1/4. The coefficient functions ω̄
(i)
jn can be obtained from ω̃

(i)
jn in

the above subsection by changing the sign for ω̃
(T )
2n , ω̃

(T )
3n , ω̃

(T )
6n , ω̃

(I)
1n , ω̃

(I)
4n and ω̃

(I)
5n together

with mc → −mc .

D Two-point sum rules

Here we present the expressions for the spectral densities in the two-point sum rules for

the decay constants of charmed baryons:
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D.1 Λc baryon

ImF
(P)
1 (s) =

m4
c

512π3

[
(1 − τ2)

(
1 − 8

τ
+

1

τ2

)
− 12 ln τ

]

+
1

768π2
〈αsG

2〉(1 − τ)(1 + 5τ) + π
〈q̄q〉2

6
δ(s −m2

c) ,

ImF
(P)
2 (s) =

m5
c

128π3

[
(1 − τ)

(
1 +

10

τ
+

1

τ2

)
+ 6

(
1 +

1

τ

)
ln τ

]

+
mc

384π2
〈αsG

2〉
[
(1 − τ)

(
7 +

2

τ

)
+ 6 ln τ

]

+πmc
〈q̄q〉2

6
δ(s −m2

c) , (D.1)

ImF̃1(s) =
(5 + 2b+ 5b2)m4

c

2048π3

[
(1 − τ2)

(
1 − 8

τ
+

1

τ2

)
− 12 ln τ

]

−(5 − 4b− b2)mc

96π
〈q̄q〉(1 − τ)2

+
〈αsG

2〉
3072π2

(1 − τ)
[
(5 + 2b+ 5b2) + 3(7 + 6b+ 7b2)τ

]

+
m2

0〈q̄q〉(1 − b)

384π

τ

mc
(11τ − 6 + b(7τ − 6))

+π
〈q̄q〉2
72

δ(s −m2
c)(11 + 2b+ 3b2) ,

ImF̃2(s) =
(11 + 2b− 13b2)m5

c

1536π3

[
(1 − τ)

(
1 +

10

τ
+

1

τ2

)
+ 6

(
1 +

1

τ

)
ln τ

]

−5 − 4b− b2

96π
s〈q̄q〉(1 − τ)2 − m2

0〈q̄q〉(1 − b)

384π

[
τ − 6 + b(5τ − 6)

]

+
(1 − b)mc〈αsG

2〉
4608π2

[
(1 − τ)

(
2(11 + 13b)

1

τ
+ (89 + 79b)

)
+ 72(1 + b) ln τ

]

+π
〈q̄q〉2
24

δ(s −m2
c)(5 + 2b+ 5b2)mc , (D.2)

where for brevity we denote m2
c/s = τ and use the standard notations for the vacuum

condensate densities. The above relations for ImF̃1,2(s) are used at b = −1/5. Hereafter

the integration convention
∫∞
m2

c
ds δ(s −m2

c) = 1 is implied.

D.2 Σc baryon

ImF̄1(s) =
(5 + 2b+ 5b2)m4

c

512π3

[
− τ2

4
+ 2τ − 2

τ
+

1

4τ2
− 3 ln τ

]

−3mc

32π
〈q̄q〉(1 − b2)(1 − τ)2 + π

〈q̄q〉2
24

δ(s −m2
c)(1 − b)2

−〈αsG
2〉

3072π2
τ(1 − τ)

[
(1 + b2)

(
11 − 5

τ

)
+ 2b

(
7 − 1

τ

)]

+
m2

0〈q̄q〉(1 − b2)

128π

1

mc
13τ2

(
1 − 6

13τ

)
,
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ImF̄2(s) =
(1 − b)2m5

c

512π3τ2

[
(1 − τ)(1 + 10τ + τ2) + 6τ(1 + τ) ln τ

]

−3m2
c

32π
〈q̄q〉(1 − b2)τ

(
1 − 1

τ

)2

+
m2

0〈q̄q〉(1 − b2)

128π
(6 + τ)

−(1 − b)2mc〈αsG
2〉

1536π2
(1 − τ)

(
5 − 2

τ

)

+π
〈q̄q〉2
24

δ(s −m2
c)(5 + 2b+ 5b2)mc , (D.3)

used for b = ±1.

E Double spectral representations

Here we collect the double dispersion relations for the master integrals with the powers

n = 2, 3 in denominators.

1∫

0

dx
xk

D2
= − 1

π

∞∫

m2
c

ds

s− (P − q)2

t2(s)∫

t1(s)

ds′

s′ − q2

{ k∑

j=2

(−1)k+1+j/2 1 + (−1)j

2

× j − 1

(2m2
N )k−1

Cj
k [s̄(s′)]k−j [κ(s′, t1, t2)]

j−3
2 θ(k − 2)

+
(−1)k

(2m2
N )k−1

[s̄(s′)]k

[κ(s′, t1, t2)]3/2

− (−1)k

(2m2
N )k−1

[(
[s̄(t1)]

k

t2 − t1
δ(s′ − t1)X1(t1, t2)

)
−
(
t1 ↔ t2

)]

−πδ(m2
c − s)δ(m2

c +m2
N − s′)

}
+ . . . , (E.1)

1∫

0

dx
xk

D3
=

1

2π

∞∫

m2
c

ds

s− (P − q)2

t2(s)∫

t1(s)

ds′

s′ − q2

{ k∑

j=4

(−1)k+j/2 1 + (−1)j

2
Cj

k

·(j − 1)(j − 3)

(2m2
N )k−2

[s̄(s′)]k−j [κ(s′, t1, t2)]
j−5
2 θ(k − 4)

+
(−1)kC2

k

(2m2
N )k−2

θ(k − 2)

[
[s̄(s′)]k−2

[κ(s′, t1, t2)]3/2

−
(

[s̄(t1)]
k−2

t2 − t1
δ(s′ − t1)X1(t1, t2)

)
+
(
t1 ↔ t2

)]

+3
(−1)k

(2m2
N )k−2

{
[s̄(s′)]k

[κ(s′, t1, t2)]5/2

−
(

[s̄(t1)]
k

(t2 − t1)3
δ(s′ − t1)X2(t1, t2)

)
+
(
t1 ↔ t2

)

+

[
[s̄(t1)]

k

(t2 − t1)2
ξ(s, s′, t1)X1(t1, t2)

]
−
[
t1 ↔ t2

]}
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+
π

2

(−1)k

(2m2
N )k

(
− 2δ′(m2

c − s)δ(m2
c +m2

N − s′)(−2m2
N )k

+k(k − 3)δ(m2
c − s)δ(m2

c +m2
N − s′)(−2m2

N )k−1θ(k − 1)

+δ(m2
c − s) δ(2)(s̄(s′) + 2m2

N ) [s̄(s′) + 2m2
N ]k [s̄(s′) + 4m2

N ]

)}

+ . . . . (E.2)

In the above, the ellipses denote the terms that vanish after double Borel transformation

and are therefore inessential; t1,2 are the functions of s defined in (6.11), θ(k − a) = 1(0)

at k ≥ a(k < a), s̄(y) = s− y−m2
N and κ(a, b, c) = (a− b)(c− a). The auxiliary functions

entering the above expressions are defined as

X1(a, b) =

∫ b

a

dσ

[κ(σ, a, b)]3/2
(b− σ) ,

X2(a, b) =

∫ b

a

dσ

[κ(σ, a, b)]5/2
(b− σ)2(2σ − 3a+ b) ,

ξ(s, s′, a) = δ′(s′ − a) +
k θ(k − 1)

s̄(a)
δ(s′ − a) .
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[21] Y.-M. Wang, Y. Li and C.-D. Lü, Rare Decays of Λb → Λ + γ and Λb → Λ + l+l− in the

Light-cone Sum Rules, Eur. Phys. J. C 59 (2009) 861 [arXiv:0804.0648] [SPIRES].
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[47] C.-D. Lü, Y.-M. Wang, H. Zou, A. Ali and G. Kramer, Anatomy of the pQCD Approach to

the Baryonic Decays Λb → pπ, pK, Phys. Rev. D 80 (2009) 034011 [arXiv:0906.1479]

[SPIRES].

[48] CDF collaboration, T. Aaltonen et al., Observation of New Charmless Decays of Bottom

Hadrons, Phys. Rev. Lett. 103 (2009) 031801 [arXiv:0812.4271] [SPIRES].

– 41 –

http://dx.doi.org/10.1016/0370-2693(93)90696-F
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B301,243
http://dx.doi.org/10.1103/PhysRevD.54.4532
http://arxiv.org/abs/hep-ph/9604280
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9604280
http://dx.doi.org/10.1016/0550-3213(82)90546-6
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B198,83
http://dx.doi.org/10.1016/0550-3213(82)90154-7
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B197,55
http://dx.doi.org/10.1016/j.nuclphysb.2008.08.012
http://arxiv.org/abs/0806.2531
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.2531
http://dx.doi.org/10.1103/PhysRevD.83.094023
http://arxiv.org/abs/1103.1269
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1103.1269
http://dx.doi.org/10.1016/0370-2693(92)91896-H
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B287,176
http://dx.doi.org/10.1016/0370-2693(92)90208-L
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B278,367
http://dx.doi.org/10.1140/epjc/s10052-010-1365-8
http://arxiv.org/abs/1001.1652
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1001.1652
http://dx.doi.org/10.1103/PhysRevD.80.074010
http://arxiv.org/abs/0907.2110
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0907.2110
http://dx.doi.org/10.1088/1126-6708/2008/04/014
http://arxiv.org/abs/0801.1796
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0801.1796
http://dx.doi.org/10.1103/PhysRevD.80.114005
http://arxiv.org/abs/0907.2842
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0907.2842
http://dx.doi.org/10.1016/j.physletb.2008.06.004
http://arxiv.org/abs/0804.2424
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0804.2424
http://dx.doi.org/10.1016/0550-3213(84)90114-7
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B246,52
http://dx.doi.org/10.1103/PhysRevD.79.013008
http://arxiv.org/abs/0807.2722
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.2722
http://dx.doi.org/10.1103/PhysRevD.83.094031
http://arxiv.org/abs/1103.2655
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1103.2655
http://dx.doi.org/10.1103/PhysRevD.80.034011
http://arxiv.org/abs/0906.1479
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0906.1479
http://dx.doi.org/10.1103/PhysRevLett.103.031801
http://arxiv.org/abs/0812.4271
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.4271

	Introduction
	Correlation function and interpolating currents
	Accessing the form factors with hadronic dispersion relations 
	Light-cone sum rules for the form factors
	Decay constants of charmed baryons
	LCSR for the strong couplings
	Numerical results
	Applications to exclusive Lambda(b) decays
	Discussion
	Nucleon distribution amplitudes
	Correlation function in the LCSR for Lambda(c) -> N form factors 
	Pseudoscalar transition current
	Vector transition current
	Axial-vector transition current

	Correlation function in the LCSR for Sigma(c) -> N form factors
	Pseudoscalar transition current
	Vector transition current 
	Axial-vector transition current

	Two-point sum rules 
	Lambda(c) baryon
	Sigma(c) baryon

	Double spectral representations 

