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energy. For a Higgs boson mass of 120 GeV the deviation from the infinite-top quark mass

result is small. For 300 GeV, however, the next-to-next-to-leading order corrections for a

scalar Higgs boson exceed the effective-theory result by about 9% which increases to 22% in

the pseudo-scalar case. Thus in this mass range the effect on the total cross section amounts

to about 2% and 6%, respectively, which may be relevant in future precision studies.
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1 Introduction

One of the most urgent problems in the modern particle physics is unveiling the origin

of masses of elementary particles, which according to the Standard Model (SM) is closely

related to the Higgs boson. A lower limit on the Higgs boson mass of about 114 GeV

was set more than ten years ago by the experiments on the Large Electron-Positron Col-

lider (LEP) [1] and more recently mass values around 160 GeV were excluded by the

Tevatron [2].1 Due to rarity of the process, discovering the Higgs boson production requires

subtle experimental methods and precise theoretical predictions.

The Standard Model contains only one physical CP-even Higgs boson. However, many

extensions of the SM, such as two-Higgs-doublet models or supersymmetric models predict

also charged and CP-odd Higgs bosons. In this paper we consider the production of a

1We refer to [3] for critical comments on the Tevatron analysis.
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pseudo-scalar Higgs boson in the form of an external current with a generic Yukawa cou-

pling. We require that the coupling be proportional to the heavy quark mass, while the

coefficient can be specified within any desired model.

The dominance of the gluon-fusion process in the production of a scalar or a pseudo-

scalar Higgs boson was established in the end of the 1970’s [4–7]. Later, in the beginning of

the 1990’s, several groups obtained the next-to-leading order (NLO) QCD corrections [8–

10]. The latter appeared to be large, modifying the LO prediction by as much as 100%.

Thus, the accurate prediction necessitated the next-to-next-to-leading order (NNLO) cal-

culation.

The NLO results include the complete dependence on the partonic center-of-mass

energy (ŝ), the Higgs boson mass (MΦ) and the top quark mass (Mt) [10, 11]. Assuming an

infinitely heavy top quark, one considerably simplifies the calculation while introducing only

a few per cent error. The NNLO corrections were first computed in this limit, for the scalar

Higgs boson in refs. [12–15] and for the pseudo-scalar in refs. [15–17]. More recently, the

missing top mass-suppressed corrections to the scalar Higgs production were estimated and

found small [18–20] compared to other uncertainties. In these papers the mass dependence

was recovered by interpolating between the expansion of the cross section near the heavy

top limit and the leading asymptotics in the ŝ → ∞ limit, given in ref. [20, 21].

In this paper we apply the technique used in ref. [19] and provide similar top mass-

suppressed corrections to the pseudo-scalar Higgs boson production. We compute five

expansion terms of the cross section in 1/M2
t , and match the partonic cross sections to the

values of ref. [22], derived in the ŝ → ∞ limit.

Similarly to the conclusions of refs. [18–20], we find that the infinite-top quark mass ap-

proximation with factorized exact LO mass dependence receives relatively small corrections.

We are not aware of any trivial explanations of this behaviour. Note that assuming no fac-

torization of the exact LO quark mass dependence the 1/M0
t result augumented with ŝ → ∞

behaviour deviates far from the infinite-top mass result, and only after including at least the

1/M6
t corrections the agreement of hadronic cross sections reaches the level of a few percent.

For completeness let us also mention several results that improve upon the fixed-order

QCD. Those include the soft-gluon resummation to next-to-next-to-leading [23] and next-

to-next-to-next-to-leading [24–26] logarithmic orders and the identification (and resumma-

tion) of certain π2 terms [27] that significantly improves the convergence of the perturbative

series. Recent numerical predictions of Higgs boson production in gluon fusion both at the

Tevatron and the LHC are summarized in ref. [28–30]. For reviews, see refs. [31, 32].

The remainder of the paper is organized as follows: in the next section we introduce

our notation and the basic formalism. After that, we describe the treatment of γ5 for the

case of the pseudo-scalar Higgs boson. In section 3 we concentrate on the NLO prediction

and compare our approximations to the exact result both at the partonic and the hadronic

levels. Section 4 is devoted to the NNLO partonic corrections and section 5 discusses the

hadronic cross section. Results are presented for the LHC running at 14 TeV center-of-mass

energies. Conclusions are presented in section 6. In appendix A we discuss the phase

space master integrals expanded to the ǫ order sufficient for a N3LO calculation. Technical

details of the convolutions of various functions are given in appendix B.
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2 Preliminaries

2.1 Notation and the LO result

In the full theory, the scalar and the pseudo-scalar Higgs bosons couple to fermions via the

following terms in the Yukawa Lagrange density:

LY = −gY,H
q m0

q

H0

v0
q̄0q0 − gY,A

q m0
q

A0

v0
q̄0iγ5q0 , (2.1)

where the dimensionless couplings gY,H
q and gY,A

q specify the coupling strength of the Higgs

bosons to the heavy quark q. The cross section of the pseudo-scalar Higgs boson produc-

tion is proportional to (gY,A
q )2; in the following discussion of this cross section we drop this

constant for convenience.

In the Standard Model gY,H
q = 1, gY,A

q = 0, but in the MSSM, e.g., one has gY,H
t ∼

1/ sin β, gY,H
b ∼ 1/ cos β, gY,A

t ∼ 1/ tan β, gY,A
b ∼ tan β where tan β is the ratio of the

Higgs field vacuum expectation values. Thus, the Higgs coupling to the top quark mass

is suppressed for large tan β and our analysis is only valid for small values; for larger val-

ues also the contribution from bottom quarks has to be considered (see, e.g., the recent

publications [33, 34]).

The superscript “0” in eq. (2.1) indicates bare quantities. Since we only consider QCD

corrections, there are no counterterms for v0, H0 and A0, and the Higgs field vacuum

expectation value is v = 2−1/4G
−1/2
F . We also introduce the variables

ρ =
M2

Φ

M2
t

, x =
M2

Φ

ŝ
, (2.2)

where ŝ is the partonic center-of-mass energy, Φ denotes either scalar (H) or pseudo-scalar

(A) Higgs boson and Mt is the top quark pole mass. The divergences in the loop integrals

are regularized using dimensional regularization with d = 4 − 2ǫ space-time dimensions.

The partonic cross section is commonly factorized as

σ̂ij→Φ+X(x) = ÂΦ
LO

(

δ(1 − x) +
(αs

π

)

∆
Φ,(1)
ij +

(αs

π

)2
∆

Φ,(2)
ij + · · ·

)

, (2.3)

where the factor ÂΦ
LO contains the constants and the complete non-trivial LO ρ-dependence.

Such factorization provides an excellent agreement between the exact and the approximated

results for the hadronic cross section at the NLO and the NNLO [18–20]. The well-known

LO result is

ÂΦ
LO =

GF α2
s

288
√

2π
fΦ
0 (ρ) , (2.4)

with

fH
0 (ρ) =















36
ρ2

[

1 +
(

1 − 4
ρ

)

arcsin2
(√

ρ
2

)]2
, (ρ ≤ 4) ,

9
4ρ2

∣

∣

∣

∣

∣

4 − (1 − 4
ρ)

[

ln
1+
√

1−4/ρ

1−
√

1−4/ρ
− iπ

]2
∣

∣

∣

∣

∣

2

, (ρ > 4) ,
(2.5)
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Figure 1. Sample forward scattering diagrams whose cuts correspond to the LO, NLO and NNLO

corrections to gg → Φ + gg, qg → Φ + qg and qq → Φ + qq. Dashed, curly and thick (thin) solid

lines represent Higgs bosons, gluons and top (light) quarks, respectively.

fA
0 (ρ) =











36
ρ2 arcsin4

(√
ρ

2

)

, (ρ ≤ 4) ,

9
4ρ2

∣

∣

∣

∣

ln
1+
√

1−4/ρ

1−
√

1−4/ρ
− iπ

∣

∣

∣

∣

4

, (ρ > 4) .
(2.6)

In what follows, whenever we refer to the infinite-top quark mass result we assume the

factorization of the exact LO mass dependence as given in eq. (2.3).

2.2 Optical theorem and asymptotic expansion

Already at the NLO one has to consider real and virtual contributions which individually

contain quadratic poles in ǫ. In our approach we consider the forward scattering amplitude

and use the optical theorem in order to derive the inclusive total cross section for the pro-

duction of Higgs bosons (only the cuts that cross the Higgs boson line should be considered).

At the NLO, the possible initial and final states are gg → Φ+(0 or 1 gluon), qg → Φ+q, and

qq̄ → Φ+g. At the NNLO, we in addition have reactions gg → Φ+(gg or qq̄), qg → Φ+qg,

qq̄ → Φ+(gg or qq̄), qq → Φ+qq, and qq′ → Φ+qq′. Here q and q′ stand for different mass-

less quark flavours.2 Sample diagrams of the corresponding forward-scattering amplitudes

are shown in figure 1.

The expressions are simplified by the forward-scattering kinematics implied by the

optical theorem. The proper projectors applied to the external massless particles reduce

each amplitude to a scalar expression depending only on ρ and x. Yet, the imaginary part of

the double-scale four-loop integral with the exact dependence on both variables is still out

2It is understood that the ghosts are always considered together with gluons.
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(a) (b) (c)

Figure 2. Possible Feynman diagrams for the virtual corrections to the gg-initiated partonic cross

section. The shaded blobs represent massless one- or two-loop diagrams, the black dots mark the

effective vertices that have no imaginary part.

of reach with the present methods, and we apply the asymptotic expansion [35] in ρ → 0

which corresponds to the limit M2
t ≫ M2

Φ, ŝ. After the expansion, every four-loop integral

factorizes into one-, two- or three-loop vacuum bubble with the single mass scale Mt, and

the tree-level (for the virtual corrections), one- or two-loop box graph depending on x.

The integrals with various denominator exponents that appear during the asymptotic

expansion are reduced to a few master integrals using the integration-by-parts (IBP) rela-

tions, in which we treat cut lines as normal propagators. The two- and three- particle cuts

are again re-introduced in the master integrals and evaluated separately.

In the case of the virtual corrections the imaginary part of the Feynman diagrams

arises solely from the factor

(−1 + i0)aǫ = 1 − i (πaǫ) − (πaǫ)2

2
+ O(ǫ3) , (2.7)

where in our case a = 1 or a = 2. Schematically, the occurring diagrams can be divided

into three cases sketched for the gg-initiated diagrams in figure 2. In the cases (a) and

(b) the calculation is straightforward, the loop integrals are evaluated and the factor of

eq. (2.7) expanded in ǫ. If the grey blob develops an imaginary part, we discard it since it

corresponds to a cut outside the Higgs line. The case (c) has massless one-loop integrals on

the both sides of the Higgs boson propagator. Here in order to reproduce the corresponding

product of a one-loop amplitude and a complex conjugate amplitude, one has to replace

the factor (−1 + i0)2ǫ with (−1 + i0)ǫ(−1 − i0)ǫ = 1.

2.3 Treatment of γ5

The optical theorem simplifies the treatment of γ5 which appears in the coupling of the

pseudo-scalar Higgs boson to quarks. We follow the prescription of ref. [36] for the pseudo-

scalar current renormalization, replacing

γ5 → i

24
ǫµνρσγ[µγνγργσ]. (2.8)

The square brackets denote total anti-symmetrization. The 24 terms on the right-hand

side of eq. (2.8) can be simplified via

1

24
γ[µγνγργσ] =

1

4
(γµγνγργσ + γσγργνγµ − γνγργσγµ − γµγσγργν) . (2.9)
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Next, one should factor out the ǫ tensor and compute the remaining amplitude in d dimen-

sions. At the very end, when the expressions are finite in the limit ǫ → 0, one multiplies

the result with the ǫ tensor and applies the finite renormalization constant of ref. [36].

Each forward-scattering amplitude contains two factors of γ5. After the replacements

of eq. (2.8) we have the product of two ǫ tensors that can be immediately re-written as the

product of four metric tensors with antisymmetrized indices:

ǫαβγδǫµνρσ = −g
[α
µ gβ

ν gγ
ρg

δ]
σ = −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

gα
µ gβ

µ gγ
µ gδ

µ

gα
ν gβ

ν gγ
ν gδ

ν

gα
ρ gβ

ρ gγ
ρ gδ

ρ

gα
σ gβ

σ gγ
σ gδ

σ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (2.10)

The right-hand side of this equation is defined in d dimensions and can be used during the

calculation of the Feynman diagrams which eliminates explicit projectors.

2.4 Alternative approach to virtual corrections

As a cross-check, we evaluated the virtual corrections using two different approaches. First,

we use the optical theorem as described above with a simple implementation of γ5 according

to ref. [36], treating the virtual and the real corrections on the same ground. The finite

result is then obtained before applying the finite γ5 renormalization constant.

In the second method we consider the (pseudo-scalar) Higgs-gluon-gluon vertex dia-

grams and expand in the (formal) limit Mt ≫ MH . This is similar to the calculation of

ref. [37] for the scalar Higgs boson. The amplitudes are multiplied with projectors that

couple to Lorentz indices of the gluons and the four additional indices that remain after

the epsilon-tensor removal [38].

More explicitly, the pseudo-scalar Higgs-gluon-gluon amplitude has the form

Aαβ,ab
gg→A = Aab

gg→A ǫαβµνq1,µq2,ν , (2.11)

where α and a, β and b are the Lorentz and the colour indices of the incoming gluons.

After the replacement eq. (2.8) Aαβ,ab
gg→A becomes

Aab
gg→A,αβ = ǫµνρσAµνρσ,ab

gg→A,αβ . (2.12)

Together with eq. (2.11) it gives

Aµνρσ,ab
gg→A,αβ =

1

24
Aab

gg→A q
[µ
1 qν

2gρ
αg

σ]
β , (2.13)

where q1 and q2 are the incoming momenta of the gluons. Now the (Lorentz) scalar am-

plitude Aab
gg→A can be obtained from Aµνρσ,ab

gg→A,αβ via the projector Pαβ
µνρσ [38]:3

Aab
gg→A = Pαβ

µνρσAµνρσ,ab
gg→A,αβ ,

Pαβ
µνρσ = −

q1,[µq2,νg
α
ρ gβ

σ]

(d − 2)(d − 3)(q1 · q2)2
. (2.14)

3Note that the formulae presented in ref. [38] apply to the coefficient function of the effective theory

whereas here we invesigate the virtual corrections in the full theory.
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In the actual calculations we use eq. (2.8) in the initial diagram, then drop ǫµνρσ and

obtain Aµνρσ,ab
gg→A,αβ. Using eq. (2.14) and summing the diagrams, we then arrive at Aab

gg→A

which has no open Lorentz indices. The virtual contribution to the total cross section is

finally obtained by squaring the amplitude eq. (2.11) and integrating over the phase space.

Accounting for the averaging factors, we find:

σ̂virt =
π

256

(d − 3)

(d − 2)

∣

∣

∣
Aab

gg→A

∣

∣

∣

2
. (2.15)

2.5 Software

To evaluate Feynman diagrams we use the well-tested chain of computer algebra programs

developed for the scalar Higgs case [19]. The original diagrams, the corresponding asymp-

totic expansion prescriptions, and the master integrals are identical to the scalar Higgs

case, with only trivial changes. Thus, here we only briefly outline the procedure.

First, the diagrams are generated with QGRAF [39] supplemented by additional scripts

that eliminate unnecessary graphs. Each diagram is then expanded in the limit M2
t ≫

ŝ,M2
Φ using two independent programs: a combination of q2e and exp [40, 41], and a

separate Perl program. This turns the original four-loop three-scale integrals into prod-

ucts of single-scale (one-, two-, and three-loop) vacuum bubbles and double-scale forward-

scattering integrals (of one and two loops). The latter are reduced to master integrals with

our own implementation of the Laporta algorithm [42, 43]. Master integrals have been

computed in ref. [14]; in this calculation we extended them by one order in ǫ which might

be useful for the future calculations.

2.6 Initial state singularities

The renormalized sum of the real and the virtual diagrams is not finite in the limit ǫ → 0.

The remaining poles originate from the collinear divergences in the initial state: the initial

gluon may split into a quark-antiquark pair, and the quark participate in the Higgs boson

production. The corresponding contribution is determined by

σ̂renormalized
ij→Φ+X (x) = R

[

σ̂bare
ik ⊗ Pkj + Pik ⊗ σ̂bare

kj

]

, (2.16)

Pij(x) = δijδ(1 − x) +
α

(5),bare
s

π
P

(1)
ij (x) + · · · ,

where P
(k)
ij (x) is the splitting function that describes the probability of parton j to emit

parton i with the fraction x of its initial energy. R is the renormalization operation, and

α
(5),bare
s is defined as prescribed by the definition of the splitting functions and consistently

with the definition of the parton distribution functions (PDFs) which absorb the non-

perturbative and non-singular features of the initial state.

In our calculation, we use the common definition consistent with the MSTW08 PDF

set, where α
(5),bare
s is the bare coupling in the effective theory with decoupled top quark

and nf = 5 massless quarks. The convolution of functions that enter into P
(k)
ij (x) and σ̂bare

kj

is defined as

[f ⊗ g] (x) =

∫ 1

0
dx1dx2δ(x − x1x2)f(x1)g(x2). (2.17)

– 7 –
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Appendix B contains the details of evaluation of these integrals. In this context, see also

refs. [14, 15] and references therein.

2.7 From partonic to hadronic cross sections

In order to find the hadronic cross section one has to convolute the partonic cross section

with the PDFs which can be written in the form

σpp→Φ+X(s) =
∑

ij

∫ 1

M2

Φ
/s

dx

[

dLij

dx

]

(x, µF ) σ̂ij→Φ+X(x, µF , µR) , (2.18)

where the sum includes all distinct production channels, ij ∈ {gg, qg, qq̄, qq, qq′}. The

luminosity function dLij/dx contains the symmetry factors and the convolution of PDFs.

For example, the quark-gluon luminosity is given by4

[

dLqg

dx

]

(x, µF ) = 2
∑

q∈{u,...,b,ū,...,b̄}

∫ 1

0
dx1

∫ 1

0
dx2 fg/p(x1, µF )fq/p(x2, µF ) (2.19)

×δ

(

M2
Φ

sx
− x1x2

)

M2
Φ

sx2
.

In ref. [19] the luminosities dLij/dx have been discussed in some detail; for our purposes

it is important to remember that dLgg/dx is practically zero for x . 10−3.

We split the hadronic cross section according to

σpp′→Φ+X(s) = σLO
Φ + δσNLO

Φ + δσNNLO
Φ , (2.20)

and add subscript “∞” or “exact” to the quantities in eq. (2.20) when referring to the

infinite-top quark mass result or the exact expression, respectively. A subscript “n” indi-

cates that corrections through order 1/Mn
t have been included. We leave out the subscript

Φ in case when the meaning is clear from the context.

We use LO, NLO and NNLO PDFs by the MSTW2008 collaboration [44] in order

to obtain the respective predictions for σpp′→Φ+X in eq. (2.20). The choice of the PDFs

determines the values of αs(MZ) ≡ α
(5)
s (MZ):

αLO
s (MZ) = 0.139384 , αNLO

s (MZ) = 0.120176 , αNNLO
s (MZ) = 0.117068 . (2.21)

The appropriate MS beta function then determines αs(µR) that enters the formulae.

3 NLO cross section

3.1 Partonic cross section

In this subsection we discuss the partonic NLO cross section as a function of x = M2
Φ/ŝ.

As mentioned in the previous section, we computed the partonic cross section in the limit

M2
t ≫ ŝ,M2

Φ. By construction these approximations poorly converge for ŝ > (2Mt)
2, i.e.

4This definition applies to pp collisions at the LHC; its modification for pp̄ collisions at the Tevatron is

obvious.
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in the energy region where top quark pairs can be produced. In terms of the variable x, the

threshold is given by xthr = M2
Φ/(4M2

t ) which is xthr = 0.12 for MΦ = 120 GeV and xthr =

0.75 for MΦ = 300 GeV. For x < xthr we do not expect our expansion in 1/M2
t to converge.

To cure this problem we follow the suggestions discussed in the literature and match

the heavy-top expansion to the leading term in the high-energy expansion obtained in

refs. [20, 21] and [22] for the scalar and pseudo-scalar Higgs boson, respectively. The

matching procedure has been successfully applied to the scalar Higgs boson in refs. [18–

20]. In the pseudo-scalar case the matching was done in ref. [22] based on the leading

order approximation in M2
t ≫ ŝ,M2

A. In the following we discuss the effect of the power-

suppressed terms and compare to the exact result as implemented in HIGLU [45].

Before we discuss our results in detail, let us describe our matching procedure. The

expansion near the heavy top limit of the quantities ∆ij(x) in eq. (2.3) has the form5

∆exp
ij (x) = ∆ij,0(x) + ρ∆ij,1(x) + ρ2∆ij,2(x) + · · · (3.1)

and is expected to converge for x > xthr.

The x → 0 limit of the NLO partonic cross section has the form

∆ij(x)
x→0
= Cij + O(x) , (3.2)

with coefficients Cij computed in refs. [20–22]. In order to combine these results we

find some matching value xm ∼ xthr and coefficient Dij , so that ∆ij(x) = Cij + Dijx,

x < xm, and ∆ij(x) = ∆exp
ij (x), x > xm. As a matching condition, we require that

∆exp
ij (xm) = Cij +Dijxm and d

dx∆exp
ij (xm) = Dij , i.e. we ensure that the transition between

the x → 0 and Mt ≫ ŝ,M2
Φ approximations is smooth. The matching prescription for the

channels with quarks in the initial state is less intelligent due to slower convergence below

threshold and the oscillating functions. Here we set xm = 0.9xthr and determine Dij from

the requirement ∆exp
ij (xm) = Cij + Dijxm.

In figure 3 we show the partonic cross sections for the pseudo-scalar Higgs boson

production for MA = 120 GeV (left column) and MA = 300 GeV (right column). The

approximations obtained in the limit of large top quark mass (dashed lines) show good

convergence below xthr and diverge, as expected, for small values of x. For the gg and qg

channel the matching procedure leads to good approximations to the exact results for both

values of MA. The minor differences in the gg cannel only lead to small deviations at the

hadronic level. On the other hand the deviation of the matched result to the exact one in the

qg channel leads to a shift of about 15% in the hadronic contributions as discussed below. At

the LHC with
√

s = 14 TeV the contribution of the qg channel to the NNLO part of the total

cross section varies between about (−8)% and (−17)% for Higgs masses between 110 GeV

and 300 GeV.6 Thus, an accuracy of 15% at NNLO induces an uncertainty of at most 3% in

the NNLO piece and is hence negligible in the sum of the LO, NLO and NNLO contribution.

The situation is different for the qq̄ channel. The partonic cross section has a char-

acteristic peak at x ≈ xthr which is reproduced neither by the x → 0 nor by the ρ → 0

5In what follows we omit the superscripts “Φ” and “(1)”.
6These numbers are basically identical for a scalar and pseudo-scalar Higgs boson.
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Figure 3. Partonic NLO cross sections for the gg (top), qg (middle) and qq̄ (bottom) channel as

functions of x for MA = 120GeV (left) and MA = 300GeV (right column). The expansion for ρ → 0

(dashed lines) is compared with the exact result (solid lines). Lines with longer dashes include higher

order terms in ρ. The interpolation results (see text) are shown as dotted lines which (for gg and qg)

demonstrate an irregular structure since several lines are plotted on top of each other. The threshold

values xthr are 0.12 and 0.75, respectively. The subscript “qb” corresponds to the qq̄ channel.

approximation. Due to the small contribution of this production channel (below 1% at

NLO) the accuracy of the infinite-top quark mass result is sufficient.

It is worth mentioning that the quantities ∆
(1)
A,ij shown in figure 3 for the production

of a pseudo-scalar Higgs boson are very similar to the corresponding scalar ones. This is

both true for the shape and the numerical size of the corrections. For the gg channel it

would not be possible to distinguish the curves for ∆
A,(1)
gg (x) and ∆

H,(1)
gg (x) for x > 0.001;

a visible difference only occurs for x → 0.
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ρn MH = 120 GeV MH = 300 GeV MA = 120 GeV MA = 300 GeV

n = 0 15.3696 15.3696 15.8696 15.8696

n = 1 + 0.1208 + 0.7547 + 0.2464 + 1.5400

n = 2 + 0.0072 + 0.2814 + 0.0183 + 0.7130

n = 3 + 0.0005 + 0.1296 + 0.0016 + 0.3896

n = 4 + 0.0000 + 0.0669 + 0.0002 + 0.2312

exact 15.4981 16.6956 16.1360 19.1723

Table 1. Contribution to the coefficient of δ(1 − x) in the normalization of eq. (2.3) from the

various expansion terms ρn = (M2

Φ
/M2

t )n. The renormalization scale has been set to MΦ.

It is interesting to separately look at the δ-function contribution which is not shown in

figure 3. In table 1 we present the coefficient of δ(1 − x) in the normalization of eq. (2.3)

both for the scalar and pseudo-scalar case. One observes that the bulk of the contribution

is given by the leading term whereas the power-suppressed terms add an additional part

of only 8% and 17% even for MΦ = 300 GeV in the scalar and the pseudo-scalar case,

respectively. We anticipate that this behaviour is different at NNLO where the higher

order terms provide more sizeable contributions as discussed in section 4.

It is interesting to note that for MΦ = 300 GeV the sum of the first five expansion

terms in table 1 reproduces the exact result to better than 1% in the scalar and 2% in the

pseudo-scalar case. For the latter expansion, the error can be accounted for by doubling

the contribution of n = 4 term.

3.2 Hadronic cross section

In this subsection we compare the hadronic cross section obtained from our approximate ex-

pansions with the one obtained using the exact partonic results, implemented in HIGLU [45]

and integrated with the same PDFs.

In figure 4(a) we plot the exact LO cross section as a function of MΦ for 200 GeV ≤
MΦ ≤ 400 GeV in order to demonstrate the threshold behaviour. Whereas there is a smooth

transition in the scalar case, one observes a strong enhancement of the cross section for

the pseudo-scalar Higgs boson. In figure 4(b) the purely NLO part of the cross section

is shown where the LO contribution is divided out. This is actually the quantity which

is approximated by our procedure. No strong enhancement is visible for MA . 300 GeV

which is the upper limit considered in this paper. Thus we expect that in the pseudo-scalar

case the matching procedure works as well as for the scalar one.

When discussing the quality of the matching procedure it is convenient to consider

ratios of cross sections. We normalize either the exact or the matched expressions to the

(un-matched) infinite-top quark mass result since these kind of ratios are also possible

at NNLO. In the following plots the dashed lines represent the matched results including

successively higher order in 1/Mt when going from short to long dahes. The solid line

corresponds to the exact result.
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(a) (b)

Figure 4. (a) LO cross section for the production of a pseudo-scalar (top) and scalar (bottom)

Higgs boson. (b) ratio of NLO and LO prediction for the total cross section. For these plots the

exact results from [45] have been used.

(a) (b)

(c) (d)

Figure 5. Ratio of the NLO parts of the hadronic cross sections for the gg (figure (a) and (b)),

qg (figure (c)) and qq̄ (figure (d)) channel. In (a) the exact LO result is factored out also in the

matched result in the numerator whereas in (b) this option is abandoned.
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In figure 5(a) the NLO gg part is shown where the factorized expressions are used in

the numerator. For MA = 120 GeV the deviation between the various curves is below per

cent level. For MA = 300 GeV, however, one observes a deviation between the exact result

and the infinite-top mass approximation of about 6%. The exact result and the matched

result based on the leading order deviate by about 8% whereas there is perfect agreement

with the matched result including 1/M8
t terms. (The corresponding dashed curve is below

the solid line.)

An alternative comparison between the matched results on the one hand and the

infinite-top mass and exact result on the other hand is shown in figure 5(b) for the gg

channel where in the numerator of the considered ratio the fully expanded result is used

and successively more terms in 1/Mt are included. A large deviation of the matched result

including only the leading Mt dependence (short dashes) from the exact result is observed.

However, after including higher order mass corrections in the matching procedure good

agreement up to MA ≈ 250 GeV is observed. For Higgs boson masses close to 300 GeV a

significant deviation of the matched and exact result is visible which can be traced back to

the expansion of the LO result. Thus at NNLO we adopt the approximation of figure 5(a)

and factor the exact LO result out after including the 1/Mt mass corrections.

Figures 5(c) shows the result for the qg channel. The matched result agrees with the

exact one with an accuracy of about 15% whereas the infinite-top quark mass result is

about a factor two smaller than the prediction based on HIGLU. For
√

s = 14 TeV the qg

part amounts between (−2)% (MA = 110 GeV) and (−7)% (MA = 300 GeV) of the total

NLO part. Thus, if at NNLO a similar behaviour is observed it is important to incorporate

the matched qg channels in precision predictions.

As expected from the above discussion of the partonic cross section it is not possible

to obtain a good approximation to the exact result for the qq̄ channel which is shown in

figure 5(d). For lower pseudo-scalar Higgs boson masses there is also a significant devia-

tion between the exact and the infinite-top mass result, for MA = 300 GeV, however, they

(accidentally, as can be seen in the lower right panel of figure 3) agree perfectly well.

4 Partonic NNLO cross section

In this section we discuss the partonic cross sections for the various channels at NNLO. We

follow the matching procedure outlined in section 3.1 for the NLO calculation, with minor

modifications due to the different x → 0 limit. At the NNLO7

∆ij(x)
x→0
= Eij ln x + O(1) , (4.1)

and ref. [22] provides coefficients Eij . We again choose the matching value xm ∼ xthr

such that the transition between the x → 0 and M2
t ≫ ŝ,M2

Φ approximations is smooth:

∆exp
ij (xm) = Eij ln xm + Fij ,

d
dx∆exp

ij (xm) = Eij/xm, and ∆exp
ij (xm) is given in eq. (3.1).

This prescription applies to the gg channel. For the other initial states we again use

xm = 0.9xthr and require that ∆exp
ij (xm) agree with the corresponding infinite-energy result.

7We again omit the superscripts “Φ” and “(2)”.
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Figure 6. Partonic cross section for the gg channel for MA = 120GeV (top) and MA = 300GeV

(bottom). The plots on the left employ a logarithmic and on the right a linear x-scale. The notation

is adopted from figure 3.

In figure 6 we show the partonic cross section for the numerically most important gg

channel at MA = 120 GeV and MA = 300 GeV, with linear and logarithmic scales of the x

axis. The dashed lines represent the results for σexp
ij (cf. eq. (3.1)); longer dashes indicate

higher order ρ-expansion. As expected, these results diverge for x < xthr. The results

interpolated as described above are shown with dotted lines, shorter distances between the

dots correspond to higher-order ρ-expansion in the matching procedure.

For MA = 120 GeV the partonic cross section has a maximum at x ≈ 0.6 which is

significantly higher than xthr ≈ 0.12 and thus it is nicely reproduced from σexp
ij . The

approximations start diverging at x ≈ xthr. As far as the matched results are concerned

one observes stabilization starting from the one including the ρ2 terms.

For MA = 300 GeV we have xthr ≈ 0.75 which is close to the steep rise of the partonic

cross section. The expansion results show good convergence properties down to x ≈ 0.6

and start to diverge around x = 0.45, significantly below xthr. As far as the matched

results are concerned a similar behaviour as for MA = 120 GeV is observed: The inclusion

of higher order terms in ρ stabilizes the matching procedure, leading to firm NNLO results

for the partonic cross section.

Let us next discuss the qg-initiated partonic cross section shown in figure 7 for MA =

120 GeV and MA = 300 GeV. Again, very nice convergence happens at x > xthr and the

matching to ŝ → ∞ results is rather stable. The approximation is shown with dotted lines,

the shorter distances between the dots denote higher-order terms in ρ. One observes that
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Figure 7. Partonic cross section for the qg channel for MA = 120GeV (left) and MA = 300GeV

(right panel). The notation is adopted from figure 3.

ρn MH = 120 GeV MH = 300 GeV MA = 120 GeV MA = 300 GeV

n = 0 83.5654 94.0264 95.9237 105.0866

n = 1 + 3.5586 + 24.0520 + 6.5340 + 44.7899

n = 2 + 0.2190 + 9.1031 + 0.5330 + 22.5153

n = 3 + 0.0164 + 4.2818 + 0.0495 + 13.0672

n = 4 — — + 0.0050 + 8.1572

Table 2. NNLO contribution to the coefficient of δ(1 − x) in the normalization of eq. (2.3) from

the various expansion terms ρn = (M2

Φ
/M2

t )n. The renormalization scale has been set to MΦ.

the latter are important for reliable results. Both for MA = 120 GeV and MA = 300 GeV

there is a visible difference between the curves including only ρ0 terms and the O(ρ) result.

Further corrections are relatively small. Judging from the behaviour at NLO it can be

expected that the results for the partonic qg channel approximate the (unknown) exact

result quite well with an uncertainty below 15%.

The matching procedure was also applied to the quark-initiated processes qq̄, qq and

qq′. We show the results in figure 8 using the same notation as in figure 6. For the qq̄ we

expect a peculiar structure similar to the one at NLO (cf. figure 3) which is not reproduced

by our procedure. However, since the overall contribution from this channel is small, we

may neglect the uncertainty of the matching procedure.

The numerical contribution from the qq and qq′ channels to the total hadronic cross

section is similar to the qq̄ one. For these initial states, however, we do not expect a

complicated shape of the curves and thus the matched result through ρ4 terms can be

trusted both for MA = 120 GeV and MA = 300 GeV. (The differences between the various

matched results are again small at the hadronic level.)

By analogy to table 1, in table 2 we present the NNLO contribution to the δ-function

part which is not contained in the plots discussed before. For MA = 120 GeV the conver-

gence is fast. The ρ terms still provide about 7%, however, already the ρ2 terms are below

1%. At MA = 300 GeV a good approximation to the exact result requires terms through
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Figure 8. Partonic cross section for the qq̄ (“qb”), qq and qq′ (“qp”) channels for MA = 120GeV

(left) and MA = 300GeV (right). The notation is adopted from figure 3.

ρ4. Estimating the contribution of the ρn terms for n ≥ 5 as twice the ρ4 contribution, we

expect the accuracy of about 8%. For MA = 280 GeV this number goes down to 5%.

Since the analytic results are quite lengthy we refrain from listing them here explicitly.

They are available on request from the authors.

5 Hadronic cross sections

In this section we present the hadronic cross section for the individual channels and com-

pare in each case with the infinite-top quark mass approximation in order to quantify the

accuracy of the latter. Although the results for the scalar Higgs boson have already been

discussed in the literature [18–20] we present results both for the scalar and pseudo-scalar
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case for comparisons. For the numerical results we use the nominal LHC center-of-mass

energy
√

s = 14 TeV; for
√

s = 7TeV the results look qualitatively very similar.

Let us again start with the gg-induced channel. In figure 9 the ratio

δσNNLO
gg

δσNNLO
gg,∞

(5.1)

of the NNLO contribution to the total cross section is shown. In the numerator the matched

partonic results are used and in the denominator is the bare infinite-top quark mass result.

As before, the lines with longer dashes include higher expansion terms in ρ. Note that

for the scalar Higgs boson terms through ρ3 are available whereas for the pseudo-scalar

case we could compute even the ρ4 terms. Actually, in the practical calculation it turns

out that the diagrams with pseudo-scalar couplings lead to significantly fewer terms at

the intermediate steps. We believe that this is due to elimination of many terms with

anti-symmetric properties of the ǫ-tensors remaining after the γ5-matrices.

In the left column the exact LO result is factored out both in the numerator and the

denominator.8 One observes that the correction for the pseudo-scalar Higgs boson is bet-

ween 2.5% for MA = 120 GeV and about 20% for MA = 300 GeV which is significantly

larger than for the scalar Higgs boson, reaching at most 9% [18–20]. Judging from the

difference of the two consecutive curves, we observe in both cases good convergence of the

ρ-expansion even for MA = 300 GeV. This gives us some confidence that the corrections

including the highest powers in ρ are approaching the unknown exact result.

The right panels in figure 9 show the ratio (5.1) with the numerator expanded in ρ

without factoring out the LO mass dependence. The plot for the scalar Higgs boson repro-

duces the results in the literature [18–20], demonstrating that after including higher orders

in ρ the ratio becomes less dependent of MΦ. The curve including ρ3 terms deviates from

unity at most by about 5%. The situation is different for the pseudo-scalar case. For low

Higgs boson masses the corrections also converge against a few per cent, for higher mass

values, however, they amount up to about 10% demonstrating that the infinite-top mass

result accompanied by the matching procedure is not sufficient to approximate the exact

result with 1% accuracy or better.

Similarly to the NLO case shown in figure 5 we observe also in figure 9 that the conver-

gence becomes poor for Higgs boson masses above 250 GeV if the exact LO mass dependence

is not factored out. Thus, for our final prediction we use the approach of the upper left plot

in figure 5 where the effect of higher order terms in ρ (beyond ρ4) can be safely neglected.

The hadronic cross section for the quark-induced channels, qg, qq̄, qq and qq′ are shown

in figure 10 with the notation similar to figure 9. In all cases we observe decent convergence

with higher ρ powers. From the NLO analyses of section 3 we expect that the prediction

for the qg channel agrees with the exact result to within about 15%. Note that there is

a noteable correction from including the first ρ-suppressed term. This behaviour can be

explained by the pattern in corresponding partonic cross section discussed in the previous

section (see figure 7).

8The slight deviation from unity of the curve including only the ρ
0 term is due to matching effects.
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Figure 9. NNLO contribution to the hadronic cross section of the gg-channel normalized to the

infinite-top quark mass result. Top: scalar Higgs boson; bottom: pseudo-scalar Higgs boson. The

left plots the exact LO result is factorized whereas in the right plots no factorization is used.

As far as the qq̄ channel is concerned, the matched results coincide with the effective-

theory prediction within roughly a factor of two to three for 120 GeV < MA < 250 GeV

which decreases to about 1.2 for MA = 300 GeV. The results for the qq and qq′ channels

are shown for completeness in the bottom row of figure 10. The deviation between the

matched and the effective-theory result in the considered Higgs boson mass range is about

1.5 to 2. For
√

s = 14 TeV the overall contribution from the qg, qq̄, qq and qq′ channels

to the NNLO corrections amounts to (−8)% to (−17)%, 0.1% to 0.2%, 0.08% and 0.3%,

respectively. Thus, at the current level of accuracy it is certainly possible to use the infinite-

top quark mass result for the predictions originating from the qq̄, qq and qq′ channels. For

MA = 300 GeV the infinite-top quark mass approximation for the qg channel may lead to

an uncertainty of about 2% in the NNLO prediction of the hadronic cross section.

It is instructive to look at the individual contributions of the NNLO pieces to the

hadronic cross section. In table 3 we show for MΦ = 300 GeV the contributions from the

δ function, the plus distributions and the remainder. The infinite-top mass result is con-

fronted with the approximations based on the matching that incorporates corrections of

order ρn (n = 0, 1, . . .). One observes that both for the scalar and the pseudo-scalar Higgs

boson the virtual corrections grow by almost a factor of two compared to the infinite-top

mass values. In both cases the contribution from the plus distributions are quite small and

the contribution from the δ function amounts to about a quarter of the remainder. The

latter dominate the corrections and amount to about 85% in the scalar and about 80%
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Figure 10. NNLO contribution to the hadronic cross section for the inclusive production of a

pseudo-scalar Higgs boson induced by the “qg”, “qq̄”, “qq” and “qq′” channels.

H δ(1 − x) [. . .]+ rest

Mt → ∞ 0.363 −0.066 2.555

“0” 0.363 −0.066 2.544

“1-0” 0.093 0.002 0.054

“2-1” 0.035 0.001 0.034

“3-2” 0.017 0.000 0.034

“3” 0.508 −0.063 2.666

A δ(1 − x) [. . .]+ rest

Mt → ∞ 1.213 −0.194 7.728

“0” 1.213 −0.194 7.703

“1-0” 0.517 0.013 0.380

“2-1” 0.260 0.006 0.236

“3-2” 0.151 0.003 0.185

“4-3” 0.094 0.002 0.128

“4” 2.235 −0.170 8.633

Table 3. Individual contributions to the quantity δσNNLO

Φ,gg (i.e. the gg induced part) in eq. (2.20) for

MΦ = 300GeV for a scalar (left) and pseudo-scalar Higgs boson (right). The first line corresponds

to the infinite-top quark mass result and “i” represents the matched result including terms of order

ρi. The bottom line contains the best available prediction.

in the pseudo-scalar case. The difference between the best prediction and the infinite-top

corrections amounts to 9% and 22%, respectively.

For the MΦ values below 300 GeV the convergence of all individual contributions sig-

nificantly improves and our error estimate (given by the size of the last known term) is

below 2% and thus is negligible.
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Figure 11. Total cross section for the production of a scalar (left) and pseudo-scalar (right) Higgs

boson to LO (dotted), NLO (dash-dotted) and NNLO (solid) precision. The dashed line corresponds

to the prediction where for the NNLO corrections the heavy-top approximation has been used.

Let us finally show results for the cross section of the numerically dominant gg-induced

contribution. In figure 11 the LO, NLO and NNLO predictions for the total production

cross section both for a scalar (left) and a pseudo-scalar Higgs boson (right) is plotted.

The dotted and the dash-dotted lines belong to the exact LO and NLO prediction and the

solid lines represent our best NNLO expression, i.e. the matched cross section containing

the ρ3 and ρ4 corrections for the scalar and pseudo-scalar Higgs boson, respectively. For

comparison we also show as the dashed line the result which is obtained if the infinite-top

quark mass approximation is used for the NNLO term. In the scalar case one barely sees a

difference with the solid line whereas for the pseudo-scalar Higgs boson there is a deviation

of about 6% for masses around 300 GeV. Thus it is important to replace the infinite-top

mass results in this Higgs boson mass region by the matched results presented in this paper

in future precision studies.

6 Conclusions

In this paper we consider the inclusive production of the scalar and the pseudo-scalar

Higgs boson at hadron colliders. We compute the NNLO production cross section for

Higgs bosons with masses below approximately 300 GeV, including top quark mass effects.

The technique that we use extends the method that was recently applied to scalar Higgs

boson production to the pseudo-scalar case. It relies on an asymptotic expansion in the

limit of a large top quark mass and a subsequent matching to the zero-mass limit. This

paper contains a detailed description of the method and several intermediate results which

could be useful in the context of other calculations. In particular we provide all one- and

two-loop four-point master integrals with an ǫ expansion sufficient for a N3LO calculation.

The main conclusions of our NNLO analysis are as follows.

• At NLO our approach reproduces the exact result with high precision (see discussion

in section 3).
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• Since at NLO the agreement between our approximation and the exact result is below

1% for the gg channel once expansion terms up to order 1/M8
t are included we are

quite confident that the same is true at NNLO. Thus, from the practical point of

view our calculation is equivalent to the exact one (at least for Higgs boson masses

below threshold).

• Our NNLO corrections deviate from the infinite-top quark mass approximation (with

exact LO mass dependence factored out) by about 2% for low Higgs boson masses.

For higher masses the deviation is larger. For MΦ = 300 GeV it amounts to about

9% for the scalar Higgs boson and about 22% for the pseudo-scalar case.

• This leads to the conclusion that up to an uncertainty of about 2% for the scalar

case and about 6% for the pseudo-scalar case it is save to use the infinite-top quark

mass approximation [13–17] for the prediction of the total cross section. This is a

non-trivial result which so far has no fundamental explanation.

In case one aims for a better precision the infinite-top quark mass results have to be

replaced by the results presented in this paper.

• The accuracy of the NNLO part of the infinite-top quark mass result for MΦ =

300 GeV amounts to 6% (15%) for the scalar (pseudo-scalar) case at Tevatron. For

the LHC with
√

s = 7 TeV the numbers are 8% and 20%.

For Higgs boson masses above approximately two times the top quark mass the ap-

proximation used for the asymptotic expansion is not justified. In this limit one has to

rely on the good agreement between the exact and the infinite-top mass result at NLO and

assume that it extends to NNLO.
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A Two-loop four-point master integrals

The one- and two-loop four-point integrals have been studied for the first time in ref. [14]

(see appendix B). Unfortunately, that reference contains a number of misprints. We in-

dependently evaluated these integrals by a combination of soft expansion9 and differential

equation methods. We furthermore extend the results of ref. [14] by adding more terms

in ǫ which are required for a third-order calculation of the Higgs boson production cross

section. The results can be downloaded in Mathematica format from the webpage [46].

9We acknowledge help with cross checks of the soft expansion by Robert Harlander and Kemal Ozeren.
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The integrals published in ref. [14] suffer from multiple typographical errors. We have

also found a number of less trivial inaccuracies. In particular, the integral of eq. (B.3) is

off by a factor of 2, the right-hand side of eq. (B.27) must read

= P2z−2ǫ

[

log(z)2

2ǫ
− 4ζ3 − 4ζ2 log(z) + 4Li3(z) +

log3(z)

2
− 2 log2(z) + O(ǫ)

]

, (A.1)

the right-hand side of eq. (B.22) should begin with

= P2z−ǫ(1 − z)−2ǫ

{

Li2(1 − z) +
log2(z)

2
+ · · ·

}

, (A.2)

the two terms −4 log(1 − z)2 − 8 of the O(ǫ0) contribution in eq. (B.21) must be replaced

with +4 log(1 − z)2 + 8, etc.

B Convolution of partonic cross section and splitting functions

The singularities associated with the collinear radiation of quarks and gluons from the

incoming partons are described by convolutions of the partonic cross sections σij(x) with

the splitting functions Pjk(x) where a convolution of the two functions f(x) and g(x) is

defined as

[f ⊗ g] (x) =

∫ 1

0
dx1dx2δ(x − x1x2)f(x1)g(x2). (B.1)

The functions that appear in the LO, NLO, and NNLO cross sections and LO and

NLO splitting functions include combinations of HPLs of weight one, two, and three with

the factors x, 1−x, and 1+x, and the generalized functions δ(1−x) and
[

lnk(1−x)
1−x

]

+
. It is

convenient to transform those functions to the Mellin space, where the convolutions turn

into products of Mellin images:

Mn [f(x)] =

∫ 1

0
xn−1f(x)dx, (B.2)

Mn [[f ⊗ g] (x)] = Mn [f(x)] Mn [g(x)] . (B.3)

The Mellin transforms of various functions present in the NNLO Higgs boson production

were studied in the literature [47]. We, however, decided to relate all required results to a

limited set of Mellin transforms of HPLs with a certain maximum weight.

Let us consider the Mellin transforms of HPLs of weight zero and one:

Mn[1] =
1

n
,

Mn[H0(x)] = − 1

n2
,

Mn[H1(x)] =
S1(n)

n
,

Mn[H−1(x)] = −(−1)n

n
(S−1(n) + ln 2) +

ln 2

n
, (B.4)

– 22 –



J
H
E
P
0
9
(
2
0
1
1
)
0
8
8

where Hi are the HPLs of weight 1 [48]. The harmonic sums S...(n) are defined as follows:

S(n) = 1, S
a,~b

(n) =
n
∑

i=1

fa(i) S~b
(i), fa(i) =

{

i−a, a ≥ 0 ,

(−1)i ia, a < 0 .
(B.5)

One may define the weight of those sums as the sum of the absolute values of their indices.

Similarly to eqs. (B.4), Mellin images of HPLs of higher weights contain harmonic

sums of higher weights and various transcendental numbers originating from various HPLs

evaluated at x = 1. We choose the representations where each Mellin image contains only

n as the argument of sums and integer powers of n in the denominators, and no products

of sums (the corresponding algebra is discussed later).

Some related Mellin transforms can be found by index shifting and integration by parts:

Mn

[

xkf(x)
]

= Mn+k [f(x)] , (B.6)

Mn

[

d

dx
f(x)

]

= xnf(x)|10 − (n − 1)Mn−1 [f(x)] . (B.7)

In the latter relation, the boundary term has to be properly defined. In the limit x → 0 it

vanishes since we always consider n higher than the order of the highest pole that f(x) may

have at x = 0. If f(x) is some HPL, then its limit at x → 1 may be either zero, a non-zero

constant, or singular as lnk(1−x). Such a singularity is present e.g. in H1(x) = − ln(1−x),

so that Mellin transform of d
dxH1(x) = 1

1−x does not exist. On the other hand, such

functions can be regularized by turning them into a plus-distribution, and
[

1
1−x

]

+
has a

well-defined Mellin transform, −S1(n − 1). We notice that this result can be obtained if

we artificially drop the logarithmically divergent contributions from the boundary term in

eq. (B.7). In general, we may define the regularized derivative ∂̂x acting as follows:

Mn

[

∂̂xf(x)
]

= R [f(x)] − (n − 1)Mn−1 [f(x)] (B.8)

where

R[ga(x) lna(1 − x) + gb(x) lnb(1 − x) + · · · + g0(x)] = g0(1) , (B.9)

a, b, . . . > 0, gk(1) 6= 0 ∀k > 0 .

The extraction of divergent logarithms from HPLs is implemented e.g. in the function

HPLLogExtract of the HPL.m package [48].

Using this definition and the inverse Mellin transform, we may establish relations

between the derivatives of HPLs and the common generalized functions:

∂̂x 1 = δ(1 − x),

∂̂xH1(x) =

[

1

1 − x

]

+

,

∂̂xH11(x) = −
[

ln(1 − x)

1 − x

]

+

,
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∂̂xH111(x) =
1

2

[

ln2(1 − x)

1 − x

]

+

,

∂̂xH101(x) =
π2

6

[

1

1 − x

]

+

+
H01(x) − ζ2

1 − x
, etc. (B.10)

Thus, it is not necessary to separately consider Mellin images of functions related to the

derivatives of HPLs, such as H...(x)
1+x ,

[

H...(x)
1−x

]

+
, etc.

At a given weight of sums, one may interpret the relations obtained by extending

eq. (B.4) as a system of equations, and complete it with the generalized derivatives of

every line (excluding trivial relations). It is possible to solve this system for the monomials

1/nk, S...(n)/nk, and (−1)nS...(n)/nk in order to determine their inverse Mellin transforms.

While writing this paper, we have learned about the work [49] that in particular mentions

some very general algorithms to compute Mellin images of HPLs of arbitrary weights. Un-

fortunately, at this moment the program implementing those algorithms is not yet available

to the public.

If a Mellin image that we deal with is a linear combination of such known terms (with

possibly shifted indices), its inverse transform is trivial to find with the help of the linearity

of Mn[f(x)] and eq. (B.6). However, to find the convolution of two functions we need to

multiply the two Mellin images and the resulting terms may have a more complicated

structure. Nevertheless, it is possible to transform the expressions to the required shape.

First, the factorized denominators (n+a)−i(n+b)−j . . . must be decomposed by partial

fractioning. Second, the arguments of harmonic sums must be brought to agreement with

the denominators using the definition eq. (B.5): S
a,~b

(n + 1) = S
a,~b

(n) + fa(n + 1)S~b
(n + 1).

Finally, the products of sums must be transformed into linear combinations of sums of

higher orders. The corresponding algebra originates from the obvious identity

(

n
∑

i=1

ai

)





n
∑

j=1

bj



 =
n
∑

i=1



ai

i
∑

j=1

bj



+
n
∑

i=1



bi

i
∑

j=1

aj



−
n
∑

i=1

(aibi) , (B.11)

which is applied recursively. For every product, it is then possible to arrive at the decom-

position such as S−1,2(n)S−1(n) = 2S−1,−1,2(n) + S−1,2,−1(n) − S−1,−3(n) − S2,2(n).

The above algorithm has been implemented as a Mathematica program. Since the

HPL package [48] is not capable of computing integrals eq. (B.2) with arbitrary n, the

table of Mellin transforms (similar to eq. (B.4)) has to be pre-computed. The regular form

of the relations eq. (B.4) and the further results greatly simplifies the solution. We have

been able to compile the table for the transforms of HPLs up to weight five, which should

be sufficient to evaluate convolutions relevant to the NNNLO correction to the Higgs boson

production. For that purpose one has to consider among other contributions the convolu-

tion of the NNLO partonic gg-induced cross section with the LO splitting function. The

former contains contributions like H010(x)/(1− x) which can be written in terms of gener-

alized derivatives of HPLs of weight 4. The LO splitting function has contributions from

HPLs of weight 1 thus resulting in quantities of weight 5. Similary, the convolution of

the NLO partonic cross section with the NLO splitting function involves HPLs of weight 2

and 3, respectively, again leading to HPLs of weight 5.
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