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1 Introduction

An important area of application of AdS/CFT dualities concerns N = 1 supersymmet-

ric SU(Nc) Yang-Mills theory with an arbitrary number Nf of fundamental flavors. The

Nf = 0 case was constructed by Maldacena and Núñez (MN) [1], building up on a ge-

ometry previously found in [2]. Massless flavors in the fundamental representation of the

SU(Nc) gauge theory can be incorporated following the idea of [3] by adding Nf spacetime

filling branes. The resulting holographic models [4–6] have led to many interesting physical

insights, including, for instance, aspects of Seiberg duality (see also [7–9]). However, the

presence of a singularity in the IR region limits the applicability of this geometry. Re-

cently, a new N = 1 supersymmetric geometry has been found by Conde, Gaillard and

Ramallo [10] which includes the previous ones as particular cases, but more generally can

circumvent the IR singularity. The solution is parametrized in terms of a function S(r)

that encodes how flavor branes are distributed in the space. The plan of this paper is

to use this framework to construct new solutions and investigate new physical properties,

with the aim of understanding the extent to which these geometries can describe aspects

of N = 1 supersymmetric SU(Nc) Yang-Mills theory with Nf fundamental massive flavors.

N = 1 supersymmetric SU(Nc) Yang-Mills theories with Nf massless flavors, analo-

gously to their non-supersymmetric counterpart, are likely to abandon the QCD-like con-

fined phase for sufficiently large number of flavors and develop a conformal phase before

the loss of asymptotic freedom. The restoration of conformal symmetry and the presence

of a so called conformal window in the number of flavors would thus identify a new family

of non abelian gauge theories which is worth to explore. From the more phenomenological

point of view, conformal symmetry might play a relevant role in the description of particle

dynamics at energies above the electroweak symmetry breaking scale.
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Until now, the emergence of conformal symmetry in theories without supersymmetry

has been discussed in the context of Schwinger-Dyson equations for chiral symmetry in

the ladder approximation [11, 12], truncated non-perturbative RG flows [13, 14], super-

symmetry inspired conjectures [15] and deformation theory [16]. The proof of existence

of a conformal window however depends on our ability to describe these theories in a

non-perturbative manner, following the evolution of parameters all the way from strong

coupling to weak coupling. Lattice studies are currently the only ones to provide a fully

non perturbative analysis, and in Nc = 3 QCD they have recently produced evidence that

Nf = 12 is plausibly close to the end-point of a conformal window [17–25]. Similar results

have been found in [26] using the worldline formalism.

A further insight comes from supersymmetric gauge field theories. The renormalization

group of N = 1 supersymmetric QCD (SQCD) has been extensively studied, and the

perturbative β function for the gauge coupling is given by the well known NSVZ formula [27]

βg = − g3

16π2

3Nc −Nf (1 − γ0)

1 − g2Nc

8π2

, (1.1)

where γ0 is the anomalous dimension of the Nf (massless) fundamental superfields Qr

and Q̃u. The formula (1.1) is unchanged, with a common anomalous dimension for all

fundamental fields, as long as the superpotential preserves a ZNf
flavor symmetry. It also

applies in the massive flavor case in the far ultraviolet, whereas it is drastically modified

below the mass scale of theNf flavors. The anomalous dimension γ0 is a non-trivial function

of Nf , Nc, the gauge coupling and all other couplings appearing in the superpotential. All

the information about the dynamics of the strongly or weakly interacting theory is thus

contained in γ0. Its form depends on the precise choice of the superpotential and determines

the presence of fixed points in the parameter space of the theory. Any rigorous prediction

for the existence and width of a conformal window would thus require to derive the β

functions and anomalous dimensions of the theory in a non-perturbative way. Holographic

techniques may allow to study the renormalization group flow beyond perturbation theory.

In particular, for the supersymmetric pure Yang-Mills theory (SYM), i.e. SQCD with

Nf = 0, the gravity dual was constructed in [1] and reproduced some interesting features of

N = 1 SYM, including the correct structure of the NSVZ β function (1.1) at Nf = 0 for the

gauge coupling [28, 29]. The holographic β function contains, in addition, non-perturbative

contributions, and the gauge coupling goes to infinity in the IR — a realization of ordinary

confinement.

The holographic approach has some well known limitations that we will not attempt

to resolve in this paper. One limitation is that holographic models typically include an

infinite tower of Kaluza-Klein states which have no counterpart in the field theory that one

would like to describe, e.g. super QCD or super YM, and should therefore be decoupled.

It was argued in [5, 6] that integrating out Kaluza-Klein excitations leads to effective

couplings — e.g. quartic couplings — in the superpotential, so that the final effective

field theory will be an N = 1 supersymmetric QCD with the addition of an effective

superpotential containing higher dimensional couplings. Such couplings can lead to the

disappearance of the conformal window. An example is the role of four-fermion operators
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in non-supersymmetric gauge theories. The presence of such operators has to be traced back

to chiral dynamics and the breaking of chiral symmetry, with consequent disappearance of

conformality.1

Despite these limitations of the holographic approach, it remains important to inves-

tigate the holographic predictions for the gauge coupling β-function, since they provide

detailed hints on the possible structure of the effective field theory in the strong coupling

regime. Such hints may be helpful when studying the theory on the lattice or by means of

other techniques. In particular, for Nf = 2Nc, a prediction arising from our study is the

existence of a non-trivial UV fixed point at some strong coupling g∗. Consistency with the

RG evolution at weak coupling requires the existence of an IR fixed point at g′
∗
< g∗, as we

shall discuss. Notice that the presence of a UV fixed point at strong coupling in addition to

an IR fixed point has been conjectured already in the pioneering work by Banks-Zaks [31],

and might lead to a mechanism of disappearance of the conformal window via the annihi-

lation of a pair of fixed points as suggested in [32].

This paper is organized as follows. In section 2 we review the type IIB string back-

grounds recently constructed in [10]. The solutions are parametrized by a profile function

S(r) which for particular choices reproduces previous solutions in the literature. In section

3, we will adopt a convenient choice of S(r) and obtain numerical solutions for the three

cases: i) Nf < 2Nc, ii) Nf = 2Nc and iii) Nf > 2Nc. The gauge coupling β-functions of

the corresponding gauge theory for all cases are derived in section 4, with focus on the

emergence of fixed points in the RG flow. We conclude in section 5, comparing our results

with physical expectations and discussing possible future directions.

2 The string/supergravity background

We consider a type IIB supergravity background with Nf D5 branes extended on a non-

compact two-cycle of a CY3-fold. The ansatz is given by the following (Einstein frame)

metric and RR three-form [10]

ds2 = e2f(r)

[

dx2
1,3 + e2k(r)dr2 + e2h(r)(dθ2 + sin2 θdϕ2)

+
e2g(r)

4

(

(ω̃1 + a(r)dθ)2 + (ω̃2 − a(r) sin θdϕ)2
)

+
e2k(r)

4
(ω̃3 + cos θdϕ)2

]

,

F(3) =
Nc

4

[

− (ω̃1 + b(r)dθ) ∧ (ω̃2 − b(r) sin θdϕ) ∧ (ω̃3 + cos θdϕ)

+(b′(r) + L1(r))dr ∧ (−dθ ∧ ω̃1 + sin θdϕ ∧ ω̃2)

+(1 − b(r)2 + L2(r)) sin θdθ ∧ dϕ ∧ ω̃3

]

− Nc

2
sin θdθ ∧ dϕ ∧ ω̃3 , (2.1)

1 In particular, the Schwinger-Dyson gap equation in the ladder approximation says that the onset of

chiral symmetry breaking occurs for a critical gauge coupling where the anomalous dimension of the fermion

mass operator γm = 1 and thus the four-fermion operator becomes relevant in the RG sense. In [30] has

been also suggested that, while the value of the critical coupling will be affected by higher order effects in the

perturbative (ladder) expansion, the scaling of the fermion propagator with γm = 1 is the non-perturbative

signal of chiral symmetry breaking.
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where the ω̃i are the left-invariant forms of SU(2) given by

ω̃1 = cosψdθ̃ + sinψ sin θ̃dϕ̃ ,

ω̃2 = − sinψdθ̃ + cosψ sin θ̃dϕ̃ ,

ω̃3 = dψ + cos θ̃dϕ̃ , (2.2)

and a, b, f, k, g, h are functions of the radius r. This background embeds a flavor deforma-

tion by means of a stack of flavor D5 branes parametrized by the Li(r), i = 1, 2 functions.

It is convenient to introduce the functions P , Q and the profile function S

Q(r) ≡ e2g(a cosh(2r) − 1) , P (r) ≡ ae2g sinh(2r) , S(r) ≡ −Nc

Nf
L2(r) . (2.3)

The inverse relations for the metric functions g(r) and a(r) read

e2g = P coth(2r) −Q , a =
P

P cosh(2r) −Q sinh(2r)
. (2.4)

The profile S(r) characterizes the embedding of flavor D5 branes and it may be interpreted

as an energy-scale dependence of the effective flavor number NfS(r) in the description of

fundamental massive flavors of the dual gauge theory. The BPS equations can be solved

in terms of the functions in (2.3) as follows

L1(r) =
Nf

Nc

S′(r)

2 cosh(2r)
, (2.5)

b(r) =
2r

sinh(2r)
− Nf

Nc

S(r)

2 cosh(2r)
+

2

sinh(2r)

∫ r

0
tanh(2ρ)S(ρ)dρ , (2.6)

e2h =
1

4

P 2 −Q2

P coth(2r) −Q
, e2k =

P ′ +NfS(r)

2
, (2.7)

f =
Φ

4
, e−2Φ = e−Φ0

eh+g+k

sinh(2r)
, (2.8)

where Φ(r) is the dilaton and Φ0 a constant. The function Q is an integral over the

profile S(r)

Q = coth(2r)

[∫ r

0

2Nc −NfS(ρ)

coth2(2ρ)
dρ+ q0

]

, (2.9)

with q0 a constant of integration. Finally, the function P (r) satisfies the “master” differ-

ential equation

P ′′ +NfS
′ +(P ′ +NfS)

(

P ′ −Q′ + 2NfS

P +Q
+
P ′ +Q′ + 2NfS

P −Q
− 4 coth(2r)

)

= 0 . (2.10)

Once the profile S(r) is determined, a solution is obtained by first computing Q(r)

in (2.9), then solving (2.10) for P (r). It should be noted that regularity of the geome-

try (see (2.7)) requires

P > |Q| , P ′ > −NfS . (2.11)

In the particular cases S = 0 and S = 1 one finds solutions which already appeared in the

literature. We briefly review these cases before moving to the massive case described by

the function S(r).
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S = 0: unflavored solution. Setting S = 0 in (2.10) amounts to set Nf = 0. In

addition to the regular solution of the Maldacena-Núñez model [1, 2], there is a one-

parameter deformation found in [4] that leads to solutions with regular behavior at r = 0.

The infrared asymptotic of this unflavored one-parameter family of solutions has been

explicitly written for P in [6],

P = h1r +
4h1

15

(

1 − 4N2
c

h2
1

)

r3 +
16h1

525

(

1 − 4N2
c

3h2
1

− 32N4
c

3h4
1

)

r5 + O(r7) , (2.12)

where h1 is the one parameter that labels each solution of the family. When h1 = 2Nc,

one recovers the Maldacena-Núñez (MN) solution [1]. It is worth noting that the resulting

function Q is the same for any value of h1,

Q = Nc(2r coth(2r) − 1) . (2.13)

S = 1: massless flavors. By setting S = 1 one obtains the solutions of [4] describing

massless flavors. The asymptotic for these solutions was discussed in full detail in [6]. For

large radius, i.e. in the ultraviolet of the dual gauge theory, a generic solution behaves

exponentially

P = k e4r/3 + O(1) , (2.14)

where k is an integration constant. There are also special solutions with the following

linearly rising large r asymptotic:

P = |2Nc −Nf | r + O(1) , Nf 6= 2Nc . (2.15)

A further analysis is required to see if the geometry can actually be extended to r → ∞ or

if it meets a singularity before. This will be discussed below. When Nf = 2Nc, there are

special solutions with the following asymptotic behavior:

P = P0 + O(e−cr) , P0 =
8Nc

ξ(4 − ξ)
, (2.16)

with

q0 =
4Nc(ξ − 2)

ξ(4 − ξ)
, c = 1 +

√

9 − 4ξ + ξ2 , 0 < ξ < 4 . (2.17)

S(r): massive flavors. Following [10] one can characterize the supersymmetric D5

brane embeddings by two algebraic equations

F1(zi) = 0 , F2(zi) = 0 , (2.18)

for the four complex variables zi (i = 1, . . . , 4) parametrizing a deformed conifold, thus

satisfying

z1z2 − z3z4 = 1 (2.19)

and related to the radial coordinate through

4
∑

i=1

|zi|2 = 2cosh(2r) . (2.20)

– 5 –
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In particular, the choice made in [10] is given by the following embedding parametrized by

two complex constants A and B:

z3 = Az1 , z4 = Bz2 . (2.21)

This equation, together with (2.19) and (2.20) determines the minimum distance rq that

this embedding reaches

cosh(2rq) =

√

1 + |A|2
√

1 + |B|2
|1 −AB| . (2.22)

It depends on the moduli of A and B, as well as their phase. By demanding that the WZ

term of the action of the full set of D5 branes in the ten-dimensional theory coincides with

the action obtained from the embeddings one arrives at [10]

S(r) =

√

cosh 4r − cosh 4rq√
2 sinh(2r)

Θ(r − rq) . (2.23)

Notice that S(r) is continuous at r = rq, while S′(r) diverges as S′(r) ∼ (r − rq)
−1/2 near

rq, and it is thus singular. To avoid this singularity Conde, Gaillard and Ramallo [10]

have proposed a brane setup for which the tip of the branes rq is “smeared”, so that

an average should be made over brane distributions with different tip positions, weighted

with a density function ρ(rq). After performing the change of variables y = cosh(4r) and

yq = cosh(4rq) with y ≥ 1, and assuming that the branes are distributed over the whole

space 0 < r <∞, then the profile function will be given by

S(y) =

∫ y

1
dyq ρ(yq)

√
y − yq√
y − 1

, (2.24)

where the measure function ρ(yq) satisfies the normalization condition
∫

∞

1
dyqρ(yq) = 1 . (2.25)

3 Simple solutions for massive flavors

On the gauge field theory side, one expects that the asymptotic physics for Nf massive

flavors at high and low energies should be as follows: a) at energies lower than the flavor

mass (infrared limit) it should converge to the unflavored case, S = 0; b) at high energies

(ultraviolet limit) it should converge to the Nf massless flavors case, S = 1. This picture

can be realized by the gravity dual background when the function S(r) interpolates between

the infrared/small radius limit S(r) → 0 for r ≪ rq — with rq being a measure of the

common quark mass — and the ultraviolet/large radius limit S(r) → 1 for r ≫ rq.

Thus we are interested in solutions for massive flavors that approach the deformed MN

solution (2.12) in the infrared, i.e. in the small radius limit r → 0. In [10], to describe flavors

with a given mass O(yq) with some spread, a measure function ρ(yq) with a finite support

around yq was chosen. Here, we slightly depart from this approach. Given the freedom in

the choice of distribution of branes, we will conveniently adopt a smooth distribution ρ(yq)

of branes, chosen to meet the following requirements:

– 6 –
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• S(r) is assumed to be a monotonous, continuous function varying between 0 and 1,

approaching 1 at infinity. We demand S(r) ∼ r4 (or smaller) for r ∼ 0, so that the

curvature invariants of the geometry near r = 0 are the same as in the deformed MN

solution. In this way we ensure that the metric is regular at the origin (and that

there are no massless flavors).

• In order to have a more tractable differential equation (2.10), we demand that S

is such that the integral (2.9) defining Q can be explicitly performed with a simple

result for Q.

• Finally, we demand that ρ(yq) is positive definite and satisfies the normalization

condition (2.25).

We found an extremely simple choice that meets all these requirements:

S(r) = (tanh(2r))2n , n = 2, 3, . . . (3.1)

This corresponds to a distribution of branes with masses concentrated around the maximum

of S′(r), at

rmax = arccoth





√

3 + 2n+ 2
√

4n+ 2

2n− 1



 , (3.2)

which increases with n (for large n, rmax ∼ 1/4 log n). The spread ∆r decreases with n.

In order to determine ρ(yq), we note that the integral defining S is related to an Abel

Transform as follows

2∂y

(

√

y − 1 S(y)
)

= A[ρ(y)] =

∫ y

1
dyq

ρ(yq)√
y − yq

. (3.3)

The inverse Abel Transform formula is

ρ(yq) =
2

π
∂yq

∫ yq

1

∂y

(√
y − 1 S(y)

)

(yq − y)1/2
dy . (3.4)

It is easy to verify that the normalization condition (2.25) is satisfied for this measure

function.

For the choice (3.1), we find

ρ(n)(yq) =
4
√

2 Γ(n+ 3
2)√

π(n− 1)!

(yq − 1)n−1

(yq + 1)n+ 3

2

. (3.5)

In particular

ρ(n=2)(yq) =
15(yq − 1)
√

2(1 + yq)
7

2

. (3.6)

Next, we compute Q(r) in (2.9). The basic integral we need is

∫ r

0
dr tanhm(2r) =

tanhm+1(2r)

2(m+ 1)
2F1

[

1,
1

2
(1 +m),

1

2
(3 +m), tanh2(2r)

]

. (3.7)
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For integer m, this reduces to simple expressions. Thus we find

Q(r) =
1

2
(2Nc −Nf )(2r coth(2r) − 1)

−Nf

2

(

1 +

n+1
∑

k=1

(

tanh2k−1(2r)

2k
− tanhk−1(2r)

k
− tanhk+n(2r)

k + n+ 1

))

, (3.8)

Q(n=2)(r) =
1

2
(2Nc −Nf )(2r coth(2r) − 1) +

Nf

6
tanh2(2r) +

Nf

10
tanh4(2r) . (3.9)

Notice that we have set q0 = 0. The reason is that the term q0 coth(2r) produces a singular

behavior at r = 0, thus violating our condition that the solution reduces to the deformed

MN solution at r = 0.

In the following section we will proceed to the analysis of solutions P (r) of the master

equation (2.10) as a function of the parameter x = Nf/Nc. In all cases we will use the S(r)

given by (3.1) with n = 2 and hence Q given by (3.9).

In general, the resulting differential equation (2.10) admits the following

boundary conditions:

P ≈
{

p0 + O(r3)

h1r + O(r3)
, r ∼ 0 , (3.10)

P ≈















|2Nc −Nf | r , x 6= 2

P0 + e−cr , x = 2

k e4r/3 , any x

, r ≫ 1 . (3.11)

For each x 6= 2, the solution to (2.10), P (r), is uniquely determined if we demand the

following asymptotic conditions:

a) At r ∼ 0, P ∼ h1r, i.e. the solution reduces to the deformed MN solution with the

asymptotic behavior given by (2.12).

b) At large r, the solution has the linear behavior (2.15), P ∼ |2Nc −Nf | r.

For a generic integration constant h1 above some critical value, the large r asymptotic

behavior is P ∼ e4r/3, as discussed earlier. At the critical value of h1 the solution has the

linear behavior P ∼ (2Nc − Nf )r, or constant for x = 2, and at any lower h1 it meets

a singularity before reaching r = ∞. Hence, the condition of linear behavior at infinity

specifies the solution uniquely.2

In order to solve the differential equation (2.10) numerically, as mentioned above we

take the brane distribution (3.1) with n = 2, and Q given in (3.9). This describes massive

flavors with a mass around r ≈ 0.5 (see (3.2)), determined by the maximum of S′(r), shown

in figure 1 together with S(r).

2The solutions with exponential behavior at infinity have a constant dilaton and become Ricci flat, which

is not the expected asymptotic behavior for holographic applications. Some interesting applications of these

solutions as describing properties of 6d field theories have nevertheless been found in [6].
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0.6

0.8

1.0

1.2

1.4

SHrL, S'HrL

Figure 1. S(r) (solid line) and S′(r) (dashed line). The maximum of S′(r) at r ≈ 0.5 indicates

the characteristic mass scale of the massive flavors.

Since we have to meet boundary conditions at zero and infinity, we employ a shooting

method. This determines the critical h1.

Figures 2a,b,c,d illustrate the solutions in the three cases Nf < 2Nc, Nf = 2Nc and

Nf > 2Nc.

• In the first case we take x = 7/4, for which we find

h1

Nf

∼= 1.53218706 , x =
7

4
, (3.12)

and the solution is reported in figure 2a.

• In the special case x = 2 the solution that starts with P ∼= h1r near r = 0 and

asymptotes to a constant at infinity has

h1

Nf

∼= 1.42475837 , x = 2 . (3.13)

The large radius behavior is given by

P = P0 − e−c(r−r1) + O(e−4r) , (3.14)

with

P0 =
32Nc

15
, c = 1 +

√
21

2
, Q→ 8Nc

15
, (3.15)

where r1 is a numerical constant. The solution is shown in figure 2b.

• Finally, figure 2c shows a case with x > 2, taking in particular x = 7/3, for which

we find
h1

Nf

∼= 1.35890843 , x =
7

3
. (3.16)

Note that x = 7/3 is related to x = 7/4 (used in figure 2a) by x → x/(x − 1),

which is produced by the change Nc → Nf −Nc. We have made this choice for later

comparison between theories related by a naive Seiberg duality transformation. We

will comment on this below.
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Figure 2. The function P (r)/Nf solution to the master equation (2.10) that matches between the

deformed Maldacena-Núñez solution (2.12) in the infrared (r → 0) and the linear behavior in the

ultraviolet (r → ∞). The dashed line corresponds to Q(r)/Nf (|Q(r)|/Nf in figure c). (a) x = 7/4

(b) x = 2. (c) x = 7/3. (d) x = ∞.

More generally, one can determine h1 as a function of x, with 0 < x < ∞, as shown in

figure 3. For x→ 0 we obtain h1/Nf → ∞. Indeed one can verify that h1 → 2Nf/x = 2Nc

as Nf → 0, recovering the MN boundary condition at r = 0 for P discussed above.

Furthermore, we note that for large x the critical h1 approaches a finite asymptotic value,

h1

Nf

∼= 1.72102763 , x→ ∞ . (3.17)

The reason is that for x ≫ 1, one can scale P → NfP so that the master equation (2.10)

becomes independent of x, as Q becomes proportional toNf , see (3.9). This scaling solution

is shown in figure 2d.

4 Gauge coupling β-function

To compute the β function of the gauge coupling in the dual field theory we need to first

identify the gauge coupling constant in terms of geometrical quantities. For the ansatz (2.1),

this has been done in [4]. The gauge coupling turns out to be directly related to the P
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Figure 3. Near r = 0, the solutions are required to behave as P ≈ h1r to approach the deformed

MN solution. The figure shows the critical values of the parameter h1 which are required for P to

have linear behavior at infinity.

function as follows

8π2

g2
= 2

(

e2h +
e2g

4
(a− 1)2

)

= tanh(r) P (r) . (4.1)

The second crucial ingredient necessary to obtain any β function in the dual field theory

is the precise relation between the radial coordinate r of the supergravity background and

the energy scale of the gauge theory. Relevant discussions on this point can be found

in [1, 4, 6, 28, 29]. In particular, in [28, 29], by adopting the energy scale defined by

the gaugino condensate — a protected, i.e. gauge invariant operator with no anomalous

dimensions in the gauge theory — in the Maldacena-Núñez model, and by dimensional

arguments, the following relation is obtained

(

Λ

µ

)3

∼ a(r) , (4.2)

where µ is an arbitrary renormalization scale at which the gaugino condensate is defined,

and Λ is the scale dynamically generated by quantum corrections in the gauge theory.

Strikingly, this relation applied to the unflavored Maldacena-Núñez background leads to a

gauge coupling β function that reproduces the complete perturbative NSVZ formula (1.1)

for Nf = 0. The relation (4.2) gives rise to the UV behavior

µ

Λ
∼ e

2r
3 , r ≫ 1 . (4.3)

In extending the relation between µ and r to models withNf 6= 0 massless flavors, one needs

to consider a number of issues. In particular, interesting solutions exist with a = b = 0

in (2.1), so one should seek for other possible definitions of the energy scale than (4.2). As

emphasized in [4, 6], for a class of flavored N = 1 supersymmetric models, the same UV

relation (4.3) arises from any of the following identifications

(

Λ

µ

)3

∼ a(r) ,

(

Λ

µ

)3

∼ b(r) ,

(

Λ

µ

)3

∼ e−2φ(r) . (4.4)
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The relations (4.3) and (4.4) can be generically written in the form

(

Λ

µ

)3

= F (r) , F (r) → e−2r for r → ∞ . (4.5)

Different choices of F are analogous to the ambiguity that appears on the field theory side

in the choice of renormalization scheme. Using (4.1) and (4.5), we obtain the following

expression for the β function:

β8π2/g2 = −3F

F ′
∂r(tanh r P ) = − 3F

F ′ cosh2 r

(

sinh r cosh r P ′ + P
)

(4.6)

and by knowing F and the solution P , we can now compute β8π2/g2 , hence βg. Differences

between the possible radius/energy relations in (4.4) eventually arise in the IR. However,

we have verified that all relations in (4.4) lead to qualitatively similar results. For the

calculations that follow, we will adopt the prescription (4.2). In this way, when Nf = 0,

we recover the β function of the MN model (specifically, the β function obtained in [29]).

It is convenient to rescale away the parameter Nf in the master equation (2.10) by the

change P = Nf P̃ and Q = Nf Q̃. This leads to the following scaling for the β function,

βg =
1

√

Nf

βg̃(x, g̃) , g =
1

√

Nf

g̃ , (4.7)

where
8π2

g̃2
= tanh(r) P̃ (r) . (4.8)

In what follows we will thus compute βg̃. Note that, in terms of the ’t Hooft coupling

λ ≡ g2Nc, one has g̃2 = xλ, x = Nf/Nc, and

βλ = f(x, λ) . (4.9)

This can be compared with the NSVZ β function (1.1), which in terms of λ reads

βλ = − λ2

8π2(1 − λ
8π2 )

(3 − x(1 − γ0)) . (4.10)

This agrees with the structure of the holographic β function (4.9), i.e. in the large Nc limit

at fixed Nf/Nc it only depends on λ and x = Nf/Nc.

At this point it is useful to recall some basic facts of the NSVZ β function. It was

suggested by Seiberg [34] that a conformal window for SQCD should exist for 3
2Nc < Nf <

3Nc, where a family of massless SQCD theories with Nf massless flavors develop an IR

fixed point at finite coupling. All flavored gauge theories in the conformal window would

be deconfined and chiral symmetry restored. The lower end-point should be considered a

lower-bound on the actual value. A non-trivial IR fixed point can be found if x ≡ Nf

Nc
≈

3 [31]. Indeed, using the explicit form of the one-loop anomalous dimension the vanishing

of the β function requires

3

x
− 1 = −γ0 =

1

8π2
g2Nc + O(g4N2

c ) . (4.11)
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Figure 4.
√

Nfβg as a function of
√

Nfg, corresponding to the supergravity solutions in fig-

ure 2a,b,c,d. (a) x = 7/4. (b) x = 2. (c) x = 7/3. (d) x = ∞.

It is clear that this fixed point moves towards the strongly coupled region as x decreases

from 3 to lower values. This assumes a small value of the anomalous dimension. As we

will see below, the present holographic system, like the one of [5, 6] seems to involve large

values of the anomalous dimension γ0, in fact γ0 = −1/2 in the UV.

The calculations that follow use our specific choice for the embedding function S(r) =

tanh4(2r). However, the structure of the fixed points seems to be a generic property of the

solutions of the master equation (2.10) with linear dilaton asymptotic and any embedding

function S with S(r) → 1 at infinity. This asymptotic includes previously known solutions

with massless flavors.

The linear dilaton asymptotics of these types of backgrounds preclude the emergence

of an anti de Sitter geometry at infinity, which should be a more appropriate description

near the UV fixed points. Despite this fact and despite the above mentioned ambiguities in

the definition of the holographic beta function, we will find some remarkable coincidences

with the expected behavior in flavored SQCD.

4.1 Nf < 2Nc

The β function for the gauge theory with massive fundamental flavors is obtained by

taking the solution P (r) found in the previous section (see figure 2a) and applying the

formula (4.6). The result is shown in figure 4a.
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The β function has a UV fixed point at g = 0, where it has the following behavior

βg
∼= − 3

32π2
(2Nc −Nf )g3 . (4.12)

Remarkably, this exactly agrees with the NSVZ β function (1.1) near g = 0, if γ0 = −1/2 in

the UV — where mass terms can be neglected. A similar conclusion was reached in the case

of the backgrounds with S = 1 [5, 6]. This is not surprising, since in the UV our S differs

from S = 1 by exponentially suppressed terms, which do not affect the leading behavior

in (4.12). It would be interesting to have an independent derivation of the anomalous

dimension γ0 by holographic methods, but presently it is not clear to us what the correct

prescription would be.3

The β function of figure 4a is zero at g = 0, negative and monotonically decreasing

for g > 0, thus implying asymptotic freedom and ordinary confinement in the IR, where

g → ∞. In particular, we find no additional IR or UV fixed points at finite coupling.

4.2 Nf = 2Nc

Using the solution P (r) found in the previous section (see figure 2b) we determine the β

function, shown in figure 4b. We can see that a non-trivial UV fixed point g = g∗ appears.

Although we do not have the gravity solution that describes the missing branch g < g∗,

some interesting features can be inferred by comparing with the NSVZ β function (1.1)

in this UV region where mass terms can be neglected. For Nf = 2Nc, the NSVZ β

function becomes

βg = − g3Nc

16π2(1 − g2Nc

8π2 )
(1 + 2γ0) . (4.13)

Again, it is consistent with our results if γ0 → −1/2 in the UV and g flows to g∗. Moreover,

since the perturbative NSVZ β function is negative near the UV fixed point at g = 0, by

continuity there must be at least another point g′
∗
, with g′

∗
< g∗, where the β function

vanishes. In the simplest assumption that there is only one such point, this would be an IR

fixed point. The resulting picture is in fact similar to the one proposed by Seiberg (for a

discussion on the effect of mass terms see e.g. [35]). Obviously, a description using massive

flavors like the present one cannot describe the emergence of a conformal fixed point in

the infrared. However, given the presence of the UV fixed point at g = g∗, the IR fixed

point seems to be the simplest possibility that permits a negative beta function near g = 0.

The combined presence of a pair of IR and UV fixed points is also a prerequisite for the

existence of a mechanism in which the disappearance of the conformal window is due to the

annihilation of a pair of fixed points [32]. Notice that if for Nf = 2Nc the IR fixed point

appears at ‘t Hooft coupling λ = O(1) (as suggested by a naive extrapolation of (4.11)), it

would be very difficult to see it by means of perturbative and holographic techniques.

4.3 Nf > 2Nc

Using now the solution P (r) of figure 2c we determine the β function for the case x = 7/3.

This is shown in figure 4c. The β function has, like in the Nf < 2Nc case, a UV fixed point

3In [5] an attempt was made to compute γ0 by proposing that the quartic coupling of the gauge theory

should be identified with some quotient of the volumes of different cycles of the manifold.
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at g = 0, where it has the behavior

βg
∼= − 3

32π3
(Nf − 2Nc)g

3 . (4.14)

This exactly agrees with the NSVZ β function (1.1) of the Seiberg dual gauge theory with

Ñc = Nf − Nc near g = 0, if again we set γ0 = −1/2 in the UV. This strongly suggests

that in the UV region the background obtained with our boundary conditions describes,

when Nf > 2Nc, the Seiberg dual system.

It must be stressed that in the present case Seiberg duality is only an approximate

relation that depends on the scale of energy (see [10]). The idea is that at a given scale µ

one can integrate out massive flavors which have mass greater than µ and remain with a

reduced number of light flavors. In the present framework, this reduced number of flavors

at an energy scale r is effectively described by Nf (r) ≡ Nf S(r). With our choice of S(r),

massive flavors are accumulated near r ≈ 0.5 (see figure 1). In the infrared region, where

r ∼ 0, one has S ∼ r4 so Nf (r) → 0, as expected since in this region the energy scale is

much smaller than the characteristic mass of the flavors. On the other hand, in the UV

region, S → 1 and Nf (r) → Nf , which is consistent with the fact that at this scale of

energies all flavors look massless. As observed in [10], the master equation (2.10) remains

invariant under Nc → Nf (r) − Nc and Nf (r) → Nf (r). This transformation changes

Q(r) → −Q(r). This is the only sense in which Seiberg duality can be applied to the

present system (in particular, Nc → Nf − Nc and Nf → Nf is not a symmetry of the

master equation) and it is consistent with our proposal that the solution P (r) of figure 2c

describes the Seiberg dual system at an energy scale much larger than the characteristic

mass of the flavors, where Nf (r) → Nf .

Having obtained a gravity solution for the “Seiberg dual” system, the question is how

to identify a background dual to the original gauge theory. When Nf > 2Nc, we expect

that the gauge theory will develop a Landau pole. This means that the theory cannot

be extended beyond a certain UV scale. On the gravity side, it means that the geometry

should terminate at a maximum value of r, where it probably has a singularity. Indeed,

there is a one-parameter family of solutions with parameter h1 that at r = 0 approach the

deformed MN solution but at some finite r meet a singularity where P = |Q|. These are the

solutions which have an h1 whose value is anything lower than the critical h1 of figure 3.

In this case we lack a clear criterium to pick a unique solution in this family that is dual

to the original gauge theory. It should also be noted that the application of holography is

difficult to justify for singular backgrounds that do not get to infinity.

The β function in figure 4c exhibits a local maximum precisely near the g∗ where a fixed

point appears in the Nf = 2Nc case. Indeed, as Nf approaches 2Nc, the local maximum

approaches the line βg = 0 and occurs at large values of r. In the strict Nf = 2Nc limit,

the branch g < g∗ disappears from the figure, because the solution gets to r = ∞ already

at g = g∗.

Finally, figure 4d shows the gauge coupling β function computed in the infinite flavor

limit, that is, for the solution shown in figure 2d. It shares similar features as the case

x = 7/3, except that the local maximum has disappeared. The disappearance of the local
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maximum can be understood as follows: for x = ∞, one has x̃ = Nf/Ñc → 1, where

Ñc = Nf − Nc. Thus one is computing the β function of the “Seiberg dual” system with

x = 1. For x = 1, the βg indeed looks very similar to figure 4d.

5 Conclusions

We have investigated the new gravity backgrounds found in [10] dual to N = 1 supersym-

metric gauge theories with massive fundamental flavors. These backgrounds are character-

ized by a function S(r) which encodes the flavor brane distribution. In the specific back-

grounds studied in this paper we have chosen a continuous S(r) = tanh4(2r), with support

in the whole space 0 < r <∞, which leads to a simple analytic expression for the function

Q(r), and thus permits a more straightforward integration of the master equation (2.10)

that determines P (r), hence the complete geometry. The solutions — parametrized by

x ≡ Nf/Nc — were uniquely determined by imposing boundary conditions that ensure

regularity at r = 0 and acceptable asymptotic behavior at infinity. In this way, solutions

are free from the IR singularity that affects the massless flavor S = 1 case of [5, 6].

We have then investigated properties of the gauge coupling beta function and the

possible emergence of fixed points. As explained in [5, 6], the main feature that seems

to determine the properties of the dual gauge theory is the presence of quartic operators

in the superpotential that arise upon integration of the Kaluza-Klein modes of the orig-

inal string theory. These operators are of the form W ∼ h(QrQ̃u)(QuQ̃r), with gauge

indices contracted inside the parentheses and lead to a sextic potential in the scalar fields.4

They become marginal when the anomalous dimension γ0 is −1/2. For this value of the

anomalous dimension the NSVZ β function (1.1) becomes

βg = − 3g3

32π2

(2Nc −Nf )

1 − g2Nc

8π2

. (5.1)

We have seen that this expression agrees with the holographic β function in the UV region

for Nf ≤ 2Nc, and also for Nf > 2Nc if we replace Nc → Nf − Nc. We argued that

for Nf > 2Nc our backgrounds should therefore describe the Seiberg dual system, in

the generalized sense discussed in section 4.3. After this replacement, the β function stays

negative for all Nf > 2Nc. As discussed, in the Nf > 2Nc case, finding a gravity description

of the original system before Seiberg duality is difficult because, as the expression (5.1)

indicates, asymptotic freedom is lost and thus a Landau pole is expected, presumably

meaning that the gravity solution must encounter a singularity at some radius r.

For Nf = 2Nc we found that the theory has a UV fixed point, which hints at the

presence of an IR fixed point at some lower coupling, if one is to match continuously with

standard perturbative results. In this context, we stress that our theory only converges

to the massless case in the UV, and it can only asymptotically recover the presence of

conformal fixed points. In particular, near the would-be IR fixed point the theory can at

most have an approximate conformal symmetry at energies greater than the flavor mass

4A general discussion of quartic operators can be found in [35].
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scale. For Nf < 2Nc we have not found any evidence of an IR fixed point, perhaps

suggesting that in the presence of quartic operators the “conformal window” opens and

closes at Nf = 2Nc.

The effect of higher dimensional operators such as h(QrQ̃u)(QuQ̃r) — which in the

component Lagrangian leads to terms (scalars)6 and (scalar)2 (fermion)2 — has a coun-

terpart in non-supersymmetric QCD. It produces effects that are similar to well known

non-perturbative effects related to chiral dynamics in the low energy effective field theory.

For example, a quartic fermion operator has a key role in the emergence of chiral symmetry

breaking and must have a role in the disappearance of conformality: Schwinger-Dyson gap

equation for the fermion propagator implies a direct relation between the onset of chiral

symmetry breaking, thus the presence of a non vanishing chiral condensate, and the point

where the four-fermion operator becomes relevant in the RG flow [11, 12, 30]. This hap-

pens by lowering the number of flavors in QCD-like theories, starting from the point where

asymptotic freedom sets in. At sufficiently low Nf chiral symmetry will always be broken

and conformality is lost.

An interesting open problem is finding regular backgrounds that can describe the

massless flavor limit in a controllable manner. The current approach uses an S(r) function

that determined the flavor mass scale r ∼Mf . One can attempt to study the limit Mf → 0

within this context. Although this approach seems to be affected by singularity problems

similar to those of the massless S = 1 case, it is possible that some universal properties

can be learned by studying this limit in detail.
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