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1 Introduction

Since the pioneering works by Fradkin and Vasiliev [1, 2] where the gravitational interaction

problem (as well as self-interactions) for higher-spin gauge fields was solved at the first

nontrivial order by going to a four-dimensional (anti-)de Sitter (A)dS4 background, there

has been a lot of attention devoted to the study of totally-symmetric gauge fields around

AdSd background, culminating with Vasiliev’s fully nonlinear and consistent equations for

totally symmetric gauge fields [3–5]. These equations admit constantly-curved spacetimes

as exact solutions, where it is crucial that the curvature be nonvanishing. For a review of

the key mechanisms of higher-spin extensions of gravity, see [6], while various reviews on

Vasiliev’s equations can be found in [7–9].

Depending on one’s taste, one may view higher-spin gauge theory as a limit of string

theory [10], or string theory as a broken phase of higher-spin gauge theory. See however

recent works [11–13] where higher-spin fields were realized as certain vertex operators in ex-

otic pictures without taking any limits of superstring theory. It is expected that, for a better

understanding of both higher-spin gauge theory and strings together with their interconnec-

tions, the role played by the fields at high levels, whose Young symmetries are neither totally

symmetric (first Regge trajectory) nor totally antisymmetric (p -forms), will be crucial. For

a recent discussion and results, see [14]. At present, free mixed-symmetry gauge fields are

very well understood off-shell, in both flat and (A)dSd backgrounds. For a non-exhaustive

list of recent works on quadratic action principles and equations for mixed-symmetry gauge

fields in constantly-curved backgrounds, see e.g. [15–35] and references therein.
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As far as the problem of finding consistent interactions for mixed-symmetry fields

is concerned, some analysis have been done in flat background [36–41], but in (A)dSd

background almost nothing has been achieved apart from the very recent works [42–44]

(see also the earlier works [45, 46]) and [47].

k
...

It is the goal of the present paper to study the interaction problem for the

simplest class of mixed-symmetry gauge fields, i.e. those that are described

in the metric-like formalism by potentials of Young shape [k, 1], i.e. with two

columns, the first of arbitrary height (albeit constrained by the spacetime

dimension d), the second of height one. We call such fields “tall hooks”. In

particular the graviton belongs to the spectrum as [1, 1] Young shape. The

spin-one Maxwell field is also present as degenerate [0, 1] Young shape. A detailed analysis

of the case [2, 1] corresponding to the dual graviton in five dimensions has been provided

very recently in [44] where special emphasis was put on the Stückelberg formulation and

the flat limit that will not be considered here.

Higher-spin fields are to be organized in the adjoint multiplet of some higher-spin

algebra g. Any reasonable higher-spin algebra must contain so(d− 1, 2) as a subalgebra.1

Gauging of so(d− 1, 2) itself describes gravity by virtue of the MacDowell-Mansouri-Stelle-

West [51, 52] approach. In addition g contains some other generators corresponding to

higher-spin fields.

The higher-spin algebra whose gauging leads to the spectrum built of tall hooks is just

the Clifford algebra, Cℓd−1,2, with the anti-de Sitter signature. The graviton appears when

gauging Cℓd−1,2 since so(d− 1, 2) ∈ Cℓd−1,2. The spin-one field corresponds to the unity of

Cℓd−1,2. Higher products of γ-matrices represents generators for genuine tall hooks. The

Clifford algebra Cℓd−1,2 can be thought of as the simplest higher-spin algebra because it is

finite-dimensional.

We show that the structure constants of Cℓd−1,2 are compatible with switching on

cubic interactions of tall hooks and construct the cubic action using the Fradkin-Vasiliev

approach, [1, 2]. Yang-Mills groups can be easily activated too, leading to colored tall hooks.

Aimed at giving an invariant definition for general higher-spin algebras we consider the

quotients of the universal enveloping algebra of so(d− 1, 2), U(so(d− 1, 2)). The restric-

tions by unitarity lead naturally to a one-parameter family hs(ν) of higher-spin algebras

with the even Clifford algebra and the Vasiliev higher-spin algebra [5] belonging to it at

ν = d(d+1)
8 and at the “singleton point” ν = − (d−1)(d−3)

4 , respectively.

The algebra hs(ν) can be thought of as a generalization to arbitrary dimension of the 3d

higher-spin algebra of [53], which is based on the deformed oscillator algebra [54]. Recently

there has been a lot of interest in 3d hs(ν) in the context of AdS3/CFT
2, see e.g. [55–58].

The outline of the paper is as follows. In section 2 we recall some results about

two-column gauge fields in (A)dSd background. Section 3 reviews the Fradkin-Vasiliev

construction for consistent cubic interactions around (A)dS background. In section 4 we

present nonabelian gravitational interactions for tall hooks. The manifestly AdSd -covariant

formulation for cubic interactions of tall hooks is given in section 5, where an extension of

1See [48–50] for more detailed exposition and original results.
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the previous interactions is proposed, whereby the self-interactions are considered as well.

We discuss the realization of higher-spin algebras in terms of U(so(d− 1, 2)) and some

other developments in section 6, before we give the conclusions in section 7.

2 Two-column gauge fields

In this section we briefly review some features pertaining to the kinematics of irreducible

gauge fields in AdSd backgrounds.

2.1 Notation and conventions

Base manifold indices, or world indices, are denoted by Greek letters µ, ν, . . . , while Lorentz

indices are denoted by lower-case Latin letters. The Lorentz algebra so(d− 1, 1) is associ-

ated with the metric ηab = diag(−,+, . . . ,+) where the indices a, b, . . . run over the values

0, 1, . . . , d − 1 , while the anti-de Sitter algebra so(d − 1, 2) is associated with the metric

ηAB = diag(−,+, . . . ,+,−) where the indices A,B, . . . run over the values 0, 1, . . . , d−1, d .

Square brackets indicate total antisymmetrization with strength one, i.e.

[a1a2 . . . ap] =
1

p!

∑

σ∈Sp

(−1)|σ| aσ(1) . . . aσ(p) , (2.1)

where Sp is the group of permutations of p elements and |σ| ∈ {0, 1} is the signature of the

permutation σ ∈ Sp . Similarly, curved brackets (a1a2 . . . ap) denote total symmetrization

with strength one. A group of p totally antisymmetrized Lorentz indices will be denoted by

[a1a2 . . . ap] = a[p] , while (a1a2 . . . ap) = a(p) for totally symmetrized indices, and similarly

for world and AdSd indices. To further simplify the notation we will often use conventions

whereby like letters imply complete (anti)symmetrization with strength one, so that for

example eaωa[3] = e[aωaaa] . If not explicitly specified, the context will make clear whether

we mean complete symmetrization or antisymmetrization.

The components of an irreducible gld tensor whose symmetry type consists of a Young

diagram with two columns, the first of length p and the second of length q , will be denoted

ϕµ[p],ν[q] , p > q . The Young symmetry described above is abbreviated by ϕ ∼ [p, q] .

The components of a Lorentz tensor of type [p, q] are denoted by ϕa[p],b[q] , idem for an

so(d−1, 2)-tensor ϕA[p],B[q] . Note that, by abuse of notation, we do not consider (anti) self-

duality constraints on what we call Lorentz (or AdSd ) tensors in d = 2n , so that a Lorentz

tensor, in our conventions, only obeys over-(anti)symmetrization and trace constraints.

The torsion-free, Lorentz-connection on the base manifold is denoted by the symbol D . In

flat background, [Dµ,Dν ] = 0 while in AdSd , one has [Dµ,Dν ] = 1
2 R

ab
µν Mab where Mab

are the generators of so(d−1, 1) and the components of the background curvature two-form

R ab
µν = −λ2 (ha

µh
b
ν−h

b
µh

a
ν) in terms of the AdSd background vielbein components ha

µ and

the parameter λ2 related to the cosmological constant Λ by −λ2 = Λ
(d−1)(d−2) . We denote

Da = hµ
a Dµ featuring the inverse vielbein, or tetrad, components hµ

a .

2.2 Short review on two-column gauge fields in AdSd

In this section we are mainly concerned with mixed-symmetry fields of type-[p, q], but also

review some other background material.

– 3 –
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On-mass shell. Considering a massive type-[p, q] tensor in AdSd spacetime, the complete

set of on-mass-shell conditions is

(� +m2)φa[p],b[q] = 0 , (2.2)

Daφ
a[p],b[q] = 0 = Dbφ

a[p],b[q] , (2.3)

ηab φ
a[p],b[q] = 0 . (2.4)

For generic values of m2 , the equations (2.2)–(2.4) possesses no gauge symmetries and

describe a massive type-[p, q] field. Instead of the parameter m2 , it is convenient to use the

minimal eigenvalue E0 (the lowest energy) of the so(2) generator of the maximal compact

subalgebra so(2) ⊕ so(d− 1) ⊂ so(d− 1, 2). The lowest energy E0 is related to m2 by [59]

m2 = λ2 [E0(E0 − d+ 1)− p− q] . (2.5)

There are three special values of E0 at which certain gauge symmetry appears. At each

critical point the corresponding field equations modulo gauge transformations define an

irreducible so(d − 1, 2)-module, the corresponding on-shell field therefore qualifying for

being an elementary field.

(i) E0 = d − q, p > q : There is a gauge symmetry with the gauge parameter having

the symmetry type [p, q − 1] . The corresponding gauge transformations read

δǫφ
a[p],b[q] = Dbǫa[p],b[q−1] +

p (−1)p+1

(p − q + 1)
Daǫa[p−1]b,b[q−1] , (2.6)

where the last term is needed for the whole expression to have the gld symmetry

type [p, q] . The gauge parameter obeys equations analogous to (2.2)–(2.4), but with

a different value for the critical mass. The quotient Verma module is unitary. The

field is called massless [59] because of the gauge transformations with one derivative,

as occuring for a massless field in flat spacetime. It is that kind of field, with q = 1 ,

that we will be considering in the present paper.

(ii) E0 = d − p − 1, p > q : That critical point corresponds to the second possibility

for a gauge parameter, namely the one having the type [p− 1, q] ,

δǫφ
a[p],b[q] = Daǫa[p−1],b[q] . (2.7)

The projector onto the symmetry type [p, q] trivializes down to a single term. In

this case, however, the quotient Verma module is non-unitary, which removes such

massless fields in any reasonable field theory in AdSd . These types of fields are

also called massless [59] due to first order gauge transformation law. Due to the

non-unitarity property, we will not be considering them in the present paper.

(iii) E0 = d − q − 1, p = q : If one allows for higher derivatives in gauge transforma-

tions, then there can be a third possibility [60] with the gauge parameter having the

symmetry type [p− 1, p − 1] :

δǫφ
a[p],b[p] = DaDbǫa[p−1],b[p−1] + λ2 ηab ǫa[p−1],b[p−1] , (2.8)

– 4 –
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where the second term above represents a lower-derivative Λ-correction to the first

one.2 In AdSd these fields give rise to non-unitary modules so that they will not

be considered in this paper. They are called “partially-massless” [61] because the

gauge parameter has fewer indices in comparison with the massless case, and thus

one may think of a gauge symmetry weakening. In general, partially-massless fields

constitute a discrete chain interpolating between non-gauge massive fields with the

highest number of physical degrees of freedom, and massless ones with the lowest

number thereof. For more details and the description of partially-massless fields in

the frame-like (or Cartan) formalism, we refer to [62].

In the massless Λ→ 0 limit, all the critical values for E0 simultaneously go to zero and

one has a degeneracy of gauge symmetry types: the partially-massless cases do not exist

any more and one observes that the equations (2.2)–(2.4) become simultaneously invariant

under both types of gauge transformations with parameters of type [p, q− 1] and [p− 1, q] .

Therefore, due to this gauge symmetry enhancement, the Minkowski spin-[p, q] field has

fewer degrees of freedom in comparison with any of the two massless fields in anti-de Sitter

background. See [63] and [29, 30] for extended discussions.

So far the description was on-shell. In order to give an off-shell description, the con-

straints (2.3)–(2.4) have to be relaxed both for the field and its gauge parameter. The field

content has to be enlarged with new fields associated with certain nonvanishing traces of

the gld tensor φµ[p],ν[q] . In the frame-like, or Cartan, approach to gauge fields in AdSd

background, powerful tools exist in order to tackle the interaction problem, so we now

review the Cartan approach to gauge fields in AdSd .

Generalized connections. It has been known since [51, 52] that anti-de Sitter gravity

can be understood as a Yang-Mills-like theory with the gauge algebra being so(d− 1, 2)

, WA,B
µ dxµ −→ δǫφµν = Dµǫν +Dνǫµ (2.9)

where the gauge transformations above have been written for the linearized theory.

Vasiliev showed in [64] that a free spin-s gauge field can be described by a one-form

that, as an irreducible tensor of so(d − 1, 2), has the symmetry of a rectangular two-row

Young diagram of length-(s − 1):

s− 1
s− 1

, WA(s−1),B(s−1)
µ dxµ −→ δǫφµ(s) = Dµǫµ(s−1) . (2.10)

This lead [18, 29, 30, 62, 65] to the study of the generalized connections (or Yang-Mills-like

fields) of the anti-de Sitter algebra that are defined by differential forms of arbitrary degrees

taking their values in arbitrary irreducible representation of so(d−1, 2). In the most general

cases, the relation between any given gauge theory (not necessarily unitary) and the corre-

sponding generalized so(d− 1, 2)-connections was given in [60], with the details left in [33].

2In the case of a [p, p, . . . , p]-type field, one has a tail of lower-derivative terms with increasing powers

of λ2 . In the simplest [p, p]-type case where the leading terms in the gauge transformation bring in two

covariant derivatives, one has only O(λ2) corrections.

– 5 –
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AdS background for generalized connections. Pick a generalized so(d − 1, 2)-

connection and denote it by WA
q . It is defined by the form degree q and the finite-

dimensional tensor module A of so(d−1, 2). The anti-de Sitter background can be described

by a connection ΩA,B that is a one-form taking its values in the adjoint representation of

so(d− 1, 2). In order for it to describe AdSd , it must be a nondegenerate solution of

dΩA,B + ΩA,
C ∧ ΩC,B = 0 ←→ D0

2 = 0 , D0 = d+ Ω . (2.11)

The linearized gauge theory with connection WA
q is defined off-shell by specifying gauge

transformations and a gauge invariant curvature

δǫW
A
q = D0ǫ

A
q−1 , (2.12)

RA
q+1 = D0W

A
q , δǫR

A
q+1 = 0 , D0R

A
q+1 = 0 , (2.13)

where both ǫAq−1 and RA
q+1 take their values in the same so(d− 1, 2)-module A . At some

point one may need to break the manifest so(d − 1, 2)-symmetry of the construction to

extract the background vielbein ha
µ and spin-connection ̟a,b

µ out of ΩA,B . This can be

achieved via introducing [52, 64] a normalized vector V AVA = −1 , called compensator,

which carries no propagating degrees of freedom. The stability algebra of V A is identified

with the local Lorentz subalgebra so(d− 1, 1) ⊂ so(d− 1, 2) . The appropriate so(d−1, 2)-

covariant definitions of the background vielbein HA and Lorentz connection ΩA,B
L have the

form [64]

λHA = D0V
A , ΩA,B

L = ΩA,B − λ(V AHB −HAV B) , (2.14)

where HA
µ is required to have the maximal rank d in order to give rise to a nondegenerate

vielbein, a necessary condition entering the definition of the AdSd background. As a

consequence of the above definitions, one has the following natural constraints on HA ,

V A :

HBVB = 0 , DV A = 0 , DHA = 0 . (2.15)

in terms of the Lorentz covariant derivative D defined by

D = d+ ΩL . (2.16)

Let the (d + 1)th value of an so(d− 1, 2) index be denoted by the symbol • , so that

A = (a, •) . Taking V A = δA
• , the definitions (2.14) yield

λHa
µ = Ωµ

a,
• , H•µ = 0 , Ωa,b

L = Ωa,b . (2.17)

Therefore (2.14) is an so(d− 1, 2)-covariant way to decompose an antisymmetric matrix

ΩA,B into a vector to be identified with ha and an antisymmetric matrix of a lower rank

to be identified with ̟a,b . For a somewhat more geometric presentation of the above

material, see e.g. [30].

– 6 –
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Lorentz view on generalized connections. Upon decomposing A of WA
q into irre-

ducible Lorentz modules with the help of the embedding of so(d − 1, 1) into so(d − 1, 2)

defined by V A , the so(d− 1, 2)-connection WA
q gives rise to a set of so(d− 1, 1)-fields

which are certain generalizations of the dynamical vielbein and Lorentz connection.

To put the theory on-shell one may impose equations by setting certain components

of RA
q+1 to zero. Similarly to the case of gravity theories with vanishing torsion, the

generalized spin-connections are expressed in terms of derivatives of the vielbein field. For

a spin-s field the appropriate on-mass-shell condition reads [64]

R
A(s−1),B(s−1)
2 = HMHN C

A(s−1)M,B(s−1)N
0 , C

A(s),B(s−1)C
0 VC = 0 , (2.18)

where the zero-form C
A(s),B(s)
0 is called the spin-s Weyl tensor. It is an irreducible tensor

of so(d − 1, 2) type (s, s) . The condition that the Weyl tensor be V A-transversal means

that it is effectively an irreducible so(d−1, 1)-tensor of the same type (s, s). The curvature

two-form R
A(s−1),B(s−1)
2 decomposes under so(d− 1, 1) ⊂ so(d− 1, 2) into the following set

of two-forms

R
A(s−1),B(s−1)
2 !

{

R
a(s−1)
2 , R

a(s−1),b
2 , . . . , R

a(s−1),b(s−2)
2 , R

a(s−1),b(s−1)
2

}

. (2.19)

Therefore, the equations (2.18) set all but one Lorentz components of the curvature two-

form to zero. For a spin-two dynamical field described by ea and ωa,b , this gives the

linearized Einstein equations

Dea + ωa
c h

c = 0 , (2.20)

Dωa,b + λ2 haeb + λ2 eahb = hmhn C
am,bn , (2.21)

in a form that tells us that all components of the Riemann tensor but the traceless one

are zero, i.e. the equations set the linearized Ricci tensor to zero. It should be noted that

the spin-two and the generalized spin-s Weyl tensors are differentially constrained, in the

sense that they satisfy differential Bianchi identities following from D0R
A
q+1 ≡ 0 .

The problem of identifying the on-shell physical fields, the Weyl tensors and equations

of motion can be reduced to a cohomological problem [18, 29, 30, 62, 66, 67] with the

answer known in full generality [33].

Generalized connections for [k, q]-type gauge fields. As was shown in [60] in full

generality — the unitary cases were previously discussed in [65]— a family of spin-[k, q]

fields in AdSd is described by generalized gauge connections of the form

W
A[k+1]
q ≡W

A1...Ak+1
µ1...µq dxµ1 ∧ . . . ∧ dxµq , antisymmetric in A1 . . . Ak+1 , (2.22)

where the two parameters k and q run over all admissible values (q > 1 since we are working

with gauge fields). The precise correspondence [60] is given below.

In table 1 we summarize the main features of the theories for the various [k, q]-type

gauge fields. From the discussion at the beginning of the present section it is obvious

that to specify a gauge theory in AdSd it is enough to specify the spin of the field and

– 7 –
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k and q unitarity
massless(m.)/

p.-massless(p.m.)
field gauge parameter Weyl tensor

k + 1 = 0 yes m.
q

q−1

q+1

k > q yes m.

k

q

k

q−1

k
q+1

k = q yes m.
q q q

q−1

q+1q+1

k = q − 1 no p.m.
q q

q−1q−1
q+1

q

k < q − 1 no m.

q

k

q−1
k

q+1

k

Table 1. Fields, gauge parameters and primary Weyl tensors for the various possible [k, q]-type

gauge fields in AdSd .

the symmetry type of its gauge parameter, or equivalently the spin of the field and the

symmetry of its primary Weyl tensor. The various case depicted in table 1 are described

as follows:

k + 1 = 0 : Gauge q-forms, i.e. massless fields with spin given by [q] .

k = q : Unitary massless fields of spin [q, q]. These fields are very close to the Minkowski

massless fields. The graviton, whose spin is [1, 1] , belongs to this class.

k > q : Unitary massless fields with spin-[k, q] . The gauge parameter has spin [k, q − 1] .

k = q − 1 : Nonunitary partially massless field of spin [q, q] and depth two, i.e. the gauge

parameter has spin [q−1, q−1] and the gauge transformations contain two derivatives.

k < q − 1 : Nonunitary massless fields of spin [q, k] . The gauge parameter has the sym-

metry type [q − 1, k] .

Lorentz view on two-column fields. We restrict ourselves to the unitary cases only,

investigated in great details in [65]. The generalized gauge connection we will consider

W
A[k+1]
q , (2.23)

decomposes into two Lorentz connections

e
a[k]
q = W

a[k]•
q and ω

a[k+1]
q = W

a[k+1]
q . (2.24)

– 8 –
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After some λ-rescalings, the curvature R
A[k+1]
q+1 in Lorentz components reads

R
a[k]
q+1 = De

a[k]
q − hm ω

ma[k]
q , (2.25)

R
a[k+1]
q+1 = Dω

a[k+1]
q − λ2hae

a[k]
q , (2.26)

and is invariant under gauge transformations of the form3

δǫe
a[k]
q = Dǫ

a[k]
q−1 − hm ǫ

ma[k]
q−1 , (2.27)

δǫω
a[k+1]
q = Dǫ

a[k+1]
q−1 − λ2huǫ

a[k]
q−1 . (2.28)

The potential ϕa[k],b[q] is to be identified with the corresponding component of the gener-

alized vielbein e
a[k]
q . This can be easily done with a choice of the symmetric notation for

the field

ϕa[k],b[q] −→ ϕ

q pairs
︷ ︸︸ ︷
aa,bb,...,cc,

k−q
︷ ︸︸ ︷
u,v,...,w (2.29)

then the potential is a maximally symmetric part of the vielbein

ϕaa,bb,...,cc,u,...,w = eab...cu...w|ab...c, ea[k]|u...w = ea[k]
µ1...µq

hµ1u . . . hµqw, (2.30)

where hµc is the inverse of the background vielbein ha
µ : hµcha

µ = ηac . One has to use

hµc or ha
µ in order to interpret the gauge connections in terms of the potentials. The fiber

version of (2.27) reads

δǫe
a[k]|v[q] = Dvǫa[k]|v[q−1] − ǫva[k]|v[q−1]. (2.31)

The second term is a shift (Stückelberg-like) symmetry, a kind of local Lorentz transforma-

tions for the vielbein, whose purpose is to remove the unwanted components of the vielbein

in order for it to match with the content of the field potential. Indeed, one observes that

the second term does not shift ϕ . The same kind of shift symmetry acts on the gauge

parameters too, as a result of reducibility of gauge transformations:

δǫW
A
q ≡ 0 for ǫAq−1 = D0χ

A
q−2 . (2.32)

This is exactly the cohomological origin4 of the problem of finding physically relevant

components in ǫAq−1, WA
q and RA

q+1 . Let us denote by σ
−

the operator taking some

Lorentz [k+ 1]-type q-form B
a[k+1]
q to the Lorentz [k]-type (q+ 1)-form B

a[k]
q+1 = hmB

ma[k]
q

0 −→ B
a[k+1]
q

σ
−

−−−−−→ B
a[k]
q+1 −→ 0 . (2.33)

Then the cohomology groups Hq−1(σ
−

) and Hq(σ
−

) correspond to the differential (as

opposed to Stückelberg) gauge parameters and the potential ϕa[k],b[q] , including all the

3To see this one has to use D2ξa = −λ2ha
∧ hm ξm for any vector ξa.

4This is so-called σ
−

- cohomology [66], which have been one of the main technical tools in many works,

e.g. [30, 33, 67, 68].
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traces that are necessary to formulate the theory off-shell. By solving the cohomology

problem, which is very simple in this case, one concludes that the symmetries of the

potential and gauge parameter match the required ones.

The problem of identifying the content of the curvature is more subtle and requires

the use of (2.25)–(2.26) together with the Bianchi identities D0R
A
q+1 ≡ 0 :

DR
a[k]
q+1 − hmR

ma[k]
q+1 ≡ 0 , (2.34)

DR
a[k+1]
q+1 + λ2 haR

a[k]
q+1 ≡ 0 . (2.35)

Actually, Hq+1(σ
−

) gives all linearly independent, gauge-invariant by construction, com-

ponents of the curvatures. The σ
−

-exact pieces correspond to those components that can

be shift to zero by redefining ω
a[k+1]
q . The equations that do not belong to Hq+1(σ

−
) either

express certain components of ω
a[k+1]
q in terms of derivatives of ϕ , or are the differential

consequences of more fundamental equations that lie in Hq+1(σ
−

).5

Which representatives of Hq+1(σ
−

) should be set to zero depends on the dynamics one

wishes to describe. For the example of gravity, if we set the Weyl tensor to zero keeping

the Ricci tensor unconstrained, then the equations will describe various conformally flat

backgrounds [68] (in d > 3 the manifold is locally conformally flat if and only if the Weyl

tensor vanishes). Instead, if one only keeps nonzero the traceless part of the curvature

tensor (i.e. the Weyl tensor), then one effectively imposes the Einstein equations.

Generally, for WA
q to describe an irreducible propagating field one should set all the

components of the curvature to zero but the generalized Weyl tensor. To give a concrete

example, we will consider a spin- field ϕ ∼ [2, 1] , i.e. k = 2, q = 1 , represented in the

one-form W
A[k+1]
1 , but otherwise all the statements hold true for any spin-[k, q] field.

The space of gauge-invariant candidate equations, i.e. the representatives of Hq+1(σ
−

)

for A having type [k+ 1] , is parameterized as follows [30, 33]. The (primary) Weyl tensor

is to be extracted from the components of R
a[k]
q+1 . It is a traceless tensor of type [k, q + 1]

(see also the last column of table 1):

←→ traceless part of
(

2D(aea)(b|b) + 2D(beb)(a|a) = Daϕbb,a +Dbϕaa,b
)

. (2.36)

Indeed, one can see that the σ
−

-exact part σ
−

(ω) of the curvature in (2.25) drops out for

such a permutation of indices. The above tensor, of first order in derivatives of the potential

field, is a representative of Hq+1(σ
−

) . There are more representatives of Hq+1(σ
−

) in

R
a[k]
q+1 that are collectively given by a traceful tensor with the symmetry [k − 1, q] called

the torsion T a[k−1],b[q] :

⊕ • ←→ D(ae
a)m|

m
+Dme

m(a|a) = D(aϕ
a)m,

m
−Dmϕ

aa,m . (2.37)

The reason to call it torsion is that it is a part of the (De+ω)-like curvature that coincides

with the torsion for spin-two. There is no nontrivial representative of the σ
−

-cohomology

5Evidently, taking a derivative of a gauge-invariant equation produces one more gauge-invariant equation

of higher order.
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in the spin-two torsion tensor, of course, as Tµν
a = 0 does not restrict the spin-two vielbeins

ea but instead expresses the spin connection in terms of them.

The intersection of Hq+1(σ
−

) with R
a[k+1]
q+1 is empty. However, as we keep the primary

Weyl tensor nonzero, we have to keep all its descendants (secondary Weyl tensor, etc.)

that are produced by taking various appropriately projected derivatives of it. The first

such descendant, the secondary Weyl tensor, is a traceless type-[k+ 1, q+ 1] component of

R
a[k+1]
q+1 . All other types of tensors appearing as first derivative of the primary Weyl tensor or

the torsion must be set to zero by imposing equations of motion. These are given by a tensor

Ga[k],b[q] that has the same gld -symmetry and trace properties as ϕa[k],b[q] . As a differential

expression, Ga[k],b[q][ϕ] defines a second-order operator starting like �ϕa[k],b[q] + . . . . It

represents the equations of motion. Actually, one apparently still needs to impose T = 0

to get an irreducible module.6 Fortunately, for a two-column spin-[k, q] field the problem

is cured by noting that DmG
a[k−1]m,b[q] ≡ ΛT a[k−1],b[q] . Hence, once the second-order

differential equations G[ϕ] = 0 are imposed, T = 0 becomes a consequence of it.7

To summarize, the necessary equations of motion that leave the primary Weyl tensor

and its descendant free read [29, 30, 60, 65]

R
a[k]
q+1 = hm . . . hm Ca[k],m[q+1] , R

a[k+1]
q+1 = hm . . . hm Ca[k+1],m[q+1] (2.38)

where the zero-form Ca[k],m[q+1] is the primary Weyl tensor, while its descendant, the sec-

ondary Weyl tensor Cu[k+1],m[q+1], is given by a derivative of the primary Weyl tensor as can

be seen from (2.34)–(2.35). Both zero forms are irreducible Lorentz tensors. Equivalently,

one can use manifestly so(d− 1, 2)-covariant form of equations

R
U [k+1]
q+1 = HM . . . HM CU [k+1],M [q+1] , CU [k+1],M [q]BVB ≡ 0 (2.39)

where the so(d − 1, 2)-irreducible zero-form CU [k+1],M [q+1] , subject to non-complete V -

transversality condition, contains two Lorentz components corresponding to the primary

and secondary Weyl tensors Ca[k],m[q+1] and Ca[k+1],m[q+1] .

Action. The next problem is to find an action yielding Ga[k],b[q][ϕ] = 0 . We will see that

the use of the generalized gauge connections together with the rules of exterior differential

algebra leave almost no freedom here as compared to the metric-like tensor ϕa[k],b[q] for

which one can write many terms with two derivatives as an Ansatz for the Lagrangian.

Let us define the following two volume forms in AdSd - and Lorentz-covariant formu-

lations:

volU [k]= ǫU1...UkBk+1...BdW HBk+1∧ . . .∧HBdV W , volu[k]= ǫu1...ukbk+1...bd
hbk+1∧ . . .∧ hbd .

6The constraint T = 0 is the price one has to pay in AdS because one of the two gauge symmetries of

massless spin-[k, q] field in Minkowski space gets broken in AdSd .
7This is similar to ∂µAµ = 0 that appears as a consequence of the Proca field equation ∂µ(�Aµ −

∂µ∂νAν + m2Aµ) = 0 . Let us note that the case of fields with type [k, q, q, . . . , q],, k > q , is degenerate.

In general, one cannot achieve T = 0 by acting on G = 0 with derivatives, so that T = 0 is an independent

equation that must be imposed.
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The volume form volu[k] obeys the identity

hc ∧ volu1...uk
=

(−1)k

(d− k + 1)

i=k∑

i=1

(−1)iδc
ui

volu1...ûi...uk
, (2.40)

and a similar identity for volU [k] .

The most general parity-even, manifestly gauge-invariant Ansatz for the action

reads [65]

S =
1

λ2

∫ (

a1R
u[q+1]a[k−q−1] ∧R

u[q+1]
a[k−q−1]

+ a2R
u[q+1]a[k−q] ∧R

u[q+1]
a[k−q]

)

∧ volu[2q+2]

+
α

λ2

∫

D
(

Ru[q]a[k−q] ∧R
u[q+1]

a[k−q] ∧ volu[2q+1]

)

, (2.41)

where the second line includes a boundary term. In manifestly AdSd -covariant terms:

S=
1

λ2

∫ (

α1R
U [q+1]A[k−q−1]C∧R

U [q+1] C
A[k−q−1] VCVC + α2R

U [q+1]A[k−q]∧R
U [q+1]

A[k−q]

)

∧ volU [2q+2] +
α

λ2

∫

D0

(

RU [q]A[k−q]CVC ∧R
U [q+1]

A[k−q] ∧ volU [2q+1]

)

. (2.42)

It consists of two terms and one boundary term [65] that can be used to adjust the

ratio α1
α2

at will. As we will see, in order to switch on the gravitational interactions, the

ratio α1
α2

has to be fixed in the right way.

It appears that d > 2q + 2 must be true in order for the action to make sense. For

d odd it automatically follows that there is no action for a spin-[k, k] field with k = d−1
2 .

The rectangular spin diagrams with height equal to the rank of so(d−1), the Wigner little

algebra in AdSd , correspond to the higher-spin singletons (or doubletons for d = 5), see

e.g. [69, 70] for some recent works. A singleton is an irreducible representation of so(d−1, 2)

that is too short to possess any bulk degrees of freedom in AdSd . It is not possible to write

the bulk action for singletons, which is manifested in d > 2q + 2 .

The Lagrangian equations of motion

Ru[q]a[k−q] ∧ δω
u[q+1]

a[k−q] ∧ volu[2q+1] = 0 (2.43)

Ru[q+1]a[k−q] ∧ δe
u[q]

a[k−q] ∧ volu[2q+1] = 0 (2.44)

express ω as Dϕ and then impose Ga[k],b[q][ϕ] = 0, as required.

3 Fradkin-Vasiliev cubic interactions

In this section we first review the Fradkin-Vasiliev procedure [2] (see also [42, 64, 71]),

putting emphasis on the situation where a higher-spin algebra g containing so(d− 1, 2)

and decomposable under so(d− 1, 2) is given from the outset.

Given a quadratic (free) action S0 = S0[ϕ] invariant under abelian gauge transforma-

tions δϕ = δ0ϕ , the general perturbative procedure for finding cubic and higher interaction

vertices leads to considering a formal expansion in powers of some coupling constant g

S = S0 + g S1 +O(g2) , δϕ = δ0ϕ+ g δ1ϕ+O(g2) , (3.1)
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and look order by order in powers of g for solutions of

0 = δS = δ0S0 + g (δ0S1 + δ1S0) +O(g2) , (3.2)

where the order-g0 terms vanish by gauge invariance of the quadratic action S0 . The cubic

interaction vertices are governed by terms of order g ,

0 = δ0S1 + δ1S0 = δ1ϕ
δS0

δϕ
+ δ0ϕ

δS1

δϕ
. (3.3)

Taking into account that δS0
δϕ are the linear equations of motion, the problem of cubic inter-

actions is reduced to finding S1 such that its gauge variation under abelian transformation

δ0ϕ vanishes on-mass-shell,

δS1

δϕ
δ0ϕ

∣
∣
∣
∣ δS0

δϕ
=0

= 0 , (3.4)

i.e. is proportional to δS0
δϕ . Having achieved this, δ1ϕ can be extracted by inspection of

the terms δ1ϕ
δS0
δϕ in (3.3). Now this general consideration will be specified to higher-spin

theories following the pioneering work [2].

Suppose there is a set of generalized one-form connections ω =
{
W k

1

}
, k = 1, . . . ,

collectively denoted by ω, with the so(d− 1, 2)-connection WA,B
1 belonging to the set.

Suppose also that there is an associative algebra structure g (with product denoted by ⋆

in the sequel) on the set {W k} such that so(d− 1, 2) ⊂ g acts on g via the adjoint action.

Then g may be called a higher-spin algebra [49, 50]. There is a well-defined linear gauge

theory (2.12)–(2.13) on individual components W k
1 of ω, i.e. the spectrum of W k

1 ’s is given

by decomposing ω of g into so(d− 1, 2)-submodules W k . This linear gauge theory can be

understood as a linearization of R = dω + ω ⋆ ω , δω = dǫ + [ω, ǫ]⋆ over the anti-de Sitter

background defined by ΩA,B , (2.11):

R = R0 + gR1 = D0ω + g ω ⋆ ω , (3.5)

δω = δ0ω + g δ1ω = D0ǫ+ g [ω, ǫ]⋆ , (3.6)

δR = δ0R0 + g (δ1R0 + δ1R0) + g2 δ1R1 = 0 + g [R0, ǫ]⋆ + g2 [R1, ǫ]⋆ . (3.7)

In terms of individual components one has

Rk = D0W
k + g

∑

m,n

W n ⋆Wm , (3.8)

δW k = D0ǫ
k + g

∑

m,n

[Wm, ǫn]⋆ , (3.9)

δRk = g
∑

m,n

[Rm
0 , ǫ

n]⋆ +O(g2) . (3.10)

One then tries to find a quadratic action S0 for individual fields W k ∈ ω , bilinear in the

linearized curvatures Rk
0 (H is the background tetrad HA):

S0 =
∑

k

αk S
k
0 , Sk

0 [ω, V ] =
1

2

∫

Md

(

Rk
0 ∧R

k
0

)
ABCD ∧ volABCD , (3.11)
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where
(
Rk

0 ∧R
k
0

)[ABCD]
means that all but four indices carried by curvatures are contracted

among themselves or with a number of compensators V A . In general there may be a lot

of such nontrivial contractions that can contribute, e.g. two in (2.42). It is the problem of

constructing quadratic action to determine all free coefficients inside Sk
0 up to an overall

factor αk . The indices ABCD appear implicitly antisymmetrized because they are con-

tracted with volABCD . The integrand is a d-form as is required, this is why volABCD has

to carry four free indices. Note that according to table 1 none of the nonunitary fields can

be given a Lagrangian as they are described by gauge connections that do not have enough

antisymmetric indices as compared to the form degree. Hence the FV procedure cannot

be applied directly to nonunitary type-[p,q] fields.

The action Sk
0 is manifestly gauge invariant. It is a generalization of the Stelle-West

action [52]. The coefficients αk account for possible different choices of normalization for

each individual quadratic action entering the sum. The action Sk
0 for a spin-s field was

found in [64]. For two-column gauge fields, quadratic actions were elaborated along those

lines in [20, 65].

The idea of Fradkin and Vasiliev [2] was to use the same Ansatz for a cubic action,

i.e. to replace R0 with the full Yang-Mills-like curvature R and consider the action modulo

terms of order higher than cubic8

S[ω, V ] =
1

2

∑

k

αk

∫

Md

(

Rk ∧Rk
)

ABCD ∧ volABCD +O(ω4) . (3.12)

Firstly, in order to have a nonabelian gauge algebra, we make appear in the transformation

laws δ1ϕ a part denoted δhs
1 ϕ associated with the algebra g , plus some extra contribution

δex
1 such that δ1ϕ = δhs

1 ϕ+ δex
1 ϕ . As a result (3.4) reads

(

δhs
1 ϕ

δS0

δϕ
+ δ0ϕ

δS1

δϕ

)∣
∣
∣
∣ δS0

δϕ
=0

= 0 (3.13)

and it is δex
1 ϕ that has to be extracted once the solution to (3.13) is found. The most

complicated work is to extract δex
1 ϕ . Fortunately, whatever δex

1 ϕ is, the vertex is con-

structed once (3.13) is solved for S1 , so in practice one does not need to struggle with

finding δex
1 ϕ if one is only interested in the vertex and not in the complete expression for

the gauge transformations. For example, in the case of pure gravity the diffeomorphism

δξ along the vector field ξ = ξµ∂µ is equivalent to a combination of gauge transformations

with ǫa = ξνeaν , ǫa,b = ξνωa,b
ν and a curvature-dependent term, e.g.

δξe
a
µ = δǫe

a
µ − ξ

ν(dea + ωa,
b ∧ e

b)µν δǫe
a = dǫa − ǫa,

be
b + ωa,

bǫ
b . (3.14)

The first term of the first equation represents δhs
1 while the second one corresponds to

δex
1 and does not have a nice form in general. For higher-spin fields δex

1 is much more

complicated [2].

8It might seem that background tetrads HA that are hidden in volABCD has to be replaced with dy-

namical ones. Fortunately [2], the gauge variation of such terms can always be compensated. Therefore, it

is everywhere implied that volABCD is a volume element with respect to the background.
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Having eq. (3.10) in mind, the gauge variation of (3.12) under g is easy to evaluate:

δgS = δ0S1 + δhs
1 S0 = g

∑

k

αk

∑

m,n

∫ (

Rk
0 ∧ [Rm

0 , ǫ
n]⋆

)
ABCD∧ volABCD +O(ω3ǫ) . (3.15)

To find cubic interactions among elementary fields sitting in ω one needs to adjust αk such

that (3.15) vanishes on free shell, up to terms O(ω3ǫ). A simplification results from the

central on-mass-shell theorem, originally formulated for 4d higher-spin fields in [72]. It

turns out that almost all components of R0 are zero on free mass-shell except for some

of them parameterized by the primary Weyl tensors (and certain of its descendants for

mixed-symmetry fields), i.e.

Rk
0

∣
∣
∣
∣ δS0

δϕ
=0

= H ∧ . . . ∧H Ck , (3.16)

where the generalized Weyl tensors collectively denoted by C carry some indices that are

contracted with a number of background vielbeins to match the symmetry type and form

degree on both sides. The explicit examples are presented in (2.18), (2.20)–(2.21), (2.38)

and (2.39).

Having replaced Rk
0 with Weyl tensors on account of the central on-mass-shell theo-

rem (3.16), one can use the identity (2.40) that basically gives

HUHUHUHUvolAAAA ∼ δ
[U
A δ

U
Aδ

U
Aδ

U ]
A vol . (3.17)

Together with the algebraic properties of the Weyl tensors this results in

δS| δS0
δϕ

=0
= g

∑

k

αk

βk

∑

m,n

∫

Md

tr (Ck ⋆ [Cm, ǫn]⋆) ∧ vol (3.18)

where tr(. . .) means a projection to a singlet component, i.e. just a total contraction of

all indices (up to some factor), which is unique. The extra coefficient β−1
k originates from

using Young symmetry properties to rearrange indices carried by Ck and from the fact

that there can be a nontrivial normalization for tr(Ck ⋆ Ck) that depends on k; vol is a

d-volume form.

Later, we will argue that any higher-spin algebra admits a natural trace operation.

Then by making the choice αk = βk , one can make appear traces of commutators using

tr
(

Ck ⋆ [Cm, ǫn]⋆ + Cm ⋆ [Ck, ǫn]⋆

)

≡ −tr
(

[Cm ⋆ ǫn, Ck]⋆ + [Ck ⋆ ǫn, Cm]⋆

)

, (3.19)

so that this expression identically vanishes by the definition of the trace. Hence

δS| δS0
δϕ

=0
= −g

∑

k,n,m

∫

tr([Ck ⋆ ǫn, Cm]⋆) ∧ vol +O(ω3ǫ) . (3.20)

Note that the action itself cannot be written in a trace-like form tr(R ∧ R) , the latter

action being topological. Fortunately, when taken on free mass-shell, the gauge variation

of the action can be written in terms of the trace on the algebra g . Also note that one
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has to consider the individual components Sk in order to compute the factors βk , and it

is important that βk depends on k only and not on n and m appearing in δRk via (3.10).

The latter property is expected to hold true for any action of type (3.11).

Let us also note that an action for a spin-one field SY M = −1
4

∫
tr(Fµν)2 cannot be

written in the form (3.11) even if a spin-one field belongs to the spectrum of the higher-

spin algebra. Nevertheless, as was pointed out in the original paper [2], one can add SY M

to (3.11), where Fµν is a projection of the full curvature (3.5) to the spin-one sector, to get

a cubic action that includes vertices with spin-one. We will not emphasize this subtlety

in the sequel.

To conclude this section, once a higher-spin algebra is found it leads to an action

consistent up to the cubic order, and one still has to find the free quadratic action (3.11)

and compute βk .

4 Gravitational interactions

In this section we would like to test gravitational interactions for the simplest case of spin-

[k, 1] gauge fields, i.e. we are interested in [k, 1] − [k, 1] − [1, 1] cubic vertices. This is a

direct generalization of the case k = 2 presented in [44].

We introduce the following set of one-form gauge fields {ea, ωab, ea[k], ωa[k+1]} where

{ea, ωab} are the dynamical one-form gauge fields in the spin-2 sector. As recalled in

section 2, the two fields {ea[k], ωa[k+1]} correspond to the one-forms needed to describe an

irreducible and unitary [k, 1]-type gauge field in AdSd .

Quadratic corrections R1 to curvatures (2.25)–(2.26) are made by replacing background

tetrad ha and Lorentz spin-connection ̟a,b with ha + ea and ̟a,b + ωa,b, respectively.

Quadratic contributions to the torsion and Riemann curvature are determined from the

most general Ansatz by requiring curvatures to be gauge invariant up to order g. Denoting

the total vielbein ea = hm + em , the result is

T a = Dea + eb ω
ba − g ωab[k] eb[k] , (4.1)

Rab = Dωab + ωa
c ω

cb − Λ ea eb − kΛ g eac[k−1] ebc[k−1] − g ω
ac[k] ωb

c[k] , (4.2)

T a[k] = Dea[k] − eb ω
ba[k] + ωa

b e
ba[k−1] , (4.3)

Ra[k+1] = Dωa[k+1] + Λea ea[k] + ωa
b ω

ba[k] . (4.4)

The Yang-Mills-like gauge transformation are

δea = dξa + ξb ω
ab − eb ξ

ab + g ηab[k] eb[k] − g ω
ab[k] ηb[k] , (4.5)

δωab = dξab − ξa
c ω

cb + ωac ξc
b + Λ(ξa eb − ea ξb) + kΛ g ηac[k−1] ebc[k−1]

− kΛ g eac[k−1] ηb
c[k−1] + g ηac[k] ωb

c[k] − g ω
ac[k] ηb

c[k] , (4.6)

δea[k] = dηa[k] + ξb ω
ba[k] − eb η

ba[k] − ξa
b e

ba[k−1] + ωa
b η

ba[k−1] , (4.7)

δωa[k+1] = dηa[k+1] − Λξa ea[k] + ΛT a ηa[k] − ξa
b ω

ba[k] + ωa
b η

ba[k] , (4.8)
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and accordingly, for the curvatures:

δT a = ξbR
ab − Tb ξ

ab + g ηab[k]Rb[k] − g R
ab[k] ηb[k] , (4.9)

δRab = −ξa
cR

cb +Rac ξc
b + Λ(ξa T b − T a ξb) + kΛ g ηac[k−1]Rb

c[k−1]

− kΛ g Rac[k−1] ηb
c[k−1] + g ηac[k]Rb

c[k] − g R
ac[k] ηb

c[k] , (4.10)

δT a[k] = ξbR
ba[k] − Tb η

ba[k] − ξa
b T

ba[k−1] +Ra
b η

ba[k−1] , (4.11)

δRa[k+1] = −Λξa T a[k] + ΛT a ηa[k] − ξa
bR

ba[k] +Ra
bR

ba[k] . (4.12)

The on-mass-shell linearized conditions for a free [k, 1]-type fields read (2.38)

T a[k] = hbhb C
a[k],b[2] , Ra[k+1] = hbhb C

a[k+1],b[2] , (4.13)

while the spin-2 sector (k = 1) gives the constraints

T a = 0 , Ra[2] = hbhb W
aa,bb , (4.14)

where the linearized quantities are indicates by calligraphic symbols.

The so(d− 1, 1)-tensors {Ca[k],b[2], Ca[k+1],b[2],Wa[2],b[2]} are irreducible tensors of sym-

metry type [k, 2], [k + 1, 2] and [2, 2] , respectively.

We take the following Ansatz (2.41) for the action, dropping the boundary term

S = 1
2

∫
(RuuRvv + a1 T

uua[k−2]T vv
a[k−2] + a2

∫
Ruua[k−1]Rvv

a[k−1]) ∧ voluuvv ,(4.15)

where it is understood that the quartic terms are neglected at this order in perturbation.

The variation of the above action can be evaluated using (4.9)–(4.12), keeping only terms

bilinear in the fields and linear in the gauge parameter. In other words, after taking the

gauge variation inside the action, the curvatures are replaced by their linearized expressions

that are then constrained according to (4.13) and (4.14).

Denoting

A =

∫

vol Cuu,vv η
v
a[k−1]W

va[k−1],uu , (4.16)

B =

∫

vol Cuu,vv η
v
a[k]W

va[k],uu , (4.17)

C =

∫

volWa[k],mn ξcW
ca[k],mn , (4.18)

the Fradkin-Vasiliev consistency condition gives the following constraint on the free pa-

rameters entering the action S[ea, ωab, ea[k], ωa[k+1]]:

[

kΛg −
a1

(k − 1)

]

A +
[

g −
a2

k

]

B +

[
a1

k(k − 1)
−
a2Λ

k

]

C = 0 . (4.19)

This admits the solution

a1 = g k(k − 1)Λ , a2 = g k . (4.20)
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Since the ratio a1
a2

is completely fixed by the consistency of the action (4.15), one must set

α = 0 in the action (2.41).

Thus, a natural requirement to include cubic interactions with gravity, gives us a less

general Ansatz for action, in fact only one term is possible in so(d−1, 2)-covariant language:

Sℓ
0 =

αℓ

2

∫

RUUA[ℓ−2] ∧RV V
A[ℓ−2] ∧ volUUV V (4.21)

and the choice for compensator V A = |Λ|1/2δA
d+1 gives exactly the same value (k − 1)Λ for

the ratio a1
a2

, (4.20), that is required by consistency of cubic interactions.

The second term possible, in which R is contracted with V , turns out to be forbidden.

For the case of general mixed-symmetry fields, it is still easy to see that all terms in the

action that (i) are contracted with a number of V ; (ii) to which generalized Weyl tensors

contribute; must vanish. The reason is in that such terms must cancel with analogous terms

coming from the spin-two action, i.e. from projections of ω ⋆ω to RA,B. In the latter Weyl

tensors contribute via ⋆-product that does not depend on V . Hence the cancelation takes

place only for the terms with no V -contractions. Therefore, switching on gravitational

interactions reduces the freedom to add boundary terms.

5 Cubic interactions: AdS-covariant formulation

One of the simplest candidate higher-spin algebras one can consider is the Clifford algebra

Cℓd−1,2 for so(d − 1, 2), which can be realized as an algebra of anticommuting symbol

variables φA with the Clifford ⋆-product on functions of φA instead of usual Grassmann

multiplication. The star product between two functions F and G of φ can be realized by

F (φ) ⋆ G(φ) = F (φ) exp

( ←−
∂ r

∂φC
ηCD

−→
∂ l

∂φD

)

G(φ) = F (φ) exp[
←−
∂ r ·
−→
∂ l]G(φ) . (5.1)

It features left (∂l) and right (∂r) derivatives with respect to the Grassmann-odd variables

{φA} and the arrows on the derivatives indicate on which function they act. This ⋆-product

corresponds to Weyl ordering of the symbols F (φ) and G(φ) . In particular, it leads to

{φA, φB}⋆ = 2ηAB , φA ⋆ φB = φAφB + ηAB , (5.2)

φA ⋆ F (φ) =

(

φA +

−→
∂ l

∂φA

)

F (φ) , F (φ) ⋆ φA = F (φ)

(

φA +

←−
∂ r

∂φA

)

. (5.3)

The trace is a projection to the singlet, φ-independent, component, i.e. tr(F (φ)) = F (0).

We would like to consider one-forms W1(φ), whose expansion coefficients WA[h] in

W1(φ) =
∑

h

1

h!
W

A[h]
1 φA1 . . . φAh

(5.4)

are one-forms that take their values in totally antisymmetric tensor so(d− 1, 2)-modules

and hence unify all spin-[k, 1] fields according to section 2. However, one has to truncate

the algebra to even polynomials in φ since the gauge field WA
1 φA is known to describe
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a partially-massless graviton [62], which is nonunitary in anti-de Sitter, and we see no

other way to truncate away only the linear term in φ from W1(φ) while maintaining the

associative algebra structure. We thus restrict ourselves9 to the even subalgebra Cℓ0d−1,2 of

Cℓd−1,2 :

W (φ) = W (−φ) . (5.5)

Therefore, the gauging of Cℓ0d−1,2 describes fields with spins10 [2h − 1, 1], h = 1, . . . , [(d +

1)/2] and a spin-1. The important point, in order to have the spin-2 field in the spectrum,

is that so(d− 1, 2) ⊂ Cℓ0d−1,2 , the generators of so(d− 1, 2) being

MAB =
1

4
[φA, φB ]⋆ . (5.6)

Component form. Expanding the curvature R(φ) = D0W (φ) + gW (φ) ∧ ⋆W (φ) in

terms of its Taylor components 1
(2h)! R

A[2h]φA1 . . . φA2h
, one arrives at

RA[2h1] = D0W
A[2h1] + g

∑

h2,h3

ah1
h2,h3

WA[h−2h3]C[h−2h1] ∧W
A[h−2h2]

C[h−2h1] , (5.7)

where

h = h1 + h2 + h3 . (5.8)

The Clifford ⋆-product gives the following expression for the structure coefficients ah1
h2,h3

:

ah1
h2,h3

= (−1)h(h+1)/2+h1
(2h1)!

∏

i=1,2,3

(h− 2hi)!
. (5.9)

Note that if WA[2hi] were taken to be a form of degree qi then one would have

W
A[h−2h3]C[h−2h1]
q2

∧Wq3

A[h−2h2]
C[h−2h1]

= (−)h
2+q2q3 W

A[h−2h2]C[h−2h1]
q3

∧Wq2

A[h−2h3]
C[h−2h1]

from which it follows that in certain cases there are accidental zeros in the couplings. If all

fields are one-forms then it is easy to see that there is always a nonvanishing contribution

of {WA[2k],∧ ⋆ WA[2k]} to the graviton curvature RA[2] and {WA[2k],∧ ⋆ WA[2]} to

RA[2k] itself, i.e. all the fields interact with gravity and contribute to the gravitational

energy-momentum tensor as they should. For one-forms in general all mutual “two-to-one”

2h1 − 2h2 → 2h3 couplings are nonzero if and only if h is odd and all couplings vanish

otherwise, when h is even.

9This is not enough, however, because of dual descriptions as W A[k+1] and W A[d−k] describe the same

spin-[k, 1] field, [60]. Thus, both (k + 1) and (d − k) must be even, i.e. d is odd.
10There is a natural limitation on the spin due to the spacetime dimension. We remark that a free

spin-[2, 1] field in AdS4 is equivalent to a Fierz-Pauli (or Fronsdal) spin-2 field in AdS4 .
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Cubic action. Following the Fradkin-Vasiliev procedure, we replace R0 in (4.21) with

the nonabelian Yang-Mills-like R’s. The variation of

S =

[(d+1)/2]
∑

h=1

αh

2

∫

RUUA[2h−2] ∧RV V
A[2h−2] ∧ volUUV V (5.10)

reads

δS=
∑

h1,h2,h3

αh1δS
h1
h2,h3

=
∑

h1

αh1

∑

h2,h3

∫

RUU
A[2h1−2][R

2h2
0 , ξ2h3 ]

V V A[2h1−2]
⋆ volUUV V . (5.11)

Consider then the term δSh1
h2,h3

of the variation and use the on-mass-shell theorem (2.39):

δSh1
h2,h3

=

∫

HMHNC
UU ,MN

A[2h1−2]

[

HPHQC
2h2,PQ, ξ2h3

]V V A[2h1−2]

⋆
volUUV V , (5.12)

where the notation C2h2,PQ means that the indices A[2h2] of CA[2h2],PQ are involved in

the ⋆-product. The result of C2h2 ⋆ ξ2h3 has indices V V A[2h1 − 2] and carries indices PQ

that are not affected by the ⋆-product. Using (3.17) and the fact that the Weyl tensors

are traceless, the indices MN must be contracted with V V only, whence PQ have to be

contracted with UU

δSh1
h2,h3

∼
2

2h1(2h1 − 1)

∫

CA[2h1],UU

[

C2h2,UU , ξ2h3

]A[2h1]

⋆
vol (5.13)

where the prefactor comes from the simple identity

CA[M−N ]U [N ],A[N ] φ
A . . . φA =

(M −N)!N !

M !
CA[M ],U [N ] φ

A . . . φA (5.14)

used in the case M = 2h1 , N = 2 . In order to pass from the total contraction of indices

CA[2h1]B
A[2h1] to the trace tr(C ⋆ B) = a0

h1,h1
CA[2h1]B

A[2h1] one needs to compensate for

a0
h1,h1

= (−)h1

(2h1)! , which results in

δSh1
h2,h3

∼ 2(−)h1(2h1 − 2)!

∫

tr
(

C2h1,
UU ⋆

[

C2h3,UU , ξ2h2

]

⋆

)

vol . (5.15)

Therefore, taking into account the analysis of section 3, the choice

αh =
(−1)h

2(2h− 2)!
(5.16)

is such that the variation of the cubic action, evaluated on free shell and taken at order g ,

can be presented as a trace of commutators, thereby solving the problem:

δS| δS0
δϕ

=0
=

∑

h1,h2,h3

αh1δS
h1
h2,h3
| δS0

δϕ
=0

= 0 +O(g2) .

Introducing additional Clifford oscillators ψU , which are to be contracted with the second

group of indices of Weyl tensors, 1
2(2h1)!C

A[2h1],UUφA . . . φAψUψU , the variation of the action
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becomes a trace on the Cℓd−1,2 × Cℓd−1,2. Actually, to cancel the variation of the action,

only the indices carried by gauge potentials must be hidden into the trace, so one can keep

the pair UU in plain view.

Note that there are some terms in the variation that vanish by themselves. These

originate from cubic self-interactions. The statement whose applicability spreads far beyond

the case of type [k, 1] fields11 is that the Fradkin-Vasiliev condition for cubic self-interactions

is identically satisfied. The reason is that there is no representation carried by gauge

parameter ξ in the symmetric tensor product of two so(d− 1, 2)-modules corresponding to

Weyl tensor, e.g. for the case of gravity

no singlet in
( ⊗ )

Sym

⊗

⇐⇒ CAA,BCC D
AA,B ξC,D ≡ 0 . (5.17)

It is worth noting that αh can be determined from a more simple requirement that the

quadratic action can be represented as a trace on free shell. The same αh (5.16) ensures

that

S0

∣
∣
∣ δS0

δϕ
=0

=

∫

tr
(
CUU ⋆ C

UU
)

vol . (5.18)

Notice that the quantity αh in (5.16) is equal to a0
h−1,h−1 up to a constant factor

independent of h . That suggests writing the cubic action in the form

S =
1

2

∫

tr(RUU ∧ ⋆RV V ) ∧ volUUV V (5.19)

where one still has to take off a pair of oscillators on each curvature to undress two pairs

of indices, these are not involved in taking ⋆-product.

Unitarity. When expressed in terms of metric-like field φ, any frame-like action
∫
R∧R

is proportional to (−)spin(∂φ)2, where the sign factor depends linearly on spin. This factor

is irrelevant for type-[2h − 1, 1] fields considered here as they differ by an even number of

indices. Thus, in order to make action (5.19) unitary one has to insert imaginary unit to the

definition of the star product, which compensates for unwanted (−)h in αh. Equivalently,

one can inherit the reality conditions from the osp(1|2)-algebra [50].

6 Developments and discussion

Extension to higher degree forms. The previous analysis has been carried over in the

case of one-form gauge potentials taking their values in the even Clifford algebra Cℓ0d−1,2.

At least two problems appear when trying to include forms of higher degree. Firstly, the

number of forbidden values for k in W
A[k]
q grows with q . For example, among the one-forms

onlyWA
1 corresponding to a partially-massless graviton in AdSd was forbidden by unitarity.

For two-forms, there are two such fieldsWA
2 andWAA

2 , etc. It is not evident how to truncate

the algebra without breaking the associativity in a way that the star-product of two unitary

11One can check that cubic self-interactions are always consistent for all gauge fields described by one-form

gauge potentials.
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fields gives no contribution to the sector of nonunitary fields. Secondly, since higher degree

forms cannot contribute to lower degree forms no pairwise cancelation of terms is possible

now. Generically, it is difficult to imagine a theory for nonabelian p-forms with p > 1

since the closure of the gauge algebra would require gauge parameters with form degrees

unbounded from above, which is hardly compatible with a finite spacetime dimensionality.

Extension to higher orders. As is known [49], the candidate higher-spin algebra g must

satisfy the admissibility condition in order for interaction of higher than cubic order to exist.

The admissibility condition demands that gauging g, which describes certain field content,

must match with the field content of some unitary representation of g. For example, a

little bit tautological though, gauging of so(d − 1, 2) itself leads to ea, ωa,b ∈ WA,B that

describes a free spin-two field at the linearized level, the same time there exists a unitary

irreducible representation of so(d− 1, 2) that is a spin-two field.

The admissibility condition becomes highly nontrivial and restrictive for genuine

higher-spin algebras. In particular it was found in [72], that certain higher-spin alge-

bras do not give rise to consistent theories beyond the cubic approximation, these defective

higher-spin algebras were shown [49, 73] not to meet the admissibility condition, i.e. not to

have unitary representations with spectrum giving by gauging thereof.

Therefore, the cubic approximation is insensitive to the admissibility condition. Nev-

ertheless, we may argue that Cℓ0d−1,2 does not satisfy the admissibility condition because

its gauging leads to a too small spectrum, which is much smaller than the one resulting

from tensoring the minimal representations |Di〉, |Rac〉 corresponding to conformal scalar

and spinor [50]. It is still interesting to see if the action closes at the quartic level as it

happens for pure gravity.

Universal enveloping realization. 12 In the spirit of the approach used in [69], let us

put some remarks on the universal enveloping algebra U(h), h ∼= so(d− 1, 2) , and on the

explicit realization of g = Cℓ0d−1,2 as a quotient of U(h) . Consider U(h), generated by MAB

modulo relations (⋆ denotes the product in U(h))

[MAB ,MCD]⋆ = MADηBC −MBDηAC −MACηBD +MBCηAD . (6.1)

It is useful to write down the decomposition of the first several levels of U(h) in terms of

the standard adjoint action of h , which by the Poincare-Birkhoff-Witt theorem is equivalent

to computing symmetric products of MAB ∼ ,

U(h)|h
∼= •
︸︷︷︸

0

⊕
( )

︸ ︷︷ ︸

1

⊕



 ⊕ ⊕ ⊕ •





︸ ︷︷ ︸

2

⊕
(

⊕ . . .
)

︸ ︷︷ ︸

3

⊕ . . . (6.2)

where the singlet • at the level zero is the identity of U(h) and another one at the level

two is the quadratic Casimir operator C2 = −1
2MAB ⋆ MAB . All singlets in U(h) are by

12E.S. is grateful to Per Sundell for many valuable discussions on [69] and to M.A.Vasiliev for sharing his

draft.
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definition certain functions of the Casimir operators C2i, i = 1, . . . , N , N = [d+1
2 ]. The

center of U(h) is a free field K[C2, . . . , C2N ] in N variables.

According to [69] a higher-spin algebra g can be constructed as a quotient algebra of

U(h) over a given two-sided ideal. The ideal corresponding to the Vasiliev sp(2) higher-spin

algebra [5], whose gauging describes all totally-symmetric massless fields, is generated by

two h-covariant elements,

I ∼= U(h) ⋆



 ⊕



 ⋆U(h) , (6.3)

where

= M[AB ⋆MCD], = M C
A ⋆ MAC −

2

(d+ 1)
ηAAC2 . (6.4)

Roughly speaking, to quotient by I means that all diagrams with more than two rows as

well as all the elements M ⋆ . . . ⋆ M where at least two h-indices are contracted must be

set to zero. The resulting h-adjoint spectrum of U(h)/I is given by all rectangular two-row

diagrams,

g = U(h)/I|h
∼= • ⊕ ⊕ ⊕ ⊕ . . . (6.5)

The salient feature of the ideal I is that besides removing ‘unwanted’ diagrams it also

restricts all Casimirs, C2i, to particular values µ2i . When inside U(h), to determine the

values of C2i one [69] has to verify the consistency of the ideal by multiplying its elements

and inspecting if the result belongs to the ideal too. This procedure leads for example to

relations of the type (C2i−µ2i)⋆MAB ∼ 0, of which the nontrivial solution is C2i−µ2i ∼ 0.

Note that if C2i were free it would lead to a degeneracy of the spectrum due to the center

K[C2, . . .] of U(h)/I.

As was noticed in [69, 74], the ideal I is in fact the annihilator, Ann(|Rac〉) , of the

remarkable Dirac scalar singleton representation |Rac〉 of h , which fixes all C2i accordingly.

Therefore, quite generally one may think of any higher-spin algebra g as the universal

enveloping algebra U(h) of h evaluated in some h-module, say V ,

g = U(h)
∣
∣
∣
V
∼ End(V ) ∼ V ∗ ⊗ V . (6.6)

However, the scalar |Rac〉 and spinor |Di〉 singletons are very distinguished represen-

tations. We see no natural way to generalize |Rac〉, |Di〉 to some other representation, say

V , such that g = U(h)/Ann(V ) would contain h-modules Ai, g = ⊕iAi in its h-adjoint

decomposition that by means of Ai-valued generalized connection ωAi
q would describe uni-

tary mixed-symmetry fields for some q . As noted in [30, 70] higher-spin singletons should

give examples of higher-spin algebras, whose gauging leads to certain multiplets of mixed-

symmetry fields. However, these exist only in odd dimensions and we do not expect that

consistent theories with mixed-symmetry fields are confined to odd dimensions. More-

over, the tensor product of two higher-spin singletons with high enough spins does not
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contain a graviton. As the most simple example, using [45] one can evaluate the product

|j1, 0〉 ⊗ |0, j2〉 of two so(4, 2) higher-spin singletons with spins j1 and j2, which are also

called doubletons, [75],

|j1, 0〉 ⊗ |0, j2〉 =
⊕

k

[
massless unitary
mixed-symmetry
fields in AdS5

]

of type j1 − j2
j1 + j2 + k

. (6.7)

The sign of (j1 − j2) distinguishes between selfdual and anti-selfdual fields. This result

reduces at j1 = j2 = 0 to the Flato-Fronsdal-type theorem [76] of [45] that the product of

two scalar singletons decomposes into a sum over all totally symmetric bosonic higher-spin

fields, see also [50, 77].

Thus the ability of higher-spin singletons to describe a world with gravity and mixed-

symmetry fields is very restricted. Therefore, as we have no candidates for the annihilator,

we would like to define I directly by specifying which diagrams are ‘unwanted’.

The adjoint spectrum of g = Cℓ0d−1,2 consists of all [2k] types with multiplicity one,

g = •
︸︷︷︸

0

⊕
( )

︸ ︷︷ ︸

1

⊕









︸ ︷︷ ︸

2

⊕ . . . (6.8)

This suggests the ideal be generated by

⊕ ∼ IAA,BB = MAB ⋆ MAB +
2C2

d(d + 1)
(ηAAηBB − ηABηAB) ∼ 0 . (6.9)

Indeed, in verifying the compatibility condition MAB ⋆ IAA,BB ∼ 0, which can be done by

using the following relation, which holds true modulo terms proportional to I B
AA,B ,

M C
A ⋆ MBC ∼

−2C2

d+ 1
ηAB −

d− 1

2
MAB , (6.10)

one finds that the Casimir must be a fixed number C2 = d(d+1)
8 ,

0 ∼MAB ⋆ IAA,BB ∼

(

C2 −
d(d+ 1)

8

)

⋆ MAB ∼ 0 , (6.11)

which is exactly C2 computed in the representation (5.6) and is, as expected, equal to the

Casimir of the spinor module. Therefore,13

g = U(h)/
(
U(h) ⋆ IAA,BB ⋆ U(h)

)
. (6.12)

The analog of |Rac〉 representation for Cℓ0d−1,2 is the spinor representation, which is finite

dimensional in accordance with finiteness of Cℓ0d−1,2 (the symmetry algebra of a field equa-

tion, e.g. conformal scalar, must be an infinite dimensional algebra as it contains arbitrary

powers of translation generators).

13Unfortunately, it is very complicated to inspect all relations that come from U(h) ⋆ I ⋆U(h) for some I ,

in particular, to find out if there are some additional relations at higher levels, e.g. at the level [(d + 1)/2],

which restricts d to be odd.
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In general, we see from (6.2) that any reasonable ideal I must take away at the

least,

I1 = (U(h) ⋆ ⋆U(h)) (6.13)

as the generalized connection WAB
q = WBA

q describes a nonunitary theory for any

q, [18, 60]. This requirement already forces higher Casimirs, C2i, i = 2, . . .,

C2k =
1

2
M B

A ⋆ M C
B ⋆ . . . ⋆ M A

U (6.14)

to be certain functions F2i(C2) of the quadratic one

F2i(X) =
X
(
(λ+)2i−1 − (λ−)2i−1

)

λ+ − λ−
, λ± =

d− 1

4

(

1±

√

1−
32

(d+ 1)(d− 1)2
X

)

,

F2(X) = X, F4(X) =
X

4

(
8X

d+ 1
+ (d− 1)2

)

.

Therefore, the only ‘degree of freedom’ left if is due to C2 . In the spirit of Feigin’s

gl(λ), [78], which is equivalent to the deformed oscillators of [53, 54], we can quotient

further (C2 − ν) and define a one parameter family of higher-spin algebras

hs(ν) = U(h)/ (U(h) ⋆ { ⊕ (C2 − ν)} ⋆ U(h)) . (6.15)

At certain values of ν the algebra hs(ν) acquires an ideal that can be factored out, giving a

smaller algebra. The value of C2 would be fixed by choosing one more ‘unwanted’ diagram

in the h-adjoint spectrum of U(h) . The h-adjoint decomposition of hs(ν) is easy to describe

as

hs(ν)|h = {diagrams made out of } , (6.16)

where the new elementary cell denotes . Note that by inspecting generalized connec-

tions of [18] (that are allowed by unitarity) we conclude that gauging of hs(ν) can describe

unitary fields. The additional ideal I2 leading to the Vasiliev sp(2) higher-spin algebra,

which removes the degeneracy due to C2, is generated by .14 The ideal I2 leading to

Cℓ0d−1,2 is . The ideal I2 leading to the φ-even Vasiliev osp(1|2) higher-spin algebra [50]

is . Let us note that there is no room here for the hypothetical algebra whose spectrum

was suggested in [79] in the context of reducible multiplets of totally-symmetric fields, to

read

•
︸︷︷︸

0

⊕
︸︷︷︸

1

⊕
(

⊕ •
)

︸ ︷︷ ︸

2

⊕
(

⊕
)

︸ ︷︷ ︸

3

⊕
(

⊕ ⊕ •
)

︸ ︷︷ ︸

4

⊕ . . . . (6.17)

The above spectrum may result simply from extending the field of scalars.

14Note that by we do not mean the antisymmetric tensor product of with itself, but simply the

Young diagram with four cells in the same column.
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Note that factoring out any nontrivial component of U(h) at the level-(k+1) expresses

higher Casimirs C2k+2,. . . in terms of lower ones C2, . . . , C2k. For example, which is relevant

below, ∼ 0 leads to

M[UU ⋆MUU ] ∼ 0 =⇒ M[UU ⋆ . . . ⋆ MUU ] ⋆M[V V ⋆ . . . ⋆ MV V ]η
UV . . . ηUV ∼ 0 (6.18)

that allows to express any C2k, k > 1 as a function G2k(C2) of C2, e.g. G4 is

C4 = G4(C2) = (C2)
2 +

(d− 2)(d − 1)

2
C2 . (6.19)

It is interesting to find out if there exist ideals generated by more than two diagrams, the

natural restrictions coming from the condition that any k-generated ideal lies in the inter-

section of k algebraic functions of Casimirs. For example, the scalar singleton point corre-

sponding to the Vasiliev higher-spin algebra is the unique intersection of F2i(X) = G2i(X).

If one factors out only without factoring out , the resulting spectrum is rich

enough to describe all massive totally-symmetric fields in the spirit of [80]. The degeneracy

due to C2 enlarges the spectrum with Stückelberg companions. Flow with respect to C2

should pass all critical points where massive fields decompose into partially-massless fields

plus massive fields of lower spin.

It seems natural that in addition to I1 one may pick any -diagram, say Y, from the

spectrum of A1 and build the quotient algebra whose spectrum does not contain the -

diagrams for which Y is a subdiagram. The value of ν is to be determined by consistency

of IY = U(h) ⋆Y ⋆U(h) with I1 .

As was mentioned in the introduction, Cℓ0d−1,2 is just the simplest higher-spin algebra

in the hierarchy, which now can be depicted as

so(d− 1, 2) →

finite-dimensional
︷ ︸︸ ︷

Cℓ0d−1,2 → hs(νi) →

infinite-dimensional
︷ ︸︸ ︷

osp(1|2)e → hs(ν)

- sp(2)
ր

where → means succession of gauging, i.e. the spectrum of fields resulting from gauging

one algebra belongs to the gauging of the next one. Together with the Clifford algebra

one can construct other finite-dimensional algebras that correspond to hs(ν) at certain νi

of finite-dimensional modules as well as infinite-dimensional algebras that correspond to

hs(ν) at generic ν or specific ν’s of infinite-dimensional modules.

That the generators of a higher-spin algebra g obtained from U(h) have only even ranks

(number of indices of h) seems to be a drawback of U(h) as of any two mixed-symmetry

fields whose ranks differ by one index one can be realized as a part of such a g while

another one cannot. The possible way out is shown by the osp(1|2)-algebra [50], that is

to extend U(h) with Clifford algebra. However, in this way it is still not possible to have

an algebra whose gauging leads, for example, to two-row mixed-symmetry fields only, as

Clifford algebra brings a one-column Young diagram of height up to d+ 1 that is attached

at the bottom.
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The above consideration within the universal enveloping algebra is not the most gen-

eral one. The ⋆-product of U(h) prescribes a particular way of contracting indices when

expanding expressions like ω ⋆ ω in components.

For example, for the Vasiliev sp(2) algebra ⋆-product is induced by exp (s), where

s = tαβCαβ, tαβ =
←−
∂

∂Y A
α

−→
∂

∂Y B
β

ηAB . This star product is in fact sp(2d + 2) invariant as it

makes use of ηABCαβ . Various other sp(2)⊕ so(d− 1, 2) ⊂ sp(2d+ 2) invariants built with

tαβ can be used to contract indices. The field of sp(2) invariants for tαβ is generated by

s and p = det tαβ. An arbitrary nontrivial polynomial skpn gives rise to consistent cubic

interactions at least at the cubic level [81], the ⋆-product being different from the one

dictated by U(h). This is to be compared with the general formalism of cubic interactions

developed in the upcoming paper by Vasiliev [82].

In general one is led to study the full tensor algebra of h. The Grothendieck ring of

tensor category of h-modules is an associative ring whose basis eµ is enumerated by all finite-

dimensional h-modules µ and the structure constants are defined by the decomposition of

µ⊗ ν into irreducibles. Inevitably any higher-spin algebra corresponds to a subring of the

Grothendieck ring, the additional requirement being that h itself as its adjoint module must

belong to the higher-spin algebra. Finding an appropriate truncation of the Grothendieck

ring does not solve the problem yet, as one has to choose a particular way to contract

indices, which we believe can be done by classifying invariants, like s and p, corresponding

to the truncation.

Then, the trace operation tr can be defined as a projection to the singlet component

since it is unique. tr(AB − BA) = 0 holds automatically because if A is isomorphic to

B as h modules then there is no singlet component in A ∧ B, otherwise A ⊗ B does not

contain a singlet component either. Studying subrings of the Grothendieck ring might be

useful for finding higher-spin algebras whose gauging leads to a desired spectrum of fields.

We hope to come back to this issue in a future work [81].

7 Conclusion

We have proven that the Clifford algebra correctly produces not only the structure but all

the coefficients that are required for type [2k − 1, 1] fields, to have consistent interactions

with gravity and themselves at the cubic order. It is instructive to investigate if the same

action can be made consistent up to the quartic order as it does for the sector of pure

gravity and if not where the obstructions come from.

We have seen that the Fradkin-Vasiliev approach is a powerful machinery, which allows

one to construct cubic vertices for a multiplet of higher-spin fields once the candidate higher-

spin algebra g is known. The spectrum of fields is given by the adjoint decomposition of g

with respect to the anti-de Sitter algebra, leading to a number of generalized connections

of so(d− 1, 2). One requires quadratic actions of type
∫
R0∧R0 as an input. The Fradkin-

Vasiliev recipe is to replace the linearized curvatures R0 with the nonlinear ones R that

are dictated by the algebra and adjust coefficients in front of individual actions to push

the gauge invariance to the next nontrivial order. The procedure determines all coupling

constants in front of different cubic vertices in terms of just one constant.
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Once the quadratic actions built with curvatures R0 for generalized connections are

known one needs to look at those parts of the action to which the generalized Weyl tensors C

contribute via the on-mass-shell theorem. The coefficients are then determined by requiring

R0 ∧ R0 terms to have the form tr(CUU ⋆ CUU) on-mass-shell, which is reminiscent of

Yang-Mills’ tr(Fµν ⋆ F
µν). This gives a combinatoric factor originating from using Young

symmetry properties and the normalization of the g-trace; the computation can be done

for a free action and is quite simple.

Following [69] we believe that the universal enveloping algebra of so(d − 1, 2) is a

natural framework for description of higher-spin fields and we have treated Cℓ0d−1,2 from

this point of view. We have discussed some general features of embedding a higher-spin

algebra into U(so(d− 1, 2)), which results in that any reasonable higher-spin algebra built

from U(so(d− 1, 2)) should correspond to hs(ν) at a particular ν.
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