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1 Introduction

The Vcb element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix is naturally
determined in semileptonic B decays to charmed hadrons. In the case of exclusive final
states, like for B → D(∗)`ν, the corresponding form factors have to be computed by non-
perturbative methods, for instance on the lattice. On the other hand, in the case of inclusive
semileptonic decays B → Xc`ν the existence of an Operator Product Expansion (OPE)
ensures that non-perturbative effects are suppressed by powers of the bottom mass mb and
are parameterized by a limited number of matrix elements of local operators which can be
extracted from experimental data. The total inclusive width and the first few moments
of the kinematic distributions are therefore expected to be well approximated by a double
series in αs and ΛQCD/mb [1–4]. The general strategy for the inclusive determination of
|Vcb| consists in extracting the most important non-perturbative parameters, including the
heavy quark masses, from the moments and to employ them in the OPE expression for the
total width. A determination of |Vcb| follows from the comparison with the experimental
total rate.

The main ingredients for an accurate analysis of the experimental data have been
known for some time. Two implementations are currently employed by the Heavy Flavour
Averaging Group (HFAG) [5, 6], based on either the kinetic scheme [7–11] (see also [12]
for an earlier fit) or the 1S scheme [13]. They both include terms through O(α2

sβ0) [14]
and O(1/m3

b) [15] but they use different perturbative schemes and approximations, include
a slightly different choice of experimental data, and estimate the theoretical uncertainty
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in two distinct ways. According to the latest global fits the two methods yield very close
results for |Vcb| [16].

The reliability of the inclusive method rests on our ability to control the higher order
contributions in the double series and to constrain quark-hadron duality violation, i.e.
effects beyond the OPE. The calculation of higher order effects allows us to verify the
convergence of the double series and to reduce and properly estimate the residual theoretical
uncertainty. Duality violation effects [17] can be constrained a posteriori, by looking at
whether the OPE predictions fit the experimental data. This in turn essentially depends on
precise measurements and precise OPE predictions. As the experimental accuracy reached
at the B factories is already better than the theoretical accuracy for all the measured
moments, any effort to improve the latter is strongly motivated.

There has been recent progress in this direction. First, the complete two-loop per-
turbative corrections to the width and to the moments of the lepton energy and hadronic
mass distributions have been computed in refs. [18–21]. This represents an important im-
provement with respect to the O(α2

sβ0) or BLM corrections, which in B decays generally
dominate the O(α2

s) effects when αs is normalized at mb. The main goal of this paper is to
incorporate the new non-BLM corrections in the calculation of the semileptonic moments
and to discuss their numerical impact in different schemes.

Higher order power corrections have also been recently considered: a first analysis
of O(1/m4

b) and O(1/m5
Q) effects has been presented in [22]. In the higher orders of the

OPE there is a proliferation of operators and therefore of non-perturbative parameters:
as many as nine new expectation values appear at O(1/m4

b). Since they cannot be fitted
from experiment, the authors of ref. [22] estimated them in the ground state saturation
approximation and found a relatively small +0.4% effect on |Vcb|. While this sets the scale
of higher order power corrections, it is for the moment unclear how much the result depends
on the use of that approximation.

Another important source of theoretical uncertainty are the O(αsΛ2
QCD/m

2
b) correc-

tions to the width and to the moments. Only the O(αsµ2
π/m

2
b) terms are known [23] at

present. A complete calculation of these effects has been recently performed in the case
of inclusive radiative decays [24], where the O(αs) correction increase the coefficient of µ2

G

in the rate by almost 20%. The extension of this calculation to the semileptonic case is in
progress.

Inclusive semileptonic B decays are not only useful for the extraction of Vcb: the mo-
ments are sensitive to the values of the heavy quark masses and in particular to a linear
combination of mc and mb [25], which to good approximation is the one needed for the
extraction of |Vcb| [16]. The b quark mass and the OPE expectation values obtained from
the moments are crucial inputs in the determination of |Vub| from inclusive semileptonic
decays, see e.g. [26, 27] and refs. therein. The heavy quark masses and the OPE parameters
are also relevant for a precise calculation of other inclusive decays like B → Xsγ [28]. On
the other hand, mc and mb can now be measured precisely from data on charm and bottom
production in e+e− annihilation [29, 30], and from the moments of heavy quark current
correlators computed on the lattice [31]. After checking the consistency of the constraints
on mc,b from semileptonic moments with these precise determinations, we should there-
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fore include them as external inputs in the semileptonic fits (see [16] for a first attempt),
eventually improving the accuracy of the |Vub| and |Vcb| determinations.

In this paper we set up the tools for such improved analyses, extending the code
developed in [10] and employed by HFAG to allow for NNLO fits in arbitrary mass schemes.
In particular, in order to avoid the non-negligible uncertainty in the conversion from the
kinetic scheme to MS masses, we directly employ an MS definition for the charm quark
mass. In addition, the study of scheme and scale dependence gives us useful elements for
an evaluation of the residual theoretical uncertainty.

It is worth recalling that in the current semileptonic fits the sensitivity to mb and µ2
π

is enhanced by the inclusion of the first two moments of the photon energy distribution
in B → Xsγ, which are now measured with good precision. Their impact on the fits is
equivalent to that of a loose constraint on mb with 80MeV uncertainty. However, the lower
cut on the photon energy introduces a sensitivity to the Fermi motion of the b-quark inside
the B meson [11] and there are poorly known subdominant contributions not described by
the OPE even in the absence of a photon energy cut [32]. All this makes radiative moments
different from semileptonic ones: in the following we will concentrate on the latter.

The paper is organized as follows: in the next section we discuss the perturbative cor-
rections of the lepton energy moments and the implementation of the NNLO contributions
and we give tables of results in a few typical cases. In section 3 we do the same for the
moments of the invariant hadronic mass distribution. In section 4 we review the relation
between kinetic and MS heavy quark definitions and provide numerical conversion formulas
with uncertainty. Section 5 briefly summarizes the main results of the paper, while the
appendix updates the prediction of the total rate of B → Xc`ν and gives an approximate
formula for the extraction of |Vcb|.

2 Lepton energy moments at NNLO

In this section we consider the first few moments of the charged lepton energy spectrum in
inclusive b → c`ν decays. They are experimentally measured with high precision (better
than 0.2% in the case of the first moment) but at the B-factories a lower cut on the lepton
energy, E` ≥ Ecut, is applied to suppress the background. In fact, experiments measure
the moments at different values of Ecut. The relevant quantities are therefore

〈En` 〉E`>Ecut =

∫ Emax

Ecut
dE` E

n
`

dΓ
dE`∫ Emax

Ecut
dE`

dΓ
dE`

, (2.1)

for n up to 3, as well as the ratio R∗ between the rate with and without a cut

R∗ =

∫ Emax

Ecut
dE`

dΓ
dE`∫ Emax

0 dE`
dΓ
dE`

, (2.2)

which is needed to relate the actual measurement of the rate with a cut to the total rate,
from which one conventionally extracts Vcb. Since the physical information that can be
extracted from the first three linear moments is highly correlated, it is convenient to study
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the central moments, namely the variance and asymmetry of the lepton energy distribution.
In the following we will consider only R∗ and

`1 = 〈E`〉E`>Ecut , `2,3 = 〈(E` − 〈E`〉)2,3〉E`>Ecut . (2.3)

These four observables are all functions of mb and of the two dimensionless quantities

r =
mc

mb
, ξ =

2Ecut
mb

. (2.4)

Our calculation follows closely the one described in [10]. Apart from the inclusion of the
complete O(α2

s) corrections there are a few changes and improvements worth mentioning:
i) the complete O(αs) and O(α2

sβ0) corrections to the charged leptonic spectrum have been
first calculated in [33–36] and [37]. While they can be computed numerically for any value
of ξ and r, a numerical integration would slow down the fitting routines significantly, hence
the need for interpolation formulas that must be accurate in a wide range of ξ and r values,
keeping in mind that the values of mc,b may differ considerably from one scheme to another.
The accuracy of the interpolation formulas is important because of the cancellations that
will be discussed shortly and has been improved wrt [10] using high precision numerical
results based on [14]. The approximations used for the O(αs) and O(α2

sβ0) corrections to
the linear moments are now quite precise and their range extends to 0 < ξ < 0.75 and
0.18 < r < 0.28; ii) the code can now be used in the kinetic scheme at arbitrary values of
the infrared cutoff µ and with other definitions of the quark masses and of the expectation
values. In particular the MS definition of mc is now implemented; iii) in the kinetic scheme
we now normalize the matrix element of the Darwin operator, ρ3

D, at the same scale µ as
the quark masses and the other expectation values (in [10] it was normalized at µ = 0);
iv) the code now computes the ratio R∗, defined in (2.2) and necessary to extrapolate the
rate measured at the B factories to the total semileptonic width. Most of these changes
have already been included in the version of the Fortran code employed by HFAG [5, 6] in
the last few years.

The O(α2
s) corrections that are not enhanced by β0 — we will call them non-BLM

corrections — are known to be subdominant when αs is normalized at mb. They have been
recently computed in [18–21]. While refs. [18, 21] adopt numerical methods and can take
into account arbitrary cuts on the lepton energy, the authors of [19, 20] expand the moments
in powers of mc/mb and provide only results without cuts. The two calculations are in good
agreement and their implementation in our codes is in principle straightforward. However,
the strong cancellations occurring in the calculation of normalized central moments require
a high level of numerical precision. Indeed, radiative corrections to the El spectrum tend
to renormalize the tree level spectrum in a nearly constant way, i.e. hard gluon emission
is comparatively suppressed. This implies that the perturbative corrections tend to drop
out of normalized moments. Let us consider for instance the first leptonic moment in the
kinetic scheme with µ = 1 GeV, using r = 0.25, mb = 4.6 GeV and Ecut = 1 GeV:

〈El〉El>1GeV = 1.54 GeV
[
1 + (0.96den − 0.93)

αs
π

+ (0.48den − 0.46)β0

(αs
π

)2
(2.5)

+ [1.69(7)− 1.75(9)den]
(αs
π

)2
+O(1/m2

b , α
3
s)
]
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It is interesting to note that such kinematic cancellations between numerator and denomi-
nator (identified by the subscript den) affect the O(αs), O(α2

sβ0), and two-loop non-BLM
corrections in a similar way. We have indicated in brackets the numerical uncertainty of
the non-BLM correction [18]: the resulting coefficient in that case is −0.06± 0.12. Similar
conclusions can be drawn at different values of the cut and for higher linear moments. As
discussed in [21], these cancellations are not accidental. In the limit ξ → ξmax = 1− r2 the
cancellations between numerator and denominator are complete at any perturbative order:
therefore the higher the cut, the stronger the cancellation. Moreover the peak of the lepton
energy distribution is relatively narrow and close to the endpoint, which further protects
the moments from radiative corrections.

In the case of the higher central moments, additional cancellations occur at each per-
turbative order between normalized moments. In `2, for instance, 〈E2

l 〉 and 〈El〉2 tend to
cancel each other: for the same inputs as in eq. (2.6) we have

`2 = 〈E2
` 〉 − 〈E`〉2 = (2.479− 2.393) GeV2 = 0.087 GeV2.

Such cancellations are quite general and are further enhanced by higher Ecut. They are
simply a consequence of the fact that, as we have just seen, at each perturbative order the
spectrum follows approximately the tree-level spectrum, which is peaked at ξ ≈ 0.7− 0.8.

One obvious consequence of the cancellations we have just discussed is that the numer-
ical accuracy with which the non-BLM corrections are known becomes an issue. While the
origin of the cancellations is understood, we need a precise calculation to know their exact
extent, and the result will have some impact on the estimate of the remaining theoretical
uncertainty.

The building blocks of the perturbative calculation are the adimensional moments

Ln =
1

Γ0

1
mn
b

∫ Emax

Ecut

dE` E
n
`

dΓ
dE`

(2.6)

where Γ0 is the total width at the tree-level. Any Ln can be expanded in αs and 1/mb

Ln = L(0)
n +

αs(mb)
π

L(1)
n +

(αs
π

)2 (
β0 L

(BLM)
n + L(2)

n

)
+ L(pow)

n + . . .

where we have distinguished between BLM and non-BLM two-loop corrections (β0 = 11−
2
3nl) and indicated by L

(pow)
n the power-suppressed contributions. The expansion for the

normalized moments is

〈En` 〉 =
L

(0)
n

L
(0)
0

[
1 +

αs(mb)
π

η(1)
n +

(αs
π

)2
(
β0 η

(BLM)
n + η(2)

n − η(1)
n

L
(1)
0

L
(0)
0

)
+ η(pow)

n + . . .

]
,

(2.7)
where

η
(a)
i =

L
(a)
i

L
(0)
i

− L
(a)
0

L
(0)
0

, (2.8)

and an analogous formula holds for R∗.
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Figure 1. Combinations of two-loop non-BLM contributions entering the normalized central
leptonic moments and R∗: numerical evaluation [21] with blue errors and analytic one [19, 20] at
ξ = 0 with red errors vs. fits (shaded bands).

Both available non-BLM calculations have been performed in the on-shell scheme and
give us results for L(2)

n at different values of r with an uncertainty due either to the numerical
integration (and therefore of statistical origin) or to the truncation of the r expansion.
However, L(2)

n has been computed at ξ 6= 0 only numerically [21]. The two calculations can
be combined in order to reduce the final uncertainty. In the analytic calculation of [19, 20]
the expansion of the O(α2

s) corrections to the moments at ξ = 0 includes at most O(r7)
terms and converges quite slowly for r ∼ 0.2 − 0.25, in the relevant physical range. We
can take the size of the last term included, O(r7), as a rough estimate of its non-gaussian
uncertainty. It turns then out that the combinations of two-loop non-BLM integrals L(2)

i

that enter the normalized moments, η(2)
i , at ξ = 0 and r <∼ 0.26 can be more accurately

determined using [19, 20] than using the tables of [21].
It is also helpful to notice that, since the electron energy spectrum must vanish at

low energies at least like E2
` , only terms O(ξ3) and higher are relevant: the two-loop

corrections η(2)
i must be flat for small ξ and the results of [21] are perfectly consistent with

this requirement. One can therefore perform a fit to all the available results at different
r and ξ values using simple functions of ξ and r. We have checked that, given the level
of accuracy provided in [21], it is sufficient to consider an expansion up to O(ξ5) with
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Figure 2. The non-BLM contribution η(2)
1 (ξ = 0) to the first leptonic moment as a function of r:

numerical evaluation [21] with blue errors and analytic one [19, 20] at ξ = 0 with red errors vs. fits
(shaded bands).

coefficients linearly dependent on r. The χ2/dof is generally low, about 0.4, as the spread
of central values in the low-ξ region is much smaller than the size of the errors. We also
know that the functions η(2)

i (ξ, r) must vanish linearly at the endpoint ξ = 1− r2, and one
can implement this constraint in the fit, but the result are unchanged for ξ < 0.7.

In the first plot in figure 1 we show the combination η(2)
1 that enters the first normalized

leptonic moment `1 as a function of ξ for r = 0.25. In the plot we compare the numerical
evaluations given in table 1 of [21] and their associated error bars with the fit. At ξ = 0
we also show the result of [19, 20], whose uncertainty is estimated as explained above.
The shaded band represents the 1σ uncertainty of the fit. In the case of eq. (2.6) the
error of the non-BLM O(α2

s) coefficient estimated in this way is ±0.03, with a sizable
reduction wrt that equation. For higher cuts and for values of r at the edge of the range
0.2 ≤ r ≤ 0.28 considered in [21] the reduction is weaker. In figure 2 we show the r-
dependence of η(2)

1 (ξ = 0), comparing the fit with the existing results. It is clear that
a linear fit is perfectly adequate. The errors obtained by combining in quadrature the
numerical uncertainties of L(2)

1 and L
(2)
0 appear overestimated. We have found similar

results for the higher linear moments, but we show in figure 1 only the combinations that
actually enter the second and third central moments,

η
(2)
2c = w2 η

(2)
2 − 2w2

1 η
(2)
1

η
(2)
3c = w3 η

(2)
3 + 3w1

(
2w2

1 − w2

)
η

(2)
1 − 3w1w2 η

(2)
2 ,

where wi = L
(0)
i /L

(0)
0 are tree-level functions. Despite the residual uncertainty, the new

results confirm that the pattern of cancellations observed at O(αs) and O(α2
sβ0) carries on

at the complete O(α2
s). This is illustrated in tables 1 and 2 for Ecut = 0 and 1GeV. In

these tables we report the values of the first three central moments for the reference values
of the input parameters

mb = 4.6 GeV, mc = 1.15 GeV, µ2
π = 0.4 GeV2, µ2

G = 0.35 GeV2

ρ3
D = 0.2 GeV3, ρ3

LS = −0.15 GeV3, (2.9)
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µ = 0 µ = 1GeV
`1 `2 `3 `1 `2 `3

tree 1.4131 0.1825 -0.0408 1.4131 0.1825 -0.0408
1/m3

b 1.3807 0.1808 -0.0354 1.3807 0.1808 -0.0354
O(αs) 1.3790 0.1786 -0.0354 1.3853 0.1811 -0.0349
O(β0α

2
s) 1.3731 0.1766 -0.0350(1) 1.3869 0.1820 -0.0341(1)

O(α2
s) 1.3746(1) 0.1767(2) -0.0349(6) 1.3865(1) 0.1816(2) -0.0340(6)

tot error [10] 0.0125 0.0055 0.0026

Table 1. The first three leptonic moments for the reference values of the input parameters and
Ecut = 0, in the on-shell and kinetic schemes. In parentheses the numerical uncertainty of the BLM
and non-BLM contributions (see text).

`1 `2 `3 R∗

µ = 0
tree 1.5674 0.0864 -0.0027 0.8148

1/m3
b 1.5426 0.0848 -0.0010 0.8003

O(αs) 1.5398 0.0835 -0.0010 0.8009
O(β0α

2
s) 1.5343 0.0818(1) -0.0009(2) 0.7992

O(α2
s) 1.5357(2) 0.0821(6) -0.0011(16) 0.7992(1)

µ = 1GeV
O(αs) 1.5455 0.0858 -0.0003 0.8029
O(β0α

2
s) 1.5468 0.0868(1) 0.0005(2) 0.8035

O(α2
s) 1.5466(2) 0.0866(6) 0.0002(16) 0.8028(1)

O(α2
s)
∗∗ – 0.0865 0.0004 –

tot error [10] 0.0113 0.0051 0.0022

Table 2. The first three leptonic moments for the reference values of the input parameters and
Ecut = 1GeV, in the on-shell and kinetic schemes.

and for µ = 0 (corresponding to the on-shell scheme) and µ = 1GeV. The kinetic scheme
expressions are obtained from the on-shell ones after re-expressing the pole quark masses
and their analogues for µ2

π and ρ3
D in terms of low energy running quantities, employing

the two-loop contributions computed in [38] and re-expanding all perturbative series.1

In our calculation we remove all terms of O(αsΛ2/m2
b) because they are not yet known

completely, but we retain suppressed terms of O(α2
sµ

3/m3
b) that originate in the kinetic

scheme from a simultaneous perturbative shift in mb and µ2
π or ρ3

D, although they turn out
to be completely negligible in the case of leptonic moments.

1Unlike the O(α2
s) calculation of the moments, the kinetic scheme expressions of ref. [38] do not explicitly

include finite charm mass effects in the loops. This mismatch will be ignored in the following: it is effectively

equivalent to a perturbative redefinition of our mass parameters and it is relevant only when we translate

them to other schemes, see section 4.
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µ = 1GeV, mMS
c (2GeV)

`1 `2 `3 R∗

tree 1.5792 0.0890 -0.0032 0.8200
1/m3

b 1.5536 0.0873 -0.0013 0.8058
O(αs) 1.5502 0.0869 -0.0003 0.8056
O(β0α

2
s) 1.5540 0.0884(1) 0.0004(2) 0.8073

O(α2
s) 1.5523(3) 0.0879(6) -0.0002(16) 0.8061(1)

O(α2
s)
∗∗ – 0.0878 0.0004 –

µ = 1GeV, mMS
c (3GeV)

`1 `2 `3 R∗

tree 1.6021 0.0940 -0.0043 0.8296
1/m3

b 1.5748 0.0922 -0.0020 0.8159
O(αs) 1.5613 0.0894 -0.0004 0.8118
O(β0α

2
s) 1.5629 0.0904(1) 0.0004(2) 0.8125

O(α2
s) 1.5571(4) 0.0890(9) -0.0008(25) 0.8090(2)

O(α2
s)
∗∗ – 0.0889 0.0006 –

Table 3. The first three leptonic moments for the reference values of the input parameters and
Ecut = 1GeV, in the kinetic scheme with MS charm mass evaluated at µ = 2 and 3GeV, with
mc(2GeV) = 1.1GeV and mc(3GeV) = 1GeV. The uncertainty in the O(α2

s) is larger in the second
case because the mc/mb value is closer to the edge of the range considered in [21].

Non-BLM contributions to the leptonic moments are generally tiny in the kinetic
scheme. This is not necessarily the case if we adopt other renormalization schemes. We
illustrate the point by using an MS definition of the charm quark mass. As mentioned in
the Introduction, this may be useful for the inclusion in semileptonic fits of precise mass
constraints. Table 3 shows the results at Ecut = 1 GeV in the case the charm quark mass
is renormalized in the MS scheme at two different values of the MS scale; µ̄ = 2 and 3
GeV. The bottom mass and the OPE parameters are still defined in the kinetic scheme.
We observe that in this case the non-BLM corrections are not always negligible, especially
at µ̄ = 3 GeV. This is due to the fact that the MS running is numerically important
and driven by non-BLM effects. The sizable non-BLM corrections found in this case are
therefore related to the change of scheme for mc which is known with high accuracy.

To better understand what drives larger corrections in the MS scheme, let us now
consider `1,2,3 for Ecut = 1 GeV and reference inputs. A shift in mb,c induces in the central
leptonic moments the shifts

δ`1 = 0.325 δmb − 0.237 δmc, δ`2 = 0.094 δmb − 0.058 δmc,

δ`3 = 0.009 δmb − 0.010 δmc, (2.10)

which vanish for δmc/δmb ≈ 1.4, 1.6 and 0.9, respectively. Therefore, the leptonic central
moments, and particularly the first two, give similar constraints in the (mc,mb) plane. In
the case of a change of mass scheme, the bulk of the shift in the leptonic moments is given
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Ecut
η
(2)
1

η
(BLM)
1

η
(2)
2

η
(BLM)
2

η
(2)
3

η
(BLM)
3

η
(2)
2c

η
(BLM)
2c

0 -0.28(1) -0.26(1) -0.26(1) -0.15(9)
0.6 -0.32(3) -0.29(1) -0.28(1) -0.14(19)
0.9 -0.33(4) -0.32(2) -0.30(1) -0.21(30)
1.2 -0.30(6) -0.32(3) -0.30(2) -0.36(62)
1.5 -0.33(9) -0.31(4) -0.27(2) +0.3(1.4)

Table 4. Ratio of non-BLM to BLM contributions to the leptonic moments at various Ecut values,
in the on-shell scheme.

Figure 3. µ and µc dependence of the first three leptonic central moments at Ecut = 0 normalized
to their reference value µ = µc = 1 GeV. The three plots refer to `1,2,3, respectively.

by the above δ`i, where δmc,b represent the difference between the on-shell masses and the
masses in the new scheme. In the kinetic scheme with µ = 1 GeV we have δmc/δmb ≈ 1.2
at O(α2

s), which explains why the change of scheme does not spoil the cancellations in the
perturbative corrections, as shown in table 2. In other schemes and for different values of
µ the situation can be different, and indeed when we adopt the MS scheme for mc with
µ̄ = 3 GeV (lower sector of table 3) we observe slightly larger perturbative corrections. As
our calculation is complete at NNLO, one could worry that higher orders in δmc,b could
spoil the cancellations that occur in the on-shell scheme and lead to an underestimate of
higher order corrections. This appears to be unlikely, except for large MS scales; even that
unnatural case, however, would be under control, as the O(α3

s) µ̄ evolution is known.
While in the case of `1 and R∗ the numerical accuracy is always adequate for the fits

to experimental data, the poor direct knowledge of irreducible non-BLM corrections to
the second and especially the third central moment suggests to adopt for them a differ-
ent approach. We have already argued that the two-loop calculations confirm that the
cancellations occurring at O(αs) and O(α2

sβ0) replicate at O(α2
s) as well. This is further

illustrated by table 4 where the ratio between the non-BLM and BLM contributions to
η1,2,3 are shown and, as usual, the uncertainty is dominated by that of the non-BLM fits.
The ratio of non-BLM to BLM contributions is well determined and close to −0.3, but in
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Figure 4. Dependence of the first three leptonic central moments at Ecut = 0 on a) the charm MS
scale µ̄ (left panel) and b) the scale of αs when the kinetic scheme is applied to mc as well (right
panel). The moments are normalized to their values at µ̄ = 3 GeV and µα = mb, respectively. The
kinetic cutoff is fixed at 1 GeV. The black, red, blue lines refer to `1,2,3. The solid (dashed) lines
refer to four (two) loop evolution.

the case of η(2)
2c the uncertainty is much larger, especially at large cuts, namely where the

cancellations are necessarily enhanced. We therefore choose to assume a value −0.2± 0.1
for this ratio and adopt it as default. In the case of η(2)

3c the uncertainty is so much bigger
than the effect that we simply remove this contribution, retaining however reducible non-
BLM contributions that are important in the MS scheme. Reference values for this default
choice are reported in tables 2, 3 in the row denoted by ∗∗.

2.1 Scale dependence of leptonic moments

The size of uncalculated higher order perturbative corrections can be estimated in various
ways. We have already made a few remarks in this direction and we have studied the size
of the NNLO contributions in various mass schemes. Now we study how our predictions
for the leptonic moments depend on various unphysical scales that enter the calculation.
In figure 3 we show the dependence of the leptonic moments in the kinetic scheme on the
cutoff µ and on µc, the cutoff related to the kinetic definition of the charm mass. Indeed,
there is no reason of principle to set µc = µ as we have done above. In the plots we
have taken the µ = µc = 1 GeV values of the b and c masses and of the OPE parameters
µ2
π and ρ3

D in eq. (2.9) and have evolved them to different µ, µc using O(α2
s) perturbative

expansions [38] with αs(mb). The plots refer to Ecut = 0, but the absolute size of the scale
dependence is similar at different cuts, while the relative size varies in an obvious way.
Notice that for values of µ significantly higher than 1 GeV the kinetic definition may lead
to artificially large perturbative corrections, especially in the case of the charm mass. In
the acceptable range shown in the plots the scale dependence is small, and only for `1 it is
larger than the whole O(α2

s) correction.
The plot on the left of figure 4 refers instead to the calculation with the charm mass

defined in the MS. It shows the dependence on the charm mass scale µ̄ for fixed kinetic
cutoff µ = 1 GeV, normalized to the values µ̄ = 3 GeV, mc(3 GeV) = 1 GeV. We have
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evolved mc using the four loop Renormalization Group Evolution (RGE) implemented
in [39]. It is clear that in this case higher order corrections present in the four loop
RGE (and to a lesser extent even in the two loop RGE, see figure 4) lead to very sizable
corrections and that scales below 2 GeV should be avoided. Even above 2 GeV the observed
scale dependence of `1 is larger than its whole perturbative contribution. This is not an
indication of large higher order corrections in the calculation of the moments, but only
in the MS evolution of mc. The best procedure to extract mc is therefore to compute
moments at a scale µ̄ ≈ 2 GeV that tends to minimize the corrections to the moments, and
then to evolve to other scales using the most accurate RGE formula.

Finally, in the right-hand plot of figure 4 we show the dependence of the kinetic scheme
results on the MS scale of αs, µα, for fixed cutoff µ = µc = 1 GeV. The evolution of αs
is again computed at 4 loops, using αs(mb) = 0.22 as input. Due to its direct connection
with the size of the perturbative contributions, the µα dependence is generally tiny, with
the only exception of `3. For instance, using αs(mb/2) instead of αs(mb) in table 1, we
would have `1 = 1.3870 GeV in place of 1.3865 GeV.

We will briefly come back to the scheme dependence of the leptonic moments in sec-
tion 4. Before turning to the hadronic moments, however, it is useful to spend a few words
on the estimate of the total theoretical uncertainty of the leptonic moments, a subject of
great importance for the global fits from which we extract |Vcb|. In ref. [10] and in the
fits based on it, the overall theoretical uncertainty related to `i was computed by adding
in quadrature various contributions: the shifs in `i due to a ±20% (±30%) variation in
µ2
π and µ2

G (ρ3
D and ρ3

LS), a ±20MeV variation in mc,b, and a ±0.04 variation in αs. The
uncertainty estimated in this way is reported in the last row of tables 1 and 2: in all cases it
is about five times larger than the current experimental one. Following the inclusion of the
NNLO calculation we can now slightly reduce this estimate. Keeping in mind the remaining
sources of theoretical uncertainty,2 one could use the same method with a ±10 MeV varia-
tion in mc,b and ±0.02 in αs; in this way the total theoretical uncertainty in `1 is reduced
by ∼ 25% wrt the last row in tables 1 and 2, while the improvement is only minor for `2,3.

3 Hadronic mass moments at NNLO

At the time ref. [10] was published not even all the O(αs) corrections to the hadronic
moments were available for ξ 6= 0, and therefore the original calculation in the kinetic
scheme was rather incomplete. The original code underwent a subsequent upgrade to
include the full O(β0α

2
s), computed numerically following [14] and implemented through

precise interpolation formulas, and in this form has been employed in recent HFAG analyses.
Here we discuss the implementation of the complete NNLO corrections and present a few
results. The code for the hadronic moments shares the same features of the leptonic code,
including flexibility in the choice of the scheme and of all the relevant scales.

We recall that due to bound state effects the invariant mass MX of the hadronic system,
which is measured experimentally, is related to the invariant mass mx and energy ex of the

2While the O(αsµ
2
π/m

2
b) contributions to `i are tiny [23], the O(1/m4,5

b ) corrections estimated in ref. [22]

are almost as large as the total error in the last row of tables 1 and 2.
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partonic (quarks and gluons) final state by

M2
X = m2

x + 2 ex Λ + Λ2
, (3.1)

where Λ = MB − mb. Since Λ ≈ 0.7GeV is relatively large, we do not expand in Λ/mb

and retain all powers of Λ. It follows from eq. (3.1) that the M2
X moments are linear

combinations of the moments of m2
x and ex, namely of the building blocks

Mij =
1

Γ0

1

m2i+j
b

∫
E`>Ecut

(m2
x −m2

c)
i ejx dΓ . (3.2)

For instance, in the case of the first normalized moment we have

〈M2
X〉 = m2

c + Λ2 +m2
b

M10

M00
+ 2mb Λ

M01

M00
.

Like in the case of leptonic moments, we consider only central higher moments, and specif-
ically

h1 = 〈M2
X〉, h2 = 〈(M2

X − 〈M2
X〉)2〉, h3 = 〈(M2

X − 〈M2
X〉)3〉 . (3.3)

The calculation of h1,2,3 requires the knowledge of the building blocks Mij with i + j ≤
1, 2, 3, respectively. They receive both perturbative and non-perturbative power-suppressed
contributions:

Mij = M
(0)
ij +

αs(mb)
π

M
(1)
ij +

(αs
π

)2 (
β0M

(BLM)
ij +M

(2)
ij

)
+M

(pow)
ij + . . . (3.4)

where the tree-level contributions M (0)
ij vanish for i > 0 and we have distinguished between

BLM and non-BLM two-loop corrections (β0 = 11− 2
3nl, nl = 3). Since we are interested

in the normalized moments, we will be mostly concerned with the combinations

χ
(a)
ij =

M
(a)
ij

M
(0)
00

−
M

(a)
00 M

(0)
ij

(M (0)
00 )2

, (3.5)

with a = 1,BLM, 2, pow, which enter the perturbative and non-perturbative expansion for
the normalized moments and are functions of ξ and r:

Mij

M00
=
M

(0)
ij

M
(0)
00

+
αs(mb)
π

χ
(1)
ij +

(αs
π

)2
(
β0χ

(BLM)
ij + χ

(2)
ij −

M
(1)
00

M
(0)
00

χ
(1)
ij

)
+ χ

(pow)
ij + . . . (3.6)

The first O(αs) calculation appeared in [40, 41] and was later completed in [14, 42, 43],
while the O(α2

sβ0) (BLM) calculation was presented in [14, 43]. Analytic expressions for
the O(αs) contributions to the building blocks Mij with i 6= 0 are available as functions
of ξ, r [14]. For the remaining building blocks and for all the O(α2

sβ0) we employ high-
precision two-parameters interpolation formulas to the results of the numerical code of
ref. [14], which are valid in the range 0 < ξ < 0.8 and 0.18 < r < 0.29. The use of these
approximations induces a negligible error.
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Figure 5. Combinations of two-loop non-BLM contributions χ(2)
01 , χ(2)

02 , and χ
(2)
10 entering the

hadronic moments: numerical evaluation [21] with blue errors and analytic one [19, 20] at ξ = 0
with red errors vs. fits (shaded bands). χ(2)

10 (lower panel) is shown for r = 0.2, 0.22, 0.24, 0.26, 0.28.

The complete NNLO results presented here are based on the on-shell scheme results of
refs. [19–21]. Ref. [19, 20] provides us with NNLO contributions to the first two ex moments
at ξ = 0, and we have the non-BLM contributions to several of the building blocks from
ref. [21]. In all the available cases we proceed in the same way as for leptonic moments and
perform fits to the tables of [21] and to the ξ = 0 of [19, 20]; some of the results are shown
in figure 5. Unfortunately not all the building blocks needed for the second and third M2

X
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Ecut
χ

(2)
01

χ
(2,BLM)
01

χ
(2)
10

χ
(2,BLM)
10

χ
(2)
02

χ
(2,BLM)
02

χ
(2)
11

χ
(2,BLM)
11

χ
(2)
12

χ
(2,BLM)
12

0 -0.24(1) -0.24 -0.23(1) -0.24 -0.24
0.6 -0.25(2) -0.24 -0.24(1) -0.24 -0.24
0.9 -0.26(3) -0.23 -0.24(1) -0.23 -0.24
1.2 -0.26(5) -0.23 -0.24(2) -0.23 -0.23
1.5 -0.14(20) -0.23 -0.17(7) -0.23 -0.24

Table 5. Ratio of various perturbative contributions relevant to the hadronic moments at various
Ecut values, in the on-shell scheme.

µ = 0 µ = 1GeV
h1 h2 h3 h1 h2 h3

LO 4.420 0.199 -0.03 4.420 0.199 -0.03
power 4.515 0.767 5.51 4.515 0.767 5.51
O(αs) 4.662 1.239 7.78 4.504 1.069 6.13
O(β0α

2
s) 4.834 1.661 9.51 4.493 1.301 6.39

O(α2
s) 4.811 1.603(5) 9.22(7) 4.495 1.222(5) 6.24(7)

tot error [10] 0.143 0.510 1.38

Table 6. The first three hadronic moments for the reference values of the input parameters and
Ecut = 0, in the on-shell and kinetic schemes.

moments are reported in the tables of [21]: the missing building blocks are M (2)
20 , M (2)

21 ,
and M

(2)
30 , which have been computed only for r = 0.25 and for ξ = 0 and 0.435 [44].

In order to deal with these three cases we observe that in the on-shell scheme the ratio
of non-BLM to BLM contributions to χij is always remarkably insensitive to the value of
ξ, as shown in table 5, and in fact much more insensitive than the analogous ratios to the
tree-level or one-loop contributions. In particular, this ratio is known precisely for i 6= 0
and varies by about ±0.01 in the range 0.2 < r < 0.28. In view of the other sources of
theoretical errors, it is therefore sufficient to estimate the missing χ(2)

20 , χ
(2)
30 , χ

(2)
21 using the

values of their ratios in the two available points, and to assign them a ±0.02 error:

χ
(2)
20

χ
(BLM)
20

= −0.215± 0.020,
χ

(2)
21

χ
(BLM)
21

= −0.215± 0.020,
χ

(2)
30

χ
(BLM)
30

= −0.205± 0.020

(3.7)
As illustrated in figure 5 by a few examples, the precision of the fits to the functions

χ
(2)
0i is similar to that of the functions η(2)

i entering the leptonic moments. On the other
hand, the numerical evaluation of [21] is very accurate in the case of χ(2)

ij for i > 0 and a
quadratic dependence on r has to be included in the functional form. As the cancellations
between different contributions are not as severe as for leptonic moments, the accuracy of
the non-BLM corrections is in fact a minor issue in the case of hadronic moments.

Numerically, the non-BLM corrections in the on-shell scheme tend to partly compen-
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µ = 0 µ = 1GeV
h1 h2 h3 h1 h2 h3

LO 4.345 0.198 -0.02 4.345 0.198 -0.02
1/m3

b 4.452 0.515 4.90 4.452 0.515 4.90
O(αs) 4.563 0.814 5.96 4.426 0.723 4.50
O(β0α

2
s) 4.701 1.105 6.85 4.404 0.894 4.08

O(α2
s) 4.682(1) 1.066(3) 6.69(4) 4.411(1) 0.832(4) 4.08(4)

tot error [10] 0.149 0.501 1.20

Table 7. The first three hadronic moments for the reference values of the input parameters and
Ecut = 1GeV, in the on-shell and kinetic schemes.

µ = 1GeV, mMS
c (2GeV) µ = 1GeV, mMS

c (3GeV)
h1 h2 h3 h1 h2 h3

1/m3
b 4.301 0.551 4.94 4.020 0.618 5.02

O(αs) 4.355 0.758 4.60 4.192 0.830 4.79
O(β0α

2
s) 4.304 0.936 4.21 4.169 1.015 4.49

O(α2
s) 4.328 0.865(4) 4.18(4) 4.245(1) 0.922(5) 4.38(4)

Table 8. The first three hadronic moments for the reference values of the input parameters and
Ecut = 1GeV, in the kinetic scheme with MS charm mass evaluated at µ = 2 and 3GeV, with
mc(2GeV) = 1.1GeV and mc(3GeV) = 1GeV. The uncertainty in the O(α2

s) is larger in the second
case because the mc/mb value is closer to the edge of the range considered in [21].

0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

Ecut HGeVL

0.0 0.5 1.0 1.5
0

2

4

6

8

10

Ecut HGeVL

Figure 6. Ecut dependence of leptonic (left) and hadronic (right) at NNLO in the kinetic scheme
with µ = µc = 1 GeV. The black, red, blue lines refer to `1, 10× `2,−10× `3 and to h1, 8× h2, h3,
respectively, each expressed in GeV to the appropriate power. The dotted lines (indistinguishable
for the leptonic moments) represent the predictions at O(α2

sβ0).

sate the BLM corrections and, as perturbative corrections in general, are more important
than in the leptonic case, see tables 6 and 7. The non-BLM effect is about 0.4%, 4%, 3%
for h1,2,3, respectively. In the kinetic scheme with µ = 1 GeV the non-BLM corrections
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Figure 7. µ and µc dependence of the first three hadronic central moments at Ecut = 1 GeV
normalized to their reference value µ = µc = 1 GeV. The three plots refer to h1,2,3, respectively.

to the first and third moment are slightly suppressed, while the non-BLM correction to
h2 is larger than in the on-shell scheme (7-9%), see also figure 6. It is worth reminding
that the perturbative contributions to the building blocks M11, M20 and M10 (all vanishing
at tree-level) are dominant in h2, and that these building blocks are known only at the
next-to-leading order level. This explains the large relative value of the non-BLM correc-
tions and implies a commensurate uncertainty. But the results shown in the tables hide an
important cancellation between the µ2

π and ρ3
D contributions to h2 for the reference values

of eq. (2.9): for Ecut = 1 GeV they are about +1.6 and −1.2 GeV4, respectively. Non-
perturbative contributions indeed dominate the higher moments h2,3, which are therefore
subject to much larger uncertainties from both higher order terms in the OPE and the
missing O(αs) corrections to the Wilson coefficients of the dimension 5 and 6 operators.

3.1 Scale dependence of hadronic moments

The µ and µc dependence of the hadronic moments in the kinetic scheme is shown in
figure 7 for Ecut = 1 GeV. The first moment has very small residual scale dependence,
like the leptonic moments. Since the second and third hadronic moments receive much
larger power and perturbative contributions, the larger µ and especially µc dependence is
not surprising. The results of the calculation of the moments when the charm mass is
renormalized in the MS scheme are illustrated in table 8 for two different values of the
charm scale µ̄. It is interesting that for µ̄ = 3 GeV the change of scheme induces large
non-BLM corrections, suggesting that µ̄ = 2 GeV might be a better choice. Figure 8 is the
analogue of figure 4 for the hadronic moments. The plot on the left shows the dependence
on the charm mass scale µ̄, when h1,2,3 are normalized to their values for µ̄ = 3 GeV,
mc(3 GeV) = 1 GeV. In this case the µ̄ dependence is even larger than in the leptonic case,
but again it should not be interpreted as indication of large higher order corrections in
the calculation of the moments and one should preferably use values µ̄ that minimize the
corrections to the moments.

Like the leptonic moments, the first hadronic moment can be used to constrain the
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Figure 8. Dependence of h1,2,3 at Ecut = 0 on a) the charm MS scale µ̄ (left panel) and b)
the scale of αs when the kinetic scheme is applied to mc as well (right panel). The moments are
normalized to their values at µ̄ = 3 GeV and µα = mb, respectively. The kinetic cutoff is fixed at 1
GeV. The black, red, blue lines refer to h1,2,3.

heavy quark masses. The higher hadronic moments are too sensitive to higher dimensional
expectation values to play a role in this respect. At reference values of the inputs and for
Ecut = 1 GeV, a small shift in mb,c induces

δh1 = −4.84 δmb + 3.08 δmc,

which vanishes for δmc/δmb ≈ 1.6. Therefore, h1 gives a constraint in the (mc,mb) plane
very similar to the leptonic central moments. The considerations on scheme dependence
made after eq. (2.10) apply to the first hadronic moment as well.

Finally, in the right-hand plot of figure 8 we show the dependence of the kinetic scheme
results on the MS scale of αs, µα, for fixed cutoff µ = µc = 1 GeV. The evolution of αs
is again computed at 4 loops, using αs(mb) = 0.22 as input. Due to its direct connection
with the size of the perturbative contributions, the µα dependence is small for h1. The
strong residual dependence of h2, on the other hand, suggests that in the absence of higher
order corrections, it would be prudent to choose µα close to mb/2.

The overall theoretical errors computed using the method proposed in [10] are reported
in the last row of tables 6 and 7: they are generally a factor two or more larger than
the present experimental ones. Cutting by half the variation in mb,c and αs, as it was
proposed in the previous section, leads to a 25-30% smaller total uncertainty on h1, while
the error on h2,3 is almost unaffected. The calculation of O(αs) corrections to the Wilson
coefficients and that of higher orders in the OPE [22], will have a stronger impact on the
total uncertainty. We also recall that the O(1/m4,5

b ) contributions to hi found in ref. [22]
are of the same order of magnitude of the total error in the last row of tables 6 and 7, while
those of O(αsµ2

π) [23] are comparatively small.

4 Mass scheme conversion

Semileptonic moments provide interesting constraints on the bottom and charm masses,
which can be compared and combined with other experimental determinations of these
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parameters. Since in many applications the quark masses are renormalized in the MS, we
will now review the relation between the kinetic and MS definitions of the heavy quark
masses. Accurate conversion formulas can also be used to study the scheme dependence of
our results. The perturbative relation between the quark pole mass and the kinetic mass
is known completely at O(α2

s) and O(α3
sβ

2
0) [38]. Combining it with the one between pole

and MS masses, known to O(α3
s) [45, 46], one gets the following NNLO expansion for the

ratio between the MS mass m(µ̄) and its kinetic counterpart m(µ)

m(µ̄)
m(µ)

= 1− 4
3
α

(nl)
s (M)
π

(
1− 4

3
µ

m(µ)
− µ2

2m(µ)2
+

3
4
L

)
+
(αs
π

)2 {[
−2

3
L+

(
1
3

ln
M

2µ
+

13
18

)
β

(nl)
0 − π2

3
+

47
18

] µ2

m2

+
[
−16

9
L+

(
8
9

ln
M

2µ
+

64
27

)
β

(nl)
0 − 8π2

9
+

188
27

] µ
m
− 4

3

nl∑
i

∆
(mi

m

)
+

7
12
L2 − 2L

9
−
[L2

8
+

13L
24

+ ln
M2

µ̄2

(
L

4
+

1
3

)
+
π2

12
+

71
96

]
β

(nl)
0

+
ζ(3)

6
− π2

9
ln 2 +

7π2

12
− 169

72
+
(

2
9

+
L

6

)
ln
m2
h

µ̄2

}
, (4.1)

where we have used

L = ln
[
µ̄2/m(µ)2

]
, β

(nl)
0 = 11− 2/3 nl, ∆(x) =

π2

8
x− 0.597x2 + 0.230x3.

The function ∆(x) arises from the two-loop diagrams with a closed massive quark loop in
the relation between pole and MS mass [39, 47]. It represents the correction to the massless
loop and is only relevant in the case of charm mass effects on the b mass. As mentioned
in footnote 1, such effects are not included in the conversion to the kinetic scheme, which
is performed assuming charm to be decoupled [38].3 There is also a dependence on mh,
the mass scale that defines the threshold between nl and nl + 1 quark flavors, generally set
equal to m. In the limit µ→ 0 the above formula relates the pole and the MS masses.

When the scale of the MS mass is equal to the MS mass itself and the coupling constant
is evaluated at the mass scale the above formula reduces to

m(m)
m(µ)

= 1− 4
3
αs(m)
π

(
1− 4

3
µ

m(µ)
− µ2

2m(µ)2

)
+
(αs
π

)2 {[(1
3

ln
m

2µ
+

13
18

)
β

(nl)
0 − π2

3
+

23
18

] µ2

m2

+
[(8

9
ln
m

2µ
+

64
27

)
β

(nl)
0 − 8π2

9
+

92
27

] µ
m
−
(π2

12
+

71
96

)
β

(nl)
0

+
ζ(3)

6
− π2

9
ln 2 +

7π2

12
+

23
72
− 4

3

nl∑
i

∆
(mi

m

)}
. (4.2)

3Finite charm mass O(α2
s) effects in the transition between pole and kinetic mass can in principle

computed from eq. (11) of [38].
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This result differs from those reported in [9, 38] by a term
(
αs
π

)2 (π2

18 + 71
144

)
. The difference

can be traced back to a mismatch between the number of light quarks considered in the
MS-pole relation. In the limit µ → 0, eq. (4.2) reproduces the standard two-loop MS-
pole relation, cf. eq. 16 of [39] and [47]. The BLM corrections of O(α3

sβ
2
0) have been also

considered in [9, 38].

4.1 Charm mass conversion

In the case of the charm mass we employ the two above formulas with nl = 3, neglecting
all ∆ functions. Eq. (4.2) with αs(mc) = 0.41 and mc(1 GeV) = 1.15 gives

mc(mc) = 1.150 + 0.108αs + 0.071α2
s

= 1.329 GeV , (4.3)

where the one and two-loop contributions are identified by the subscript. Unsurprisingly,
the perturbative series converges poorly. One easily verifies that BLM corrections dominate
the two-loop contribution and that the result depends strongly on the scale of αs. The ap-
parent convergence of the perturbative series can be drastically improved if one normalizes
the charm mass at higher MS scales. In fact, in the evolution of mc(µ̄) to low scales the
effect of RGE resummation becomes significant, but these contributions are absent from
the fixed order NNLO calculation of the moments from which the kinetic mass could be
extracted. In order to convert the results of a fit to the semileptonic moments in the kinetic
scheme into the MS scheme (or vice versa) it is therefore important to adopt a scale µ̄ above
2 GeV. To illustrate the point let us use µ̄ = 3 GeV and adopt the central value of [29],
mc(3GeV) = 0.986 GeV. Inverting eq. (4.1) and employing α

(3)
s (3GeV) = 0.247 (which

corresponds to α(4)
s (mb) = 0.22 for mh = 1.5 GeV), we obtain the kinetic charm mass

mkin
c (1 GeV) = 0.986 + 0.083αs + 0.022α2

s
= 1.091 GeV (4.4)

where the final result depends little on the scale of αs and on its exact value. The difference

mc(1 GeV)−mc(3GeV) = (0.105± 0.015) GeV (4.5)

depends of course on the input mc(3GeV): for values between 0.95 and 1.05 GeV the
central value moves from 0.096 to 0.121 GeV.

Using a lower scale µ̄ = 2 GeV the difference between kinetic and MS is even smaller.
Using mc(2GeV) = 1.092 GeV, obtained from the four-loop evolution of the result of [29],
one finds

mkin
c (1 GeV) = 1.092 + 0.037αs − 0.013α2

s
= 1.116 GeV (4.6)

with very small dependence on the scale of αs. The difference between the final results in
eqs. (4.4) and (4.6) is mostly due to our use of four-loop RGE to connect the inputs at
µ̄ = 3 and 2 GeV. Our estimate is

mc(1 GeV)−mc(2GeV) = (0.024± 0.010) GeV, (4.7)

whose central value varies between 0.017 and 0.032 GeV for mc(2GeV) in the range 1.05
to 1.15 GeV. Eqs. (4.5), (4.7) can be used to compare accurately the predictions for the
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Figure 9. M dependence of mb(mb) in case (c) for mb(1 GeV) = 4.55 GeV. The blue, red, black
curves refer to one-loop, BLM, two-loop, respectively.

semileptonic moments when the kinetic and MS schemes are used for mc. It turns out that
the size of the scheme dependence found in this way is similar to the uncertainty due to
scale dependence investigated in sections 2 and 3.

Once the relation between kinetic and MS masses is known at large µ̄ one can use the
four-loop RGE together with eq. (4.4), (4.6) to compute mc(mc). Using the more precise
eq. (4.6) we obtain

mc(1 GeV)−mc(mc) = 0.16± 0.02 GeV.

4.2 Bottom mass conversion

In the case of the relation between MS and pole bottom mass the effects related to the
charm mass in closed quark loops and described by ∆(r) are small but not negligible.
For realistic values of the charm to bottom mass ratio ∆(r) compensates up to 40% of
the light quark contribution, i.e. the term multiplied by nl in the fourth line of eq. (4.1).
Since the corresponding effects are not included in the definition of kinetic mb, in applying
eqs. (4.1), (4.2) to the bottom mass we therefore have the following options

(a) we decouple charm completely and set nl = 3, ∆(r) = 0;

(b) we treat charm as massless and set nl = 4, ∆(r) = 0;

(c) we decouple charm in the kinetic part of the calculation only, set nl = 3, and replace
∆(r)→ ∆(r)− π2

24 −
71
192 .

It is clear that the correct result lies somewhere between (a) and (b). On the other hand,
since the NNLO expressions of the semileptonic moments have been derived under the
assumption of charm decoupling in the relation between pole and kinetic masses, but we
have otherwise kept the charm mass effects, option (c) is the most appropriate to convert
the kinetic mass extracted from a NNLO fit to semileptonic moments into the MS scheme.

– 21 –



J
H
E
P
0
9
(
2
0
1
1
)
0
5
5

αs(mb)
mb(1 GeV) 0.21 0.22 0.23

4.500 4.150 4.127 4.103
4.550 4.194 4.171 4.147
4.600 4.239 4.216 4.192

Table 9. mb(mb) for different values of the kinetic mass and of αs(mb) in case (c) with M =
2.5 GeV.

Let us now illustrate the three options computing the MS bottom mass from the kinetic
one at a reference value µ = 1 GeV. We useM = mb(1 GeV) = 4.55 GeV and αs(mb) = 0.22

mb(mb) = 4.550− 0.290αs − 0.073α2
s

= 4.187 GeV, (a)

4.550− 0.290αs − 0.060α2
s

= 4.200 GeV, (b) (4.8)

4.550− 0.290αs − 0.057α2
s

= 4.202 GeV, (c)

from which we see that option (c) is numerically very close to (b). The BLM corrections are
large in eq. (4.8) but partly (50%) compensated by sizable non-BLM ones. The O(α3

sβ
2
0)

corrections [38] shift mb(mb) further down by about 20 MeV. The dependence of the NNLO
result on the scale of αs is shown in figure 9: it suggests a residual uncertainty of about
40 MeV. Table 9 shows the value of mb(mb) for different values of the inputs, using for αs
a lower scale than mb itself, M = 2.5 GeV. The dependence on r is negligible.

If one computes mb from mb(1 GeV) at a scale around 3 GeV the perturbative correc-
tions are smaller because the numerical values of the masses get closer. For instance one
gets mb(2.8 GeV) = 4.550 + 0.023αs −0.024α2

s
= 4.550. This result can be evolved up using

four-loop RGE, finding mb(mb) = 4.182, which is consistent with the values in table 9 but
has arguably a slightly smaller error. Our final estimate is

mb(1 GeV)−mb(mb) = (0.37± 0.03) GeV,

The error also includes in quadrature the parametric αs error, δαs(mb) = 0.007.

5 Summary

I have presented the results of a complete O(α2
s) calculation of the moments of the lepton

energy and hadronic invariant mass distributions in semileptonic B → Xc`ν decays. The
numerical Fortran code4 that has been developed allows us to work in any perturbative
scheme; I have adopted the kinetic scheme, but have also considered the option of the
MS scheme for the definition of the charm mass. The non-BLM corrections are generally
small and within the expected range. The new code will allow for a NNLO fit to the
semileptonic moments, with the possible inclusion of precise mass constraints, in a variety
of perturbative schemes. To facilitate the inclusion of mass constraints obtained in the

4The Fortran code is available from gambino@to.infn.it
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MS scheme, I have critically reexamined the conversion from that scheme to the kinetic
scheme for the heavy quark masses. Additional details concerning the NNLO prediction of
the total rate can be found in the appendix.

I have performed a detailed study of the dependence of the results on various unphysical
scales, obtaining useful indications on the size of the residual perturbative uncertainty in the
moments, which is now definitely smaller than the uncertainty due to higher dimensional
contributions in the OPE and to O(αs) contributions to the Wilson coefficients of dimension
5 and 6 operators. Fortunately, work on both these aspects is progressing and there are
good prospects for a more accurate prediction of the inclusive semileptonic moments and
a more precise determination of |Vcb|.
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A Total rate at NNLO and |Vcb|

The determination of |Vcb| from inclusive semileptonic B decays is based on the expression
for the charmed total semileptonic width. In this appendix we update the numerical analy-
sis in the kinetic scheme given in ref. [9] with the inclusion of the exact two-loop correction
computed in [18–21]. Keeping only terms through O(1/m3

b), the general structure of the
width is (see [9] and refs. therein)

Γ[B̄ → Xceν̄] =
G2
F m

5
b

192π3
|Vcb|2g(ρ) (1 +Aew)

[
1 +

αs(mb)
π

p(1)
c (ρ, µ) +

α2
s

π2
p(2)
c (ρ, µ)

− µ2
π

2m2
b

+
(

1
2
− 2(1− ρ)4

g(ρ)

)
µ2
G −

ρ3LS+ρ3D
mb

m2
b

+
d(ρ)
g(ρ)

ρ3
D

m3
b

 , (A.1)

where ρ = (mc/mb)2, g(ρ) = 1 − 8ρ + 8ρ3 − ρ4 − 12ρ2 ln ρ, d(ρ) = 8 ln ρ − 10ρ4

3 + 32ρ3

3 −
8ρ2 − 32ρ

3 + 34
3 , and all the masses and OPE parameters are defined in the kinetic scheme

with cutoff µ. The expression for the width is µ-independent through O(α2
s). The term

Aew = 2α/π lnMZ/mb ' 0.014 is due to the electromagnetic running of the four-fermion
operator from the weak to the b scale and represents the leading electroweak correction [48].

The results of the two-loop BLM and non-BLM perturbative corrections [14, 19–21] in
the on-shell scheme are well approximated in the relevant mass range by a simple interpo-
lation formula, valid for 0.17 < r < 0.3,

p(2)
c (r, 0) = (−3.381 + 7.15 r − 5.18 r2)β0 + 7.51− 21.46 r + 19.8 r2.
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Applying these results and the well-known one-loop contribution [51] to the kinetic scheme
calculation with µ = 1 GeV, mb = 4.6 GeV, and r = 0.25, the NNLO perturbative series
becomes

Γ[B̄ → Xceν̄] ∝ 1− 0.96
αs
π
− 0.48β0

(αs
π

)2
+ 0.81

(αs
π

)2
≈ 0.916 (A.2)

where β0 = 9 corresponds to three light flavors, and we have used αs(mb) = 0.22 for
the numerical evaluation. For comparison, ref. [9] used the same inputs and had −1.0 as
coefficient of α2

s and the global perturbative factor of eq. (A.2) was 0.908. Of course, the
difference is due to the recent complete NNLO calculation of [18–20]. As already discussed,
finite charm quark mass effects in the NNLO conversion to the kinetic scheme have not
been included. They can be expected to decrease the above value by up to 0.002. Higher
order BLM corrections are also known [49, 50] and have been studied in the kinetic scheme
where the resummed BLM result is numerically very close to the NNLO one [9]. The
residual dependence of the overall perturbative factor on the scale of αs is mild: changing
it between mb and mb/2 decreases by less than 1%, which represents a reasonable estimate
for the residual perturbative uncertainty.

We also provide an approximate formula for |Vcb| in terms of the OPE parameters and
αs. Using τB = 1.582 ps and BRsl,c = 0.105 (the measured semileptonic branching ratio
after subtraction of b→ ulν transitions) we have

|Vcb|
0.0416

= 1 + 0.275 (αs − 0.22)− 0.65 (mb − 4.6) + 0.39 (mc − 1.15) + 0.014 (µ2
π − 0.4)

+0.055 (µ2
G − 0.35) + 0.10 (ρ3

D − 0.2)− 0.012 (ρ3
LS + 0.15), (A.3)

where all dimensionful quantities are expressed in GeV to the appropriate power and are
understood in the kinetic scheme with µ = 1 GeV. The numerical accuracy of this formula
is limited to 1% in the 1σ range of the current HFAG fits [5, 6]. The combination of mc,b

in the above expression is very similar to the one that appears in the leptonic moments,
see eq. (2.10).

If the MS scheme is adopted for the charm mass with mc(2 GeV) = 1.12 GeV and
mb(1 GeV) = 4.6 GeV, the NNLO perturbative series expressed in terms of αs(mb) becomes

Γ[B̄ → Xceν̄] ∝ 1− 1.27
αs
π
− 0.33β0

(αs
π

)2
− 0.29

(αs
π

)2
≈ 0.895. (A.4)

A simple test of the residual scheme dependence consists in comparing the products of the
function g(ρ) with the overall perturbative factor, eqs. (A.2), (A.4), computed in different
schemes for mc. This product should be scheme independent when the same bottom
mass is employed. In the case considered here the values mc(1 GeV) = 1.15 GeV and
mc(2 GeV) = 1.12 GeV satisfy eq. (4.7) and the product is scheme independent to excellent
approximation. For a larger MS scale µ̄ = 3 GeV the perturbative expansion converges
slower, but the scheme dependence is well within the 1% uncertainty estimate.
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