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1 Introduction

One common feature in New Physics models is the conservation (or near conservation)

of a new quantum number. Often it is associated with a parity symmetry, like R-parity

in supersymmetric models or T-parity in Little Higgs ones. Such conserved parity-like

symmetries serve two basic model-building purposes: firstly, they forbid odd-parity tree

level corrections to electroweak precision observables, and secondly, they make the lowest

lying odd-parity state stable, thus providing a possible dark matter candidate. The new

charge may alternatively come from a continuous symmetry, a global symmetry or a new

gauge symmetry, for example, and still fulfill the same purposes.

Regardless of the specific model realization, we can imagine that a new conserved

quantum number is discovered at LHC.

In this article, we wish to take some first steps towards addressing a general phe-

nomenological question: if a new apparently conserved charge should be discovered, is it

possible to determine experimentally whether it arises from a discrete, a global or a gauge

symmetry? Specifically, is it possible to determine whether it is the source of a new field?

In principle, a continuous symmetry has additive quantum number conservation

whereas a discrete one has multiplicative conservation. To distinguish between gauge and
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global symmetries one could look for Gauge bosons, for Goldstone bosons and in general at

the particle spectrum. The new sector however may be ”hidden”. That is, the carriers of

the new symmetry, for the two basic reasons mentioned above, could lie entirely within the

new sector and be neutral under (or have very weak) SM interactions. Indeed, a new unbro-

ken symmetry would have to be invisible or else it would have already been found. Thus any

radiation or other dynamic phenomena associated with it would be invisible to SM matter.

If the charge did radiate in the new sector, would we be still be able to observe indirectly

the effects of the hidden radiation? How would the kinematic distributions of the visible

particles be affected? Could we extract information from these kinematic distributions

about the dynamics within the hidden sector? Could one distinguish Abelian from non-

Abelian gauge groups, study the different particle (or unparticle) contents or measure the

strength of the couplings? This could lead to a better understanding of the higher-energy

dynamics, the ultraviolet completion of the theory, the symmetries involved, and possibly

even the mechanism by which they are broken.

The ideal terrain to begin to explore these effects is Hidden Valley models [1]. We

extend this name to the class of models satisfying the following criteria. First, there must

be a new light hidden sector (the valley), decoupled from the visible SM one, that has

not yet been discovered because of some barrier. This can be an energy barrier or of

another nature, e.g. symmetry-forbidding tree-level couplings. Second, the decoupling of

the new hidden valley sector from the visible SM one must happen at relatively low energies,

around the TeV scale, in such a way that the cross sections for Standard visible particles

disappearing into the hidden sector (and vice versa) are small enough to evade the current

experimental limits, and yet large enough to be observable at LHC. These experimental

limits are of course model dependent, as we will discuss in sections 2 and 4.

Typically, the valley particles ”v-particles” are charged under a valley group Gv and

neutral under the SM group GSM, and the SM particles are neutral under Gv. In order to

have interactions between the two sectors there has to be a ”communicator” which couples

to both SM and valley particles. A common choice is to have a coupling via a Z ′ or via

loops of heavy particles carrying both GSM and Gv charges.

Examples of Hidden Valleys can be found in many models, such as String Theory [3],

Twin Higgs models [4], folded SUSY [5, 6], and Unparticle models [2, 7].

Hidden Valley scenarios can naturally provide candidates for Dark Matter and can eas-

ily fit cosmological constraints. Just to give an example, in [1] the v-interactions ensure that

all particles efficiently decay to the lightest mesons. These mesons are allowed to annihilate

to neutral π0
vs, which can then tunnel back into the SM. So long as the lifetime of the π0

v is

τ ≪ 1 sec, the number of πs left will decay exponentially before big-bang nucleosynthesis.

The reason why these scenarios are ideal to study the effects of radiation is the large

disparity in the masses of the communicators and the v-particles. Typically, the communi-

cator has a mass around the decoupling scale, say the TeV scale, while the v-particle mass

may be as low as 1–10 GeV. If both the communicator and the v-particle are charged under

a new gauge Gv, they will radiate gauge bosons, and the larger their mass ratio the larger

the amount of phase space available for the radiation, both in the normal and in the hidden

sector. Thus if any effect at all are to be observable, it would be in this kind of scenario.
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We have devised a Hidden Valley toy model to tackle the issue, and have implemented

it in the Pythia 8 Monte Carlo event generator [9]. The implementation allows for different

valley flavour contents, particle masses, gauge groups and v-gauge couplings. In this way

one may accommodate a range of different Hidden Valley scenarios.

MC event generators offer flexible approaches to model radiation and parton shower

evolution in great detail. One new central feature in the Pythia 8 implementation is the

“competition” mechanism between the hidden and the SM radiation, which is implemented

as an “interleaved” shower, wherein different kinds of emissions, SM and hidden, can alter-

nate if viewed in terms of a common shower evolution scale. As a consequence, subsequent

emissions in the visible sector, of gluons or photons, will then tend to have a lower energy

than they would have had, had the hidden radiation not been there. This is the key mech-

anism whereby we gain access to the information about the radiation in the hidden sector.

The intention of this article is not a full-fledged experimental analysis of how a new

sector should be discovered and explored, neither with respect to potential background pro-

cesses nor to detector-specific capabilities — since our implementation is publicly available,

we safely leave it to the experimental community to assess. What we want to ascertain

here is if there are observable signals of hidden valley radiation at all, at the simple parton

and hadron levels.

It is not trivial to decide which visible particle kinematic distributions one should

study to reveal valley radiation effects and to discriminate between different models. For

instance, at an e+e− collider the rise of the communicator pair-production cross section

near threshold could allow to determine its spin, and thereafter the absolute size of the cross

section could suggest the presence of new “colour” factors — recall that the pair-production

of particles in the fundamental representation of a new SU(N) group gives a factor N in

the cross section. Such measurements would not directly probe the hidden sector, however:

they would not reveal whether a new group is gauged, or what is the coupling strength in

it. For a hadron collider, like the LHC, the uncertainty in the event-by-event subcollision

energy
√

ŝ undermines analyses solely based upon the value of cross-section. The best

strategy is thus to complement cross-section with invariant mass measurements and the

study of other boost-invariant quantities (for a recent review see the proceedings [16]).

This is the reason why we choose to study MT2 [15] distributions, which give relations

between communicator and v-particle mass. These observables are specifically designed to

be boost-invariant and to deal with BSM models in which more than one particle escapes

detection, such as in our toy model. But we also study ”hidden observables”, like the in-

variant mass distribution of a hidden particle together with its associated hidden radiation.

The effects of the hidden radiation on these distributions and how much one may

observe depends on the details of the scenario considered, of course, but also depend

heavily upon the collider type considered, on its center of mass energy, and on its integrated

luminosity L. We consider two different LHC scenarios, one for the early data (the first

18 to 24 months at 7TeV with an expected integrated luminosity L = 1 fb−1) and one for

later data (
√

s = 14 TeV and integrated luminosity L = 100 fb−1). The conclusions in the

two cases will be quite different. For e+e− collisions we will mainly refer to an ILC at

800 GeV, though we mention CLIC production cross sections at 3 TeV.
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The paper is organized as follows: we give a first overview of the various valley scenarios

in the literature, in section 2, and then describe the tools that are now available in Pythia

in section 3. In section 4 we explain the model and the main features of interleaved SM and

hidden radiation. Finally, in the last two sections we study the effects of hidden radiation on

collider phenomenology. In section 5 we discuss the e+e− case and in section 6 the LHC one.

2 Hidden Valley scenarios

As mentioned in the introduction a Hidden Valley is a light hidden sector, consisting of

particles which, depending on the model, might have masses as low as 10 GeV. The detailed

spectrum of the v-particles and their dynamics within the hidden valley depends upon the

valley gauge group Gv, the spin and number of particles present in the theory, and the

representation they belong to.

The effects of the hidden sector on the visible particle spectra will depend upon the way

the hidden sector communicates with the SM, whether it is via a Higgs, multiple Higgses,

a Z ′, heavy sterile neutrinos or via loop of heavy particles charged under both SM and

valley gauge interactions.

We would like to give a panoramic view of the different Hidden Valley scenarios without

going into details and to underline those features that may be simulated with the new tools.

The simplest possibility is a QCD-like scenario, with a strong coupling constant, which

may run like the QCD coupling does, with QCD-like hadronization generating valley pions,

v-ηs, v-Ks, v-nucleons etc. The Standard Model SU(3)c × SU(2) × U(1) sector could

couple ultra-weakly with the hidden SU(N) sector via a neutral Z ′. This scenario was

investigated by Strassler and Zurek with tools analogous to the ones used to simulate

QCD [1]. It displays some rather startling features. For instance, a v-π could have a

displaced decay in the muon spectrometer in the ATLAS detector, resulting in a large

number of charged hadrons traversing the spectrometer, or it could decay in the hadronic

calorimeter producing a jet with no energy deposited in the electromagnetic calorimeter

and no associated tracks in the inner detector. Experimental studies for these scenarios

are currently under way, by the D0, CDF, LHCb, ATLAS and CMS collaborations.

Typical hidden valley-like signatures appear also in Unparticle models with mass

gaps [7]. These models display a conformal dynamic above the mass gap, and a hid-

den valley behaviour when the conformal symmetry is broken. Regardless of the dynamics

above the mass gap, whether it is strongly coupled or weakly coupled, the signatures are

similar to the ones mentioned in the previous scenario (displaced vertices and missing en-

ergy signals). This is because only the lower energy states, light stable hidden hadrons

can decay back into Standard Model particles. The higher energy states, be they narrow

resonances or a continuum of resonances, decay rapidly to these lower light stable hadrons.

As for the previous scenario, a parton shower is a key tool to study these models, not so

much to determine the phenomenology qualitatively, but because it the only element of the

hidden dynamics which is sensitive to the higher-energy conformal (or next-to-conformal)

dynamics. The conformal dynamics will be reflected in the parton shower evolution, which
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can be rather different from the regular QCD one, especially in theories with a strong

dynamics above the mass gap.

There are of course many other Hidden-Valley related models, such as Quirky mod-

els [8], just to give an example, in which the parton shower evolution does not play the

key role it does in the previous cases. Typically their phenomenology is better captured in

terms of string dynamics and string fragmentation.

In this paper we do not address the issue of string fragmentation or hadronization. Our

main focus is on the parton shower, as this best captures the nature of the hidden radiation.

The model we built to investigate the existence of a this new radiation exploits but

a few features common in many hidden valley scenarios: the presence of a new unbroken

hidden gauge group, of a heavy communicator, charged under both SM and hidden sector

gauge group and decaying into a visible and an invisible light particle, charged only under

the new gauge group. These characteristics fit many Hidden Valley models, we however

make an additional assumption, which is that the production cross sections1 should be

large enough for the effects of the hidden radiation to be discernable. This model was then

implemented in the Pythia event generator. Notice however, that the shower mechanism

we implemented is rather different from the ones mentioned above, as we will discuss in

the next section.

3 Monte Carlo tools in PYTHIA 8

In order to allow detailed studies of a set of scenarios, the models have been implemented

in the Pythia event generator, and will be publicly available from version 8.140 onwards.

3.1 Particle content

For simplicity we assume that the HV contains either an Abelian U(1) or a non-Abelian

SU(Nc) gauge group, with spin 1 gauge bosons. The former group could be unbroken or

broken, while the latter always is assumed unbroken. Casimir constants could be general-

ized to encompass other gauge groups, should the need arise, but for now we do not see

that need. The gauge bosons are called γv and gv, respectively.

A particle content has been introduced to mirror the Standard Model flavour structure.

These particles, collectively called Fv, are charged under both the SM and the HV symmetry

groups. Each new particle couples flavour-diagonally to a corresponding SM state, and has

the same SM charge and colour, but in addition is in the fundamental representation of

the HV colour, see table 1. Their masses and widths can be set individually. It would also

be possible to expand the decay tables to allow for flavour mixing.

These particles can decay to the corresponding SM particle, plus an invisible, massive

HV particle qv, that then also has to be in the fundamental representation of the HV colour:

Fv → fqv. The notation is intended to make contact with SM equivalents, but obviously

it cannot be pushed too far. For instance, not both Fv and qv can be fermions. We allow

the Fv to have either of spin 0, 1/2 and 1. Currently the choice of qv spin is not important

1We will discuss the production cross sections in section 4.
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name partner code name partner code

Dv d 4900001 Ev e 4900011

Uv u 4900002 νEv νe 4900012

Sv s 4900003 MUv µ 4900013

Cv c 4900004 νMUv νµ 4900014

Bv b 4900005 TAUv τ 4900015

Tv t 4900006 νTAUv ντ 4900016

gv 4900021

γv 4900022

qv 4900101

Table 1. The allowed particle content in the HV scenarios, with their SM partners, where relevant.

The code is an integer identifier, in the spirit of the PDG codes, but is not part of the current

Amsler:2008zzb standard.

but, for the record, it is assumed to be spin 1/2 if the Fv is a boson and either of spin 0

and 1 if Fv is a fermion.

3.2 Production processes

The HV particles have to be pair-produced. The production processes we have imple-

mented are the QCD ones, gg → QvQv and qq → QvQv, for the coloured subset Qv of

Fv states, and the electroweak ff → γ∗/Z0 → FvF v for all states. All of them would

contribute at a hadron collider, but for a lepton one only the latter would be relevant.

Each process can be switched on individually, e.g. if one would like to simulate a scenario

with only the first Fv generation.

Note that pair production cross sections contain a factor of Nc, with Nc = 1 for an

U(1) group, for the pair production of new particles in the fundamental representation of

the HV gauge group, in addition to the ordinary colour factor for Qv. Other things equal,

this could be used to determine Nc from data, as already discussed. For the case of a spin

1 Fv it is possible to include an anomalous magnetic dipole moment, κ 6= 1.

The spin structure of the Fv → fqv decay is currently not specified, so the decay is

isotropic. Also the Yukawa couplings in decays are not set as such, but are implicit in the

choice of widths for the Fv states.

The kinematics of the decay is strongly influenced by the qv mass. This mass is almost

unconstrained, and can therefore range from close to zero to close to the Fv masses. We

will assume it is not heavier than them, however, so that we do not have to consider the

phenomenology of stable Fv particles.

3.3 Parton showers

Both the Fv and the qv can radiate, owing to their charge under the new gauge group, i.e.

Fv → Fvγv and qv → qvγv for a U(1) group, and Fv → Fvgv and qv → qvgv for a SU(Nc)

one. In the latter case also non-Abelian branchings gv → gvgv are allowed. Currently both

γv and gv are assumed massless, but a broken U(1) with a massive γv is foreseen.

– 6 –
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These showers form an integrated part of the standard final-state showering machin-

ery. Specifically, HV radiation is interleaved with SM radiation in a common sequence of

decreasing p⊥. That is, at the stage before the Fv’s decay, they may radiate g, γ and γv/gv ,

in any order. For the i’th emission, the p⊥ evolution starts from the maximum scale given

by the previous emission. The overall starting scale p⊥0 is set by the scale of the hard

process. Thus the probability to pick a given p⊥ takes the form

dP
dp⊥

=

(

dPQCD

dp⊥
+

dPQED

dp⊥
+

dPHV

dp⊥

)

exp

(

−
∫ p⊥i−1

p⊥

(

dPQCD

dp′⊥
+

dPQED

dp′⊥
+

dPHV

dp′⊥

)

dp′⊥

)

(3.1)

where the exponential corresponds to the Sudakov form factor. Implicitly one must also

sum over all partons that can radiate.

To be more precise, radiation is based on a dipole picture, where it is a pair of partons

that collectively radiates a new parton. The dipole assignment is worked out in the limit

of infinitely many (HV or ordinary) colours, so that only planar colour flows need be

considered. Technically the total radiation of the dipole is split into two ends, where one

end acts as radiator and the other as recoiler. The recoiler ensures that total energy and

momentum is conserved during the emission, with partons on the mass shell before and

after the emission. In general the dipoles will be different for QCD, QED and HV.

To take an example, consider qq → QvQv, which proceeds via an intermediate s-

channel gluon. Since this gluon carries no QED or HV charge it follows that the QvQv pair

forms a dipole with respect to these two emission kinds. The gluon does carry QCD octet

charge, however, so QvQv do not form a QCD dipole. Instead each of them is attached to

another parton, either the beam remnant that carries the corresponding anticolour or some

other parton emitted as part of the initial-state shower. This means that QCD radiation

can change the invariant mass of the QvQv system, while QED and HV radiation could

not. When a γ or γv is emitted the dipole assignments are not modified, since these bosons

do not carry away any charge. A g or gv would, and so a new dipole would be formed. For

QCD the dipole between Qv and one beam remnant, say, would be split into one between

the Qv and the g, and one further from the g to the remnant. For HV the QvQv dipole

would be spit into two, Qvgv and gvQv. As the shower evolves, the three different kinds of

dipoles will diverge further.

Note that, in the full event-generation machinery, the final-state radiation con-

sidered here is also interleaved in p⊥ with the initial-state showers and with multiple

parton-parton interactions.

There is made a clean separation between radiation in the production stage of the

FvF v pair and in their respective decay. Strictly speaking this would only be valid when

the Fv width is small, but that is the case that interests us here. In the decay Fv → fqv the

QCD and QED charges go with the f and the HV one with qv. For all three interactions

the dipole is formed between the f and the qv, so that radiation preserves the Fv system

mass, but in each case only the relevant dipole end is allowed to radiate the kind of gauge

bosons that go with its charge. (Strictly speaking dipoles are stretched between the f or

qv and the “hole” left behind by the decaying Fv. The situation is closely analogous to

t → bW+ decays.)

– 7 –
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Figure 1. An EvĒv pair is produced via Z/γ⋆. Since Ev is charged under both SU(2)×U(1) and

SU(3)v, it radiates both γs and gvs. It eventually decays into e and qv. These then each radiate

into their respective sector. Notice that qv here refers to a spin 0 particle.

The HV shower only contains two parameters. The main one is the coupling strength

αv , i.e. the equivalent of αs. This coupling is taken to be a constant, i.e. no running

is included.

From a practical point of view it is doubtful that such a running could be pinned down

anyway, and from a theory point of view it means we do not have to specify the full flavour

structure of the hidden sector. The second parameter is the lower cutoff scale for shower

evolution, by default chosen the same as for the QCD shower, p⊥min = 0.4 GeV.

The HV showers are not matched onto higher-order matrix elements for the emissions

of hard γv/gv in the production process, and so contain an element of uncertainty in that

region. For the decay process the matching to first-order matrix elements has been worked

out for all the colour and spin combinations that occur in the MSSM [13], and is recycled

for the HV scenarios, with spin 1 replaced by 0 for non-existing (in MSSM) combinations.

This means that the full phase space is filled with (approximately) the correct rate. Some

further approximations exists, e.g. in the handling of mass effects in the soft region. The

chosen behaviour has been influenced by our experience with QCD, however, and so should

provide a good first estimate. More than that we do not aim for in this study.

4 The model: SM and SU(3)v radiation

To be specific, in the following we explore two similar Hidden Valley experimental scenarios.

In the first, the communicator Ev is a spin 1/2 particle charged under both the SM SU(2)×
U(1) and the valley gauge group SU(3)v . We assume it has the same SM charges an electron

would have, so it may be pair-produced in e+e− collisions, via Z/γ⋆. Under the unbroken

SU(3)v , it transforms like a 3, so it radiates both γs and massless hidden valley gluons

gvs. After the parton shower, the Ev eventually decays into a visible SM electron e and

an invisible spin 0 valley “quark” qv. This qv belongs to the fundamental representation of

SU(3)v and is not charged under the SM gauge group, so it only radiates gvs. See figure 1.

– 8 –
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Figure 2. Pair production of hidden valley Dvs. Each Dv can radiate gs and gvs, and eventually

decays Dv → qvd. The visible d then can radiate further gs and the invisible qv further gvs.

The key feature is interleaved radiation, already introduced above. In the current

context it works as follows. Once the Ev has been produced it may radiate a SM γ, say.

This radiation will subtract energy from the Ev and the following emission, be it another

SM photon or a valley gluon, will have less phase space to radiate into. In an analogous

way, assuming a valley gv is emitted next, it subtracts energy from Ev and affects the

following emissions which, again, could be either visible or invisible.

In the second scenario the communicator between SM sector and Hidden Valley sector

is a quark-like, spin 1/2 object Qv, belonging to the (3,3) representation of the gauge group

SU(3)c ×SU(3)v . The Qvs are pair produced (mostly) via strong interactions (gluon-gluon

or qq̄ fusion). We choose the scenario in which only one vector-like Qv is produced, the

Dv . This Dv emits massless valley gluons (since the SU(3)v is assumed to be unbroken)

and these may in turn radiate more gvs. During the shower evolution, both types of gluons

are radiated until finally each Dv decays into a visible SM d quark and an invisible spin 0

valley qv. The decays are flavour diagonal, Dv → d + qv.

The SM quark d transforms as a (3,1) under SU(3)c × SU(3)v , so it radiates only SM

gluons, while the valley qv belongs to the (1,3) representation of SU(3)c × SU(3)v , so not

having any SM color charge, it radiates only gvs, see figure 2.

In both scenarios there are just three parameters left to vary: the size of the valley

coupling constant αv, the masses of the communicator particles MEv
or MDv

and the mass

of the valley scalar Mqv
.

Below, in table 2, we list the total production cross sections at different colliders: e+e−

with
√

s = 800 GeV or
√

s = 3TeV, and LHC with
√

s = 7TeV or
√

s = 14 TeV for some

typical MEv
,MDv

mass values.

We also show the spin dependence of the EvĒv production cross section at e+e−

colliders for the three cases: Fv spin 0 and qv spin 1/2, Fv spin 1/2 and qv spin 0 or 1, and

Fv spin 1 and qv spin 1/2, figure 3.

The higher the spin, the larger the cross section. Indeed, the curve corresponding to

Ev spin 0 has been scaled by a factor 30 to emphasize the similarity in shape with the

spin 1 curve. Note that the processes proceed through the s-channel exchange of a spin 1

– 9 –
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ILC CLIC LHC LHC

(800 GeV) (3 TeV) (7 TeV) (14 TeV)

MEv
= 300 GeV 398 fb 44 fb MDv

= 300 GeV 1.39 · 104 fb 1.04·105 fb

MEv
= 500 GeV - 41 fb MDv

= 500 GeV 654 fb 7.27·103 fb

MEv
= 1 TeV - 32 fb MDv

= 1 TeV 3.21 fb 124 fb

Table 2. The order of magnitude of the total production cross sections, in fb, at ILC (via Z/γ⋆),

LHC (via qq̄ or gg fusion) with
√

s = 7TeV and 14TeV, for various values of the communicator

mass. The spin of the communicator is assumed to be 1/2.

Figure 3. The spin dependence of the EvĒv production cross section at e+e− colliders for Ev spin

1/2, 0 and 1. MEv
= 250GeV, the mass spread ΓEv

= 2 GeV, Mqv
= 50GeV. The spin 0 curve has

been scaled by a factor 30.

γ∗/Z∗. Thus the production of a spin 1/2 pair has only a threshold factor β from phase

space, where β is the velocity of the produced pair in the γ∗/Z∗ decay vertex, while the

other two have an (approximate) additional factor β2 from helicity considerations. The

results have again been obtained with a SU(3)v group, and are directly proportional to

the Nc chosen. Since we would not expect gauge groups with Nc above (some multiple

of) 30, the conclusion would be that a threshold scan of the cross section could be used

to determine both the Ev spin and the number of hidden colours, as well as the Ev mass,

of course. A caveat would be that we have here only considered the Ev gauge production

mechanism, not the possibility of a significant t−channel Yukawa contribution. The reason

for not including this production channel is that it would imply a large decay width for

the Ev, which would give additional large and model dependent effects to the cross section

around threshold (see below).
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The experimental constraints on these two types of setup are similar to the ones for

New Charged Leptons and Leptoquark production.2 For the New Charged Leptons the

PDG [10] gives the lower bound mL± > 100.8 GeV. For scalar and vector Leptoquark

states we use the direct limits coming from leptoquark pair production and subsequent

LQ → νq decay searches [11]. For the all generation search mLQ > 136 GeV in the

scalar case and mLQ > 200 GeV in the vector case, where one assumes the branching ratio

B(νq) = 1. Bounds on the leptoquark mass for the third generation decaying into νb are

more stringent [12], mLQ > 229 GeV.

We view these boundaries as simply indicative of the mass range we should contemplate

and chose masses that are well beyond these boundaries. Our studies are in any case not

critically dependent on them.

We assumed the communicators to be massive, MEv
in the range [250,300] GeV for

the ILC case, MDv
in the range [300, 500] GeV for the LHC 7 TeV run, and [0.5,1] TeV

for the 14 TeV run. The hidden scalar is taken to be light, Mqv
as light as 10 GeV. The αv

parameter is allowed to vary over a wide range, and results shown for interesting values.

Depending on the size of these parameters, the effects of the radiation on the lepton or

quark kinematic distributions can be significant, as we will show in the next two sections.

But whether these effects will be observable strongly depends on the statistics at hand.

We assume an integrated luminosity L = 200 fb−1 for the ILC, 1 fb−1 for the 7 TeV LHC

run and 100 fb−1 for the 14 TeV one.

The hidden radiation affects the visible particle kinematics through two mechanisms.

The first one, interleaved radiation from the Ev or Dv, we already discussed. The second

is radiation off the qv after Ev/Dv decay. This causes the invariant mass for the system

made out of qv and the radiated gvs to be larger than the on-shell qv mass. This invariant

mass can be viewed as the off-shell mass with which the qv is produced at the decay

vertex. In figure 4 one may see the effects of the valley radiation on the off-shell mass,

for the Dv → d + qv case. As the hidden valley coupling αv increases, the qv radiates

more and more into the hidden sector, and the mean value of the distribution shifts from

Mqv
towards MDv

. At the same time more and more energy is subtracted from the visible

recoiling particle, in this case the d and its system of emitted gluons.

The effect is more obvious when the mass difference MDv
− Mqv

is large, since more

phase space is available for the radiation.

The size of the deviations induced by these two combined mechanisms is very much

dependent on the collider, as we already stressed above. In the next two sections we will

discuss the various cases separately.

5 Effects of SU(3)c radiation at e
+

e
− colliders

We begin by studying the e+e− → γ∗/Z → ĒvEv, scenario, which allows for many simpli-

fications compared to the quark case, and therefore offers a convenient warmup. For the

2We do not make use of the limits coming from the D0 or CDF q̃ → j + ET6 searches, because these

depend upon the chosen mSUGRA scenario.
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Figure 4. Left: the effective invariant mass distribution for the qv at LHC for αv = 0.1, 0.4, 0.8.

MDv
= 300GeV, nominal qv mass Mqv

= 10GeV and
√

s = 7TeV. Right: the effective invariant

mass distribution for the qv at LHC for αv = 0.1, 0.4, 0.8. MDv
= 1TeV, nominal qv mass

Mqv
= 10GeV and

√
s = 14TeV. Notice how the mean value of the distribution shifts from the

bare mass mqv
= 10GeV towards mmax

qv

= mDv
GeV as the coupling constant grows.

ILC with
√

s = 800 GeV and an assumed integrated luminosity of L = 200 fb−1 per year

an MEv
= 300 GeV translates into about 80000 ĒvEv pairs.

5.1 Collisions in the center-of-mass frame

To illustrate the principles, as a very first step we will neglect bremsstrahlung and beam-

strahlung. We then only need to consider two types of interactions, electromagnetic and

valley SU(3)v radiation in the final state, with coupling constants α and αv. No fragmen-

tation or hadronization need to be taken into account.

Since the center of mass (CM) of the collision is at rest, there is a clean relationship

between the mass of the hidden valley qv, Mqv
, and that of the communicator MEv

. In the

absence of radiation (hidden or standard), this can be inferred from the distribution of the

energy of the emitted electrons, in particular from the upper endpoint of this distribution,

describing the electron maximum energy. This is obtained when the electron is emitted in

the same direction as the Ev is moving in, with the qv in the opposite direction. One may

use this maximization condition to derive the relationship between Mqv
and MEv

.

In the rest frame of the Ev, neglecting the electron mass,

PEv
= (MEv

, 0, 0, 0) ,

Pqv
=

(

M2
Ev

+ M2
qv

2MEv

, 0, 0,−
M2

Ev
− M2

qv

2M2
Ev

)

,

Pe =

(

M2
Ev

− M2
qv

2MEv

, 0, 0,
M2

Ev
− M2

qv

2MEv

)

. (5.1)

Assuming the boost to the CM rest frame is at an angle θ with respect to the e direction

in the Ev rest frame, the electron energy will be given by

E′
e = γ(Ee + β|pe| cos θ) =

√
s

4

(

1 −
M2

qv

M2
Ev

)



1 +

√

1 −
4M2

Ev

s
cos θ



 , (5.2)
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Figure 5. the energy distribution of the visible

electrons. Looking at the upper shoulder of the

distribution, the upper (black) and lower (red)

curves give the prediction for Ev → e−qv when

hidden valley radiation is not or is take into

account; in both cases electromagnetic radia-

tion is included. Center of mass energy
√

s =

800GeV, MEv
= 300GeV, Mqv

= 50GeV and

αv = 0.05. Number of events per 6 GeV bins,

luminosity L = 200 fb−1. The error is purely

statistical.

Figure 6. The energy distribution of the

most energetic electron in each event, under

the same conditions.

where cos θ = ±1 gives the upper and lower edge of the energy spectrum. If the decay

is assumed isotropic, dP/d cos θ = constant, the electron energy spectrum is flat between

the limits.

So if one can measure the maximum and minimum energy E′
e, one may solve for MEv

and Mqv
. Figure 5 shows the energy distribution Ee of the electrons produced with and

without hidden radiation. In the latter case the spectrum is shifted to lower values, as

the hidden sector takes a bigger fraction of the available energy, by radiation off both the

Ev and the qv. The endpoints remain the same, as there is always a fraction of events

where radiation is negligible. As we have assumed a modest width of 1GeV for the Ev

there is a tiny tail beyond the expected edge. (We could cope with a wide range of widths,

but have picked values in the GeV range, so that the possibility of a Breit-Wigner-shaped

mass broadening is not overlooked, while still maintaining a credible simulation in terms of

resonance diagrams only.) The key point to observe, however, is how the upper “shoulder”

is softened by the hidden radiation. Thereby a precision measurement of this region would

offer a direct check on the amount of hidden radiation. At the lower end, QED cascades

such as e− → e−γ → e−e+e− contribute to the spectrum, but are easily eliminated if only

the highest-energy lepton is considered, right side of figure 6, or at least only the highest

two. We should clarify that the electron energy studied in this section includes photons

emitted near the electron direction, since we here include a Durham “jet” algorithm that

clusters photons within a 3GeV pT sin θ/2 distance of the electron.

Whether and how well one would actually be able to observe these endpoints will be

very model and detector dependant. Regardless of the background or detector sensitivity,

we expect that the endpoints of the distribution will have low statistics, given that they
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correspond to extreme kinematical configurations. Most likely, one will need to rely on data

points in the shoulder region to fit the curve and extrapolate the endpoint E′
e,max. These

shoulder data points would be the ones most affected by the radiation, so the mass MEv
and

Mqv
inferred from them would be significantly different when hidden radiation is included.

On the one hand, the curve corresponding to having valley radiation is always softer than

the one without, so some mean of the threshold region will give too low an endpoint. On

the other hand, if one only tries e.g. a linear fit, the shape of the fall-off in the threshold

region would suggest too high an endpoint. A readiness to include a parametric shape for

the endpoint region, that takes into account a tuneable radiation contribution, will help

ensure a better extraction of the relevant mass parameters.

Notice that the curve corresponding to having valley radiation always lies below the one

without, implying that the value of E′
e,max with the radiation would always be higher than

the one without. This is a reflection of the two mechanisms we mentioned in the previous

section: first, the the valley gluons gv subtract energy from the Ev, ultimately subtracting

it from the es, and second, when they are emitted by the qv, they change its effective mass,

M eff
qv

> Mqv
, as one may see in figure 4, again subtracting energy from the decay e.

Would it be possible to describe the curves with hidden radiation using a model

without it, but with different mass parameters MEv
and Mqv

? Figure 7 shows the effects

of changing the invisible particle mass Mqv
in model with and without radiation. The

”fingerprint” of the v-radiation is clear: a softening in the shoulder of the distribution

which leaves the endpoints fixed. A simple change in the mass parameters of the model

without hidden radiation (in this case Mqv
) changes the endpoints and leaves the sharp

drop of the shoulder unchanged.

Notice how so long as the mass difference MEv
− Mqv

> 40 GeV one may always dis-

tinguish between any two curves with and without radiation. This of course αv dependent.

In figure 8 instead one can see the αv dependence of the energy distribution for the

visible electrons in each event. Notice how even for a coupling as low as αv = 0.05 the

effects of the v-radiation on the shoulder region are already sizeable.

There are some parameter regions (e.g. when the Ev-to-qv mass splitting is small) where

the shape of the distribution of the hardest leptons is no longer conclusive in distinguishing

between a model with and one without valley radiation. In this case one may consider

other observables which have an “orthogonal” dependence on the valley parameters. We

studied η, linearized sphericity S and the number of emitted leptons, for example. There

is no unique strategy in this case, one must perform a case by case study of the different

observables in the different parameter regions to determine which one displays the largest

separation between the model with and the model without radiation. As a general rule,

we found that three observables were normally sufficient to distinguish the two.

5.2 Collisions not in the center-of-mass frame: MT2

We now consider the effect of initial-state radiation (ISR). This causes unobservable radi-

ation, mainly along the beamline, but also some transverse kicks. Beamstrahlung is highly

machine-dependent and thus not included, but is purely longitudinal. The methods we will
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Figure 7. We compare the energy distributions of the most energetic electron emitted in each

event, in the case
√

s = 800GeV. The communicator mass is fixed at MEv
= 200GeV, while Mqv

is allowed to vary between 20 and 190GeV. The valley gauge coupling is fixed at αv = 0.1 in order

to isolate the mass dependence. Each endpoint corresponds to two curves, the lower one being the

one with and the top one the one without hidden valley radiation.

Figure 8. αv dependence of the energy of the visible electrons. The (black) squared-off curve

corresponds to the model with no valley radiation, the uppermost if one looks at the shoulder.

Below it are the curves corresponding to valley coupling constant αv = 0.05 and αv = 0.1. Number

of electrons per 6 GeV bin,
√

s = 800GeV, MEv
= 300GeV and Mqv

= 50GeV.

introduce to handle bremsstrahlung also automatically handle beamstrahlung with little or

no degradation of performance, so from now on we will not address the latter specifically.

For our theoretical studies, in order to avoid the clustering of ISR γ radiation with
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the leptons coming from the hard interaction, we apply a cut on the η > 5. The symmetry

of the system now being cylindrical, we also changed the clustering algorithm to the

cylindrical fastjet [14].

The major consequence of ISR is that the collision now no longer happens in the CM

rest frame, with the information connected to the pz, the momentum along the beampipe,

no longer available. In this case it is convenient to introduce a new variable called Cam-

bridge MT2, see [15].

The MT2 variable was invented precisely to treat events in which the new particles are

pair-produced and then each decay into one particle that is directly observable and another

particle whose existence may only be inferred from from missing transverse momenta.

This observable is somewhat inspired by the transverse mass mT used at hadron col-

liders to measure the mass of the W boson in the decay W → eν. The neutrino escapes

detection, its only trace in the detector being missing momentum. In this case one can

construct the variable

m2
T = 2(Ee

T 6EN
T − pe

T · 6pN
T ). (5.3)

Here ET is defined as ET =
√

m2 + p2
T , although in this particular case the electron and

neutrino masses can be neglected, of course. The m2
T variable has the property that

m2
T ≤ m2

W (5.4)

If there is enough statistics to ensure that the kinematic configuration corresponding

to the maximum is hit, this gives a measurement of (a lower bound on) the W mass.

Analogously, one may build a variable called MT2, with the property that its upper bound

describes the mass of the communicators, i.e. the particles that were pair-produced.

Now consider the process described in figure 9. Two particles Y are pair-produced,

then each of them decays into a visible particle (a or b in the figure) and one that escapes

detection, called N1,2. One cannot use the transverse momentum in this case since there are

two particles escaping detection, both contributing to the missing transverse momentum

6pT . The observable MT2 is defined as

MT2 ≡ min
6pT1+6pT2=6pT

[

max
{

m2
T (pTa, 6pT1),m

2
T (pTb, 6pT2)

}]

. (5.5)

where 6pT1,T2 are all the possible 2-momenta taken away by the Ns, such that their sum

gives the observed missing momenta, 6pT1+ 6pT2 = 6pT .

MT2 coincides with the mass of the communicator Y , i.e. MT2 has a maximum, when

for both communicator decays the visible and the invisible particles are produced at the

same rapidity and
(

pa

Ea
− p1

E1

)

∝
(

pb

Eb
− p2

E2

)

. (5.6)

For the studies in this article we used a particularly simple version of the MT2 algo-

rithm [20], the source code of which can be downloaded from

http://daneel.phyics.uc.davis.edu/˜Cheng:2008hk/mt2-1.01a/test. A more sophisticated
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Figure 9. The MT2 diagram for the shortest,

simplest decay chain . Two communicator par-

ticles are pair-produced and each decay into a

visible (a or b) and an invisible (N1 and N2)

particle. Upstream transverse momentum (be-

fore the decay) is also possible, but it must be

known. Longitudinal momentum information

is not available.

Figure 10. An example of the MT2 method

applied to the communicator mass MEv
. His-

togram of the MT2 values obtained for a com-

municator mass MEv
= 200GeV and Mqv

and

an invisible particle mass Mqv
= 100GeV. The

small tail in the distribution is due to the

Γ = 1 GeV spread in the mass distribution

(more about his in the following).

algorithm is described in [23]. The simpler method is based on the use of ”kinematic

constraints” [17, 20–22]

p2
1 = p2

2 = µ2
N

(p1 + pa)
2 = (p2 + pb)

2 = µ2
Y

px
1 + px

2 = 6px

py
1 + py

2 = 6py (5.7)

In the case of two invisible and at least two visible particles as in figure 9 the two

methods actually coincide [20].

The inputs of the MT2 method are mN , ma, mb, pa
T , pb

T and 6pT . Notice that ma

and mb may change quite substantially from event to event, since they each correspond

to the invariant masses of the clustered visible particles (in this case the lepton and the

photons) of each branch. The output of the MT2 method is one single MT2 value per

event. Figure 10 illustrates a typical use of the MT2 variable. If one histograms the MT2

values over a large number of events, the upper edge of this distribution gives a lower limit

on the communicator mass MY .

Whether the event rate in the upper-edge kinematic region defined in eq. (5.6) is large

enough to be able to extract the endpoint MT2max = MY , for a given luminosity, depends

of course on the interactions. Even more than for the energy variable in the previous

section, it is not unlikely that MT2max might have to be extrapolated from points in the

shoulder region.
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Figure 11. The effect of valley radiation on the variable MT2 for different αv = 0.05, 0.1, 0.2 values

(close-up on the shoulder region) at CLIC. The distributions were obtained assuming a luminosity

L = 1 fb−1,
√

s = 1TeV and Mqv
= 50GeV. Left: the effect for a hypothetical MEv

= 200GeV.

Right: the effect of valley radiation on MT2 for a hypothetical MEv
= 300GeV.

There are many other methods to determine mass relations between the the new par-

ticles, [17, 18], just to cite some. Some of these are very closely related to MT2, such

as [19]. Some of these require cascade decay chains, or make assumptions about the new

particles involved in the decay chain being on shell, or require high luminosity. Where this

information is actually available, one should of course make use of it, [24, 25].

The assumptions in this study, though, are that each of the identical decay chains

consists of a single two-body decay and that the integrated luminosity, at least for the

LHC at 7 TeV study, might be rather low (1 fb−1). These effectively preclude the use of

many of the above methods.

In figure 11 one may see the effect of the valley radiation on the MT2 distribution for

different αv values and communicator mass parameters. The interesting region is again

represented by the ”shoulder” of the distribution. Notice how the amount of invisible

radiation, and thus the effect on MT2max, increases with MEv
−Mqv

, analogously to what

happens in the energy distributions. The size of these effects may be compared with the

effects coming from ISR, in figure 12.

The MT2 distribution might present a tail, due to the Breit-Wigner spread Γ that

we allow for, see figure 13. As one may see, all the MT2 data points which lie above

MT2max = MEv
= 300 GeV correspond to Evs which actually have a larger mass than the

nominal MEv
.

As we already stated above, mN , the mass of the invisible particle, is an input

parameter. MT2max only gives one single relation between MY and mN . Depending upon

the decay chain topology and the presence or not of upstream transverse momentum

(UTM, in the following, may come from ISR or from previous decays), there are different

strategies to determine both masses simultaneously: the MT2 “kink” method [19], the

invariant mass endpoint [26–29] or the constrained kinematic method [24], the polynomial

intersection method [25], and pT reconstruction [30–32], just to cite some possibilities.

Most methods, however [24–29], require longer decay chains (at least two two-body decays)
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Figure 12. The effects of initial-state radiation on the MT2 distribution and on the value of the

MEv
mass one infers. Number of events per 4GeV bin, for an e+e− collider with

√
s = 1TeV,

L = 1 fb−1, MEv
= 300GeV, ΓEv

= 2GeV, Mqv
= 50GeV. All other effects have been switched

off.

Figure 13. Left: the (right side of the) Breit-Wigner mass distribution of the communicator

Ev with an M0 = MEv
= 300GeV and a width ΓEv

= 3 GeV. Right: MT2 distribution for the

same points. The upper (red) points correspond to considering only Evs having masses within the

|mEv
−MEv

| < ΓEv
GeV interval. The lower points (green) describe the MT2 points corresponding

to both Evs having a mass greater than MEv
+ΓEv

. All other effects have been switched off. Number

of events per 1 GeV bin,
√

s = 800GeV, Mqv
= 50GeV, integrated luminosity L = 200 fb−1. The

error is purely statistical.

or a special topology, such as 4 on-shell intermediate resonances [24] or 5 or more on-shell

intermediate resonances [25].

If each decay chain consists of a single two-body decay, where the visible one may or

may not be a composite of visible particles, as described in figure 9, one may use the MT2

”kink method” [19] to fix the value of mN , i.e. exploit the fact that MT2max as a function

of the invisible particle trial mass µN has a ”kink” for µN = mN . The authors of [33]

point out that in order to have a substantial change in the gradient dMT2max

dµN
|νN=mN

, there

must be substantial event-by-event changes, though. This can be triggered by substantial

O(MY ) differences in the νN , caused by the visible system being a collection of two or more

particles, or by a large UTM. Otherwise the kinematics is so constrained that the gradients

for µN < mN and µN > mN have to be the same, and no kink is possible.
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If a sizable UTM pT is present, one may use the MT2⊥ method [34]. This method uses

the fact that N(µN ), the number of times the MT2(µN ,pT ) is larger than MT2(µN , 0), has

a minimum for µN = mN . The advantage of using this method rather that MT2kink is that

MT2(µN , 0) may be calculated analytically and measured using the whole data sample,

regardless the pT. This may be shown by using the fact that MT2(µN , 0) corresponds to

MT2max ⊥ (µN ),

MT2max
T⊥ = min

6P⊥=p1T⊥+p2T⊥

[

max
{

M2
1T⊥,M2

2T⊥

}]

, (5.8)

the one-dimensional analogue of MT2, where

M2
iT‖ = m2

i + µ2
N + 2(EiT‖E

N
iT‖ − piT‖ · pN

iT‖)

M2
iT⊥ = m2

i + µ2
N + 2(EiT⊥EN

iT⊥ − piT⊥ · pN
iT⊥),

and where ⊥ and ‖ refer to the projections of the pT along the direction of the UTM.

We will not discuss further the different methods to extract the two new particle masses,

but refer the interested reader to the proceedings from the TeV 2009 [16] conference and

to the review [33]. We however wish to make a few remarks about the impact that valley

radiation might have on these observables. Consider the MT2⊥ case, for example.

In the presence of valley radiation one needs to consider two sources of deviations.

Firstly, the tails coming from the interleaved radiation mechanism, see the MT2 distribu-

tions in figure 11. Secondly, as discussed in the previous section, in the presence of valley

radiation, we expect the mean value of the invisible particle qv invariant mass to shift

from its Breit-Wigner central value 〈M eff
qv

〉 = µN towards the communicator mass MEv

(or MDv
) value. We will show in subsection 6.2 that the MT2 distribution one obtains

may be significantly affected, see figure 4 for th LHC case. The MT2max
T⊥ (µN ) should be

similarly affected. The number of events having M̃Y (µN ,PT ) > M̃Y (µN , 0) would then

change accordingly, as would the minimum point µN = MN .

We will return on the issue of the the trial mass and the radiation in subsection 6.2.

In the following, unless otherwise specified, the analysis will always assume µN = mN .

6 Effects of SU(3)v radiation at LHC

At LHC the Dv communicators are (mostly) pair-produced by gg or qq̄ fusion and decay

flavour diagonally into a SM d quark and a valley qv. For our study we assume the Dvs to

be spin 1/2 particles, and the qvs to be scalars. As earlier this choice affects the production

cross section, but now both s- and t-channel exchange are involved, which complicates the

pattern. Each Dv radiates both SM gs and valley gvs. These in turn may radiate further gs

and gvs, respectively. Once the Dv has decayed, the q radiates gluons, while the qv radiates

gvs. The amount of hidden radiation emitted depends upon the valley coupling constant

αv and on the mass ratio Mqv
/MDv

, see figure 4. At the LHC the communicator mass

reach will be larger than for the ILC, so typically there will be more phase space available

for the radiation. Both the valley gluons radiated by the Dv and those radiated by the qv
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have an impact on the visible particle distributions. The lighter the particle, the lower the

cut-off scale for the radiation however, so it will be the qv that radiates the most, as before.

When compared with the CLIC case, the LHC scenario presents several complications.

Firstly one needs to convolute the production cross section with parton distribution func-

tions. Thus the hard interaction — the production of the Dv pair — no longer happens

in or close to the center-of-mass rest frame. In this case it is crucial to consider longitudi-

nally boost invariant observables such as MT2. Secondly, both initial- and final-state QCD

radiation are more intense than the QED one is for the ILC case, resulting in a consider-

ably larger upstream transverse momentum and an increased misassignment of radiation.

Thirdly, there is an underlying-event activity that gives rise both to a generic low-p⊥
background and to occasional further hard partons that may be confused with the ones

related to the valley process. Fourthly, the partons hadronize into more-or-less well-defined

hadronic jets, the reconstruction of which introduces further smearing of the relevant kine-

matic distributions. And finally, the set of possible background processes is much more

varied and challenging to suppress. In our study we will take into account the first four

points, but leave the last one to the experimental community, where already a large number

of background-suppression techniques have been developed for various scenarios.

6.1 LHC with 7 TeV

The LHC will initially be running at of
√

s = 7 TeV and it is expected to deliver 1 fb−1 of

data in 2010–2011. Under these conditions we need to consider much lower masses MDv

for the communicator than for the ultimate energy and luminosity case, in order to have

large enough production cross sections, see table 2.

Based on the above discussions, we choose to study the MT2 distribution, and specif-

ically its dependence on the v-radiation and on the αv value. In figure 14 we have plotted

the αv dependence for three different mass values MDv
= 300, 400 and 500 GeV. The larger

the mass difference MDv
− Mqv

the more phase space is available for the radiation. The

smaller the Mqv
, the lower the cut-off on the momenta, so the larger the amount of soft

radiation. Given the low statistics, the (purely statistical) error bars on the endpoints are

rather large, and even in the shoulder of the distribution it is hard to distinguish the curve

with an αv = 0.1 from the curve with no radiation for the 300 GeV mass. In the interme-

diate case MDv
= 400 GeV, we need to have a rather strong αv = 0.2 coupling before the

two curves can be separated.

In figure 15 we show the MT2 dependence on the invisible qv mass Mqv
, where the trial

mass µqv
is assumed to coincide with Mqv

. Whether we look at the curves with a valley

radiation (valley coupling αv = 0.1, left plot in figure 15) or at the curves without hidden

radiation (right plot in figure 15), the data points corresponding to Mqv
= 10, 50 GeV are

hardly distinguishable. The independence of the MT2 on the Mqv
value appears to be a

characteristic which the radiation leaves unchanged.

One could argue that the fact that MT2 is hardly dependent on the Mqv
is due to the

mass ratio MDv
/Mqv

being fairly large compared to the difference between the two Mqv

values we considered. Would this argument still hold true when the v-radiation is larger?
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Figure 14. The dependence of the MT2 distribution on the αv value for MDv
= 300, 400, 500GeV

and Mqv
= 10GeV. The black curve corresponds to having no valley radiation. The red, green and

blue curve correspond to αv = 0.1, 0.2, 0.4 respectively. For the first 2 years LHC is assumed to run√
s = 7 TeV and to yield an integrated luminosity of 1 fb−1. The y axis corresponds to the number

of events per 10GeV mass bin, for this integrated luminosity of 1 fb−1.

For larger values of the αv one should consider the fact that the MT2 input parameter

Mqv
corresponds to the mass of the qv as seen by the visible particles. The visible particle

momenta, i.e. the momenta of the d and the g radiated by it, which enter MT2, actually

correspond to the invariant mass M eff
qv

rather than the nominal mass value Mqv
.
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Figure 15. Left: the Mqv
dependence of the MT2 when the valley radiation has αv = 0.1. The

blue curve corresponds to Mqv
= 10GeV and the red one to Mqv

= 50GeV. Right: The same

Mqv
dependence of the MT2 in the case of no valley radiation. MDv

= 400GeV,
√

s = 7TeV and

L = 1 fb−1.

Figure 16. Left: model a) decay Dv → dqv with no v-radiation, Mqv
has a fixed value; right:

model b) decay Dv → dqv with v-radiation, the system qv + gvs has an invariant mass distribution.

In figure 4 we show this invariant mass distribution and how this changes as a function

of the coupling constant αv. As αv grows qv emits more and more valley gluons gv. The

invariant mass of the qv + gvs system then grows, i.e the mean effective mass of the qv as

seen from the SM q shifts from the bare Mqv
= 10 GeV towards Mmax

qv
= MDv

. The energy

which is left for the d quark then gets smaller as the 〈M eff
qv

〉 → MDv
as shown by

Ed =
M2

Dv
− M2

qv

2MDv

, (6.1)

where for simplicity we have put the md = 0.

Were this distribution a very narrow peak around 〈Ma,eff
qv

〉, there would be no difference

between the two cases in figure 16 so long as 〈Ma,eff
qv

〉 = M b
qv

, i.e. between a fixed M b
qv

value

and an invariant mass distribution. One could speculate that so long as the mean value of

the invariant mass 〈M eff
qv

〉 ≪ MDv
the MT2 would basically remain unaffected.

Imagine though having a v-radiation large enough to shift the 〈M eff
qv

〉 substantially,

M eff
qv

→ MDv
, e.g. α = 0.4. One would näıvely think that replacing the Mqv

with 〈M eff
qv

〉
would give a better description of the case with radiation. However figure 4 shows that for

αv > 0.1 the invariant mass distribution would also have a large spread around this central

value. We will show in the next section that this spread causes further complications. It

is precisely the spread in the distribution which constitutes the difference between case a)
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Figure 17. MT2 distribution function for the communicator masses MDv
= 1 TeV when there

is valley radiation αv = 0.1 (red), 0.4 (green), 0.8 (blue) and when there is not (black curve).√
s = 14TeV, Mqv

= 10GeV. Number of events per 15GeV bin.

and case b), and it is this spread which is ultimately responsible for the different behaviour

of the MT2 in the two cases.

6.2 LHC with 14 TeV

If we now assume that LHC will collect 100 fb−1 of data at center of mass energy√
s =14 TeV, then one may consider larger communicator masses, O(1TeV), and still deal

with a sufficient number of events, see table 2. If the qv remains light, the mass ratio

MDv
/Mqv

can be considerable and consequently the phase space available for radiation can

be large. We expect the effects of the radiation to be significant.

In figure 17 we show the dependence of the MT2 distribution on the hidden valley

coupling constant αv, assuming we know the mass of the invisible particle so µqv
= Mqv

.

In this case we are describing the strong coupling regime αv = 0.1, 0.4, 0.8.

Notice how in this case one can actually separate (at least before any background or

detector simulation is taken into account) the curve with αv = 0.1 and the one without

the radiation.

In the above study the assumption is that events are generated with a bare mass

Mqv
and analyzed with the same (or almost the same) trial mass µqv

= Mqv
. From the

discussion in subsection 5.2, we could conclude that it is not very likely that we would

know the mass of the qv with high precision when valley radiation is present.

In a hidden valley scenario the mass of the qv is assumed to be much lighter than the

Dv mass, so we do not expect the MT2 to be very sensitive to qv mass differences of the

order ∆Mqv
≪ MDv

. Indeed, the authors of [19] and [33] show that the MT2max mass

dependence on the trial mass µqv
is rather weak so long as µqv

< Mqv
, whereas MT2max

grows much more rapidly when µqv
> Mqv

. The µqv
< Mqv

case is exactly what one

observes in figure 18.
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Figure 18. Left: model a) comparison between different µqv
= 1, 100, 350GeV for Mqv

= 395GeV.

Right: model b) comparison between different µqv
for Mqv

= 10GeV, αv = 0.28, 〈M eff
qv

〉 = 395GeV.

In both models MDv
= 1 TeV,

√
s = 14TeV and the luminosity is assumed to be L = 100 fb−1,

20GeV bins.

Let us however make the conservative assumption that we only know the order of

magnitude of the Mqv
. Imagine trying to distinguish between the two models we described

in figure 16, a) the model with no radiation and b) the model with the radiation, when

〈M b,eff
qv

〉 = M b
qv

. To be more concrete, assume a) has a fixed value mass Ma
qv

= 395 GeV

and b) has an invisible particle mass M b
qv

= 10 GeV and αv = 0.28. We choose the value

αv = 0.28 so that 〈M b,eff
qv

〉 = Ma
qv

.

In figure 18, left side, we see the MT2 distribution for model a) for the case MDv
=

1 TeV. As one may observe, this is a function of the trial mass µqv
, the best profile being

the one with µqv
= Mqv

. For µqv
≪ Ma

qv
, even for substantial changes in µqv

the MT2max

does not change much. This essentially confirms what was reported by [19, 33].

On the right side of figure 18 one may see the same distributions for the model with

radiation. Contrary to what one would expect from the näıve arguments given in the

previous subsection, we see that choosing µqv
∼ 〈M b,eff

qv
〉 does not give the best description

of the system. The MT2 curve overshoots the MDv
value by a good 10%. As anticipated

in the previous subsection, this is due to the invariant mass distribution spread. Looking

at figure 19, one may see that the invariant mass distribution has a wide spread, so event

by event there could be large variations in the M b,eff
qv

. If one chooses a µqv
≪ 〈M b,eff

qv
〉 to

analyze the set of events, for example the µqv
= 1 GeV chosen in figure 18, most of the

events will have a ”real” qv mass, the invariant mass M b,eff
qv

, larger than the trial mass µqv
.

Since MT2max(µqv
) < MT2max(M b,eff

qv
) when µqv

< 〈M b,eff
qv

〉, these points do not contribute

to increase the MT2max value much, and the distribution will resemble rather closely the

one obtains for M b
qv

= 10 GeV, apart from the softening in the shoulder. This is precisely

what happens in the µqv
= 1, 100 GeV curves in figure 18.

When one takes a µqv
∼ 〈M b,eff

qv
〉 instead, e.g. µqv

= 350 GeV (which according to the

näıve arguments of the last subsection should have been the best of the three µqv
choices),

more and more events have a ”real” invisible particle mass M b,eff
qv

< µqv
. In figure 19 these

are the points to the left of the µqv
= 350 GeV line. These events will, if there is enough

statistics, give MT2max(µqv
) >MT2max(M b,eff

qv
), the real MDv

value. This is what happens

to the curve for µqv
= 350 GeV.
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Figure 19. The invariant mass distribution for

the qv and the trial masses we considered, µqv
=

1, 100, 350GeV.

Figure 20. MT2 distribution when both qv

invariant masses M b,eff
qv

< µqv
(upper) and when

both are M b,eff
qv

> µqv
(bottom), when M b

qv

=

10GeV, αv = 0.28 and µqv
= 350GeV.

Figure 21. Comparison between model a) Mqv
= 395GeV and b) M b

qv

= 10GeV, αv = 0.28,

〈M b,eff
qv

〉 = 395GeV for µqv
= 350GeV. In both models MDv

= 1TeV,
√

s = 14TeV and the

luminosity is assumed to be L = 100 fb−1, 20GeV bins. Notice that in this case the curve with the

radiation is the lower one.

To prove this point, we separately plot the MT2 distributions for the events with

M b,eff
qv

< µqv
and the ones with M b,eff

qv
> µqv

. As figure 20 shows, for the former set

MT2max ≥ MDv
.

This said, we may return to the issue of distinguishing between the two models a) and

b). As one may see in figure 21, the two curves corresponding to the two models have very

different shapes, the one with no radiation being the sharper one. Notice however that

now the curve with radiation lies above the one without. This is not in contradiction with

what we have shown in the previous sections.

Summarizing, in the not-so-strong coupling regime αv ∼ 0.1, when the invariant mass

distribution is strongly peaked in Mqv
, one may3 distinguish two models with the same

3At least before background and detector analysis.
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values for MDv
and Mqv

, one with v-radiation and one without. The curve corresponding

to the no hidden radiation model will have a steeper drop in the shoulder region.

For larger couplings, αv > 0.2, one should note that two MT2 distributions with the

same endpoints may correspond to different MDv
values in the two cases, depending on

whether the majority of the events have an invariant mass which is greater or smaller than

the trial mass. A very conservative approach to solving this problem could simply be to

assume µqv
= 0 GeV or in any case µqv

≪ 〈M eff
qv

〉.

7 Conclusions

We have here addressed the issue of detecting and identifying hidden radiation through

its influence on SM parton showers, and in general through its impact on visible particle

kinematic distributions. We have done so in the context of Hidden Valley models, which

we find are well suited to display the effects, but the specific models studied should be

viewed only as representatives of a broad range of possible models with new symmetries.

Thus, while we focus on the phenomenology of a fairly generic toy model, we also provide

tools in Pythia 8 to simulate the effects of hidden radiation in various other hidden valley

scenarios, e.g. different gauge groups, particle contents, and gauge and decay couplings.

The novel feature in these tools is the interleaved SM and valley parton shower, i.e. the

competition between visible and hidden radiation.

Our preliminary study of the phenomenology of the toy model at e+e− and at LHC

colliders shows the following.

At an 800 GeV ILC collider we could expect to observe hidden radiation for valley

gauge couplings as small as αv ≥ 0.05, so long as the mass of the communicator is smaller

than 300 GeV and Mqv
≪ MEv

.

For the LHC phenomenology we need to distinguish between the first two year running

with
√

s = 7 TeV and L = 1 fb−1 and later years with full design energy
√

s = 14 TeV and

L = 100 fb−1. Whether one could observe hidden radiation or not depends strongly on the

communicator mass, which determines the amount of statistics. The main signal of the

hidden radiation — at least in our studies — is the softening of the shoulder of the MT2

distribution. In the lower-energy case, for communicator masses around 500 GeV or higher,

the statistics is so poor that one cannot expect to distinguish even a very strong coupling

αv = 0.4. For two models with and without hidden radiation, with equal MDv
masses

in the [300, 400] GeV range and equal Mqv
≤ 50 GeV, one would need a valley coupling

of the order αv ≥ 0.2 or larger to induce large enough effects on the MT2 distribution

to distinguish between the two. In the higher-energy case, for order TeV communicator

masses and Mqv
smaller than 100 GeV, the MT2 distributions show sizable changes already

for αv = 0.1.

We have also studied how the MT2 distribution depends upon the Mqv
, the invariant

mass M eff
qv

, and the trial mass µv. In the case of a Hidden Valley scenario, Mqv
is always

assumed to be Mqv
≪ MDv

. Taking a trial mass µqv
≪ MDv

as an input parameter for the

MT2 is thus a natural choice. When the qv mass is larger though, e.g. Mqv
∼ MDv

, the

issue of the trial mass µqv
is no longer so trivial. The M eff

qv
can be a broad distribution when
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radiation is present. Especially in the strong interaction case, αv ≥ 0.2, 〈M eff〉 is strongly

shifted towards MDv
. This means that when one chooses a trial mass µqv

∼ 〈M eff 〉, roughly

half of the events will have µqv
> M eff , causing the MT2max to overshoot the real value.

In this case the new masses thus have to be extracted from a combined fit, in which both

masses and couplings enter as unknowns.

Further studies of the background and detector simulations should follow, both for

the kind of scenarios we have explored here and for other possible ones. This preliminary

study, however, shows unequivocably that parton showers are a key tool in determining

the presence of new hidden gauge groups and in the exploration of the hidden sector gauge

group dynamics.
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