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1 Introduction

The Minimal Supersymmetric Standard Model (MSSM) requires two Higgs doublets Hu

and Hd which, at tree level, couple only to up-type or down-type fermions, respectively;

WMSSM
Y = εij

[
QiYuUH

j
u −QiYdDH

j
d − L

iY`EH
j
d

]
. (1.1)

If the ratio of their two vacuum expectation values (VEVs), vu/vd ≡ tanβ, is large,
the Yukawa couplings of the down-type fermions can be strongly enhanced with respect to
their Standard Model (SM) values. This large tanβ regime is interesting from a conceptual
point of view since it explains the smallness of the bottom quark and tau lepton masses
with respect to the top quark mass by a hierarchy of VEVs rather than a hierarchy of
Yukawa couplings.

This possibility is well-motivated, for instance, in supersymmetric SO(10) GUTs, where
the top quark, bottom quark and tau lepton, sharing a common representation of the gauge

– 1 –



J
H
E
P
0
9
(
2
0
1
0
)
0
7
8

group, can have a common, unified Yukawa coupling at the GUT scale MG ' 2×1016 GeV,
implying tanβ ' 50.

Another reason to consider large values of tanβ are the difficulties in models with
gauge mediation of supersymmetry breaking to generate a Bµ term in the soft SUSY
breaking Lagrangian,

Lsoft ⊃ −BµHuHd + h.c. , (1.2)

of a phenomenologically viable size [1, 2]. Indeed, if the SUSY breaking hidden sector
and the visible (MSSM) sector are only connected via gauge interactions, as was suggested
for a definition of General Gauge Mediation (GGM) [3], the Bµ term, which violates the
U(1)PQ Peccei-Quinn symmetry, cannot be generated, since this U(1)PQ is preserved by
gauge interactions.

While vanishing Bµ would imply a vanishing VEV of Hd, Bµ = 0 at the mediation
scale is not preserved at low energies, since Bµ is not protected by the supersymmetric
non-renormalization theorem. Still, if the mediation scale is close to the electroweak scale,
the radiatively generated VEV for Hd is very small, i.e. tanβ very large [4, 5]. Thus the
question about the phenomenologically allowed upper limit on tanβ arises.

In the regime tanβ � 50, the Yukawa couplings of the bottom quark and tau lepton
are larger than the top Yukawa coupling, so the first concern is about the perturbativity of
Yukawa couplings. Indeed, perturbativity to the GUT scale typically requires tanβ . 75.
However, one should note that perturbativity all the way to the GUT scale might be a
too strong requirement, since we do not know at which scale the MSSM flavour symmetry
is broken, i.e. at which scale the Yukawa couplings are generated. We will therefore not
insist on this requirement in this paper and simply require perturbativity up to the scale
of SUSY breaking mediation.

Finally, it is well-known that, in the presence of soft SUSY breaking terms, the con-
nection between Yukawa couplings and fermion masses is modified: loop corrections induce
couplings to the “wrong” Higgs, which are forbidden by holomorphy in the supersymmet-
ric limit [6]. Although these effects are loop-suppressed, they are very relevant for the
down-type quark and charged lepton Yukawa couplings in the case of large tanβ, because
they are sensitive to the large Hu VEV. As a consequence, the actual values of the Yukawa
couplings can be very different from the values one would expect at tree level.

Indeed, it has been pointed out recently [7] that even for tanβ � 50, the MSSM can
be a viable theory if the dominant contributions to the down-type fermion masses arise
from these threshold corrections. In the uplifted SUSY scenario discussed in [7] this is
realized by imposing Bµ = 0 at the mediation scale of SUSY breaking. On the other
hand, large values of tanβ give rise to enhanced flavour violating processes, even with
a completely flavour-blind soft sector. We therefore find it worthwhile to reconsider the
phenomenological viability of the very large tanβ region. In particular,

• We carry out a numerical analysis of the MSSM with flavour blind soft terms at low
energies for very large values of tanβ up to 200, taking into account all the relevant
and most updated constraints from the flavour sector.
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• We point out that in most regions of parameter space the constraint from (g −
2)µ excludes the possibility to have positive threshold corrections to the τ Yukawa
coupling.

• We quantify at which scale the perturbativity of the Yukawa sector breaks down for
a given value of tanβ, depending on the other MSSM parameters.

• We emphasize that in pure GGM, a non-zero hypercharge D-term is required to
obtain very large values of tanβ.

• We carry out a numerical analysis of the GGM parameter space for a fixed mediation
scale of 100 TeV, showing that values of tanβ larger than 100 are incompatible with
the requirement of perturbative Yukawa couplings.

• We demonstrate that for a mediation scale of 100 TeV, the uplifted SUSY scenario
with Bµ = 0 at the mediation scale is strongly disfavoured by the flavour constraints
and (g − 2)µ.

Our paper is organized as follows. In section 2, we will discuss the constraints on the
MSSM in the very large tanβ region arising from the requirement of perturbative Yukawa
couplings and from flavour physics. The aim of section 3 is to investigate the room for
tanβ � 50 in a general CP-conserving MSSM with flavour-blind soft terms in view of the
bounds discussed in section 2, by means of a low-energy parameter scan. In section 4, we
will discuss the very large tanβ regime in the context of General Gauge Mediation and
assess whether this regime can indeed arise from the condition of a vanishing Bµ term at
the mediation scale. In passing, we will point out conditions on the GGM parameter space
required to obtain a viable spectrum in the very large tanβ region. We summarize our
results in section 5.

2 The MSSM at very large tanβ

2.1 Perturbativity of Yukawa couplings

The Yukawa couplings of the third generation fermions are given at tree level by

yt =
mt

v sinβ
, yb,τ =

mb,τ

v cosβ
, (2.1)

with v ≈ 174 GeV. In the large tanβ limit, 1/ cosβ ≈ tanβ and demanding the Yukawas
to be less than

√
4π ≈ 3.54 at a scale of, say, 1 TeV, would set an upper bound on tanβ of

roughly 250. However, as will be detailed in section 2.3, the tree-level relations (2.1) can
be strongly modified at large tanβ, so this bound is not strict.

Irrespective of the size of low-energy threshold corrections, the bound on Yukawas at
low energies is stronger if one requires them to be perturbative to some high energy scale.
The RG equations for the Yukawa couplings have the general form

dyi
dt

=
yi

16π2

∑
j,k

(ai y2
j − bk g2

k) (2.2)
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Figure 1. Scale µmax between 104 and 1016 GeV at which the bottom (below the blue line) or the
tau (above the blue line) Yukawa coupling exceeds the perturbativity limit

√
4π, depending on their

value at 1 TeV. The gray contours show log10(µmax). The red line indicates the values of yb,τ in the
absence of threshold corrections, for fixed values of tanβ between 25 and 250. The green shaded
area indicates the region where perturbative b-τ Yukawa unification occurs between the TeV scale
(uppermost green line) and 1016 GeV (lowermost green line). On the black dashed line, full t-b-τ
unification takes place.

with positive coefficients ai, bi, so if the Yukawa couplings are large enough (larger than
their IR quasi-fixed points), their beta functions are positive, so they will grow with the
renormalization scale and eventually hit a Landau pole at some scale.1 As a consequence,
the higher the scale until where the Yukawa couplings are supposed to remain perturbative,
the stronger the upper bound on their value at low energies (and consequently on tanβ).

Before considering the actual low-energy values of the Yukawa couplings in the presence
of threshold corrections, it is instructive to solve the RG equations for arbitrary low-energy
values and determine the scale at which one of the Yukawas becomes non-perturbative.
Since the first and second generation Yukawa couplings are irrelevant for this discussion
and the top Yukawa is fairly insensitive to threshold corrections and independent of tanβ,
one can simply determine a scale µmax, in terms of yb and yτ at low energies, where either
yb or yτ exceeds

√
4π. In figure 1, we show contours of log(µmax) in the plane of yb and yτ ,

fixed for definiteness at the 1 TeV scale.
Of course, the actual low-energy values of yb,τ have to be the ones reproducing the

known bottom and tau masses. At the tree level, i.e. neglecting threshold corrections,
they are simply given by eq. (2.1) and there is an unambiguous relation between tanβ
and the non-perturbativity scale µmax, which is shown in figure 1 as well. In this limit,

1Taking into account the two-loop beta functions, the Yukawa couplings have an apparent UV fixed

point instead of a Landau pole. However, this fixed point disappears once three-loop contributions are

taken into account and simply signals the breakdown of perturbation theory for y �
√

4π [8].
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perturbativity up to the GUT scale implies tanβ . 75, for instance. However, beyond the
tree level, threshold corrections will strongly modify this relation, and it will be the aim of
sections 3 and 4 to quantify the “true” µmax for points in the MSSM parameter space.

It should also be emphasized that perturbativity up to the GUT scale is not strictly
necessary, even in GUTs. To explain the peculiar hierarchies present in the Yukawa cou-
plings, SUSY theories of flavour typically assume that the Yukawas are generated from the
VEVs of dynamical flavon fields by means of the Froggatt-Nielsen mechanism [9]. While
the scale at which this occurs is frequently assumed to be the GUT scale, a much lower
flavour breaking scale is not forbidden. When discussing gauge mediation in section 4, we
will only require perturbativity up to the mediation scale.

A peculiar feature in the evolution of the b and τ Yukawa couplings is the possibility
that they unify at high energies. In SU(5) and SO(10) GUTs, b-τ Yukawa unification is a
well-motivated and much-studied possibility. In figure 1, we also show the — quite narrow
— region in the yb-yτ parameter space where such unification occurs at some scale between
1 TeV and 1016 GeV. The fact that the tree-level line does not intersect the 1016 GeV
contour reflects the well-known fact that b-τ unification at the GUT scale requires sizable
threshold corrections to yb [10–15]. The Yukawa values where complete third generation
Yukawa unification, i.e. t-b-τ unification, is possible, are also indicated in the figure.

2.2 Higgs soft masses and electroweak symmetry breaking

Another important feature of the large tanβ regime is its impact on radiative electroweak
symmetry breaking (EWSB), by means of large Yukawa contributions to the running of
the soft SUSY breaking Higgs squared masses m2

Hu,d
.

At the EWSB scale (which is usually assumed to be mSUSY = √mt̃1
mt̃2

to minimize
logarithmic corrections to the effective potential), m2

Hd
≷ m2

Hu
implies tanβ ≷ 1. For 1 <

tanβ . 50, this condition can be satisfied even if m2
Hd

= m2
Hu

at some high scale, since m2
Hu

is driven towards negative values more strongly by the top Yukawa coupling compared to
m2
Hd

, whose running is mainly driven by the bottom and tau Yukawas. However, for tanβ '
50, the third generation Yukawa couplings all become comparable, the radiative splitting
mechanism becomes weaker and consequently EWSB with universal m2

Hu,d
becomes more

difficult [16].
In the very large tanβ region considered here, this problem becomes even more se-

vere since now yb,τ > yt. Therefore, tanβ � 50 is only possible if a significant splitting
m2
Hd

> m2
Hu

is present already at the high scale. This significantly constrains the param-
eter space and immediately precludes very large tanβ solutions in simple models like the
constrained MSSM.

To understand the required magnitude of this splitting, it is useful to note that in the
large tanβ limit, one approximately has, at the EWSB scale,

m2
Hd
−m2

Hu
≈ m2

A +m2
Z , (2.3)

so a heavy Higgs spectrum requires a large splitting. In addition, the value of m2
Hu

at low
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energies is related to the size of the µ parameter since

−m2
Hu
≈ |µ|2 +

1
2
m2
Z . (2.4)

2.3 Threshold corrections to Yukawa couplings

In the large tanβ regime of the MSSM, loop induced couplings of down-type quarks and
charged leptons to the up-type Higgs can lead to O(1) threshold corrections to the corre-
sponding masses [6, 17, 18], modify significantly CKM matrix elements [19] and also have
a profound impact on flavour phenomenology [20–25]. In this section we concentrate on
the tanβ enhanced threshold corrections to the bottom and tau masses. Implications for
low energy flavour observables will be described in section 2.4.

After EWSB, the tau and the bottom masses arise at tree level from the coupling to the
down-type Higgs, m0

τ,b = yτ,bvd. In presence of soft SUSY breaking terms, also couplings
to the up-type Higgs are generated at the loop level leading to tanβ enhanced corrections
to the tree level masses

mτ = yτvd + y′τvu = m0
τ (1 + ε` tanβ) , ε` = εW̃` + εB̃` , (2.5)

mb = ybvd + y′bvu = m0
b(1 + εb tanβ) , εb = εg̃b + εW̃b + εB̃b + εH̃b . (2.6)

Instead of (2.1) one then has

yτ =
mτ

v

tanβ
1 + ε` tanβ

, yb =
mb

v

tanβ
1 + εb tanβ

, (2.7)

which resums the tanβ enhanced beyond leading order corrections to all orders [22].
To transparently display the main dependencies on the SUSY parameters, we now give

approximate expressions for the loop factors ε` and εb assuming all squarks and sleptons
to have a common mass m̃. In addition we assume that gaugino masses M1,2,3, the µ

parameter as well as the trilinear couplings At,b,τ are real. Under these assumptions, the
loop factors are well approximated by

εg̃b =
αs
4π

8
3
µM3

m̃2
f1(x3) , εH̃b =

α2

4π
m2
t

2M2
W

µAt
m̃2

f1(xµ) ,

εW̃b = εW̃` = −α2

4π
3
2
µM2

m̃2
f2(x2, xµ) , (2.8)

with the mass ratios x2,3 = M2
2,3/m̃

2 and xµ = µ2/m̃2. For the loop functions one has
f1(1) = f2(1, 1) = 1/2 and their explicit expressions are reported in appendix B. Our
conventions are such that M3 is always real and positive, the left-right mixing entry in
the stop mass matrix is given by mt(At − µ cotβ), and the ones in the sbottom and stau
mass matrices by mb,τ (Ab,τ − µ tanβ). As the Bino contributions εB̃b,τ are parametrically
suppressed by the small gauge coupling α1, we refrain from giving explicit expressions also
for them. They can be found e.g. in [7].

The dominant correction to the bottom Yukawa is typically given by the gluino con-
tribution εg̃b which is positive (negative) for positive (negative) µ. As εg̃b does not decouple
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with µ, the largest corrections to the bottom Yukawa are expected when |µ| is large. For
large values of At (and light stops), also the Higgsino contribution εH̃b can in principle be-
come important and, depending on the sign of At, interfere constructively or destructively
with the gluino contribution.

Concerning the τ Yukawa, due to the absence of gluino and Higgsino corrections, the
Wino contribution εW̃` is typically dominant and its sign is determined by −sign(µM2).

2.4 Low energy constraints

The most important low energy constraints on the MSSM with large tanβ and Minimal
Flavour Violation arise from helicity suppressed observables, where SUSY contributions can
be enhanced by powers of tanβ. If there are no new sources of CP violation apart from the
phase of the CKM matrix then the crucial observables are the branching ratios of the B
decays B → τν, Bs → µ+µ− and B → Xsγ in the flavour sector, as well as the anomalous
magnetic moment of the muon as a flavour conserving observable [26]. We will now briefly
review the experimental status of these observables and discuss the corresponding SUSY
contributions.2

2.4.1 The anomalous magnetic moment of the muon

The current SM prediction for the anomalous magnetic moment of the Muon, aµ = 1
2(g −

2)µ, reads [28]
aSM
µ = (11 659 183.4± 4.9)× 10−10 . (2.9)

Combined with the final experimental result from the Muon (g-2) Collaboration [29, 30]

aexp
µ = (11 659 208.9± 6.3)× 10−10 , (2.10)

one finds a discrepancy at the level of 3.2σ [28]

∆aµ = aexp
µ − aSM

µ = (25.5± 8.0)× 10−10 . (2.11)

Such a discrepancy can easily be explained in the MSSM with large tanβ where the fol-
lowing approximate expression holds for the typically dominant Wino contribution [31, 32]

∆aSUSY
µ =

α2

4π
m2
µ

tβ
1 + ε`tβ

µM2

m̃4
f4(x2, xµ) , (2.12)

with f4(1, 1) = 5/12 and the explicit expression for the loop function is given in appendix B.
There are corners in the MSSM parameter space where also Bino contributions can become
non-negligible. Explicit expressions for them can be found in [31].

2While we only give simple approximate expressions for the dominant SUSY contributions, in our nu-

merical analysis we use the full set of leading order contributions and include the tanβ enhanced beyond

leading order corrections following the general method described in [25]. As the iteration procedure of [25]

breaks down for ε tanβ > 1, we start the iteration using the initial Yukawa couplings (2.7) that constitute

already the correct resummed result in the decoupling limit, v2/m2
SUSY → 0. The iteration then serves to

include corrections beyond the decoupling limit. An alternative, fully analytic method has been proposed

in [27].
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The sign of the Wino contribution in (2.12) is determined by sign(µM2). The current
data on (g−2)µ thus usually excludes a relative minus sign between µ and M2 at more than
3σ. We remind that also the sign of the dominant contribution to ε` is determined by exactly
the same parameter combination (cf. section 2.3), with ε` negative for sign(µM2) = +1.

2.4.2 The decay B+ → τ+ν

The tree level decay B+ → τ+ν is a sensitive probe of models with extended Higgs sec-
tors [33]. Indeed, in the MSSM with large tanβ, its branching ratio can differ significantly
from the SM prediction [26, 34]. Tree level charged Higgs contributions interfere destruc-
tively with the SM ones and lead to

RBτν =
BR(B+ → τ+ν)

BR(B+ → τ+ν)SM
'

(
1−

m2
B+

M2
H+

t2β
(1 + ε0tβ)(1 + ε`tβ)

)2

, (2.13)

with ε0 defined as ε0 = εg̃b + εW̃b + εB̃b .
While the B+ → τ+ν decay is not yet “observed” with a 5σ significance, the current

experimental world average for the branching ratio reads [35]

BR(B+ → τ+ν)exp = (1.73± 0.35)× 10−4 . (2.14)

SM predictions for the branching ratio that rely on fits of the Unitarity triangle result
in values roughly 2.5σ below the experimental data [35–37], leading to severe constraints
on the destructively interfering charged Higgs contributions. To be conservative, we use
instead as a SM prediction [37] (see also [38])

BR(B+ → τ+ν)SM = (1.10± 0.29)× 10−4 , (2.15)

which implies
RBτν = 1.57± 0.53 . (2.16)

We remark that B → τν alone cannot exclude a scenario where the SM contribution
is overcompensated by a charged Higgs contribution more than twice as large as itself.
However, the experimental data on the K → µν and B → Dτν decays exclude such a
fine tuned situation [36, 39, 40]. Therefore, despite the still rather large experimental and
theory uncertainties, one expects stringent lower bounds on the charged Higgs mass in the
very large tanβ regime.

To illustrate this point, we show in figure 2 the lower bounds on the charged Higgs
mass in the yb-yτ plane, based on applying (2.16) at the 2σ level. The plot is obtained
under the assumption that εH̃b � εg̃b such that εb ' ε0 and RBτν in (2.13) can directly
be expressed in terms of the Yukawa couplings (2.7), which will indeed be the case in the
scenarios that we will consider in sections 3 and 4.

The red line shows the Yukawa couplings in the absence of threshold corrections for
fixed values of tanβ. Along this line we find

mH± > 9.6 GeV× tanβ , (2.17)
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Figure 2. Lower bound on the charged Higgs mass mH± in TeV arising from BR(B → τν) at the
2σ level, depending on the values of the bottom and tau Yukawa couplings at the TeV scale. These
bounds are valid under the assumption that gluino contributions to the yb threshold correction
dominate over Higgsino contributions. The points on the red line denote the values of the Yukawa
couplings at a given value of tanβ in the absence of threshold corrections, as in figure 1.

which is less stringent than the bound found in [36], due to our more conservative SM
prediction. In the presence of threshold corrections, this bound can be relaxed, provided
εb > 0 and/or ετ > 0.

2.4.3 The decay Bs → µ+µ−

The experimental bound on the branching ratio of the rare decay Bs → µ+µ− [41],

BR(Bs → µ+µ−)exp < 5.8× 10−8 at 95% C.L., (2.18)

is roughly a factor 15 above the SM prediction [37]

BR(Bs → µ+µ−)SM = (3.60± 0.37)× 10−9 . (2.19)

Still, Bs → µ+µ− constitutes a very important constraint of the MSSM at large tanβ as
the branching ratio grows with tan6 β [21, 42]. Approximately one has

RBsµµ =
BR(Bs → µ+µ−)

BR(Bs → µ+µ−)SM
= |A|2 + |1−A|2 , (2.20)

with the dominant Higgsino contribution to A given by

AH̃ =
m2
Bs

8m2
A

t3β
(1 + εbtβ)(1 + ε0tβ)(1 + ε`tβ)

m2
t

M2
W

µAt
m̃2

f1(xµ)
Y0(xt)

. (2.21)

The loop function f1 appeared already in the discussion of threshold corrections in sec-
tion 2.3 and for the SM loop function one has Y0(xt) ' 0.96.
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We note that AH̃ is proportional to the stop trilinear coupling At giving the possibility
to relax the constraint from Bs → µ+µ− by lowering At.

2.4.4 The decay B → Xsγ

The good agreement between the experimental data on the branching ratio of B → Xsγ [43]

BR(B → Xsγ)exp = (3.52± 0.25)× 10−4 , (2.22)

and the corresponding NNLO SM prediction [44]

BR(B → Xsγ)SM = (3.15± 0.23)× 10−4 , (2.23)

leads to severe constraints on the MSSM parameter space, in particular for large values of
tanβ. The prediction for the branching ratio in the MFV MSSM with no new sources of
CP violation can be well approximated by the following equation [45]

Rbsγ =
BR(B → Xsγ)

BR(B → Xsγ)SM
= 1− 2.41CNP

7 − 0.75CNP
8

+1.59
(
CNP

7

)2
+ 0.27

(
CNP

8

)2
+ 0.82CNP

7 CNP
8 , (2.24)

with the NP contributions to the Wilson coefficients C7 and C8 evaluated at a scale
µ0 = 160 GeV. The leading Higgsino contributions are tanβ enhanced and read at the
matching scale

CH̃7,8 = −
tβ

1 + εbtβ

m2
t

m̃2

Atµ

m̃2
f7,8(xµ) . (2.25)

For the loop functions one has f7(1) = 5/72, f8(1) = 1/24 and their explicit expressions
can be found in appendix B.

Even for a completely flavour blind soft sector, there are two-loop contributions involv-
ing gluinos that have been explicitly worked out in [27]. They can lead to non-negligible
effects in particular in C8 and read

C g̃7,8 = −αs
4π

t2β
(1 + ε0tβ)(1 + εbtβ)

m2
t

m̃2

µAt
m̃2

µM3

m̃2
f1(xµ)f̃7,8(x3) . (2.26)

The loop functions are given in appendix B, and one finds f̃7(1) = 1/27 and f̃8(1) =
5/36. The suppression of these contributions by αs/4π ' 0.01 can be compensated by the
additional factor tanβ. They are consistently included in our numerical analysis using the
general procedure described in [25].

As a final remark we note that both contributions, (2.25) and (2.26), are proportional
to the stop trilinear coupling At. Thus the constraint from B → Xsγ can be relaxed for
small values of At.

3 Numerical analysis: low-energy approach

In the last section, we outlined the features of the MSSM at very large tanβ and discussed
the threshold corrections to Yukawa couplings and the impact on FCNCs. Now, we want
to quantify the room left for tanβ � 50 by means of a low-energy parameter scan.
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In view of the potentially dangerous effects on flavour and CP violating observables
at very large tanβ, we restrict ourselves to a flavour-blind and CP-conserving subspace of
the full MSSM parameter space. In particular, we assume

m2
Q,U,D,L,E = m2

Q,U,D,L,E × 1 , (3.1)

Au,d,l = Au,d,lYu,d,l , (3.2)

with real m2
i and AI to hold at low energies, as well as a real µ term and real gaugino

masses. We do not impose the GUT relations on the gaugino masses and allow both signs
for M1 and M2 (note that M3 can always be made real and positive by a phase redefinition).

Complete flavour blindness at low energies is of course a quite restricted subspace of
the full MSSM parameter space and is not an RG invariant assumption. Therefore models
with non-minimal flavour violation or with extreme non-universalities, like the radiatively
induced inverted scalar hierarchies necessary in models with Yukawa unification [10–12, 14],
are not covered by this approach. On the other hand, it is a good approximation to models
with flavour-blind mediation of SUSY breaking and a low mediation scale like the gauge
mediation models we consider in section 4.

In addition to the parameters in eqs. (3.1)–(3.2) and the gaugino masses, also the
pseudoscalar Higgs mass mA, µ and tanβ are free parameters in this setup. We scan them
in the ranges

mQ,U,D,L,E ∈ [0, 2] TeV, Au,d,l ∈ [−0.5, 0.5] TeV, (3.3)

µ ∈ [−2, 2] TeV, mA ∈ [0, 2] TeV, (3.4)

M1 ∈ [−1, 1] TeV, M2 ∈ [−2, 2] TeV, M3 ∈ [0, 6] TeV, (3.5)

for fixed, large values of tanβ = (50, 100, 150, 200). We restrict our analysis to a limited
range of the trilinear couplings to soften possible constraints coming from Bs → µ+µ−

and B → Xsγ. In fact, small values of the trilinear couplings naturally arise in the gauge
mediation scenario we consider in section 4.

We discard points violating existing lower bounds on sparticle and Higgs masses, as well
as points violating the perturbativity condition yb,τ <

√
4π at the EWSB scale mSUSY =

√
mt̃1

mt̃2
.

In figure 3, we show the results for the bottom and tau Yukawa couplings in the
presence of threshold corrections for the four different values of tanβ, superimposed on the
µmax contours of figure 1. The plots on the left (right) contain points with tanβ = 50, 150
(tanβ = 100, 200) and in the first (second) row the Wino mass M2 is positive (negative).
Light gray points are excluded at the 2σ level by the flavour constraints, while dark gray
ones are excluded by (g − 2)µ alone at the 3σ level. The coloured points finally fulfill all
imposed constraints and indicate the corresponding values of µ through the colour. We
make the following observations:

• The four “lobes” of points correspond to the different signs of (µ,M2) and meet at
the (yb, yτ ) values in absence of threshold corrections (cf. figure 1). Points left of it
correspond to positive threshold corrections to yb (y′b > 0 in the notation of eq. (2.6)),
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Figure 3. Values of the bottom and tau Yukawa couplings at the TeV scale in the low-energy
MSSM scan with flavour blind soft terms with M2 > 0 (top row) and M2 < 0 (bottom row). The
plots in the left column show the points for tanβ = 50 below the ones for tanβ = 150; the plots
in the right column show the ones for tanβ = 100 below the ones for tanβ = 200. Light gray
points are excluded at the 2σ level by the flavour constraints, while dark gray ones are excluded by
(g − 2)µ alone at the 3σ level. Among the coloured points, the ones with smaller values of µ are
stacked upon the ones with larger µ. The µmax contours are as in figure 1.

points below it to positive threshold corrections to yτ (y′τ > 0), etc. The sign of the
corrections to yτ is given by the sign of (−µM2), and the sign of the corrections to yb
by the sign of µ, as expected from the dominance of Wino contributions and gluino
contributions, respectively, discussed in section 2.3.

• Almost all the points where sign(µM2) = −1 are ruled out at more than 3σ by the
(g − 2)µ constraint. This rules out positive threshold corrections to yτ , as would be
preferable from the point of view of perturbativity to high scales. The best points in
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Figure 4. Branching ratio of B+ → τ+ν compared to its SM value as a function of the charged
Higgs mass for the low-energy MSSM scan with flavour blind soft terms. All the shown points fulfill
the constraints from the other flavour observables as well as from (g − 2)µ. The solid black curve
corresponds to the result in absence of threshold corrections and the experimental lower bound is
shown as dashed line.

this respect allowed by the (g − 2)µ constraint are then the ones with positive con-
tributions to yb and negative contributions to yτ , i.e. with sign(µ) = sign(M2) = +1.

• There exist sporadic points with positive corrections to the tau Yukawa coupling that
are in agreement with all available constraints, in particular also with the (g − 2)µ.
We find that these points are characterized by very large left-handed (LH) and very
small right-handed (RH) slepton masses. Very heavy LH sleptons lead to a fast
decoupling of the Wino contributions to ∆aµ and Bino contributions become non-
negligible. In fact a diagram involving a Bino, a Higgsino and a RH slepton gives the
dominant effect in ∆aµ for these points and its sign is given by −sign(µM1). As the
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decoupling with the slepton mass is much weaker in ε` as compared to ∆aµ, there
exist in fact corners in the parameter space where one has a dominant and positive
Wino correction to ε` and simultaneously a dominant and positive Bino contribution
to ∆aµ, provided sign(µM2) = sign(µM1) = −1.

• The size of the threshold corrections to yb is mainly limited by the maximal possible
values of |µ|. Especially for very large tanβ = 150, 200, |µ| typically does not exceed
1 TeV. The reason for that is twofold: First, very large values of µ tanβ lead to
large left-right mixing entries in the sbottom and stau mass matrices, easily resulting
in tachyonic sbottoms or staus. Second, there are sizable sbottom contributions to
the lightest Higgs boson mass for large µ tanβ [46]. These contributions are always
negative and therefore decrease the lightest Higgs boson mass to values below the
LEP bound for too large µ tanβ.

• As a side remark we note that for tanβ = 200, we also find few valid points with
positive corrections to the bottom Yukawa so large that yb turns out to be negative.
These very fine tuned points that are not shown in figure 3 are characterized by
large negative µ and negative M2 and are clustered around (yb, yτ ) ' (−2, 2.5).
Interestingly, the negative bottom Yukawa leads to constructively interfering Higgs
contributions to B → τν resulting in RBτν > 1 as is actually preferred by the
present data.

As discussed in section 2.4.2, for large tanβ one expects strong constraints on the
charged Higgs mass coming from B → τν. In figure 4 we show the BR(B → τν) as a
function of the charged Higgs mass for tanβ = (50, 100, 150, 200). All the shown points
fulfill the constraints from the other flavour observables as well as from (g− 2)µ. The solid
black curve corresponds to the result in absence of threshold corrections and the lower
bound on the branching ratio in (2.16) is shown as dashed line. We remind that the light
Higgs mass region with RBτν > 0.51 is actually excluded by data on the K → µν and
B → Dτν decays and at tree level the bound on the Higgs mass (2.17) holds. However, in
particular for large µ, sizable threshold corrections to yb lead to deviations from the tree
level expectation. For positive values of µ, the bound on the Higgs mass is relaxed. In our
framework we find

mH± & (400, 700, 1200, 1500) for tanβ = (50, 100, 150, 200) . (3.6)

As mH± ' mA0 , these still rather stringent bounds then do not allow for order of
magnitude enhancements of BR(Bs → µ+µ−) anymore. Due to our limited range for At
in (3.3), we find that BR(Bs → µ+µ−) typically does not exceed 1×10−8. Correspondingly,
the so-called double Higgs penguin contributions to Bs mixing [25] do not lead to visible
effects in the Bs − B̄s mass difference ∆Ms.
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4 General gauge mediation and uplifted SUSY

Gauge mediation of supersymmetry breaking3 is among the most successful ideas to solve
the SUSY flavour problem. Since gauge interactions are flavour-blind, gauge mediation
automatically leads to flavour-blind soft terms, and the possibility to have a mediation
scale much lower than the Planck scale reduces also those flavour violating terms which are
generated radiatively. While lots of different models of gauge mediation are on the market,
a very simple and general definition of gauge mediation was suggested recently [3]: General
Gauge Mediation (GGM) is a theory which decouples into the MSSM and a separate SUSY
breaking hidden sector in the limit that the MSSM gauge couplings gi → 0.

While this simple definition gives rise to well-known ingredients of gauge mediation, like
small trilinear terms and flavour-blind soft terms at the mediation scale, it does not allow
the generation of theBµ term in the soft SUSY breaking Lagrangian or the generation of a µ
term from soft SUSY breaking interactions, since these parameters violate the Peccei-Quinn
symmetry and cannot be generated by gauge interactions alone. To cure this problem, one
possibility is to extend the definition of GGM to allow for interactions generating sufficient
µ/Bµ [3]. Another possibility is to retain the original definition, implying Bµ = 0 at
the mediation scale, and assuming that the origin of the superpotential parameter µ is
unrelated to the SUSY breaking sector.

This “pure GGM” setup with Bµ = 0 at the mediation scale (cf. [48]) is not only
interesting from a conceptual point of view, being a prediction of the simple definition of
GGM, but also has an important phenomenological motivation: it strongly ameliorates the
SUSY CP problem within gauge mediation.

The reason is that, in the MSSM with flavour-blind soft terms, CP-violating phases —
apart from the CKM phase and the strong CP phase — can occur in the trilinear A terms,
the gaugino masses, the Bµ and the µ term. Two of these phases can be rotated away by
making use of the U(1)R and U(1)PQ symmetries, which are exact if the aforementioned
parameters vanish. Since the A terms are tiny at the gauge mediation scale, one can e.g.
make one gaugino mass real as well as the µ term or the Bµ term, but not both. Assuming
the gaugino masses to have a common phase at the mediation scale, as is the case for
example in the Minimal Gauge Mediation (MGM) model, where the gaugino masses fulfill
the GUT relation M1/g

2
1 = M2/g

2
2 = M3/g

2
3, the condition Bµ = 0 completely solves the

CP problem, since there are no CP-violating phases left that cannot be rotated away.

4.1 GGM parameter space and large tanβ

It was shown in [3] that, given the definition of GGM, all the information on the hidden
sector required to parametrize the soft sector is encoded in correlation functions of symme-
try currents. Consequently, the soft terms at the mediation scale can be written to leading
order as [49]

Mk = g2
kMBk , m2

f = g2
1Yfζ +

∑
k

g4
kC2(f, k)Ak , AIJu,d,l = 0 , (4.1)

3See [47] for a review and collection of references.
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where C2 is the quadratic Casimir with respect to gauge group k (we use the GUT nor-
malization for g1 and C2(f, 1) = 3

5Y
2
f ), Y is the hypercharge and m2

f refers to the sfermion
as well as Higgs squared masses.

We assume that relations (4.1) are also valid for the Higgs soft masses m2
Hu,d

. On
the one hand, it is often assumed that these relations are less reliable for Higgses than
for sfermions due to the possible impact of the physics responsible for curing the µ/Bµ
problem. On the other, in the pure GGM setting where Bµ = 0 at the mediation scale and
µ is unrelated to the hidden sector, this assumption appears to be well justified.

In total, the GGM parameter space then consists of 4 real parameters Ak, ζ in the
sfermion sector, 3 complex ones Bk in the gaugino sector (in fact, only two of the three
phases are physical as mentioned above), as well as tanβ and the phase of µ. If Bµ = 0 at
the mediation scale, tanβ turns into a prediction and µ can be made real, with only the
sign of µ still being a free parameter.

Since the seven sfermion and Higgs soft masses are determined by the four real param-
eters A1,2,3 and ζ, there are three relations among them, valid at the mediation scale M :

6m2
Q + 3m2

U − 9m2
D − 6m2

L +m2
E = 0 , (4.2)

m2
L = m2

Hd
, (4.3)

3m2
Q − 3m2

U + 3m2
L + 2m2

E = 6m2
Hu

. (4.4)

The hypercharge D-term ζ in (4.1) gives rise to a non-positive definite contribution to
the scalar squared masses and can lead to tachyons in the spectrum. To avoid this, it can be
forbidden by imposing a discrete symmetry [3, 50]. However, since the two Higgs doublets
differ in gauge quantum numbers only by the sign of their hypercharge, ζ = 0 would imply
degenerate soft masses for the Higgs doublets, i.e. the three relations (4.2)–(4.4) would be
supplemented by a fourth one, m2

Hu
= m2

Hd
. As argued in section 2.2, such condition is

problematic in the very large tanβ regime since it obstructs radiative EWSB. Therefore,
we will keep ζ nonzero in the following.

In fact, from a purely phenomenological perspective, the parameters A1, A2 and ζ

in (4.1) can be traded for m2
L ≡ m2

Hd
, m2

Hu
and m2

E , which can be viewed as independent
free parameters in that case. This parametrization is most transparent to avoid tachyonic
sleptons from the outset. The squark masses are then determined in terms of these three
parameters and A3, and tachyonic squarks can in principle always be avoided by choosing
A3 sufficiently large.

It is important to note that, while a nonzero hypercharge D-term and thus a non-zero
Higgs splitting allows to obtain a heavier Higgs spectrum by means of eq. (2.3), m2

Hd
has

to be positive at the mediation scale to avoid a charge breaking vacuum since it is tied to
the left-handed slepton masses by means of (4.3). Combining eqs. (2.3) and (2.4), one thus
obtains an upper bound on the magnitude of µ,

|µ|2 < m2
A +

1
2
m2
Z , (4.5)

which is valid at the mediation scale, but should be expected to still hold approximately
at low energies if the mediation scale is low.
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4.2 Numerical analysis of GGM at large tanβ

We now study the viability of the GGM setup in the very large tanβ regime. Since we
found in section 3 that the perturbativity scale µmax decreases fastly when tanβ > 50,
we will assume a relatively low mediation scale M = 100 TeV throughout this section
for definiteness.

We will assume the gaugino mass parameters Bk in (4.1) to be independent of the
gauge group, implying the usual GUT-relations for gaugino masses. The reason for doing
so is twofold; First, the solution to the CP problem in the uplifted SUSY scenario sketched
above is facilitated if gaugino masses arise from a single scale as in the MGM. Second,
as shown in section 3, M2 < 0 requires µ < 0 to meet the (g − 2)µ bound, which in
turn however leads to large positive threshold corrections to yb and lowers the scale until
where yb remains perturbative. Therefore we restrict to the case with positive gaugino
masses here.

We trade the parameters A1, A2 and ζ for m2
L, m2

E and ∆m2
H = m2

Hd
−m2

Hu
and scan

in the following ranges,

MBk ∈ [0, 2] TeV, A3 ∈ [0, 2] TeV, (4.6)

m2
L ∈ [0, 2] TeV, m2

E ∈ [0, 2] TeV, ∆m2
H ∈ [0, 2] TeV. (4.7)

Note that ∆m2
H ∝ −ζ and also that the above scan ranges imply negative values for

A2 in some cases, which however does not lead to tachyons if it is compensated by positive
contributions from A1 and A3.

We first consider fixed values of tanβ, which requires treating Bµ as a free parameter.
A posteriori, we determine the according Bµ terms at the mediation scale (as detailed in
appendix A) to identify the regions in parameter space corresponding to the uplifted SUSY
scenario with Bµ(M) = 0.

Figure 5 shows the bottom and tau Yukawa couplings at the TeV scale for fixed tanβ
values 50, 75 and 100, akin to the plots for the low-energy scan in figure 3. All the points
with negative µ are ruled out at more than 3σ by the (g− 2)µ constraint. For tanβ = 100,
our code did not produce any converged points with correct EWSB for µ < 0. This can
be understood from the proximity of the existing points to the µmax = 105 GeV contour,
signaling the non-perturbativity of one Yukawa coupling already at the mediation scale
M = 105 GeV, in which case the calculation becomes unreliable and the code unstable.
An attempted scan with tanβ = 150 accordingly produced no points at all, regardless of
the sign of µ. This is also in agreement with the tanβ = 150 points with µ > 0 in the
low-energy plot of figure 3, where all points lie close to or beyond the 105 GeV contour.

In figure 6 we show the BR(B → τν) as function of the charged Higgs mass for
tanβ = (50, 75, 100). We observe that the bound on the charged Higgs mass in the GGM
scenario basically coincides with the one arising in absence of threshold corrections (2.17).
Approximately we find

mH± & (500, 750, 1000) for tanβ = (50, 75, 100) . (4.8)

The reason for this at first sight surprising result is the upper bound on |µ| given in (4.5).
Whenever the Higgs mass is relatively low, also µ is small which excludes large positive
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Figure 5. Values of the bottom and tau Yukawas at the TeV scale in GGM with tanβ = 50, 75, 100
(from bottom to top). Light gray points are excluded at the 2σ level by the flavour constraints,
while dark gray ones are excluded by (g − 2)µ alone at the 3σ level. Among the coloured points,
the ones with smaller values of µ are stacked upon the ones with larger µ. The µmax contours are
as in figure 1.

threshold corrections to the bottom Yukawa yb that could relax the bound on the charged
Higgs mass.

In fact, for small to medium values of mH± , negative corrections to the tau Yukawa are
typically dominant, leading to slightly larger NP contributions to BR(B → τν) compared to
the case without threshold corrections. The other way round, we stress that in the regions
of parameter space that are preferred from the point of view of Yukawa perturbativity, i.e.
where both yb and yτ are relatively small, the Higgs mass is always very heavy in GGM
and the B → τν constraint is automatically fulfilled. This can be understood by combining
eqs. (2.3), (2.4) and (4.3) to obtain a relation between the µ term, the left-handed slepton
mass and the pseudoscalar Higgs mass valid at tree level at the mediation scale,

m2
A = m2

L + |µ|2 − 1
2
m2
Z . (4.9)

Since the region with small yb and yτ features heavy sleptons (to suppress the positive
correction to yτ ) and large µ (to enhance the negative corrections to yb), eq. (4.9) implies
that it also features a heavy Higgs spectrum.

Given the heavy Higgs spectrum and the fact that the trilinear coupling At is natu-
rally small in GGM as it is only generated radiatively in the running from the mediation
scale M = 105 GeV down to the EW scale, we find only moderate effects in Bs → µ+µ−,
with BR(Bs → µ+µ−) typically not exceeding 5 × 10−9. We even find many points that
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Higgs mass in GGM with tanβ = 50, 75, 100. All the shown points fulfill the constraints from the
other flavour observables as well as from (g−2)µ. The solid black curve corresponds to the result in
absence of threshold corrections and the experimental lower bound is shown as dashed line. Points
with larger values of µ are stacked upon the ones with smaller µ.

have values for BR(Bs → µ+µ−) below the SM prediction. In fact, charged Higgs contri-
butions to Bs → µ+µ− [51] — despite the fact that they are only proportional to tan2 β

at the amplitude level — become non-negligible in the considered scenario and can sup-
press the BR(Bs → µ+µ−) down to roughly 2 × 10−9. We also find that ∆Ms remains
essentially SM like.

In the introduction, we mentioned a vanishing Bµ term at the mediation scale as a
motivation for large or very large tanβ (the uplifted SUSY scenario [7]). If Bµ = 0 at
the mediation scale, tanβ is no longer a free parameter but a prediction. Conversely,
if tanβ is fixed as in our GGM parameter scan, Bµ at the mediation scale turns into
a prediction and is not necessarily zero. At tree level, one has Bµ = m2

A/ tanβ at low
energies. At the loop level, this relation is corrected by the tadpole diagrams and the RG
evolution as described in appendix A. Still, the relation Bµ(M) = 0 generically requires
small pseudoscalar Higgs masses.
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Figure 7. Bµ term at the mediation scale M = 100 TeV vs. the pseudoscalar Higgs mass mA for
tanβ = 50 (top), 75 (bottom left) and 100 (bottom right) in the GGM scenario. The light gray
points are ruled out by the flavour constraints at the 2σ level, while dark gray ones are excluded
by (g − 2)µ alone at the 3σ level. In particular, the points for low mA are ruled out by B → τν.

In figure 7, we show the Bµ term at the mediation scale M against the pseudoscalar
Higgs mass mA. As should be expected from the discussion in appendix A, the loop
corrections to the tree-level relation m2

A = Bµ tanβ roughly scale with µ. In particular,
the lower half of the band at tanβ = 50 corresponds to the points with negative µ and
is ruled out at more than 3σ by the (g − 2)µ constraint. At low mA . 500 GeV, due to
mA ≈ mH± , the B → τν constraint becomes active and rules out also the points with
positive µ. As a consequence, none of the points with Bµ = 0 survives.

For tanβ = 75, the points with µ < 0 have very large yb (cf. figure 5), leading to large
loop corrections to Bµ. These scattered points are however also ruled out by (g − 2)µ. At
mA . 750 GeV, the points are ruled out by B → τν. For tanβ = 100, where all points
have µ > 0, the bound on mA rises to almost 1 TeV.

In effect, the combined constraints from (g − 2)µ and B → τν make it virtually
impossible to obtain viable scenarios in GGM with Bµ = 0 at a mediation scale of 100 TeV.

With a higher mediation scale, Bµ = 0 remains a valid possibility (cf. [48]) since the
larger RG effects lead to stronger deviations from the tree-level relation Bµ = m2

A/ tanβ.
However, a higher mediation scale also lowers the maximal allowed tanβ value. This is clear

– 20 –



J
H
E
P
0
9
(
2
0
1
0
)
0
7
8

from the discussion in section 3, which demonstrated that the maximum perturbativity
scale µmax quickly decreases for tanβ � 50. Indeed, a trial scan within GGM with M =
107 GeV and tanβ = 100 did not return any points with perturbative Yukawa couplings.

We thus conclude that the region where Bµ = 0 and 50 < tanβ . 100 are simul-
taneously realized corresponds to a very restricted range in M ≈ 106 − 107 GeV, below
which the constraints from B → τν and/or (g− 2)µ are violated, and above which Yukawa
couplings become non-perturbative. A full and systematic analysis of this parameter space
is however beyond the scope of our present study.

5 Conclusions

In this paper, we have studied constraints on the MSSM with tanβ > 50 coming from the
perturbativity of Yukawa couplings and from flavour physics. After reviewing the main
constraints on the parameter space, we have performed a numerical analysis of the MSSM
with flavour-blind soft terms at low energies and 50 ≤ tanβ ≤ 200. We find that

• The (g − 2)µ constraint strongly disfavours positive contributions to the tau lepton
mass from threshold corrections. From the point of view of perturbativity of Yukawa
couplings, it is thus preferable that these contributions are small.

• B → τν is a crucial constraint even for conservative estimates of the SM uncertainties.
Interestingly enough, it disfavours the points with large b and τ Yukawa couplings,
leaving room for viable points with large tanβ and not too low non-perturbativity
scale.

• The B → Xsγ and Bs → µ+µ− constraints can be relaxed if the trilinear couplings
are small, as e.g. in models with gauge mediation.

• The overall size of the threshold corrections to Yukawa couplings is limited by the size
of |µ|, which is in turn limited by the light Higgs mass bound and the requirement
not to have a tachyonic stau or sbottom.

We have also analyzed the very large tanβ region of General Gauge Mediation (GGM)
with a low mediation scale. We have performed a numerical analysis of the parameter
space of GGM with a mediation scale M = 100 TeV for tanβ = 50, 75 and 100, assuming
GUT-like gaugino masses and a non-zero hypercharge D-term, that is required to obtain
correct EWSB for very large tanβ > 50. In this setup we find that

• tanβ & 150 is not viable, since the Yukawas become non-perturbative below the
mediation scale.

• For µ < 0, all points are ruled out by (g − 2)µ.

• For µ > 0, the points with the highest non-perturbativity scale (i.e. smallest yτ ) are
automatically safe from the B → τν constraint since GGM relates the slepton masses
and the Higgs soft masses such that for large slepton masses also the charged Higgs
mass is large.
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• The lower bound on the charged Higgs mass from BR(B → τν) is much sharper than
in the low-energy analysis due to the relation µ . mA valid in the GGM setup.

• Bµ = 0 at the mediation scale is only possible for a negative µ parameter or low
Higgs masses and correspondingly strongly disfavoured by the combined (g−2)µ and
BR(B → τν) constraints.

As stressed above, the latter statement holds in the GGM setup described at the beginning
of section 4.2 with a very low mediation scale M = 100 TeV and tanβ & 50. With a higher
mediation scale, Bµ = 0 ist still possible, but then the maximum allowed value for tanβ
quickly decreases.
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A Determining the Bµ term at the mediation scale

In this appendix, we describe how to obtain the value of Bµ at some arbitrarily high energy
scale, starting from an MSSM parameter point at low energies.4 The same procedure can
of course be applied vice versa to calculate the low-scale Bµ term (and predict tanβ)
starting from some high-scale value (e.g. Bµ(M) = 0). In the latter case however, one has
to perform an iteration since the loop corrections to Bµ depend on the value of tanβ.

The Bµ term at low energies is determined from the EWSB conditions,

m2
Z

2
cos(2β) +m2

Hd
+ |µ|2 −Bµ tanβ = −Td

vd
, (A.1)

−
m2
Z

2
cos(2β) +m2

Hu
+ |µ|2 −Bµ cotβ = −Tu

vu
, (A.2)

where Tu,d are the tadpole corrections arising at one-loop level. These conditions are
usually imposed at the scale mSUSY = √mt̃1

mt̃2
to minimize logarithmic contributions to

Tu,d from stop loops. However, bottom, stau, chargino or neutralino contributions can still
be sizable.

From (A.1) and (A.2) one finds

Bµ tanβ = −m2
Z +m2

Hd
−m2

Hu
− Td
vd

+
Tu
vu

+O(1/ tan2 β)

≈ m2
A −∆T tanβ , (A.3)

4A similar calculation has also been presented in [7].
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where we have defined Td = ∆T vu +O(vd). In the Mass Insertion Approximation (MIA),
one finds

16π2 ∆T = + 3µy2
tAt f3(xt̃L , xt̃R) + 3µy2

bAb f3(xb̃L , xb̃R) + µy2
τAτ f3(xτ̃L , xτ̃R)

+ 3g2
2µM2 f3(xµ, x2) +

3
5
g2
1µM1 f3(xµ, x1) , (A.4)

where xµ = µ2/m2
SUSY, x1,2 = M2

1,2/m
2
SUSY and xf̃L,R

= m2
f̃L,R

/m2
SUSY. For the loop

function, one has f3(1, 1) = 2 and the precise form is given in appendix B.
The so obtained Bµ term at the scale mSUSY can then be evolved to the mediation scale

M by means of its RG equation. At one loop, the RGE for B = Bµ/µ can be written as

dB

dt
=

1
8π2

(
3y2
tAt + 3y2

bAb + y2
τAτ + 3g2

2 M2 +
3
5
g2
1 M1

)
. (A.5)

Note that the scale dependence of the tadpole (A.4) is canceled in the leading log approx-
imation to the one-loop RG running (A.5).

In our numerical analysis, we take into account the full one-loop calculation of the
tadpole contributions (without making use of the MIA) [52] and use two-loop RG running
for Bµ (as for all the other parameters) [53].

B Loop functions

f1(x) =
1

1− x
+

x

(1− x)2
log x , (B.1)

f2(x, y) =
x log x

(1− x)(y − x)
+

y log y
(1− y)(x− y)

, (B.2)

f3(x, y) = 1 +
x log x
x− y

− y log y
x− y

, (B.3)

f4(x, y) =
8− 25y + 11y2 − 3x2(1 + y) + x(1 + 16y − 5y2)

2(1− x)2(1− y)2(x− y)

+
7x2 − 4x3 − 4y + xy

(1− x)3(y − x)2
log x+

(4− 3x− 5y + 4y2)y
(1− y)3(x− y)2

log y , (B.4)

f7(x) = − 13− 7x
12(1− x)3

− 3 + 2x− 2x2

6(1− x)4
log x , (B.5)

f8(x) =
1 + 5x

4(1− x)3
+
x(2 + x)
2(1− x)4

log x , (B.6)

f̃7(x) =
4(1 + 5x)
18(1− x)3

+
4x(2 + x)
9(1− x)4

log x , (B.7)

f̃8(x) = − 11 + x

3(1− x)3
− 9 + 16x− x2

6(1− x)4
log x . (B.8)

– 23 –



J
H
E
P
0
9
(
2
0
1
0
)
0
7
8

References

[1] G.R. Dvali, G.F. Giudice and A. Pomarol, The µ-problem in theories with gauge-mediated
supersymmetry breaking, Nucl. Phys. B 478 (1996) 31 [hep-ph/9603238] [SPIRES].

[2] Z. Komargodski and N. Seiberg, µ and general gauge mediation, JHEP 03 (2009) 072
[arXiv:0812.3900] [SPIRES].

[3] P. Meade, N. Seiberg and D. Shih, General gauge mediation, Prog. Theor. Phys. Suppl. 177
(2009) 143 [arXiv:0801.3278] [SPIRES].

[4] M. Dine, Y. Nir and Y. Shirman, Variations on minimal gauge mediated supersymmetry
breaking, Phys. Rev. D 55 (1997) 1501 [hep-ph/9607397] [SPIRES].

[5] R. Rattazzi and U. Sarid, Large tanβ in gauge-mediated SUSY-breaking models, Nucl. Phys.
B 501 (1997) 297 [hep-ph/9612464] [SPIRES].

[6] L.J. Hall, R. Rattazzi and U. Sarid, The top quark mass in supersymmetric SO(10)
unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [SPIRES].

[7] B.A. Dobrescu and P.J. Fox, Uplifted supersymmetric Higgs region, arXiv:1001.3147
[SPIRES].

[8] P.M. Ferreira, I. Jack and D.R.T. Jones, The three-loop SSM β-functions, Phys. Lett. B 387
(1996) 80 [hep-ph/9605440] [SPIRES].

[9] C.D. Froggatt and H.B. Nielsen, Hierarchy of quark masses, Cabibbo angles and
CP-violation, Nucl. Phys. B 147 (1979) 277 [SPIRES].

[10] T. Blazek, R. Dermisek and S. Raby, Predictions for Higgs and SUSY spectra from SO(10)
Yukawa unification with µ > 0, Phys. Rev. Lett. 88 (2002) 111804 [hep-ph/0107097]
[SPIRES].

[11] T. Blazek, R. Dermisek and S. Raby, Yukawa unification in SO(10), Phys. Rev. D 65 (2002)
115004 [hep-ph/0201081] [SPIRES].

[12] W. Altmannshofer, D. Guadagnoli, S. Raby and D.M. Straub, SUSY GUTs with Yukawa
unification: a go/no-go study using FCNC processes, Phys. Lett. B 668 (2008) 385
[arXiv:0801.4363] [SPIRES].

[13] S. Antusch and M. Spinrath, Quark and lepton masses at the GUT scale including SUSY
threshold corrections, Phys. Rev. D 78 (2008) 075020 [arXiv:0804.0717] [SPIRES].

[14] D. Guadagnoli, S. Raby and D.M. Straub, Viable and testable SUSY GUTs with Yukawa
unification: the case of split trilinears, JHEP 10 (2009) 059 [arXiv:0907.4709] [SPIRES].

[15] H. Baer, S. Kraml and S. Sekmen, Is ’just-so’ Higgs splitting needed for t-b-τ Yukawa unified
SUSY GUTs?, JHEP 09 (2009) 005 [arXiv:0908.0134] [SPIRES].

[16] M. Olechowski and S. Pokorski, Electroweak symmetry breaking with nonuniversal scalar soft
terms and large tan beta solutions, Phys. Lett. B 344 (1995) 201 [hep-ph/9407404]
[SPIRES].

[17] R. Hempfling, Yukawa coupling unification with supersymmetric threshold corrections, Phys.
Rev. D 49 (1994) 6168 [SPIRES].

[18] M.S. Carena, M. Olechowski, S. Pokorski and C.E.M. Wagner, Electroweak symmetry
breaking and bottom-top Yukawa unification, Nucl. Phys. B 426 (1994) 269
[hep-ph/9402253] [SPIRES].

– 24 –

http://dx.doi.org/10.1016/0550-3213(96)00404-X
http://arxiv.org/abs/hep-ph/9603238
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9603238
http://dx.doi.org/10.1088/1126-6708/2009/03/072
http://arxiv.org/abs/0812.3900
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.3900
http://dx.doi.org/10.1143/PTPS.177.143
http://dx.doi.org/10.1143/PTPS.177.143
http://arxiv.org/abs/0801.3278
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0801.3278
http://dx.doi.org/10.1103/PhysRevD.55.1501
http://arxiv.org/abs/hep-ph/9607397
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9607397
http://dx.doi.org/10.1016/S0550-3213(97)00363-5
http://dx.doi.org/10.1016/S0550-3213(97)00363-5
http://arxiv.org/abs/hep-ph/9612464
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9612464
http://dx.doi.org/10.1103/PhysRevD.50.7048
http://arxiv.org/abs/hep-ph/9306309
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9306309
http://arxiv.org/abs/1001.3147
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1001.3147
http://dx.doi.org/10.1016/0370-2693(96)01005-2
http://dx.doi.org/10.1016/0370-2693(96)01005-2
http://arxiv.org/abs/hep-ph/9605440
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9605440
http://dx.doi.org/10.1016/0550-3213(79)90316-X
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B147,277
http://dx.doi.org/10.1103/PhysRevLett.88.111804
http://arxiv.org/abs/hep-ph/0107097
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0107097
http://dx.doi.org/10.1103/PhysRevD.65.115004
http://dx.doi.org/10.1103/PhysRevD.65.115004
http://arxiv.org/abs/hep-ph/0201081
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0201081
http://dx.doi.org/10.1016/j.physletb.2008.08.063
http://arxiv.org/abs/0801.4363
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0801.4363
http://dx.doi.org/10.1103/PhysRevD.78.075020
http://arxiv.org/abs/0804.0717
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0804.0717
http://dx.doi.org/10.1088/1126-6708/2009/10/059
http://arxiv.org/abs/0907.4709
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0907.4709
http://dx.doi.org/10.1088/1126-6708/2009/09/005
http://arxiv.org/abs/0908.0134
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0908.0134
http://dx.doi.org/10.1016/0370-2693(94)01571-S
http://arxiv.org/abs/hep-ph/9407404
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9407404
http://dx.doi.org/10.1103/PhysRevD.49.6168
http://dx.doi.org/10.1103/PhysRevD.49.6168
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D49,6168
http://dx.doi.org/10.1016/0550-3213(94)90313-1
http://arxiv.org/abs/hep-ph/9402253
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9402253


J
H
E
P
0
9
(
2
0
1
0
)
0
7
8

[19] T. Blazek, S. Raby and S. Pokorski, Finite supersymmetric threshold corrections to CKM
matrix elements in the large tanβ regime, Phys. Rev. D 52 (1995) 4151 [hep-ph/9504364]
[SPIRES].

[20] C. Hamzaoui, M. Pospelov and M. Toharia, Higgs-mediated FCNC in supersymmetric models
with large tanβ, Phys. Rev. D 59 (1999) 095005 [hep-ph/9807350] [SPIRES].

[21] K.S. Babu and C.F. Kolda, Higgs mediated B0 → µ+µ− in minimal supersymmetry, Phys.
Rev. Lett. 84 (2000) 228 [hep-ph/9909476] [SPIRES].

[22] M.S. Carena, D. Garcia, U. Nierste and C.E.M. Wagner, Effective Lagrangian for the t̄bH+

interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys. B 577 (2000) 88
[hep-ph/9912516] [SPIRES].

[23] M.S. Carena, D. Garcia, U. Nierste and C.E.M. Wagner, b→ sγ and supersymmetry with
large tanβ, Phys. Lett. B 499 (2001) 141 [hep-ph/0010003] [SPIRES].

[24] G. Isidori and A. Retico, Scalar flavor changing neutral currents in the large tanβ limit,
JHEP 11 (2001) 001 [hep-ph/0110121] [SPIRES].

[25] A.J. Buras, P.H. Chankowski, J. Rosiek and L. Slawianowska, ∆Md,s, B
0
d,s → µ+µ− and

B → Xsγ in supersymmetry at large tanβ, Nucl. Phys. B 659 (2003) 3 [hep-ph/0210145]
[SPIRES].

[26] G. Isidori and P. Paradisi, Hints of large tanβ in flavour physics, Phys. Lett. B 639 (2006)
499 [hep-ph/0605012] [SPIRES].

[27] L. Hofer, U. Nierste and D. Scherer, Resummation of tanβ-enhanced supersymmetric loop
corrections beyond the decoupling limit, JHEP 10 (2009) 081 [arXiv:0907.5408] [SPIRES].

[28] J. Prades, Standard model prediction of the muon anomalous magnetic moment, Acta Phys.
Polon. Supp. 3 (2010) 75 [arXiv:0909.2546] [SPIRES].

[29] Muon G-2 collaboration, G.W. Bennett et al., Final report of the muon E821 anomalous
magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035]
[SPIRES].

[30] B.L. Roberts, Status of the Fermilab muon (g − 2) experiment, arXiv:1001.2898 [SPIRES].

[31] T. Moroi, The Muon anomalous magnetic dipole moment in the minimal supersymmetric
standard model, Phys. Rev. D 53 (1996) 6565 [hep-ph/9512396] [SPIRES].

[32] S. Marchetti, S. Mertens, U. Nierste and D. Stöckinger, tanβ-enhanced supersymmetric
corrections to the anomalous magnetic moment of the muon, Phys. Rev. D 79 (2009) 013010
[arXiv:0808.1530] [SPIRES].

[33] W.-S. Hou, Enhanced charged Higgs boson effects in B− → τ ν̄, µν̄ and b → τ ν̄ +X, Phys.
Rev. D 48 (1993) 2342 [SPIRES].

[34] A.G. Akeroyd and S. Recksiegel, The effect of H± on B± → τ± ντ and B± → µ± νµ, J.
Phys. G 29 (2003) 2311 [hep-ph/0306037] [SPIRES].

[35] V. Tisserand, CKM fits as of winter 2009 and sensitivity to new physics, arXiv:0905.1572
[SPIRES].

[36] UTfit collaboration, M. Bona et al., An improved standard model prediction of
BR(B → τν) and its implications for new physics, Phys. Lett. B 687 (2010) 61
[arXiv:0908.3470] [SPIRES].

– 25 –

http://dx.doi.org/10.1103/PhysRevD.52.4151
http://arxiv.org/abs/hep-ph/9504364
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9504364
http://dx.doi.org/10.1103/PhysRevD.59.095005
http://arxiv.org/abs/hep-ph/9807350
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9807350
http://dx.doi.org/10.1103/PhysRevLett.84.228
http://dx.doi.org/10.1103/PhysRevLett.84.228
http://arxiv.org/abs/hep-ph/9909476
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9909476
http://dx.doi.org/10.1016/S0550-3213(00)00146-2
http://arxiv.org/abs/hep-ph/9912516
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9912516
http://dx.doi.org/10.1016/S0370-2693(01)00009-0
http://arxiv.org/abs/hep-ph/0010003
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0010003
http://dx.doi.org/10.1088/1126-6708/2001/11/001
http://arxiv.org/abs/hep-ph/0110121
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0110121
http://dx.doi.org/10.1016/S0550-3213(03)00190-1
http://arxiv.org/abs/hep-ph/0210145
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0210145
http://dx.doi.org/10.1016/j.physletb.2006.06.071
http://dx.doi.org/10.1016/j.physletb.2006.06.071
http://arxiv.org/abs/hep-ph/0605012
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0605012
http://dx.doi.org/10.1088/1126-6708/2009/10/081
http://arxiv.org/abs/0907.5408
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0907.5408
http://arxiv.org/abs/0909.2546
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0909.2546
http://dx.doi.org/10.1103/PhysRevD.73.072003
http://arxiv.org/abs/hep-ex/0602035
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-EX/0602035
http://arxiv.org/abs/1001.2898
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1001.2898
http://dx.doi.org/10.1103/PhysRevD.53.6565
http://arxiv.org/abs/hep-ph/9512396
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9512396
http://dx.doi.org/10.1103/PhysRevD.79.013010
http://arxiv.org/abs/0808.1530
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0808.1530
http://dx.doi.org/10.1103/PhysRevD.48.2342
http://dx.doi.org/10.1103/PhysRevD.48.2342
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D48,2342
http://dx.doi.org/10.1088/0954-3899/29/10/301
http://dx.doi.org/10.1088/0954-3899/29/10/301
http://arxiv.org/abs/hep-ph/0306037
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0306037
http://arxiv.org/abs/0905.1572
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0905.1572
http://dx.doi.org/10.1016/j.physletb.2010.02.063
http://arxiv.org/abs/0908.3470
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0908.3470


J
H
E
P
0
9
(
2
0
1
0
)
0
7
8

[37] W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi and D.M. Straub, Anatomy and
phenomenology of FCNC and CPV effects in SUSY theories, Nucl. Phys. B 830 (2010) 17
[arXiv:0909.1333] [SPIRES].

[38] J.L. Rosner and S. Stone, Leptonic decays of charged pseudoscalar mesons, arXiv:1002.1655
[SPIRES].

[39] FlaviaNet Working Group on Kaon Decays collaboration, M. Antonelli et al.,
Precision tests of the Standard Model with leptonic and semileptonic kaon decays,
arXiv:0801.1817 [SPIRES].

[40] M. Antonelli et al., Flavor physics in the quark sector, Phys. Rept. 494 (2010) 197
[arXiv:0907.5386] [SPIRES].

[41] CDF collaboration, T. Aaltonen et al., Search for B0
s → µ+µ− and B0

d → µ+µ− decays with
2fb−1 of pp̄ collisions, Phys. Rev. Lett. 100 (2008) 101802 [arXiv:0712.1708] [SPIRES].

[42] S.R. Choudhury and N. Gaur, Dileptonic decay of Bs meson in SUSY models with large
tanβ, Phys. Lett. B 451 (1999) 86 [hep-ph/9810307] [SPIRES].

[43] Heavy Flavor Averaging Group collaboration, E. Barberio et al., Averages of b-hadron
and c-hadron properties at the end of 2007, arXiv:0808.1297 [SPIRES].

[44] M. Misiak et al., The first estimate of B(B̄ → Xsγ) at O(α2
s), Phys. Rev. Lett. 98 (2007)

022002 [hep-ph/0609232] [SPIRES].

[45] E. Lunghi and J. Matias, Huge right-handed current effects in B → K∗(Kπ)`+`− in
supersymmetry, JHEP 04 (2007) 058 [hep-ph/0612166] [SPIRES].

[46] A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the two-loop sbottom corrections to
the neutral Higgs boson masses in the MSSM, Nucl. Phys. B 643 (2002) 79
[hep-ph/0206101] [SPIRES].

[47] G.F. Giudice and R. Rattazzi, Theories with gauge-mediated supersymmetry breaking, Phys.
Rept. 322 (1999) 419 [hep-ph/9801271] [SPIRES].

[48] S. Abel, M.J. Dolan, J. Jaeckel and V.V. Khoze, Phenomenology of pure general gauge
mediation, JHEP 12 (2009) 001 [arXiv:0910.2674] [SPIRES].

[49] M. Buican, P. Meade, N. Seiberg and D. Shih, Exploring general gauge mediation, JHEP 03
(2009) 016 [arXiv:0812.3668] [SPIRES].

[50] S. Dimopoulos and G.F. Giudice, Multi-messenger theories of gauge-mediated supersymmetry
breaking, Phys. Lett. B 393 (1997) 72 [hep-ph/9609344] [SPIRES].

[51] H.E. Logan and U. Nierste, Bs,d → `+`− in a two Higgs doublet model, Nucl. Phys. B 586
(2000) 39 [hep-ph/0004139] [SPIRES].

[52] D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the
minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211]
[SPIRES].

[53] S.P. Martin and M.T. Vaughn, Two loop renormalization group equations for soft
supersymmetry breaking couplings, Phys. Rev. D 50 (1994) 2282 [hep-ph/9311340]
[SPIRES].

– 26 –

http://dx.doi.org/10.1016/j.nuclphysb.2009.12.019
http://arxiv.org/abs/0909.1333
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0909.1333
http://arxiv.org/abs/1002.1655
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1002.1655
http://arxiv.org/abs/0801.1817
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0801.1817
http://dx.doi.org/10.1016/j.physrep.2010.05.003
http://arxiv.org/abs/0907.5386
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0907.5386
http://dx.doi.org/10.1103/PhysRevLett.100.101802
http://arxiv.org/abs/0712.1708
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0712.1708
http://dx.doi.org/10.1016/S0370-2693(99)00203-8
http://arxiv.org/abs/hep-ph/9810307
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9810307
http://arxiv.org/abs/0808.1297
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0808.1297
http://dx.doi.org/10.1103/PhysRevLett.98.022002
http://dx.doi.org/10.1103/PhysRevLett.98.022002
http://arxiv.org/abs/hep-ph/0609232
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0609232
http://dx.doi.org/10.1088/1126-6708/2007/04/058
http://arxiv.org/abs/hep-ph/0612166
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0612166
http://dx.doi.org/10.1016/S0550-3213(02)00748-4
http://arxiv.org/abs/hep-ph/0206101
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0206101
http://dx.doi.org/10.1016/S0370-1573(99)00042-3
http://dx.doi.org/10.1016/S0370-1573(99)00042-3
http://arxiv.org/abs/hep-ph/9801271
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9801271
http://dx.doi.org/10.1088/1126-6708/2009/12/001
http://arxiv.org/abs/0910.2674
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0910.2674
http://dx.doi.org/10.1088/1126-6708/2009/03/016
http://dx.doi.org/10.1088/1126-6708/2009/03/016
http://arxiv.org/abs/0812.3668
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.3668
http://dx.doi.org/10.1016/S0370-2693(96)01513-4
http://arxiv.org/abs/hep-ph/9609344
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9609344
http://dx.doi.org/10.1016/S0550-3213(00)00417-X
http://dx.doi.org/10.1016/S0550-3213(00)00417-X
http://arxiv.org/abs/hep-ph/0004139
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0004139
http://dx.doi.org/10.1016/S0550-3213(96)00683-9
http://arxiv.org/abs/hep-ph/9606211
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9606211
http://dx.doi.org/10.1103/PhysRevD.50.2282
http://arxiv.org/abs/hep-ph/9311340
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9311340

	Introduction
	The MSSM at very large tan(beta)
	Perturbativity of Yukawa couplings
	Higgs soft masses and electroweak symmetry breaking
	Threshold corrections to Yukawa couplings
	Low energy constraints
	The anomalous magnetic moment of the muon
	The decay B->tau nu
	The decay B(s)->mu+mu-
	The decay B->X(s)gamma


	Numerical analysis: low-energy approach
	General gauge mediation and uplifted SUSY
	GGM parameter space and large tan(beta)
	Numerical analysis of GGM at large tan(beta)

	Conclusions
	Determining the Bmu term at the mediation scale
	Loop functions

