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1 Introduction

The AdS/CFT correspondence [1–3] between string theories on AdS backgrounds and

supersymmetric conformal gauge theories has been studied very actively and produced

many exciting developments in understanding non-perturbative structures of the string and

gauge theories. In the AdS4/CFT3 duality the three-dimensional conformal field theory is

N = 6 super Chern-Simons (CS) theory with SU(N) × SU(N) gauge symmetry and level

k. This model, which was first proposed by Aharony, Bergman, Jafferis, and Maldacena

(ABJM) [4], is believed to be dual to M-theory on AdS4 × S7/Zk. Furthermore, in the

planar limit of N, k → ∞ with a fixed value of ’t Hooft coupling λ = N/k, the N = 6 CS

is believed to be dual to type IIA superstring theory on AdS4 × CP
3.

In the strong coupling limit λ ≫ 1, the string theory on AdS4 × CP
3 is classically

integrable [5–7] and probably maintains the integrability for any value of λ which would

lead to the all-loop Bethe ansatz equations (BAEs) as conjectured in [8]. A discrepancy in

one-loop correction to the energy of a folded spinning string from the all-loop Bethe ansatz

results [9–11] can be resolved by a non-zero one-loop correction in the central interpolating

function h(λ) [12]. Based on the assumption that the ABJM model in the planar limit is

quantum integrable along with centrally extended su(2|2) symmetry, the exact S-matrix

has been conjectured and used to confirm the above exact BAEs in [13]. However, this

working hypothesis of all-loop integrability needs to be checked in all available methods.

An efficient way is to compute and compare finite-size effects from both S-matrix and
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string theory sides. A most successful way for S-matrix side is the Lüscher formula which

computes small energy shift of on-shell particle states due to the finite-size of the system.

In the classical string theory side, various classical string configurations which corre-

spond to the on-shell particle states have been identified. In addition to such classical string

configurations as small giant magnon (GM) (CP
1) [14] and small dyonic GM (CP

2) [15, 16]

which have also found in AdS5/CFT4, new type of classical string solutions like pair of

small GM (RP
2) [14, 17, 18], pair of small dyonic GM (RP

3) [19], and big GM [20–23]

have been also discovered in AdS4 × CP
3. The finite-size effects for these string configura-

tions have been computed by either solving the superstring sigma model directly such as

Neumann-Rosochatius reduction or the algebraic curve method [15, 19, 20, 24]. Leading

finite-size corrections for the AdS4/CFT3 string configurations have been confirmed by the

µ-term Lüscher formula for non-dyonic (CP
1 and RP

2) GM [25] and dyonic (RP
3) GM [26].

The purpose of this paper is to compute quantum finite-size effects for dyonic magnons

on AdS4 × CP
3 and provide some more stringent tests of the exact S-matrix in the strong

coupling limit. Quantum effects for the string theory on nontrivial background can be com-

puted from quadratic fluctuations of fields in an effective Lagrangian (see, for example, [27]).

However, this method has not been applied to the finite-size (dyonic) GM solutions on

AdS4 × CP
3 so far due to some technical difficulties. A more efficient way which utilizes

the classical integrability of the string sigma-model is the algebraic curve method [28–30].

More specifically, we implement the off-shell quantization of the algebraic curve method

developed in [28] for the various string configurations. These are compared with the F -term

Lüscher formula in the S-matrix side. These two independent computations are shown to

be identical, which provides a stringent test for both S-matrix and all-loop integrability

conjecture. This paper is organized as follows. We will present in section 2 the quantum

corrections for various classical string configurations using the off-shell algebraic curve for-

mulation. The S-matrix and the F -term Lüscher formula based on it are used in section 3

to derive the finite-size effects. We will also generalize the one loop energy shifts to general

multi-magnons in section 4. We conclude the paper with a few remarks in section 5.

2 Algebraic curve method

2.1 GMs in the algebraic curve

In the algebraic curve framework, different string solutions are mapped to different sets

of eigenvalues of the classical transfer matrix. These are realized through a set of quasi-

momenta qi(x) i = 1, · · · , 10 depending on a spectral parameter x, which are defined on

a multi-sheet Riemann surface with particular analytic properties. In particular, solutions

living mostly in CP
3 have the following quasi-momenta as proposed in [7, 8, 24]:

q1 = −q10 =
αx

x2 − 1

q2 = −q9 =
αx

x2 − 1

q3 = −q8 =
αx

x2 − 1
+Gu (0)−Gu

(

1

x

)

+Gv (0)−Gv

(

1

x

)

+Gr (x)−Gr (0)+Gr

(

1

x

)
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q4 = −q7 =
αx

x2 − 1
+ Gu (x) + Gv (x) − Gr (x) + Gr (0) − Gr

(

1

x

)

q5 = −q6 = Gu (x) − Gu (0) + Gu

(

1

x

)

− Gv (x) + Gv (0) − Gv

(

1

x

)

.

Here α is related to the energy ∆ by α = ∆
2g . This ansatz satisfies several analytic proper-

ties [7].

At large x, quasi-momenta are related with physical conserved quantities:

lim
x→∞















q1(x)

q2(x)

q3(x)

q4(x)

q5(x)















≃ 1

2gx















∆

∆

J1

J2

J3















. (2.1)

J ’s are angular momenta of strings moving in CP
3. Because we are interested in string

solutions moving mostly in CP
3, we have set spins in AdS to zero. These quasi-momenta

are related with each other by inversion symmetry:
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0

0

πm
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0
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−q2(x)

−q1(x)

−q4(x)

−q3(x)

+q5(x)















. (2.2)

Virasoro constraints in string σ-model manifest in the algebraic curve through the

synchronization of poles at x = ±1 [7].

lim
x→±1















q1(x)

q2(x)

q3(x)

q4(x)

q5(x)















≃ 1

2(x ∓ 1)















α±

α±

α±

α±

0















. (2.3)

In contrast with the AdS5×S5 case, we need three resolvents Gu, Gv and Gr. Subscripts

u,v,r correspond to different kinds of excitations, which are also related with Dynkin labels

of su(4). One can reproduce the charges of different string solutions by choosing different

resolvents. The resolvents for the GM solutions, in particular, are log-cut distributions of

Bethe roots and can be thought of as degeneration of two cuts [31–33]. At infinite J the

GM resolvents are defined as [31]

Gmagnon = −i log

(

x − X+

x − X−

)

,

while at finite size we have to think of the GM as a degenerate case of a two-cut solution

with a resolvent [24, 32, 33]

Gfinite = −2i log

(√
x − X+ +

√
x − Y +

√
x − X− +

√
x − Y −

)

.
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There are three kinds of GM solutions in CP
3 [14, 17, 20–23]. If Gu = Gmagnon and

Gv = Gr = 0, then we obtain the small GM solution on CP
2. If we consider the v-

type resolvent, we obtain small magnon with a reversed sign in the charge Q. If we set

Gu = Gv = Gmagnon and Gr = 0, then we obtain a pair of small GMs, also called a RP
3

solution. This solution corresponds to a GM excitation in each su(2) sector of the gauge

theory, and in particular we will consider only configurations with the same momentum in

each sector. Finally, the big GM solution corresponds to Gu = Gv = Gr = Gmagnon, which

is two-parameter but one-charge solution because Q is zero [15].

Finite-size corrections of GMs in the algebraic curve can be computed from fluctuations

of quasi-momenta. When we compute classical finite-size corrections, we use Gfinite and

consider log-cut distribution of Bethe roots with small square-root cut at the tips. As

deviation from usual log-cut is very small, we could take the leading term of the fluctuation

of quasi-momenta [32, 33]. On the other hand, if we are interested in quantum corrections,

we have to add extra poles to quasi-momenta with Gmagnon [29]. Such extra poles give

fluctuations of energy by summing over on-shell frequencies. As we will explain in detail in

section 2.2, on-shell frequencies are efficiently obtained from the off-shell frequencies. We

first compute the fluctuation frequencies by using the off-shell method [28] in section 2.2

then evaluate energy shift in section 2.3.

2.2 Off-shell frequency of Magnons

One-loop computation using the algebraic curve method has been developed in [29, 30].

As explained above, fluctuations of superstring fields are mapped onto quasi-momenta

fluctuations. These correspond to adding extra poles connecting sheets of the Riemann

surface on which quasi-momenta are defined [29]. From the quasi-momenta perturbations,

we can compute fluctuation frequencies.

There are two ways to compute fluctuation frequencies. In the on-shell method, we

compute fluctuation frequencies by adding extra small poles to all physical polarization

pairs. The position of these extra poles is determined by qi

(

xij
n

)

− qj

(

xij
n

)

= 2πnij . But

this method involves repeated lengthy calculations for general solution, such as generic

two-cut ones. More efficient way is the off-shell method where we need to consider only

additional poles of quasi-momenta for particular polarization pair [28]. In this way, we

don’t fix the position of extra pole which we consider. The general ansatz for fluctuations

of quasi-momenta can be written using analytic properties of algebraic curve. Then, we

evaluate fluctuations of quasi-momenta at large x to determine the physical conserved

charges. We can easily obtain off-shell fluctuation frequencies from these equations.

We will use this efficient off-shell method to compute one-loop effects for dyonic GMs.

Fluctuation frequencies Ωij of all three types of GMs of AdS4/CFT3 are closely related with

those of AdS5/CFT4 with one distinctive difference that there are two kinds of physical

modes in AdS4/CFT3 — heavy and light modes. Heavy modes, however, do not contribute

to one-loop leading term since it is suppressed exponentially.

Because functional form of off-shell frequencies of all three GMs are identical, we

only show off-shell frequencies for the small magnon. A small magnon is obtained by

Gu = Gmagnon and Gv = Gr = 0 [15, 24]. The quasi-momenta of small magnon are given

– 4 –
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by

q1 = −q10 =
αx

x2 − 1

q2 = −q9 =
αx

x2 − 1

q3 = −q8 =
αx

x2 − 1
− i log

(

X+

X−

)

+ i log

(

1
x − X+

1
x − X−

)

+ τ

q4 = −q7 =
αx

x2 − 1
− i log

(

x − X+

x − X−

)

+ τ

q5 = −q6 = −i log

(

x − X+

x − X−

)

+ i log

(

X+

X−

)

− i log

(

1
x − X+

1
x − X−

)

. (2.4)

Here, τ is a twist which is introduced to make single magnon satisfy the usual periodic

boundary condition. In the case of small magnon, τ = −p
2 . (The twist for both a pair of

small magnons and a big magnon is −p.)

On-shell fluctuation energy is defined as follows:

Ωij
n = −κijδi,1 + 2g lim

x→∞
xδij

n q1 (x) .

Here, κij = 2 for (i, j) = (1, 10) , (2, 9) and κij = 1 for other pairs. Also, nij are mode

numbers and moduli of the algebraic curve. They satisfy that q+
i − q−j = 2πnij . To obtain

off-shell energy from on-shell energy, we just change n-dependence in the above expression

to quasi-momentum dependence as follows [28]:

Ωij (y) = Ωij
n |n→ qi(y)−qj(y)

2π

.

There are 16 polarization modes for type IIA superstring in AdS4 × CP
3. They consist

of 8 light modes which are (i, 5) or (i, 6) pairs and 8 heavy modes for other pairs. We

have to compute all types of fluctuation frequencies for these polarization modes. But, as

explained first in [28] and studied in [34] for AdS4/CFT3, off-shell frequencies are related

to each other by the inversion symmetry. The light modes are related by

Ωi5 (x) = Ωi6 (x)

Ω25 (x) = Ω15 (0) − Ω15

(

1

x

)

Ω35 (x) = Ω45 (0) − Ω45

(

1

x

)

,

and heavy modes by

Ω17 (x) = Ω15 (x) + Ω57 (x) = Ω15 (x) + Ω45 (x)

Ω18 (x) = Ω15 (x) + Ω58 (x) = Ω15 (x) + Ω35 (x)

Ω19 (x) = Ω15 (x) + Ω59 (x) = Ω15 (x) + Ω25 (x)

Ω110 (x) = Ω15 (x) + Ω15 (x) = 2Ω15 (x)

– 5 –
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Ω27 (x) = Ω25 (x) + Ω57 (x) = Ω25 (x) + Ω45 (x)

Ω28 (x) = Ω25 (x) + Ω58 (x) = Ω25 (x) + Ω35 (x)

Ω29 (x) = Ω25 (x) + Ω59 (x) = 2Ω25 (x)

Ω37 (x) = Ω35 (x) + Ω57 (x) = Ω35 (x) + Ω45 (x) .

All Ωij’s can be written in terms of only Ω15 and Ω45.

Now we calculate the off-shell frequencies by considering fluctuations of quasi-momenta

in the form of extra poles [28–30]. The quasi-momenta fluctuations can be determined by

properties (2.2) and (2.3). For (1,5) polarization, we must add extra poles to q1 and

q5. If we write δq1, δq4, δq5 to satisfy the analytic properties, then δq2 and δq3 can be

automatically written by inversion symmetry. Note that δq5 has self-inversion symmetry.

The ansatz is then written as follows:

δq1 =
A+

x + 1
+

A−

x − 1
+

α (y)

x − y

δq2 = − A+
1
x + 1

− A−

1
x − 1

− α (y)
1
x − y

δq3 = − A+
1
x + 1

− A−

1
x − 1

− B+

1
x − X+

− B−

1
x − X−

δq4 =
A+

x + 1
+

A−

x − 1
+

B+

x − X+
+

B−

x − X−

δq5 = − α (y)

x − y
− α (y)

1
x − y

− α (y)

y
+

B+

x − X+
+

B−

x − X−

+
B+

1
x − X+

+
B−

1
x − X−

+
B+

X+
+

B−

X−
,

where α (x) = 1
2g

x2

x2−1 . The unknown constants A± and B± in the above ansatz are deter-

mined by the following equations coming from the asymptotic behaviors of the fluctuations

in (2.1):

A+ − A− =
α (y)

y

B+

X+
+

B−

X−
=

α (y)

y

A+ + A− +
α (y)

y2
=

δ∆

2g

A+ + A− +
B+

X+2
+

B−

X−2
= 0

A+ + A− + B+ + B− = 0. (2.5)

In the above equations, we used the Nij in [20]. The fluctuation energy δ∆ is given by the

frequencies Ωij

δ∆ =
∑

ij,n

Nn
ijΩ

n
ij. (2.6)
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For (1, 5) polarization, all Nij are zero except N15. Also, we add just one pole (N15 = 1).

Then, from (2.6), we have δ∆ = Ω15 (y). Now, we can solve δ∆ from (2.5),

δ∆ =
1

y2 − 1

(

1 − y
X+ + X−

X+X− + 1

)

.

With the similar argument, we can also compute Ω45 (y) which turns out to be the

same as Ω15(y). Using Ω15 (y) and Ω45 (y), we can obtain frequencies

Ωlight
ij (y) =

1

y2 − 1

(

1 − y
X+ + X−

X+X− + 1

)

, (2.7)

for the light modes, and

Ωheavy
ij (y) =

2

y2 − 1

(

1 − y
X+ + X−

X+X− + 1

)

, (2.8)

for the heavy modes, which are twice of those of light modes.

These are exactly the same results as those of [20]. Similarly, off-shell frequencies

for other cases (pair of small and big magnon) can be evaluated. In other cases, we also

consider the most general ansatz for fluctuations of quasi-momenta and compare their

asymptotic with the conserved charges. Then, we get a set of similar equations as (2.5).

The result for other magnons is exactly same than that of the small magnon. We can use

the off-shell frequencies of the small magnon (2.7) and (2.8) for all other magnons.

2.3 One-loop shifts of dyonic GMs

The leading part of one-loop energy shift is given by the sum of fluctuation frequencies.

δ∆one−loop =
1

2

∑

ij

∑

n

(−1)Fij Ωn
ij =

∫

dx

2πi
∂xΩ (x)

∑

ij

γij (−1)Fij e−i(qi−qj).

Here, γij = 1 for light modes and γij = 2 for heavy modes and Ω (x) in the last expression

is off-shell energy. When we change from infinite summation over n to integration over x,

there are some non-trivial steps which we have to be careful [20, 30, 49].

When we evaluate the above integral by using saddle-point approximation, heavy

modes can be suppressed because of the factor 2 in exponent. This is related to the fact

there are no αx
x2−1 term in q5 or q6. Hence, only light modes are important in this computa-

tion. This fact is consistent with the observation in [35] that only 8 light degrees of freedom

are physical. The other 8 heavy degrees of freedom of superstring theory are unstable.

So we need to compute
∑

ij (−1)Fij e−i(qi−qj) where the sum over (i, j) pairs includes

only the light modes. Using quasi-momenta of the small magnon in (2.4), we obtain

∑

ij

(−1)Fij e−i(qi−qj) = e
−iαx

x2−1

[

2
1
x − X+

1
x − X−

x − X+

x − X−

X+

X−
+ 2

1
x − X−

1
x − X+

x − X−

x − X+

X−

X+

−
1
x − X+

1
x − X−

√

X−

X+
−x − X−

x − X+

√

X+

X−
−
(

1
x − X+

1
x − X−

)2
x − X+

x − X−

(

X−

X+

)
3
2

−
1
x − X−

1
x − X+

(

x − X+

x − X−

)2(
X+

X−

)
3
2

]

. (2.9)
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The pair of small magnon is obtained by the following ansatz:

q1 = −q10 =
αx

x2 − 1

q2 = −q9 =
αx

x2 − 1

q3 = −q8 =
αx

x2 − 1
− 2i log

(

X+

X−

)

+ 2i log

(

1
x − X+

1
x − X−

)

− p

q4 = −q7 =
αx

x2 − 1
− 2i log

(

x − X+

x − X−

)

− p

q5 = −q6 = 0,

which leads to

∑

ij

(−1)Fij e−i(qi−qj) = 2e
−iαx

x2−1



2 −
(

1
x − X+

1
x − X−

)2
X−

X+
−
(

x − X−

x − X+

)2
X+

X−



 . (2.10)

For the big magnon, using the quasi-momenta

q1 = −q10 =
αx

x2 − 1

q2 = −q9 =
αx

x2 − 1

q3 = −q8 =
αx

x2 − 1
− i log

(

X+

X−

)

+ i log

(

1
x − X+

1
x − X−

)

− i log

(

x − X+

x − X−

)

− p

q4 = −q7 =
αx

x2 − 1
− i log

(

X+

X−

)

+ i log

(

1
x − X+

1
x − X−

)

− i log

(

x − X+

x − X−

)

− p

q5 = −q6 = 0, (2.11)

we get
∑

ij

(−1)Fij e−i(qi−qj) = 4e
−iαx

x2−1

[

1 −
1
x − X+

1
x − X−

x − X−

x − X+

]

. (2.12)

The term −p in (2.10) and (2.11) are the twists of RP
3 magnon and big magnon.

3 S-matrix and Lüscher formula

We use the Ahn-Nepomechie S-matrix of the AdS4/CFT3 [13] in the F -term Lüscher

formula to compute the quantum corrections for the various dyonic GM states.

3.1 S-matrix

The N = 6 Chern-Simons theory contains two types of fundamental excitations, denoted by

A and B, which belong to a fundamental representation of the centrally extended su(2|2).
The S-matrices among these states are given by

SAA (p1, p2) = SBB (p1, p2) = S0 (p1, p2) Ŝ (p1, p2)

SAB (p1, p2) = SBA (p1, p2) = S̃0 (p1, p2) Ŝ (p1, p2) ,

– 8 –
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where Ŝ is the su (2|2)-invariant S-matrix [36, 37]. Main feature of the S-matrix is encoded

into the two scalar factors,

S0 (p1, p2) =
1 − 1

x+
1 x−

2

1 − 1
x−

1 x+
2

σ (p1, p2)

S̃0 (p1, p2) =
x−

1 − x+
2

x+
1 − x−

2

σ (p1, p2) ,

where σ (p1, p2) is the BES dressing factor [38]. These scalar factors have been checked

classically in [39].

Here we compute the leading one-loop correction using the F -term Lüscher formula

which is given by [40–42]

δEF = −
∫

dq

2π

[

1 −
ε′Q (p)

ε′1 (q∗)

]

e−iq∗L
∑

b

(−1)Fb

(

Sba
ba (q∗, p) − 1

)

. (3.1)

The integrand of the formula consists of the kinematic and the S-matrix factors.

For the kinematical factor we consider first the CP
2 small magnon whose energy dis-

persion relation is given by

∆ − J/2 = εQ (p) =

√

Q2

4
+ 16g2 sin2 p

2
.

It is convenient to introduce X± and y± variables defined by

X+ − X− +
1

X+
− 1

X−
=

iQ

2g

y+ − y− +
1

y+
− 1

y−
=

i

2g

X+

X−
= eip,

y+

y−
= eiq∗ . (3.2)

To compare the kinematic factor with algebraic curve results, we introduce a variable x

defined by [25, 30].

x +
1

x
± i

4g
= y± +

1

y±
,

which leads to

y± = x ± ix2

4g (x2 − 1)

at strong coupling limit. The dispersion relation of virtual fundamental GM in this limit

becomes

ε1 (q∗) =
g

i

(

y+ − y− − 1

y+
+

1

y−

)

=
1

2

x2 + 1

x2 − 1
.

From (3.2), one gets

eiq∗ ≃ 1 + iq∗ = 1 + i
x

g (x2 − 1)
.
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Also from q2 + ε′2 (q∗) = 0, q can be written as

q =
i

2

x2 + 1

x2 − 1
.

From these, we can get

ε′Q (p) = g

(

X+ + X−

X+X− + 1

)

ε′1 (q∗) = g

(

2x

x2 + 1

)

.

Inserting these into the kinematic factor and changing the integration variable to x, one

can get the same kinematic factor as that of the algebraic curve computation,

δEF
one−loop =

∫

dx

2πi
∂xΩ (x) e

− ixJ

2g(x2−1)
∑

b

(−1)Fb S
b1Q

b1Q
(q∗, p) .

For other types of dyonic GMs, the results stand in the same way.

The S-matrix factor in the Lüscher formula contains scatterings between virtual and

physical particles. In the leading order, only fundamental particles contribute to the sum

over virtual particles b = 1, 2, 3, 4 of both A and B types. The physical particles are dyonic

GMs in su(2) sector which are bound states of Q number of bosonic particles with su(2|2)
index a = 1Q = (11 . . . 1). Since the physical particles carry su(2|2) index 1, the relevant

S-matrix elements are

Ŝ11
11 = a1(p1, p2), Ŝ21

21 = a1(p1, p2) + a2(p1, p2), Ŝ31
31 = Ŝ41

41 = a6(p1, p2),

a1(p1, p2) =
x−

2 − x+
1

x+
2 − x−

1

η1η2

η̃1η̃2

a2(p1, p2) =

(

x−
1 − x+

1

) (

x−
2 − x+

2

) (

x−
2 − x+

1

)

(

x−
1 − x+

2

) (

x−
2 x−

1 − x+
2 x+

1

)

η1η2

η̃1η̃2

a6(p1, p2) =
x+

1 − x+
2

x−
1 − x+

2

η2

η̃2
.

We choose the phase factors ηi in the string frame [36]

η1

η̃1
=

√

x+
2

x−
2

,
η2

η̃2
=

√

x−
1

x+
1

.

The relevant S-matrix elements for the dyonic magnons are SAAb1Q

b1Q
and SBAb1Q

b1Q
which

are given by [26]

SAAb1Q

b1Q
=

Q
∏

k=1





1 − 1
y+x−

k

1 − 1
y−x+

k

σBES (y, xk) Ŝb1
b1(y, xk)



 (3.3)

SBAb1Q

b1Q
=

Q
∏

k=1

(

y− − x+
k

y+ − x−
k

σBES (y, xk) Ŝb1
b1(y, xk)

)

. (3.4)
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From these, we obtain

∑

b

(−1)Fb SAAb1Q

b1Q
= σBES (y,X)

η (X)

η̃ (X)

(

η (y)

η̃ (y)

)Q

(s1 + s2 − s3 − s4) SQ
BDS

∑

b

(−1)Fb SBAb1Q

b1Q
= σBES (y,X)

η (X)

η̃ (X)

(

η (y)

η̃ (y)

)Q

(s1 + s2 − s3 − s4) .

where we defined x−
1 = X−, x+

Q = X+, and x−
k = x+

k−1. The sbs defined by

sb =

Q
∏

k=1

Ŝb1
b1(y, xk)

Ŝ11
11(y, xk)

can be written as

s1 = 1, s2 =

(

y+ − X+

y+ − X−

)

(

1 − 1
y−X+

1 − 1
y−X−

)

s3 = s4 =

(

y+ − X+

y+ − X−

)

η̃ (X)

η (X)
. (3.5)

The dressing factor and SBDS of bound-state in this limit are given by [30, 44]

σBES (y,X) =

(

y − 1
X+

y − 1
X−

)

e
−ix

2g(x2−1)
(∆−J/2−Q)

SQ
BDS =

(y+ − X−)
(

1 − 1
y+X−

)

(y− − X+)
(

1 − 1
y−X+

)

(y− − X−)
(

1 − 1
y−X−

)

(y+ − X+)
(

1 − 1
y+X+

) . (3.6)

3.2 Small dyonic magnon (CP
2)

Dyonic small magnon is a bound-state of A-particles or B-particles. Because the S-matrices

are invariant under A ↔ B, we can only consider a A-particle without loss of generality.

Then we can write the S-matrix elements for small dyonic magnon as below:
∑

b

(−1)Fb S
b1Q

b1Q
(q∗, p) =

∑

b

(−1)Fb

(

SAAb1Q

b1Q
+ SBAb1Q

b1Q

)

. (3.7)

We can approximate y± = x in the strong coupling limit for the leading F -term integration

and get

η (X)

η̃ (X)
= e

ip
2 ,

(

η (y)

η̃ (y)

)Q

= e
−i xQ

2g(x2−1) . (3.8)

These lead to the one-loop correction as follows:

δ∆F =

∫

dx

2πi
∂xΩ (x) e

−i∆ x

2g(x2−1)

[(

x − 1
X+

x − 1
X−

)

e
ip

2 +

(

x − X−

x − X+

)

e
ip

2

+

(

x − 1
X−

x − 1
X+

)

(

x − X−

x − X+

)2

e
ip

2 +

(

x − 1
X+

x − 1
X−

)2(
x − X+

x − X−

)

e
ip

2

−2

(

x − 1
X+

x − 1
X−

)

(

x − X+

x − X−

)

− 2

(

x − 1
X−

x − 1
X+

)

(

x − X−

x − X+

)

]

. (3.9)
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It can be easily seen that the expression in bracket with the exponential factor in front is

exactly the same as the result in (2.9) in algebraic curve for small dyonic magnon.

3.3 Pair of small dyonic magnon (RP
3)

In case of RP
3 dyonic magnon, we need to consider a pair of A and B type dyonic GMs

in the physical state with the same momentum p1 = p2 = p [26]. The F -term Lüscher

formula becomes [25]
∑

b

(−1)Fb S
b1Q

b1Q
(q∗, p) =

∑

b

(−1)Fb

(

SAAb1Q

b1Q
SABb1Q

b1Q
+ SBAb1Q

b1Q
SBBb1Q

b1Q

)

= 2
∑

b

(−1)Fb SAAb1Q

b1Q
SBAb1Q

b1Q
. (3.10)

Using the S-matrix elements in (3.3) and (3.4), we obtain

δ∆F =

∫

dx

2πi
∂xΩ (x) e

−i∆ x

2g(x2−1)



4 − 2

(

x − 1
X+

x − 1
X−

)2

eip − 2

(

x − X−

x − X+

)2

eip



 .

By comparing this with (2.10) of algebraic curve, one can confirm that the energy shift

from both methods agree each other.

3.4 Big magnon

Particle interpretation of big magnon is not clear until now. We propose that big magnon

may be superposition of a small magnon and an “anti-small magnon”. The anti-small

magnon has the same momentum as the usual small magnon but the quantum number

−Q. Then, we can compute S-matrix elements as below:
∑

b

(−1)Fb Sba
ba (q∗, p) =

∑

b

(−1)Fb

(

SAAb1Q

b1Q
SAA′b1−Q

b1−Q
+ SBAb1Q

b1Q
SBA′b1−Q

b1−Q

)

.

From these S-matrix elements, we have

∑

(−1)Fb

(

Sba
ba (q∗, p)

)

= 2

Q
∏

k=1









1 − 1
y+X−

k

1 − 1
y−X+

k





(

y+ − X−
k

y− − X+
k

)





1 − X+
k

y+

1 − X−

k

y−









y+ − 1
X+

k

y− − 1
X−

k









×





y − 1
X+

Q

y − 1
X−

Q





(

y − X−
Q

y − X+
Q

)(

η
(

XQ
)

η̃ (XQ)

)2

e
−i(∆−J) x

2g(x2−1)
(

1 + s2s
′
2 − 2s3s

′
3

)

.

The primed quantities, A′,s′2 and s′3, are related to those unprimed by X± → 1
X∓ which is

equivalent to changing Q → −Q. From the S-matrix element, the one-loop correction of

big magnon is given by

δ∆F =

∫

dx

2πi
∂xΩ (x) e

−i∆ x

2g(x2−1) 4

[

1 −
(

x − 1
X+

x − 1
X−

)

(

x − X−

x − X+

)

eip

]

.

This result matches exactly with that of the algebraic curve (2.12). The one-loop correc-

tions for pair of small magnon and big magnon are exactly the same in the non-dyonic limit.

While the physical meaning of the anti-magnon state is not clear, the one-loop correction

analysis suggests how to express the big magnon state in terms of the on-shell particles.
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4 Multi dyonic magnons

As authors of [24, 32, 33] first explain, in algebraic curve technology, the case of (N,M)-

type magnon is realized as a sum of N resolvents of u and M resolvents of v type. The

meaning of the r-type resolvent is not clear in the S-matrix interpretation. So, we set the

r-type resolvent to zero and consider only N -number of u-type excitations and M -number

of v-type excitations. These correspond to general excitations of N -number of A-type

dyonic magnons and M -number of B-type dyonic magnons in spin chain. CP
2 and RP

3

magnons are special cases of this general multi-magnon state. To compute one-loop finite

size effects for such configurations of magnons, we use the following quasi-momenta ansatz:

q1 = −q10 =
αx

x2 − 1

q2 = −q9 =
αx

x2 − 1

q3 = −q8 =
αx

x2 − 1
+

N
∑

k=1

(

Gk
u (0) − Gk

u

(

1

x

))

+
N+M
∑

k=N+1

(

Gk
v (0) − Gk

v

(

1

x

))

+
N+M
∑

i=1

τi

q4 = −q7 =
αx

x2 − 1
+

N
∑

k=1

Gk
u (x) +

N+M
∑

k=N+1

Gk
v (x) +

N+M
∑

i=1

τi

q5 = −q6 =
N
∑

k=1

(

Gk
u (x) − Gk

u (0) + Gk
u

(

1

x

))

+
N+M
∑

k=N+1

(

−Gk
v (x) + Gk

v (0) − Gk
v

(

1

x

))

.

Here, Gk
u (x) and Gk

v (x) are all the same with Gmagnon = −i log
(

x−X+
k

x−X−

k

)

and τi = −pi

2 .

The problem here is that unknown functions in the fluctuations of quasi-momenta can

not be completely determined by the constraint equations coming from asymptotic limit.

So we get some undetermined functions αl which satisfy
∑

l αl = 1 where the index l runs

from 1 to N + M . This feature of the fluctuation frequencies for multi-particle states is

noticed first in [45] for N = 4 SYM. In AdS4/CFT3, off-shell frequencies are as below.

Ωlight
ij (x) =

1

x2 − 1

(

1 −
∑

l

αl

(

x
X+

l + X−
l

X+
l X−

l + 1

)

)

= Ωmulti (x)

Ωheavy
ij (x) =

2

x2 − 1

(

1 −
∑

l

αl

(

x
X+

l + X−
l

X+
l X−

l + 1

)

)

.

We obtain the integral representation of the one-loop effect as before by using Ωmulti (x)

and quasi-momenta for multi-magnons configurations.

∑

ij

(−1)Fij e−i(qi−qj) =







N
∏

i=1





x − 1
X−

i

x − 1
X+

i





2
(

x − X−
i

x − X+
i

)2

+
N+M
∏

j=N+1





x − 1
X−

j

x − 1
X+

j





2
(

x − X−
j

x − X+
j

)2






×



1+
M+N
∏

i=1





x − 1
X+

i

x − 1
X−

i





(

x − X+
i

x − X−
i

)

−2
N+M
∏

j=1

(

x − X+
j

x − X−
j

)
√

X−
i

X+
i
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×
N+M
∏

i=1





x − 1
X+

i

x − 1
X−

i





√

X+
i

X−
i

. (4.1)

Here (i, j) pairs include only light modes. To compare this with multi-particle Lüscher

formula, we need to compute the S-matrix factor which includes scatterings between a

virtual fundamental magnon and multi dyonic magnons. The S-matrix factor is given by

∑

(−1)Fb Smulti = σBES

(

y,XQ1
1

)

· · · σBES

(

y,X
QN+M

N+M

) η
(

XQ1
1

)

η̃
(

XQ1
1

) · · ·
η
(

X
QN+M

N+M

)

η̃
(

X
QN+M

N+M

)

×
(

N
∏

i=1

SBDS

(

y,XQi

i

)

+
N+M
∏

i=N+1

SBDS

(

y,XQi

i

)

)

(

η (y)

η̃ (y)

)

P

Qi
∑

b

(−1)Fb

N+M
∏

i=1

sb(pi).

Using sb(p) defined in (3.5) and SBDS in (3.6), we can obtain the final expression

δ∆multi
F =

∫

dx

2πi
∂xΩmulti (x) e

−i∆total
x

2g(x2−1) ×
N+M
∏

i=1





x − 1
X+

i

x − 1
X−

i

√

X+
i

X−
i





×







N
∏

i=1

(

x − X−
i

x − X+
i

)2




x − 1
X−

i

x − 1
X+

i





2

+

N+M
∏

j=N+1

(

x − X−
j

x − X+
j

)2




x − 1
X−

j

x − 1
X+

j





2






×



1 +

N+M
∏

k=1

(

x − X+
k

x − X−
k

)





x − 1
X+

k

x − 1
X−

k



− 2

N+M
∏

l=1

(

x − X+
l

x − X−
l

)

√

X−
l

X+
l



 .

Here we have used multi-particle Lüscher formula [45]. It is straightforward to check that

this result matches with the algebraic curve result (4.1).

5 Conclusions

In this paper we have computed the quantum finite-size effects for CP
2, RP

3, and big

magnons and general combination of these magnons. We have computed the off-shell

frequencies of magnons from the fluctuations of quasi-momenta and summed over all the

physical polarizations. We have shown that these results agree with the F -term Lüscher for-

mula based on the AdS4/CFT3 S-matrix proposed in [13]. This provides a stringent check

for the S-matrix up to the one-loop order as well as the off-shell algebraic curve method.

In the computations, we have noticed that the unstable heavy modes should be sup-

pressed in the AdS4 × CP
3 algebraic curve. We also provide an on-shell particle interpre-

tation of the big magnon, which was found in the context of the algebraic curve [20] and

the dressing methods [21–23], as a bound-state of two small dyonic magnons with u(1)

charges Q and −Q, respectively. Our result shows that the Lüscher F -term based on this

particle interpretation correctly reproduces the one-loop energy shift from the algebraic

curve method. It is not clear at this moment if this is just mathematical coincidence or

has a deeper physical meaning. In the AdS5/CFT4 context, it has been argued that a
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dyonic magnon state with −Q is an anti-magnon state which is obtained by reversing time

direction [46]. It will be interesting if this argument also applies to AdS4/CFT3.

The undetermined functions αl arising in the algebraic curve method for multi-magnon

states should be determined in the S-matrix approach. For example, the multi-particle

Lüscher formula in [47] doesn’t include any such functions. In fact, these functions are

related with the variation of Bethe-Yang equations. Therefore, we can compute αl from

Bethe-Yang equations. In the case of the strong coupling limit, terms that contribute

to αl vanish in the F -term integration for multi-magnons by using saddle point method.

However, it becomes important to determine these αl at weak coupling regime such as in

the five-loop Konishi computation [48].

Note added. While typing this article, we have found a paper [49] whose results on the

off-shell algebraic curves overlap partially with ours.
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