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1 Introduction

The Laser Interferometer Space Antenna (LISA) is expected to open the door to observations
of binary black holes systems with long inspirals and extreme mass ratio inspirals, both of
which can be approached fruitfully from an analytical point of view [1–3]. The non-relativistic
limit of these binaries in the center of mass frame is the Kepler problem. The properties
of the latter are, even among classical systems, very special. It is one of only two central
potential problems whose bounded orbits are all closed, the other being the isotropic harmonic
oscillator, a result known as Bertrand’s theorem and going back to 1873 [4, 5]. This is a
consequence of the large, ‘hidden’ so(4) symmetry of the system, leading to maximally
superintegrable dynamics.

General Relativity breaks this enhanced so(4) symmetry down to so(3) (or even further in
case of spinning objects), as do most other relativistic theories. However, there exist relativistic
dynamical systems with the same symmetry group as Kepler to all orders. The simplest of
these are test-particle limits1 and include the ‘branonium’ systems identified in string theory
[6, 7]. More recently, the same hidden symmetry was found in N = 4 super-Yang-Mills [8, 9]
and N = 8 supergravity [10]. Additionally, in the latter theory, the two-body system is known
to possess the symmetry to first order in the Post-Newtonian expansion, while it preserves
the related non-precession of orbits to third order in the Post-Minkowskian expansion [11].
Finally, also the Kaluza-Klein monopole scattering of [12, 13] should be noted.2

As we have shown recently by explicit construction, Bertrand’s theorem can be extended
beyond classical central potentials: at least up to and including 5th PN order, there exists a
unique class of relativistic two-body Hamiltonians with the appropriate classical limit that

1This is to be expected: while it is far from trivial to write down the Hamiltonian for a multi-worldline
system explicitly, the test-particle case can be viewed as a one-body problem, as the large mass is taken to be
non-moving.

2Another relativistic so(4)-conserving two-body system is the time-asymmetric scalar-vector theory studied
by [14].
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displays additional symmetry. Moreover, all elements of this class can be related to functions
of the Kepler Hamiltonian through canonical transformations [15]. An all-order argument
was subsequently put forward by Davis and Melville in [16] and will be outlined below.

In the present work, we further investigate this class of relativistic Hamiltonians possessing
Keplerian symmetry to all orders, having the correct special-relativistic and non-relativistic
limits. Our focus will be on three examples of the class, for which we propose a realisation
in terms of fundamental forces. We find that all these can be lifted to 5D systems, and
subsequently linked to classical theories via the Eisenhart lift. This provides for a geometric
interpretation of the link3 with Keplerian dynamics.

The 5D formulation also allows for a connection between the three examples via the
double copy. Known primarily as a relation of scattering amplitudes in gravity appearing as
the ‘square’ of gauge theory amplitudes [17], we will instead employ the so-called classical
double copy, similarly linking background solutions of these theories [18]. More specifically,
we will use it to connect dynamical systems in the sense of [19]. Interestingly, the three
examples of relativistic dynamics with Keplerian dynamics are exactly linked in this way.
This provides a precise sense in which hidden symmetries and maximal superintegrability4

carry over under the classical double copy.

2 Relativistic Bertrand’s theorem

It is natural to wonder what lies beyond the celebrated Bertrand’s theorem of classical
mechanics, once moving into the realm of relativistic physics. For reasons that will be
outlined in what follows, we will consider the following (implicit) definition for our class
of relativistic Hamiltonians:

H2 = m2c4 + p2c2 −
(1

r

)
F
(
mc2 + H

)
, (2.1)

where F (x) is a continuous and smooth function that encodes the nature of the attractive force.
Note that this class of Hamiltonians reduces, in the absence of the attractive force (F → 0),
to the special relativistic free particle. When perturbatively including the attractive force,

F (x) = f0 + f1x + 1
2f2x2 + . . . , (2.2)

we see the coefficients must have dimensions [fi] = M (2−i)L(3−i)T (i−2). Specializing to
f2 = 8GM/c2 as the only nonzero component for instance, with M some reference mass, the
resulting Hamiltonian reads in a post-Newtonian expansion

H = mc2 + p2

2m
− 8GMm

r

− 1
8

p4

m3c2 + 32G2M2m

r2c2 + O
( 1

c4

)
. (2.3)

3We generalise this link between classical and relativistic dynamics to multi-center systems in the Appendix A,
along with a rigorous mathematical proof of the relation.

4Another, less symmetric example is provided by the integrability of the Kerr space-time that also carries
over [20].
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In the non-relativistic limit, the system therefore reduces to Kepler (up to a constant
rest-mass energy).

The relativistic corrections of this class of Hamiltonians retain the special property that
all bounded trajectories are closed orbits. At a heuristic level, this can be seen in the following
way. As energy is conserved, the argument of the force term in (2.1) will take a specific,
constant value for a given trajectory. For this trajectory, the force is therefore given by
some constant F , and the Hamiltonian reads

H = mc2
√

1 + 2HKep/mc2 , (2.4)

for a Kepler Hamiltonian

HKep = p2

2m
− 1

r

F

2mc2 . (2.5)

It is therefore natural to expect that this class of systems has closed orbits. This is confirmed
by the presence of a relativistic generalisation of the Laplace-Runge-Lenz vector, that takes
the form

A⃗ = p⃗ × L⃗ − 1
2c2 F

(
mc2 + H

)
r̂ , (2.6)

in terms of angular momentum L⃗ = r⃗× p⃗ and the unit position vector r̂. This vector is respon-
sible for the maximal superintegrability and hence closed orbits in the non-relativistic case.

The dynamics of the above theories can be seen as a non-standard way of stacking Kepler
energy levels: the effective gravitational coefficient is set by F and hence is orbit-dependent.
In a hypothetical solar system governed by such an attractive force, planets would fail to
satisfy the universal Kepler’s third law relation between period and radius. As discussed
in more detail in the Appendix A, a particular time reparametrisation of (2.1) connects
it to a new Kepler Hamiltonian, for which Kepler’s third law does hold for all orbits with
the same universal proportionality constant.

One issue with the above heuristic argument is that it only applies to separate energy
levels and not the complete phase space. It would therefore be desirable to have an alternative
perspective, that applies to the union of all orbits. Indeed this appears to be possible: we have
demonstrated (with an explicit construction) that this class of Hamiltonians is the unique
extension of the Kepler system that combines the special relativistic and the non-relativistic
limits (when F → 0 and c → ∞, respectively) that has the so(4) hidden symmetry and
closed orbits, up to and including 5PN order. It is therefore the natural generalisation of
Bertrand’s theorem to the relativistic domain (at least for the Kepler system).5 Moreover,
this system is canonically equivalent to Kepler in a neighbourhood around an energy level,
at least up to 5PN order [15].

A closely related claim has been put forward by Davis and Melville in [16], who employ
a reorganisation of PN corrections into powers of 1/r multiplied by functions of the Kepler
Hamiltonian. They argue that the function multiplying the 1/r part of this expansion can

5Equation (2.1) is indeed one of only two classes, as the non-relativistic limit of a ‘relativistic Bertrand
system’ would still have exclusively closing bounded orbits as the limit is contained in the relativistic problem,
i.e. the limit would need to be either the Harmonic Oscillator or Kepler.
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be made vanishing (their so-called ‘LRL gauge’) by means of canonical transformations.
Subsequently, they demonstrate that all higher-order powers of 1/r similarly have to vanish
for the system to have closed orbits and hidden symmetries. This then implies that the class
of Hamiltonians (2.1) is canonically conjugate to Kepler to all PN orders.

Having introduced the class of Hamiltonians as the relativistic generalisation of the
Kepler system that has hidden symmetries, in the next sections we turn to their physical
interpretation; in other words, which forces generate this kind of dynamics? We will show
that there are three cases - where we take F to be constant, linear or quadratic in its
argument - where a natural interpretation in terms of 4D relativistic field theories presents
itself. Moreover, all three cases allow for an uplift to a 5D system. Different reductions of
this 5D perspective allow one to prove the canonical equivalence between the classical and
relativistic systems to all orders in the PN expansion.

3 General relativity

We will first discuss the quadratic case, F (x) = 1
2f2x2, and its interpretation in terms of

general relativity. As the constant f2 must have the dimension of length, it is natural to
suppose this is given in terms of a mass scale set by some reference mass M, such that f2 = 2rM ,
with rM = 4GM

c2 (while the factor of 4 will be clear in a moment). The Hamiltonian reads

H2 = m2c4 + p2c2 −
(

rM

r

)
(mc2 + H)2 . (3.1)

It has been shown6 that this system arises when an extremal particle (with equal mass
and charge) is orbiting a specific background of the 4D Einstein-Maxwell-dilaton system,
with bulk Lagrangian density

L =
√
−g

16π

(
c3

G
R − 2c3

G
(∂ϕ)2 − e−2aϕ

c
F 2
)

, (3.2)

where we take the units such that the gauge potential Aµ has
[
A2] = MLT−2. For closed

orbits, the dilaton coupling of this system has to take precisely the Kaluza-Klein value
a =

√
3 that allows for the bulk Lagrangian to be uplifted to 5D. This suggests that also the

particle Hamiltonian (3.1) has a 5D interpretation. Indeed this is the case; upon making
the identifications

P0 = H

c
, P5 = mc , (space-like) , (3.3)

the Hamiltonian (3.1) corresponds to geodesic motion along a null geodesic,

gABPAPB = 0 , (3.4)

where PA = (P0, P1, P2, P3, P5) and the middle three components form the three-momentum
p⃗ = (P1, P2, P3). The metric is the uplift of the Einstein-Maxwell-dilaton background

ds2 = ηABdxAdxB +
(

rM

r

)
(dx0 − dx5)2 , (3.5)

6Compare equation (4.22) in [15] with H → H + m.
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and is a so-called Bargmann space. Because of the harmonicity of the potential rM
r , this space

is Ricci-flat (except at r = 0), i.e. it solves the vacuum Einstein equations [21]. This spacetime
is an example of a pp-wave (plane-fronted wave with parallel rays) due to the presence of the
covariantly constant null-vector ∂0 + ∂5. One can source this by the energy-momentum tensor

Tuu = 4π
rM

2 δ(r) , (3.6)

with u = 1√
2(x0 − x5) and rM setting the strength of the source and thus the energy of

the pp-wave.
Interestingly, the same 5D perspective can also be related to the non-relativistic Kepler

case; this is referred to as the Eisenhart-Duval lift [22, 23]. Starting in 5D and making
the alternative identifications

P0 − P5√
2

= H̄Kep
c

,
P0 + P5√

2
= mc , (null ) , (3.7)

the vanishing norm of the 5D momentum leads to a particular non-relativistic Kepler system

H̄Kep = p2

2m
− rM mc2

r
. (3.8)

Though in different guises, the above two reduced systems therefore are one and the same, up
to time reparametrisation (or conformal transformations, in the case of null-geodesics [24]).
Yet the reductions correspond to what appear to be distinct physical systems, dependent
on the different assignments (3.3) or (3.7) for mass and energy, as discussed in generality
in Appendix A.

The 5D formulation allows for a geometric perspective on the so(4) hidden symmetry of
the Kepler system, as these can be seen to be generated by an interplay of Killing vectors
and tensors [21, 23]. A vector field K is a Killing vector field if

∇(aKb) = 0 , (3.9)

and generate conserved quantities Kapa along geodesic motion. A rank-n Killing tensor
Ka1...an is defined analogously by [25]

∇(a1Ka2...an+1) = 0 , (3.10)

and leads to a conserved quantity Ka1...anpa1 · · · pan along geodesics [26]. Notice that the
arrow of implication goes both ways: any conserved quantity that can be written as a
tensor contracted with momenta also implies the existence of a Killing tensor. Conserved
quantities of quadratic or higher order in momenta are symmetries of the phase space that
cannot be constructed as the lift of a symmetry of configuration space, and are referred
to as hidden symmetries [27].

The above concepts can be applied to the 5D incarnation of the Kepler problem. The
Bargmann space (3.5) has three Killing vectors associated with angular momentum. In
addition, it has three Killing tensors that generate the Laplace-Runge-Lenz vector reading

A⃗ = (p⃗ × (r⃗ × p⃗)) − 1
2(P0 + P5)2 rM c2

r
r⃗ , (3.11)

which is quadratic in momenta.
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Let us conclude this section with two remarks on the 5D symmetry algebra. Firstly, when
we take the limit M → 0 toward flat space, the second term in the above vector vanishes,
implying the quadratic Killing tensors become reducible, as they are now built completely
out of the Killing vectors related to the conserved angular momentum L⃗ = r⃗ × p⃗ and the
momentum p⃗. The latter in this case is conserved as well, since the space regains translational
symmetry in the three spatial directions of r⃗.

Secondly, note that none of the conserved quantities related through Noether’s theorem to
the so(4) symmetry of the Kepler problem is generated by a genuinely conformal Killing tensor
or vector. All conserved functions commute with the 5D geodesic Hamiltonian regardless
of its value. As such, it is clear that the relation between Kaluza-Klein dynamics and the
Kepler system still holds for massive geodesics, though the effect on the dynamics is of
negligible consequence, as it results in the addition of a fixed constant to the Hamiltonians
after reduction.

4 Electromagnetism

We now turn to the second element of the class of Hamiltonians (2.1) for which we propose an
interpretation as coming from a relativistic field theory, being the case with a linear function
F (x) = f1x. In this case the Hamiltonian reads

H2 = m2c4 + p2c2 −
(1

r

)
f1(mc2 + H) . (4.1)

Upon making the space-like replacements (3.3), this becomes

ηABPAPB −
(1

r

)
f1
c

(P5 + P0) = 0 . (4.2)

In contrast to the quadratic case, the above cannot be written in terms of a Lorentzian metric
solving the Einstein equations.7 Instead, the natural interpretation of the lifted form is in
terms of an electromagnetic force, linear in momenta.

This can be understood in terms of the classical double copy, which maps the specific class
of so-called Kerr-Schild backgrounds of General Relativity to solutions of Maxwell’s equations
in electromagnetism. Among more obvious solutions such as the Kerr and Schwarzschild
black holes, also time-dependent pp-waves have been shown to have a classical double
copy structure [18]. The spacetime we are interested in is a subset of this, being a time-
independent pp-wave.

The class of Kerr-Schild solutions takes the form

gAB = ḡAB + rsϕ lAlB , (4.3)

and consist of a background metric ḡ (which should separately satisfy Einstein’s equations)
plus a deformation in terms of a harmonic scalar function, ✷ϕ(r) = 0, and a vector lA
that is null with respect to ḡ and therefore also total metric g. The Schwarzschild radius

7It can be written as a momentum norm on a Finsler space, a generalisation of pseudo-Riemannian
space [28].
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reads rs = 2GM/c2. The Kerr-Schild double copy then says that the vector AA = ϕ lA is a
solution of the Maxwell equations and ϕ(r) is a solution of the scalar field equation.

The Bargmann space introduced above is exactly of Kerr-Schild form, with a flat
background metric and SO(3) rotationally symmetric function, ϕ = 2/r. This gravitational
solution therefore generates, via the double copy procedure, the following solution of Maxwell’s
equations, now including all constants:

AA = g

4π
q̃ϕ(r)lA , (4.4)

where we introduced g as electromagnetic coupling and q̃ as a charge. This single copy is
itself an electromagnetic pp-wave and lA is its wave vector. The source for this field ‘single
copies’ as well, similar to [18].

Given the interesting dynamics of geodesics in the Bargmann space-time, can we expect
similar behaviour in the Maxwell configuration? In other words, does the hidden symmetry
and maximal superintegrability survive the double copy? Interestingly, this turns out indeed
to be the case: the Hamiltonian with linear force function (4.1) has an interpretation as a
charged particle in the single copy background (4.4). Specifically, after setting f1 = g2

4π qq̃ and
uplifting to 5D via (3.3), the Hamiltonian of the linear case can be written as

ηABP̃AP̃B = 0 , with P̃A = PA − gq

c
AA , (4.5)

in terms of the modified momentum P̃ of charged particles in the vacuum EM background (4.4).
This places the linear case on a par with the quadratic one, with interpretations in terms
of electromagnetic and gravitational force fields, respectively.

With the 5D interpretation in hand, one can consider its dimensional reductions. The
null reduction straightforwardly leads to the usual non-relativistic Hamiltonian, which in this
case is interpreted as the Coulomb system. In contrast, the space-like reduction leads to a
relativistic field theory with coupled degrees of freedom. In order to see this, separate the
5-dimensional vector field in parts AA = (Aµ, A5 = χ). The field Lagrangian then reads

L = −1
4FABF AB = −1

4FµνF µν − 1
2(∂µχ)(∂µχ) , (4.6)

implying a theory with a scalar χ and vector Aµ. The particle Lagrangian can be found
by taking

Lp = − 1
2h

ηABẋAẋB + gq

c
AAẋA , (4.7)

which can be Legendre transformed to write it in terms of P5 instead of ẋ5. One then has

Lp = 1
2h

ηµν ẋµẋν − h

2

(
gq

c
χ − P5

)2
− gq

c
Aµẋµ . (4.8)

Solving the equation for the auxiliary variable h, picking the branch giving the correct kinetic
term, we find the Lagrangian

Lp|h= −

√
−
(

gq

c
χ − P5

)2
ηµν ẋµẋν − gq

c
Aµẋµ . (4.9)

– 7 –
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The solutions of the fields are, as in (4.4), given by

χ = g

4π
q̃

2
r

, A0 = − g

4π
q̃

2
r

. (4.10)

This is exactly the theory found by [9], describing a non-minimally coupled scalar-vector
theory, having a LRL symmetry. It has its origin in N = 4 supersymmetric Yang-Mills,
which similarly enjoys an additional symmetry in the the limit that one of the particles is
much larger than the other [8, 29].

Due to the 5D interpretation of this theory, we now have a natural link between the
non-relativistic Coulomb system and this specific relativistic Maxwell-axion field theory.
The relation between both symplectic reductions implies that the energy-level equivalence
between the two theories necessarily extends to all orders in the PN expansion, with the
time reparametrisation as discussed in Appendix A.

5 Nordström gravity

The last Hamiltonian in the class (2.1) that we propose a field theoretic interpretation for,
is the one with function F (x) = f0 constant:

H2 = m2c4 + p2c2 −
(1

r

)
f0 . (5.1)

The Hamiltonian of this system is a simple function of the Kepler Hamiltonian, and as such
naturally has a hidden symmetry and closed orbits. Given the sequence of double and single
copy in the previous two sections, however, it is natural to investigate its interpretation as
a zeroth copy relativistic field theory. This will feature an attractive scalar field, as first
proposed by Nordström in 1912 [30].

The scalar ‘zeroth copy’ is an Abelian version of the bi-adjoint scalar. The constant
f0 in the potential term now has the dimension of energy squared times length, so we set
f0 = rM m2

sc4, with rM as before and ms some mass. Lifting the Hamiltonian to 5D yields

ηABP AP B = m2
sc2 rM

r
, (5.2)

and hence a position-dependent mass. Legendre transforming this to the Lagrangian of
a geodesic yields

Lp = ηABẋAẋB

2h
+ m2

sc2 h

2
rM

r
, (5.3)

where we have included the auxiliary Einbein h. It can be solved for to generate

Lp|h= msc
√

ϕ(r)ηABẋAẋB , (5.4)

with the scalar field ϕ(r) = rM
r minimally coupled and now dimensionless, and solving the

field equation in a vacuum.
This completes the trilogy of double copy related relativistic field theories, at least

from the 5D perspective: the Hamiltonians with constant, linear and quadratic functions
correspond to the natural sequence of spin-0, 1, 2 exchange field theories.

– 8 –
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Again, it will be interesting to investigate the dimensional reductions. As before, the null
reduction directly generates a non-relativistic system akin to the Kepler and Coulomb ones.
The space-like reduction, instead, generates a coupling to a new scalar field profile. After
dimensional reduction of (5.3) and subsequent elimination of the Einbein h, we find

Lp|h= −msc
√

ϕ̄(r)(−ηµν ẋµẋν) , (5.5)

with the scalar now given by

ϕ̄(r) = 1 − rM

r
. (5.6)

This particular profile for the scalar field then produces exactly closing time-like curves, and
it is the Lagrangian giving rise to H in equation (5.1) with proper time parametrisation.

In general, scalar fields generate a perihelion precession that is given to first post-
Newtonian order by

∆θ = −1 + a2
6 ∆θGR , (5.7)

with ∆θGR the perihelion shift in GR and a2 is a parameter that characterises the coupling of
the scalar field (at quadratic level) to the probe particle [31]. How does this and similar results
relate to our system displaying no precession? Whereas a2 = 0 in Nordström’s final theory
(see [32]), a2 = 1 in the only-scalar limit of [16] and Nordström’s first theory (see [30, 33])
and indeed, working out the square-root expansion we have a2 = −1 for the scalar (5.6).

At this point it is also interesting to compare to the classification of Bertrand spacetimes,
as pioneered by Perlick [34]. These spacetimes are defined by having the special property
of having closed orbits; however, Bertrand spacetimes are not required to solve the source-
free Einstein’s equations and generically need to be supplemented with non-trivial energy-
momentum tensors. In contrast, in all three cases that we have discussed, the backgrounds
satisfy the source-free bulk equations of motion of the three relativistic field theories. The
latter case of the zeroth copy includes the coupling to the harmonic scalar field in [30]. From
the particle’s perspective, this is equivalent to coupling to a conformally flat metric with
overall factor (5.6); this therefore has to be a Bertrand space-time. We have checked that the
general class of solutions of [34] indeed includes this as the unique conformally flat possibility.8

6 Discussion and conclusion

In this paper, we have studied the possible interactions giving rise to Keplerian symmetry in
field theories. We have presented the unique extension of the classical Kepler system to a
relativistic system with the same so(4) algebra and the correct special relativistic limit, at
least up to 5PN. This relativistic class of Hamiltonians contains terms naturally interpretable
through a lift to 5 dimensions as spin-0,-1 and -2 interaction. We discussed how these
project to relativistic theories in 4 dimensions, and their relation to the classical Kepler

8Specifically, the mapping is from the lower signs in equation (13) of [34] with D → −2/r2
M , K → 4/r4

M

and G → 0 and rescaling the time t → t rM /
√

2.

– 9 –



J
H
E
P
0
8
(
2
0
2
4
)
2
1
6

problem. Moreover, the interactions can be viewed as zeroth, single and double copy in
a classical double copy structure.

The 4D systems with so(4) symmetry corresponding to spin-1 and -2 in 5D are known
in literature to stem from N = 4 super Yang-Mills and N = 8 supergravity [9, 10], which
can be truncated to the non-minimally coupled scalar-vector and Einstein-Maxwell-dilaton
with a =

√
3 respectively. However, the spin-0 system in terms of a dilaton field theory,

whose resulting effective metric coincides with a type of Bertrand spacetime [34], appears
to have escaped attention so far.

It is not clear whether generic combinations of terms in the function F (x) can be similarly
realised as reduced 5D systems. Crucially, the lift of a generic quadratic polynomial in x

does not appear to be Ricci-flat, implying it does not have a Kerr-Schild form and evades
the classical double copy structure. Equally interesting would be to investigate whether
higher order terms, like x3 have interpretations in terms of higher-spin fields. Supposedly,
this is not excluded if the background solutions linearize, i.e. the underlying field theory is
non-interacting in the chosen coordinate system, which is the case for the three instances
discussed here.

The trajectories in all systems from a 5D perspective can be seen as reparametrisations
of trajectories of a classical Kepler problem. In a similar vein, all one-body dynamics in
the particular relativistic systems discussed can be linked to classical dynamics. Though we
have focused on the particular case of relativistic 1-center problems with classical symmetry,
all the above constructions hold with any harmonic background potential ϕ: the Einstein,
Maxwell and scalar field equations are still solved after the 5D lift. The reduced systems are
then through time reparametrisation related to their classical counterparts.

For example, a multi-center background in Einstein-Maxwell-dilaton theory with a =
√

3
and extremal objects can be constructed, which is orbited by an anti-extremal test particle.
This is the space-like reduction of a Bargmann spacetime of which the null-reduction is the
classical Newtonian multi-center system. The relevant harmonic function for n centers (all
extremally charged) is given by −ϕ(r⃗) = rM1

|r⃗−r⃗1| + · · · + rMn
|r⃗−r⃗n| [35], and the Hamiltonian for

an anti-extremal test particle of mass m satisfies

H2 = m2c4 + p2c2 + ϕ(r⃗)
(
mc2 + H

)2
. (6.1)

This connection immediately implies these solutions possess the same integrability properties
as their equivalents in non-relativistic mechanics, that is, the two-center case is integrable,
while the systems with a higher number of centers all display chaotic scattering [36–38], as
discussed for more values of the dilaton coupling in [39].

Some further questions present themselves. Firstly, all mentioned so(4) preserving systems
are test-particle limits. It would be interesting to consider the two-body problem beyond
the first order in mass ratio or relativistic expansions in these theories, as done for example
by [11], who still found no precession of the orbits at third Post-Minkowskian order for
extremal black holes in N = 8 supergravity (but did not confirm or exclude persistence of
so(4) symmetry). Modern scattering amplitude methods9 seem to be well-suited to this task,

9For instance, it would be interesting to investigate whether the effective one-body approach in Kerr-Schild
formulation [40] allows to capture comparable mass ratio effects in the 5D Kerr-Schild potential.
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especially in the light of the double copy, which might allow one to directly export results
from N = 4 super Yang-Mills to N = 8 supergravity.

Secondly, is it possible to extend the idea of relating relativistic systems to geodesics
in higher dimensional spaces to multi-body systems? This would need to account for the
multi-worldline nature of such systems, possibly by including more time-like dimensions in
the higher dimensional system. It would be intriguing to see if this alternative perspective
could lead to new or simplifying insights into relativistic dynamics, and whether interesting
connections can be made to classical systems.
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A Relativistic dynamics as reparametrised classical trajectories

In this more mathematically oriented appendix we provide further details on the time
reparametrisation that relates the (non-)relativistic Hamiltonians, and make this connection
rigorous in terms of the Marsden-Weinstein reduction of the higher-dimensional phase space.

To this end, we will start from a slight generalisation of the above, with Hamiltonians
H2(q, p) (introduced in [15]) solving an equation of the form

−f(H2(q, p)) = p2

2Cu
+ g(H2(q, p))

Cu
Φ(q) , (A.1)

with f and g suitable smooth functions R → R and Cu a nonzero constant. We will show
that these are similarly related to classical Hamiltonians using Marsden-Weinstein reduction,
employing a symmetry of a Hamiltonian system to reduce its dimension by an even number.
This procedure guarantees that the reduced space remains symplectic, since the symplectic
form is given by the restriction of the initial symplectic form to the new space [41].

Assumptions 1.

1. Let Φ : Rd\∆ → R be a smooth function, ∆ a discrete set of isolated points and ∂Φ(q)
∂q ̸= 0

for all q ∈ Rd\∆.

2. Let H1 : M → R be a Hamiltonian on M = T ∗(Rd\∆) with coordinates q ∈ Rd and
p ∈ Rd, defined by

H1(q, p) = p2

2f(Cv) + g(Cv)
f(Cv)Φ(q) , (A.2)

for two smooth functions f, g : R → R.

3. Let Cu, Cv ∈ R be nonzero constants such that f(Cv) ̸= 0, g(Cv) ̸= 0 and

g′(Cv)Φ(q) + f ′(Cv)Cu ̸= 0 , for all q ∈ Rd\∆. (A.3)
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Proposition 1. Given Assumptions 1(1–3), if the Hamiltonian H2(q, p) implicitly defined
by (A.1) exists for H2(q, p) = Cv, the trajectories on an energy level H1 = −Cu of the first
Hamiltonian and H2 = Cv of the second are in one-to-one correspondence, up to the time
reparametrisation

dt1
dt2

= f(Cv)
g′(Cv)Φ(q) + f ′(Cv)Cu

. (A.4)

Proof. Consider a manifold M̄ = T ∗(R2×(Rd\∆)), with canonical coordinates (u,v,q;Pu,Pv,p)
and Hamiltonian H : M̄ →R given by

H(u, v, q; Pu, Pv, p) = g(Pv)Φ(q) + f(Pv)Pu + p2

2 . (A.5)

The proposition is an application of Marsden-Weinstein reduction restricted to the level set
H−1(0). Since u and v are cyclic coordinates by construction and the corresponding actions
(by translation) are both free and proper, we can apply the Marsden-Weinstein theorem [41]
to symplectically reduce over either of them. We can construct the two possible reductions
using the momentum maps µ⋆ := (H, P⋆) : M̄ → R2, where ⋆ denotes either u or v, giving
two, in principle different base spaces B⋆ = µ−1

⋆ (0, C⋆)/R⋆ and corresponding projections
π⋆ : µ−1

⋆ (0, C⋆) → B⋆. Here (0, C⋆) are assumed to be regular values of µ⋆, for now. Note
that the base spaces are odd-dimensional, as the value of H is fixed, so that the established
relation is between energy levels of H1 and H2.

Consider the regularity requirements dH ̸= 0 and dPu, dPv ̸= 0. The latter are trivially
satisfied, while the former gives

dH(u, v, q; Pu, Pv, p) = ∂Φ
∂q

g(Pv)dq + f(Pv)dPu

+ (g′(Pv)Φ(q) + f ′(Pv)Pu)dPv + p dp . (A.6)

By the Assumptions 1(1–3) this is never vanishing on the domain of consideration, nor are
dH and dPu, dPv linearly dependent. This shows that the values (0, C⋆) are indeed regular.

Let us now reduce the system over the cyclic coordinates (u.v) to obtain new Hamiltonian
functions that are exclusively dependent on the classical variables (q, p). When we reduce by
v we have

g(Cv)Φ + f(Cv)Pu + p2

2 = 0 , (A.7)

so that reparametrisation λ → f(Cv)λ results in

−Pu = p2

2f(Cv) + g(Cv)
f(Cv)Φ(q) . (A.8)

This means that we effectively have a Hamiltonian −Pu = H1(q, p), which moreover has a
time parameter given by t1 = u = f(Cv)λ associated to it, as is apparent from Hamilton’s
equation du

dλ = ∂H
∂Pu

.
If, instead, we reduce phase space M̄ over u, we end up with

−f(Pv) = p2

2Cu
+ g(Pv)

Cu
Φ(q) . (A.9)
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By assumption, this is solved by H2(q, p) = Cv. Hamilton’s equation

dv

dλ
= g′(Pv)Φ + f ′(Pv)Cu , (A.10)

then implies the associated time t2 is given by dt2 = dv = (g′(Pv)Φ + f ′(Pv)Cu)dλ. For
energy levels H1 = −Cu of the first Hamiltonian and H2 = Cv of the second, this means the
reparametrisation from the first Hamiltonian to the second is given by

dt1
dt2

= f(Cv)
g′(Cv)Φ(q) + f ′(Cv)Cu

, (A.11)

which concludes the proof of the relation between the two.

For concreteness we now apply this procedure to the relativistic class of Hamiltonians

H2 = m2 + p2 −
(1

r

)
F (m + H) (A.12)

dropping factors of c2 for legibility. As discussed in the main text, under the replacements (3.3)
these lift up to the level set H−1(0) of

H = P 2
5 − P 2

0 + p2 −
(1

r

)
F (P5 + P0) . (A.13)

Hamilton’s equation tells us that the relation between the time-parameter λ of this new
Hamiltonian is related to the old time parameter t by

dt

dλ
= −2P0 −

(1
r

)
F ′ (P5 + P0) , (A.14)

where t is conjugate to P0 (and hence H).
The canonical transformation to null coordinates

(x+, x−) = 1√
2

(x5 + t, x5 − t) , (A.15)

(P+, P−) = 1√
2

(P5 + P0, P5 − P0) , (A.16)

results in

−2P−P+ = p2 −
(1

r

)
F
(√

2P+
)

(A.17)

on level set H−1(0). Assuming P+ ̸= 0, a time reparametrisation to λ̃ = 2P+λ reduces
it further to

−P− = p2

2P+
−
(1

r

) 1
2P+

F
(√

2P+
)

, (A.18)

so the alternative symplectic reduction over x+ setting P+ = m+ results in −P− =: H−
defining a Kepler Hamiltonian reading

H− = p2

2m+
−
(1

r

) 1
2m+

F
(√

2m+
)

. (A.19)
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The relation between both time parametrisation therefore reads

dx−
dλ

= ∂H
∂P−

= 2P+ , (A.20)

where x− is conjugate to H−.
Crucially, the Marsden-Weinstein result guarantees that both reductions preserve the

symplectic structure. From the above, it directly follows that the time reparametrisation
that links trajectories on energy levels H− = 1√

2(H0 −m) of the Kepler Hamiltonian to those
on energy levels H = H0 of the original is given by

dx−
dt

=
√

2(H0 + m)
−2H0 −

(
1
r

)
F ′ (m + H0)

. (A.21)

This transformation maps relativistic systems that violate Kepler’s third law to Kepler
ones that satisfy it.

Note that only when F (x) is homogeneously quadratic, does each energy level map
to the same Kepler background, such that the potential coefficient in the Hamiltonian
becomes linear in the mass of the probe. For all other functions, the effective Newton’s
constant becomes probe-mass dependent and hence would violate the equivalence between
gravitational and inertial mass.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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