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1 Introduction

In this work we continue our study of the Euclidean action of black holes in de Sitter space
and their potential role in the partition function. In previous work [1] we provided a general
and covariant derivation of the Euclidean on-shell action for neutral, nonrotating black holes
in de Sitter space, generalizing classic results for the Nariai instanton [2, 3], and showed it is
equal to minus the sum of the two horizon entropies for arbitrary mass and in any number of
dimensions (as was previously done for four dimensions in [4–7]). We emphasized the special
role of the conical singularities, as well as a proper interpretation in terms of constrained
instantons (also explained in [8] and first suggested in the older works [4, 5]), and computed
the pair production rate of an arbitrary mass black hole in de Sitter space from first principles.

Our main motivation for studying these objects is that they might play an important
role in a Euclidean path integral description of quantum gravity in de Sitter space. This
is suggested by recent developments in string theory and AdS/CFT addressing black hole
unitarity from a bulk perspective [9, 10], which led to the discovery of (new) non-perturbative
saddle solutions of the Euclidean action of Einstein gravity with negative cosmological
constant and showed how to restore unitarity of black hole evaporation [11, 12]. Here, we will
consider non-perturbative, non-regular saddles of the Euclidean action of Einstein gravity
with positive cosmological constant and we revisit, extend and reinterpret existing results
on charged black hole instantons.

What makes de Sitter space especially interesting is the fact that the effective dynamics
appears to be completely governed by the (finite) entropy of the cosmological horizon [13, 14],
as first emphasized in [15–17], but also nicely spelled out in more recent work [18]. Vacuum
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de Sitter corresponds to the maximum entropy state, and (perturbative or non-perturbative)
excited states in the effective Einstein gravity theory correspond to configurations with
lower entropy, which can be described in terms of constraints on the energy (and other
charges) defining the state. The probability to create such a state in the static patch of de
Sitter is governed by the entropy difference and the contribution of non-perturbative states,
such as black holes, to the partition function can then be elegantly accounted for using the
constrained instanton formalism [19–21]. The hope is that these results might contribute
to resolving a cosmological version of the information paradox [22–25], or provide insights
into the underlying microscopic holographic description of the de Sitter static patch [26–30]
(see also the excellent reviews [31–33]).

As realized long ago, compared to neutral black holes in de Sitter space, the configuration
space of charged black holes is quite rich, see for instance [34–38]. Next to extremal black
holes, bounding the maximal charge of a given mass black hole, there also exists an upper
bound on the mass in a given charge sector, extending the neutral Nariai black hole to its
charged analogue. Except for the special extremal, Nariai and so-called lukewarm solutions,
for which the temperatures of the black hole horizon and cosmological horizon coincide,
the absence of thermal equilibrium implies that the Euclidean solution will be singular
in general, a priori obscuring the meaning of the corresponding on-shell action. We will
nevertheless proceed with computing the on-shell action, since we argue the singular Euclidean
solutions are meaningful as instantons of a constrained path integral. Although (partial)
results for the on-shell Euclidean action of charged de Sitter black holes have been reported
before [5, 34, 35, 37, 39, 40], see also the recent paper [41], in this work we will present a
completely general derivation, for any charge and mass and in any number of dimensions.
Moreover, we will correct the on-shell action in the extremal and so-called ultracold limits.

We will start with some preliminaries in section 2 on charged black holes in de Sitter,
setting up our conventions. We will then confirm in section 3 that the action of a general
Euclidean Reissner-Nordström-de Sitter (RNdS) solution with conical singularities at the
black hole and cosmological horizons, in arbitrary dimensions D > 3, after imposing the
(nonlinear) Smarr relation between the two horizons and including a boundary term for the
electromagnetic field, is independent of the Euclidean time period and is equal to

I = −A+ +A++
4G

= −SRNdS . (1.1)

Here A+ is the area of the (outer) black hole horizon and A++ is the cosmological horizon
area. This formula suggests that the total entropy of the RNdS static patch between the two
horizons is given by the sum of the horizon entropies. Applying this result we then compute
the pair production rate of any static black hole in de Sitter space using the formalism of
constrained instantons in section 4. We end with a comment on the Festina Lente bound [42]
in section 5, and a short summary and open questions in section 6.

2 Charged black holes in de Sitter space

In this section we review some geometric and thermodynamic properties of nonrotating,
charged black holes in a de Sitter background (see also [35–38, 42–46]). We mostly keep the
number of spacetime dimensions D arbitrary, but the plots are for the case D = 4. Specific
formulas in four dimensions that are useful for making plots can be found in appendix A.
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2.1 Reissner-Nordström-de Sitter geometry and phase diagram

Charged black holes in asymptotically de Sitter spacetime are described by the Reissner-
Nordström-de Sitter solution to the Einstein-Maxwell field equation with a positive cosmo-
logical constant Λ. In static coordinates the RNdS line element reads

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2
D−2 , (2.1)

where dΩ2
D−2 is the metric on the round unit (D − 2)-sphere, and the blackening factor

f(r) is given by

f(r) = 1− r2

l2
− m

rD−3 + q2

r2(D−3) . (2.2)

The length scale l is the de Sitter curvature radius, which is related to the cosmological
constant by Λ = (D − 1)(D − 2)/2l2. The mass and charge parameters, respectively m and
q, are related to the mass M and electric charge Q as

M = (D − 2)ΩD−2
16πG

m , Q =

√
(D − 3)(D − 2)

8πG
q , (2.3)

where ΩD−2 is the volume of the unit (D − 2)-sphere. Here M is defined in a similar way
as the ADM mass in asymptotically flat space [47]. However, unlike in asymptotically flat
and AdS space, the asymptotic charges in de Sitter are “conserved in space” rather than
in time, since the Killing vector field ∂t is spacelike near future and past infinity [48]. We
will ignore this subtlety and refer to M simply as the “mass” of the black hole. Further,
we assume throughout the paper that m, q > 0.

The RNdS solution could be electrically or magnetically charged, but in this paper we
consider only the solution that is supported by an electric gauge field

F = − Q

rD−2 dt ∧ dr. (2.4)

For a fixed number of dimensions, the RNdS geometry is fully characterized by three
independent parameters m, q and l (or, equivalently, M, Q and Λ). This implies the blackening
factor f(r) has four real roots, denoted by r−−, r−, r+ and r++ in increasing order (for D ≥ 5
there are additional complex roots). The negative root at r = r−− is deemed unphysical. The
other three real roots are positive and they correspond to horizon radii: r = r− is the inner
black hole horizon, r+ is the outer black hole horizon, and r++ is the cosmological horizon (see
figure 1). In order to avoid naked singularities m and q should satisfy the following bounds

mE ≤ m ≤ mN , qN ≤ q ≤ qE . (2.5)

Outside this domain the roots r−, r+ and r++ can become complex. The left of figure 2
shows the phase diagram of the RNdS solution in terms of m and q, where we see that the
domain (2.5) takes the form of a “shark fin” [42]. Configurations inside the shark fin (orange
region) have three distinct horizons, whereas the left and right edges of the shark fin are
associated with the extreme cases where two of the horizon radii coincide, respectively:
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(a) Arbitrary m and q. (b) Charged Nariai black hole.

(c) Extremal or cold black hole. (d) Ultracold black hole.

Figure 1. Plots of the blackening factor f as a function of the radius r > 0, for a) arbitrary m and q,
where r− ̸= r+ ̸= r++; b) the Nariai black hole, where r+ = r++ ≡ rN ; c) the extremal black hole,
where r− = r+ ≡ rE ; d) the ultracold black hole, where r− = r+ = r++ ≡ rU .

• Extremal solution: the lower bound on m and the upper bound on q correspond to the
case where the inner and outer horizon radii coincide, rE ≡ r− = r+. The near-horizon
topology is AdS2 × SD−2 and the temperature of the extremal black hole vanishes. In
the de Sitter context this is also known as the cold solution [36].

• Charged Nariai solution: the upper bound on m and the lower bound on q arise from
the case where the outer horizon radius and cosmological horizon radius are the same,
rN ≡ r+ = r++. The near-horizon topology is dS2 × SD−2, and the outer black hole
horizon and cosmological horizon are in thermal equilibrium.

The mass and charge of the cold and Nariai black holes can be found by solving f(rE,N ) =
f ′(rE,N ) = 0, which yields the following expressions in terms of the horizon radii

mE,N = 2
(
1− D − 2

D − 3
r2

E,N

l2

)
rD−3

E,N , q2
E,N =

(
1− D − 1

D − 3
r2

E,N

l2

)
r

2(D−3)
E,N . (2.6)

Since for any fixed mass parameter m, the charge parameter q is bounded from above (by
the cold limit), and similarly for any fixed q there is an upper bound on m (due to Nariai
limit), there exists a de Sitter black hole with maximal mass and charge, known as:

• Ultracold solution: in this case all three horizon radii coalesce, rU ≡ r− = r+ = r++.
This corresponds to the tip in the shark fin diagram where the extremal and Nariai
boundaries meet. All three horizons have vanishing temperature in this case, and the
near-horizon geometry is M2 × SD−2, where M2 is two-dimensional Minkowski space.
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(a) “Shark fin” phase diagram for m/mU vs. q/qU . (b) Phase diagram for α vs. ρ.

Figure 2. Phase diagram of RNdS parameterized by (m/mU , q/qU ) (left) and (α, ρ) (right). In the
orange region the bounds (2.5) are satisfied, and in the turquoise region (left) the metric has a naked
singularity. The blue boundary corresponds to the Nariai limit, and the green edge to the extremal
(cold) limit. Those boundaries meet at the magenta tip/line (left/right), associated to the ultracold
limit. The red line corresponds to the lukewarm solution, for which the black hole and cosmological
horizon temperatures are identical, and the yellow dot is the Nariai-lukewarm limit. In the light
orange region black holes are colder than the cosmological horizon, whereas in the dark orange region
they are hotter.

The horizon radius, mass and charge for the ultracold black hole are obtained by solving
f(rU ) = f ′(rU ) = f ′′(rU ) = 0, leading to

rU = D − 3√
(D − 1)(D − 2)

l , mU = 4 rD−3
U

D − 1 , qU = rD−3
U√
D − 2

. (2.7)

Even though the ultracold black hole has the largest mass and charge, its (outer) horizon
radius is not maximal. The extremal horizon radius rE has the range [0, rU ], whereas the
Nariai horizon radius rN ranges from rU to rN (q = 0) = l

√
D−3
D−1 . Hence, the neutral Nariai

black hole has the largest outer horizon radius.
Finally, on the right of figure 2 we rescaled the shark fin diagram in order to accommodate

for the fact that the interval [mE , mN ] shrinks with increasing q. This opens up the region
near the ultracold solution and makes the so-called lukewarm solution (red line) more visible,
for which the black hole and cosmological horizon have the same temperature. We introduced
a dimensionless mass parameter α ∈ [0, 1], defined via

m = α mN + (1− α)mE . (2.8)

This allows us to better compare and visualize thermodynamic quantities, such as the horizon
temperatures and entropies. Note that α is defined such that low values correspond to
small (allowed) masses, and high values to large (allowed) masses. Following [1], we also
introduce the ratios

µ ≡ m/mN , µE ≡ mE/mN , (2.9)
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(a) Black hole temperature T+. (b) Cosmological horizon temperature T++.

Figure 3. Heat maps in terms of (α, ρ) for the black hole temperature (left) and the cosmological
horizon temperature (right). For low mass and charge (in the white region at the bottom left corner)
the black hole is extremely hot.

in terms of which the relation for α becomes

µ = α + (1− α)µE . (2.10)

Finally, for the charge we often use the dimensionless ratio

ρ ≡ q/qU , (2.11)

which ranges from ρ = 0 (neutral black hole) to ρ = 1 (ultracold black hole).

2.2 Thermodynamics: horizon temperatures, first law and Smarr formula

Next we briefly discuss the thermodynamics of the Reissner-Nordström-de Sitter spacetime.
Since RNdS has three event horizons, there are three associated temperatures and entropies

Th = κh

2π
, Sh = Ah

4G
, with h = {−,+,++} , (2.12)

where κ denotes the surface gravity and A the horizon area. For general values of the mass
and charge, the surface gravities of the three horizons are different, hence the horizons are
not in thermodynamic equilibrium. However, as we will discuss in more detail below, for
specific values of m and q (two or three of) the surface gravities coincide, hence the associated
horizon temperatures are the same. We will focus on the thermodynamics of the static patch
between the outer black hole horizon and the cosmological horizon r ∈ [r+, r++], since that
is the region captured by the Euclidean RNdS geometry.

Horizon temperatures. The horizon temperature depends on the normalization of the
horizon generating Killing vector ξ, which cannot be fixed at the asymptotic boundary in
de Sitter space, as is usually done for Schwarzschild spacetime. Bousso and Hawking [3]
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normalized the timelike Killing vector of Schwarzschild-de Sitter spacetime instead on the
geodesic at constant angular variables between the black hole and the cosmological horizon.
The geodesic lies at a particular radius rO where an observer can stay in place without
accelerating, i.e., the gravitational pull from the black hole and cosmological acceleration
balance out. The blackening factor attains a maximum at this radius, f ′(rO) = 0, and
the Killing vector is normalized such that ξ2 = −1 at r = rO. In the limit to (Λ = 0)
Schwarzschild spacetime the radius goes to infinity, and in the limit to empty (M = 0) de
Sitter spacetime the radius goes to zero. Hence, the radius rO agrees in these limits with
the standard location where the Killing vector is normalized.

In RNdS, the equation f ′(rO) = 0 has two positive roots: a local minimum between the
inner and outer horizon, and a local maximum between the outer horizon and cosmological
horizon. We normalize the Killing vector on the local maximum to mimic the normalization
for the timelike Killing vector of Schwarzschild-de Sitter. The blackening factor evaluated
at rO is given by

f(rO) = 1− D − 1
D − 3

r2
O
l2

− q2

r
2(D−3)
O

. (2.13)

The normalized horizon generating Killing vector is ξ = ∂t/
√

f(rO) and the surface gravity
defined with respect to this Killing vector is given by κh = f ′(rh)/(2

√
f(rO)). Hence, for the

RNdS solution the temperature of the different horizons takes the following form

Th = D − 3
4π rh

√
f(rO)

∣∣∣∣∣1− D − 1
D − 3

r2
h

l2
− q2

r
2(D−3)
h

∣∣∣∣∣ . (2.14)

We will now discuss several special cases for which the horizon temperatures are the same.
The normalization with respect to the geodesic observer between r+ and r++ is particularly
appropriate for the Nariai black hole, since the outer horizon and cosmological horizon
temperatures remain finite in this limit, which is expected since the near-horizon Nariai
geometry is two-dimensional pure de Sitter space times a sphere. (The temperatures T+ and
T++ defined with respect to the Killing vector ∂t seem inappropriate for the Nariai solution
since they vanishes in that limit.) In the Nariai case the black hole and cosmological horizons
have the same radius as the geodesic, i.e., r+ = r++ = rO = rN . Moreover, the temperatures
of the black hole and cosmological horizon are the same, and they equal to

TN =
√

D − 3
2π rN

√√√√1− (D − 2) q2

r
2(D−3)
N

. (2.15)

For the critical values q = 0 and q = qU the Nariai temperature becomes, respectively,

TN (q = 0) =
√

D − 1
2π l

, TU ≡ TN (q = qU ) = 0 . (2.16)

The former is the temperature of the neutral Nariai black hole, which agrees with previous
findings [1, 3, 49], and the latter is the temperature of the ultracold solution which vanishes
for all three horizons.
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(a) ρ = 0, 1/2. (b) α = 0, 1/2.

Figure 4. Horizon temperatures (a) as a function of the mass parameter α for fixed ρ = 0, 1/2 and
(b) as a function of the charge parameter ρ for α = 0, 1/2. The black hole temperature T+ is shown in
blue and the cosmological horizon temperature T++ in orange. Dark colors correspond to α, ρ = 0,
and light colors to α, ρ = 1/2.

Furthermore, in the extremal (cold) case the temperatures of the outer and inner horizons
vanish,1 TE,+ = 0 , and the temperature of the cosmological horizon is finite and given by

TE,++ = 3− D

4π rE,++
√

f(rO)

1− D − 1
D − 3

r2
E,++
l2

− q2

r
2(D−3)
E,++

 , (2.17)

where rE,++ stands for the cosmological horizon radius of the extremal solution. For zero
charge q = 0 (rE,++ = l) the temperature reduces to the empty de Sitter temperature
TdS (2.19) and for q = qU (rE,++ = rU ) the temperature vanishes, cf. (2.16).

Besides the Nariai solution there is another thermal equilibrium solution for which the
(outer) black hole horizon and cosmological horizon temperature are the same. This is the
so-called lukewarm solution [36]. In figure 4 we show that the black hole temperature T+
and the cosmological horizon temperature T++ cross for specific combinations of α and ρ, or
equivalently m and q, which corresponds to the lukewarm case. When solving for T++ = T+,
one finds that the mass and charge parameter are related by mL = 2qL in D = 4. In higher
dimensions the relation between the (lukewarm) mass and charge is more complicated, since
it depends non-trivially on the horizon radii, cf. equation (B.4). Further, the temperature
of the lukewarm black hole, T+ = T++(≡ TL), can be expressed in general dimensions as a
function of the outer horizon radius rL,+ and the cosmological horizon radius rL,++

TL = 1
2π
√

f(rO) l2

[
rL,++ + rD−2

L,+ (rL,+ + rL,++)
(

D − 3
rD−2

L,+ − rL,+rD−3
L,++

+ D − 2
rD−2

L,+ − rD−2
L,++

)]
.

(2.18)

1This is not the case if the temperatures is normalized with respect to the other positive root r̃O of f ′(r) = 0,
where the blackening factor has a local minimum, located between r− and r+. For this other normalization
the black hole temperature does not go to zero in the extremal limit, T̃E,− = T̃E,+ ̸= 0, whereas the Nariai
black hole temperature does vanish, T̃N,+ = T̃N,++ = 0, and the temperature of the ultracold black hole as
well, T̃U = 0.
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For q = 0 and q = qN this reduces to, respectively,

TdS ≡ TL(q = 0) = 1
2πl

, TLN ≡ TL(q = qN ) =
√

D − 1√
6πl

. (2.19)

The former being the empty de Sitter temperature and the latter the lukewarm Nariai
temperature of the black hole and cosmological horizon.

First law and generalized Smarr formula. The horizon temperatures, entropies, and
charge are related by the first law for the static patch between the black hole and cosmological
horizon (see, e.g., [45])

T+δS+ + T++δS++ + (Φ+ − Φ++)δQ = 0 . (2.20)

Here Φ+ and Φ++ are the static electric potentials evaluated at the black hole and cosmological
horizon, defined with respect to the same Killing vector normalization as the temperatures,2

Φ+,++ = −Aµξµ
∣∣∣
r=r+,++

= Q

(D − 3)rD−3
+,++

√
f(rO)

. (2.21)

Without variations the thermodynamic quantities satisfy the (generalized) Smarr formula

T+S+ + T++S++ + D − 3
D − 2(Φ+ − Φ++)Q − ΘΛ

(D − 2)4πG
= 0 . (2.22)

The quantity Θ is the “thermodynamic volume” or “Killing volume”, defined as [50]

Θ ≡
∫

Σ
dV
√
−ξ2 , (2.23)

where Σ is the spatial slice between the outer horizon and cosmic horizon, and ξ is the time
translation generating Killing vector, normalized as ξ = ∂t/

√
f(rO).

3 Euclidean action of Reissner-Nordström-de Sitter space

3.1 Hartle-Hawking wavefunction and instantons

We are interested in computing the pair creation rate of charged black holes in a de Sitter
background for any mass and charge.3 The pair creation of such black holes is described by
the propagation from nothing to a spatial surface Σ with topology SD−2 ×S1 for generic mass
and charge (and Σ has topology SD−2 × R for extreme and ultracold black holes). Given
certain boundary conditions on Σ fixing the mass and charge, the probability amplitude
for this process is given by the no-boundary Hartle-Hawking wavefunction, which can be
formally represented as a Euclidean path integral [37, 51]

ΨΣ =
∫ Σ

∅
[dg][dA]e−I1/2[g,A] . (3.1)

2This normalization will cause the electric potentials to diverge in the Nariai limit, but since Φ+ = Φ++ in
that limit that will not affect any of our results. We thank Alejandra Castro for making us aware of this.

3From a global de Sitter perspective this is naturally interpreted as creating a pair of opposite charge,
opposite mass, black holes, due to the opposite time orientation in two conjugate static patches. In a single
static patch region this instead corresponds to the spontaneous creation of a single charged black hole.
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The integral is over all metrics and gauge fields that agree with the boundary data on Σ, and
I1/2 is the action of a Euclidean manifold with boundary Σ. If there exists a Euclidean saddle
solution satisfying the boundary conditions, then in the saddle point approximation the
wavefunction is estimated by ΨΣ ≈ e−I1/2 , where I1/2 is the on-shell action of the instanton
and Σ should be viewed as labeling the different final states. Moreover, the pair creation rate
of fixed charge and mass black holes is approximated by the square of the amplitude, i.e.,

ΓΣ = Ψ∗
ΣΨΣ ≈ e−2I1/2 . (3.2)

We will be interested, however, in the probability to produce a pair of arbitrary mass and
charge black holes. We will argue in the next section that this is computed by the full
gravitational path integral (without any boundary conditions) which can be written, in a
saddle point approximation, as an integral over the mass and charge∫

dΣΨ∗
ΣΨΣ =

∫
[dg][dA]e−I[g,A] ≈

∫
dαdρ exp[−I] (3.3)

Here dΣ should be understood as the (formal) measure over the complete set of final states at
the original boundary, and I[g, A] is the Euclidean action on the entire (compact) manifold.
In the saddle point approximation we introduced I = 2I1/2, corresponding to the action of
a “bounce” Euclidean solution (the entire closed manifold). In this section we compute the
on-shell action of these “bounce” Euclidean solutions, which is twice the action of a standard
instanton with boundary Σ, and in the next section we will calculate the pair creation rate.

The Euclidean RNdS solutions provide the instantons for the pair creation of charged de
Sitter black holes. Their metric can be obtained from the Lorentzian metric by analytically
continuing t → it = τ ,

ds2 = f(r)dτ2 + f−1(r)dr2 + r2dΩ2
D−2, (3.4)

where f(r) is given by (2.2) and the Euclidean time τ is periodically identified with inverse
temperature β. For arbitrary β the Euclidean RNdS spacetime is regular everywhere except
at the black hole and cosmological horizon, where there are conical singularities. One of
the conical singularities can be removed by choosing β appropriately. However, it is not
possible to remove both conical singularities at the same time, except in the extreme cases
discussed in the previous section. Indeed, the extremal, Nariai, cold and lukewarm Euclidean
spacetimes are smooth everywhere, whereas for a generic mass and charge the Euclidean
RNdS geometry is singular at (at least one of) the Euclidean horizons. The extreme RNdS
solutions are, therefore, proper instantons of the Euclidean path integral, but we will argue
in section 4 that generic Euclidean RNdS geometries are instantons of a constrained path
integral where the mass and charge are kept fixed.

3.2 On-shell Euclidean action

In order to compute the on-shell action of the entire Euclidean RNdS section M we cut
the compact geometry in half. We first calculate the action of the two “caps” separately,
denoted by M1/2, and then sum the results to obtain the action of the entire Euclidean
section. This cutting and pasting procedure is consistent with the path integral representation
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in (3.3). Moreover, it seems necessary due to a subtlety related to the boundary term of
the Maxwell action, which localizes on the conical singularities, and does not vanish when
the two caps are glued together. We cut the Euclidean section along the spatial slice that
has zero extrinsic curvature, which corresponds to the standard choice of boundary Σ for
the Hartle-Hawking wavefunction.

The appropriate off-shell action of half the Euclidean section M1/2, for boundary data
that fix the induced metric and electric charge on Σ, is given by [51, 52]

I1/2 = −
∫
M1/2

dDx
√

g

[ 1
16πG

(R − 2Λ)− 1
4F 2

]
−
∫

Σ
dD−1x

√
hF µνnµAν . (3.5)

Here nµ is the unit normal to the boundary Σ and h is the determinant of the induced
metric on Σ. We did not include the Gibbons-Hawking-York boundary term, since it vanishes
on a surface Σ that has zero extrinsic curvature. We want to evaluate the action on half
of the Euclidean RNdS geometry where the Euclidean time has the range τ ∈ [0, β/2], for
an arbitrary inverse temperature β. The Ricci scalar of the RNdS geometry has a regular
part and a divergent part

R = Rbulk + Rcon , (3.6)

where the second part is due to the conical singularities at the two Euclidean horizons
and is given by

Rcon = 4πδ(r = r+) + 4πδ(r = r++) . (3.7)

To begin with, we compute the contribution from the regular part of the Ricci scalar to
the on-shell Euclidean action. Away from the conical singularities the RNdS spacetime
satisfies the Einstein equation

Rµν − 2Λgµν = 8πG

(
Tµν − T

D − 2gµν

)
. (3.8)

For the action (3.5) the Maxwell energy-momentum tensor is given by

Tµν = FµαFν
α − 1

4gµνF 2 . (3.9)

Taking the trace of the Einstein equation yields an on-shell expression for the regular part
of the Ricci scalar

Rbulk = 2D

D − 2Λ + D − 4
D − 24πGF 2 . (3.10)

Hence, the bulk contribution to the on-shell action is given by

I1/2,bulk = − 2
D − 2

∫
M1/2

dDx
√

g

( 1
8πG

Λ− 1
4F 2

)
. (3.11)

Further, it can be shown that the square of the electromagnetic field tensor (2.4) in Euclidean
static coordinates is

FµνF µν = −2
(

Q

rD−2

)2
. (3.12)
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By inserting this into (3.11) we find the bulk action becomes

I1/2,bulk = − βΘΛ
8πG(D − 2) −

βQ

2(D − 2)(Φ+ − Φ++) . (3.13)

Here, we used equation (2.21) for the electric potentials, and we noted that the Euclidean
spacetime volume

∫
M1/2

dDx
√

g is equal to βΘ/2, where Θ is the Killing volume (2.23).
Second, integrating the conical part of the Ricci scalar yields

I1/2,con = −A+ϵ+
8πG

− A++ϵ++
8πG

= −A+
8G

− A++
8G

+ β

2

(A+κ+
8πG

+ A++κ++
8πG

)
, (3.14)

where ϵ+,++ = π(1− n+,++) is the deficit angle associated to the conical singularities. The
range of the polar angle of one cap is πn+,++, which is related to the Euclidean time period
by πn+,++ = βκ+,++/2. By adding the conical deficit and bulk terms and using the Smarr
formula (2.22), the on-shell action becomes

I1/2,bulk + I1/2,con = −A+
8G

− A++
8G

− βQ

2 (Φ+ − Φ++) . (3.15)

Next let us add the boundary term of the Maxwell action, Ibdy, which originates from the
fact that we are fixing the charge on the boundary, which is equivalent to fixing nµF µi on
the boundary [51]. In order to compute the Maxwell boundary term we need to choose a
gauge for the gauge potential. A suitable gauge choice that is regular everywhere on the
Euclidean geometry is [37]

A1 = −i
Qτ

rD−2 dr . (3.16)

Further, we choose coordinates on the boundary Σ such that it is located at the surface
τ = 0, β/2 and the coordinate r runs from the black hole horizon to the cosmological horizon.
Then, the boundary term can be computed to be

I1/2,bdy = −
∫

Σ
dD−1x

√
hF µνnµAν = βQ

2 (Φ+ − Φ++) . (3.17)

Notice that the boundary term localizes on the two Euclidean horizons, and exactly cancels
against the term proportional to β in (3.15). Summing the three different contributions to
the action yields the total Euclidean action of M1/2

I1/2,RNdS = I1/2,bulk + I1/2,con + I1/2,bdy = −A+ +A++
8G

. (3.18)

The action is the same for both halves of the Euclidean section, and hence the on-shell
action of the entire Euclidean RNdS section M is given by minus the sum of the black hole
entropy and the cosmological horizon entropy

IRNdS = −A+ +A++
4G

= −SRNdS . (3.19)

We emphasize that this expression is independent of the Euclidean time period β, and that
it holds in any number of dimensions for arbitrary mass and charge. This is the action in
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the canonical ensemble where the temperature and charge are kept fixed.4 The same result
for the on-shell action I1/2,RNdS was obtained in four dimensions in [5, 41], which was used
to compute the pair creation of fixed mass and charge black holes in de Sitter. We expect
the creation of multiple charged black hole in de Sitter to be further suppressed with (a
multiple power of) the same exponential factor, due to the fact that the exponential de
Sitter expansion will create multiple independent static patches that contain just a single
charged black hole. This expectation is in fact supported by the explicit construction of
the (dynamical) solution for multiple de Sitter charged black holes [53], generalizing the
Majumdar-Papapetrou solutions in flat space. For zero charge the result (3.19) is consistent
with earlier findings for the action of Euclidean Schwarzschild-de Sitter space [1, 4, 6, 7].
Further, the on-shell action of the extreme Euclidean solutions (proper instantons) was
computed before in [35, 37, 38, 51], which we discuss in more detail below.

3.3 Extreme cases: cold, lukewarm, Nariai and ultracold instantons

In the literature the action is usually only evaluated for the extreme Euclidean RNdS solutions:
cold, lukewarm, Nariai and ultracold instantons. This is because they are proper stationary
points of the Euclidean Einstein action, i.e., they are regular and hence satisfy the Einstein
equation everywhere. Below we specialize to these true instanton cases and compare our
results for the on-shell action to those in the literature, especially the comprehensive paper by
Mann and Ross [37]. From our general expression (3.19) it follows that the on-shell actions
of the extremal, lukewarm, Nariai and ultracold instantons are,

IE = −AE,+ +AE,++
4G

= −ΩD−2
4G

(
rD−2

E + rD−2
E,++

)
, (3.20)

IL = −AL,+ +AL,++
4G

= −ΩD−2
4G

(
rD−2

L,+ + rD−2
L,++

)
, (3.21)

IN = −2AN

4G
= −ΩD−2

2G
rD−2

N , (3.22)

IU = −2AU

4G
= −ΩD−2

2G
rD−2

U . (3.23)

Obviously, since the expression (3.19) for the Euclidean action is a continuous function of the
mass and charge, the action of the proper instantons is also equal to minus the sum of the
black hole and cosmological horizon entropy. On the other hand, Mann and Ross computed
the action of each proper instanton separately by using the metric of each instanton. Their
results for the Euclidean action of the lukewarm and charged Nariai instantons agree with only
half the expressions above, in particular they agree with (3.21) and (3.22), but not with (3.20)
and (3.23). Furthermore, following earlier work by Hawking, Horowitz and Ross [54], they
found for the extremal instanton that the black hole horizon makes no contribution to the
action and hence to the entropy. This is because only the cosmological horizon is part of
the instanton, and the black hole horizon is infinitely far away from any other point. Thus,
the extremal black hole entropy vanishes according to them, even though its horizon area
is nonzero (see also [55]). This is in disagreement, however, with the modern view that the

4In the grand canonical ensemble that fixes the electric potential instead of the charge, there is no boundary
term for the gauge field and the on-shell action of M1/2 is given by (3.15) instead.
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Figure 5. Fraction of the Euclidean action of proper instantons over the action of pure de Sitter
I/IdS vs. the mass parameter m/mU . The blue line corresponds to charged Nariai IN , the green line
to the extremal solution IE , and the red line to the lukewarm solution IL. The blue dashed curve
corresponds to the action of the Schwarzschild-de Sitter black hole. The special points ILN and IU

are shown as yellow and magenta dots, respectively.

entropy of extremal black holes is finite in the classical regime (see, e.g., [56]).5 Moreover,
a zero extremal black hole entropy would imply that the RNdS action is discontinuous as
a function of the mass and charge, which contradicts our result for the action. The same
confusion about extremal black hole entropy seems to arise in the more recent papers [40, 41]
on the Euclidean RNdS action.

Furthermore, for the ultracold instanton Mann and Ross obtained two different results
for the on-shell action depending on the near-horizon metric. The action of one of the
ultracold metrics, called UC1, agrees with the limit of their action of the extremal solution
as it approaches the ultracold solution, but it is not the same as the ultracold limit of
the action of the Nariai solution. The action of the other ultracold metric UC2 vanishes
identically, since the metric describes 2D Minkowski spacetime (times a sphere) in standard
coordinates without horizons. Our result does not agree with either of these actions. In
fact, our action for the ultracold solution can be obtained as a special case of the action
for both the extremal solution and the charged Nariai solution. In figure 5 we plot the
fraction of the action of the proper instantons and the action for de Sitter space against
the dimensionless mass m/mU . One can see that the ultracold point (magenta point) is
connected to both the Nariai branch (blue line) and the extremal branch (green line). This
plot should be contrasted with figure 3 in the paper by Mann and Ross [37], in which the
Nariai branch and extremal branch are not connected.

As a function of the mass the action of the proper instantons is cumbersome. But in
terms of the charge the Euclidean on-shell action takes a relatively simple form in D = 4

IE = − π

ΛG

(
3−

√
2 + 2ρ2

E − 2
√
1− ρ2

E

)
, (3.24)

IL = − π

ΛG

(
3−

√
3ρL

)
, (3.25)

5Quantum corrections, in fact, flip this story again, since recent developments (see, e.g., [57]) show that for
non-supersymmetric Reissner-Nordström black holes the density of states (hence, the black hole entropy) at
fixed charge becomes exceedingly small near extremality.
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Figure 6. Fraction of the Euclidean action of proper instantons over the action of pure de Sitter
I/IdS vs. the charge parameter ρ. The blue line corresponds to charged Nariai IN , the green line to
the extremal-cold solution IE , and the red line to the lukewarm solution IL. The special points ILN

and IU are shown as yellow and magenta dots, respectively.

IN = − π

ΛG

(
1 +

√
1− ρ2

N

)
, (3.26)

IdS = − 3π

ΛG
, INN = − 2π

ΛG
, ILN = − 3π

2ΛG
, IU = − π

ΛG
, (3.27)

where INN denotes the action of the neutral Nariai solution (ρNN = 0) and ILN the action
of the lukewarm-Nariai solution (ρLN =

√
3

2 ). In figure 6 we plot the fraction of the proper
instanton actions and the de Sitter action against the charge parameter ρ = q/qU . We note
the actions of the lukewarm (red line) and cold (green line) solutions coincide at ρdS = 0
and are equal to the de Sitter action IdS in that case. Further, the actions of the lukewarm
and Nariai (blue line) solutions coincide for the lukewarm-Nariai solution (yellow point).
Moreover, we can see from the figure that the actions of the extremal and Nariai solutions are
the same at ρ = 1, which corresponds to the ultracold solution (magenta point). The extremal
and Nariai solutions also have the same action at ρ =

√
5

3 , but this is not a special point in
the shark fin diagram. Figure 6 can be contrasted with figure 3 in a paper by Bousso and
Hawking [3] where the fraction I/IdS is plotted against the square of the charge parameter (in
fact, the dimensionless quantity q2Λ). In that figure by Bousso and Hawking (which is based
on the computations of the action by Mann and Ross [37]) the Nariai branch and the extremal
branch do not meet at the ultracold point, which seems at odds with the shark fin diagram.

4 Constrained instantons and the pair creation rate

Having computed the on-shell Euclidean action for charged black holes in de Sitter space in
any number of dimensions, it is clear that, for general charge and mass, they can only be
understood as proper stationary instanton solutions after introducing a constraint. After
a very brief introduction of the general method of constrained instantons [19, 21, 58], we
will proceed in the same way as in our previous work [1] to compute the pair creation rate
of charged black holes in de Sitter using a constrained path integral. Except that now, in
addition to the introduction of a functional that implements fixed mass, we also have to
introduce a functional that fixes the charge. In essence, as also emphasized by the construction

– 15 –



J
H
E
P
0
8
(
2
0
2
4
)
2
0
7

of the Hartle-Hawking wavefunction of RNdS, the presence of conical singularities implies
“conical boundary” contributions to the on-shell Euclidean action where the fields are not
allowed to vary, translating to fixed mass and charge, and necessary in order to interpret
the solution as a stationary contribution to the partition function.

To understand the contribution of the constrained stationary solutions to the Euclidean
gravitational partition function, we introduce the mass and charge constraint in terms of a
delta function and integrate over them to rewrite the partition function as follows∫

[dg][dA] e−I[g,A] =
∫

dα

∫
dρ

∫
[dg][dA] δ(C[g, A]− α) δ(D[g, A]− ρ)e−I[g] . (4.1)

Here g and A refer to the metric and gauge field degrees of freedom and I is the Euclidean
off-shell action. Although the above expression is completely general, what we have in mind is
that the constraint functional C[g, A] fixes the mass to be m, whereas the constraint functional
D[g, A] fixes the charge to be q. Here, as before, the dimensionless ratio α runs from 0 to 1
for any charge q, and ρ equals q/qU , where qU corresponds to the maximum ultracold charge.
The next step is to introduce the integral representation of the delta functions to impose the
constraints by means of two Lagrange multiplier terms added to the action∫

[dg][dA] e−I[g,A] =
∫

dα

∫
dρ

∫
dλm

∫
dλq

∫
[dg][dA] e−I[g,A]+λm(C[g,A]−α)+λq(D[g,A]−ρ)) ,

(4.2)
where it should be understood that the integral over the Lagrange multipliers λm and Λq are
parallel to the imaginary axis. With this formal rewriting of the general partition function
we can now identify the contributions from the charged de Sitter black holes in terms of an
actual saddle point approximation. For any fixed α and ρ, only allowing λm, λq and the
degrees of freedom g and A to vary, the stationary points of the new action, including the
Lagrange multiplier terms, correspond to solutions of the following (schematic) equations

δgIE [g, A] + λm δgC[g, A] + λq δgD[g, A] = 0 ,

δAIE [g, A] + λm δAC[g, A] + λq δAD[g, A] = 0 ,

C[g, A] = α , D[g, A] = ρ . (4.3)

As in the neutral SdS case, the important point is that the charged black hole is only a solution
for non-vanishing λm and λq, where both Lagrange multipliers compensate for variations of
the mass and charge respectively, in such a way that the solution is now a true stationary
point of the modified action. That then allows us to use the saddle point approximation,
valid at weak gravitational coupling, to estimate the partition function by integrating over
all the saddles parameterized by the two constraint parameters, the mass and the charge
respectively. The constrained instanton interpretation for black holes in de Sitter space was
already anticipated in [4, 5, 59], as well as more recently in [8], and after applying it to the
neutral case in [1], here we are pointing out that it can straightforwardly be generalized to
charged black holes in de Sitter space as well. Note that the evaluation of the new action,
featuring the constraints, will simply reproduce the on-shell Euclidean action of the charged
black hole that we computed in the previous section.

Importantly, any set of constraint functionals effectively fixing the mass and charge
should give the same result for the partition function. Since we will only be interested in the
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(a) ρ = 0, 1/2. (b) α = 0, 1/2.

Figure 7. Horizon entropies (a) as a function of the mass parameter α for fixed ρ = 0, 1/2, and (b)
as a function of the charge parameter ρ for α = 0, 1/2. The black hole entropy S+ is shown in blue,
the cosmological horizon entropy S++ in orange, and the total entropy SRNdS = S+ + S++ in red.
Dark colors correspond to α, ρ = 0, and light colors to α, ρ = 1/2.

exponential dependence on mass and charge as given by the horizon entropies, and ignore
any contributions coming from the one-loop determinant, an explicit construction of the
constraints will not be necessary. We will assume that constraint functionals linear in the
mass and charge can be constructed, meaning that we can integrate over the dimensionless
variables µ and ρ to determine the contributions to the partition function without any
additional dependence on the mass and charge coming from the Gaussian path integral
(the one-loop determinant).

We are now ready to use this saddle point approximation of the gravitational partition
function to derive an expression for the probability to spontaneously nucleate charged black
hole of arbitrary mass and charge in de Sitter space. By integrating over the charge and
mass, and comparing to the on-shell action of empty de Sitter space, we get

Γ =
∫

dα dρ e−(IRNdS−IdS) =
∫

dα dρ e−(SdS−SRNdS) . (4.4)

Unfortunately, as in the neutral case [1], it is not possible to analytically perform this integral
without making some approximations. From figure 7, as in the neutral case, one notices that
the entropy is roughly linear in α, at a fixed value for the charge. So we will fit the total
entropy SRNdS as a linear function of α, at fixed charge ratio ρ, as follows

Sfit ≡ α SN + (1− α)SE , (4.5)

where the extremal entropies SN and SE are given by

SE,N (αE,N , ρ) ≡ A+(αE,N , ρ) +A++(αE,N , ρ)
4G

. (4.6)

This linear approximation, for fixed charge, gets better as the number of dimensions increases
(at worst, in D = 4, the relative difference is 1.4% at α = 0.23 and ρ = 0.81).

Armed with this linear fit we can now straightforwardly perform the integral over α.
The transition rate from empty de Sitter space to an arbitrary mass black hole, in a fixed
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charge sector labeled by ρ, becomes

Γρ ≈
∫ 1

0
dα e−(SdS−Sfit) = e−(SdS−SE)

(
1− eSN−SE

SE − SN

)
. (4.7)

Obviously, this reduces to our previous result [1] for ρ = 0 as SE(ρ = 0) = SdS. In the
opposite limit ρ = 1, the extremal entropies SE and SN become equal to SU = AU /(2G) and
the result is proportional to the entropy deficit between the ultracold solution and empty de
Sitter space, as one might have expected. Now, to compute the creation rate of arbitrary
massive and charged black holes, one would be left with computing the following integral

Γ =
∫ 1

0
dρΓρ , (4.8)

for which it is challenging to find an expression in closed form. Introducing, however,
another linear approximation, this time for the extremal entropies SE,N as a function of
the charge ratio ρ

SE ≈ ρ SU + (1− ρ)SdS , SN ≈ ρ SU + (1− ρ)S0
N , (4.9)

where SU = AU /(2G) is the ultracold entropy and S0
N = SN (ρ = 0) the entropy of the neutral

Nariai black hole, a two-dimensional linear fit S̃fit for the entropy takes the following form

S̃fit = ρ SU + α (1− ρ)S0
N + (1− α)(1− ρ)SdS . (4.10)

Note that this linear fit is not a good approximation everywhere in the parameter space of the
charged de Sitter black hole. In fact, this fit for the entropy is clearly worse as compared to
the one for fixed charge (in D = 4, the maximal relative difference is now 13.6% at α = 1 and
ρ = 0.77). Even so, we believe it is useful to allow for an approximation of the creation rate
in closed form. Indeed, using this fit we can now analytically compute the integral and obtain

Γ ≈ e−(SdS−SU )

SdS − S0
N

(
γ(σN )− γ(σdS) + log (σN /σdS)

)
, (4.11)

where σN ≡ SU − S0
N and σdS ≡ SU − SdS, and γ(σ) corresponds to the incomplete Euler

function γ(a = 0, σ), that we relabeled in order to not be confused with the creation rate

γ(σ) ≡
∫ ∞

σ
t−1e−t dt .

The expression (4.11) gives a reasonable first estimate in closed form for the total creation
rate. However, we should stress that these expressions for the creation rates are merely
indicative, in the sense that they could receive several corrections. First of all, we expect
corrections to the linear approximations we used. Secondly, we assumed for simplicity the
Gaussian integral over the stationary solutions does not introduce additional mass or charge
dependence. However, we expect that the one-loop determinant does depend on the mass
and charge, which would alter our closed form for the pair creation rate. The latter is clearly
important to check in future work.
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Figure 8. RNdS entropy SRNdS in terms of α and ρ, where reddish colors correspond to high values,
whereas blueish colors to low values. The arrows stand for the gradient and indicate a tendency to
escape from the ultracold region at the top. Notice, that the lukewarm path (red line) separates the
arrows pointing left from those pointing right (losing or gaining mass, respectively).

5 A comment on the Festina Lente bound

In flat space, as well as Anti-de Sitter space, the Weak Gravity Conjecture is based on the
idea that any black hole should be able to decay, even if the black hole is extremal and has
a vanishing temperature, without producing a remnant naked singularity, in line with the
Cosmic Censorship Conjecture (see [60] and references therein). This puts a lower bound on
the charge qe to mass me ratio of an elementary excitation, explaining why the gravitational
force is weak relative to the electromagnetic force.

In de Sitter space the configuration space of charged black holes has a more elaborate
structure (see figure 2), implying that the Cosmic Censorship Conjecture should forbid both
decay by emitting too much charge δq, as well as emitting too much mass δm, to avoid ending
up in the region to the right of the Nariai boundary or to the left of the extremal boundary,
respectively. Moreover, since empty de Sitter corresponds to the maximum entropy state,
one might expect the effective black hole decay to be described by thermodynamics, i.e., the
gradient of the entropy function (see figure 8). This suggests that the probability of decay
from a macroscopic black hole with mass and charge parameters (m, q) to one with parameters
(m′, q′) = (m− δm, q − δq) is always proportional to exp[∆S], with ∆S ≡ S(m′, q′)−S(m, q).

As explained in [61], using an s-wave tunneling formalism in flat and AdS space, this is
what one indeed finds, even in the so-called “superradiant regime” at low energies, where
∆S > 0, describing a fast, entropically favourable, decay of the charge of the black hole. We
expect an analogous line of reasoning to hold just as well in de Sitter space. Indeed, in [42]
one concludes, supported by explicit calculations of the Schwinger pair creation rate, that the

– 19 –



J
H
E
P
0
8
(
2
0
2
4
)
2
0
7

adiabatic, small mass regime should be avoided,6 otherwise the decay to singular states to the
right of the Nariai boundary would be possible, violating the Cosmic Censorship Conjecture
and prohibiting an effective description of the (slow) decay. This sets a lower “Festina Lente”
bound on the mass of an elementary excitation, in contrast to the Weak Gravity Conjecture,
which sets an upper bound on the mass of an elementary excitation.

This supports the conjecture that an s-wave tunneling calculation in de Sitter space
should be able to reproduce the effective evolution inside the allowed shark fin region, as
long as one excludes the superradiant regime by requiring the absence of charged particles
that are too light. In other words, we would like to suggest that the Festina Lente bound
can be derived (and understood) more precisely by identifying the microscopic mass and
charge parameters for which ∆S vanishes. This would be interesting to check explicitly,
especially in the ultracold limit, where the macroscopic effective decay, described in terms
of dq/dm, is fixed uniquely and equals

dq

dm

∣∣∣∣
U
=

√
D − 2
2 . (5.1)

It is important to realize that this unique limiting direction of the effective decay in the top
region of the shark fin should be obtained for a range of elementary charges and masses, as
long as a superradiant and sub-extremal regime in the mass and charge parameter space
is excluded. We suspect that a tunneling calculation can allow for a precise determination
(including backreaction) of the superradiant regime and therefore a more precise (and better
understood) version of the Festina Lente bound (in arbitrary dimensions).

6 Summary and conclusions

Let us summarize our results. First of all, using exactly the same general techniques as for
the neutral, static de Sitter black hole, we have shown that the on-shell Euclidean action
of charged, static de Sitter black holes in arbitrary dimensions equals minus the sum of the
black hole and the cosmological horizon entropy. This expected result relies on an important
subtlety. Namely that the presence of conical singularities implies the necessary inclusion
of (gauge field) boundary terms, providing a localized contribution to the on-shell action
on the conical singularities that precisely cancels the contribution to the action from the
bulk term depending on the charge and the gauge potentials. As in the neutral case, this
again emphasizes the intriguing role of conical singularities in Euclidean quantum gravity.
This general expression, valid for any charge and mass, also helps to clarify some confusion
in the literature [37, 39–41] for the extremal and ultracold black hole Euclidean actions in
de Sitter, which can now be understood as a limit of the general expression, with a clear
and unambiguous answer.

Furthermore, equipped with the on-shell Euclidean action and an understanding in
terms of constrained instantons, we used a saddle point approximation to compute an

6This should coincide with the superradiant regime, as explained in [61]. As for rotating black holes, the
superradiant regime for charged black holes allows energy to be extracted by scattering a beam of charged
particles off the charged black hole, through stimulated pair creation in a region close to the black hole. This
charged black hole ‘generalized ergosphere’ region will depend on the properties of the charged particle flux,
as opposed to the universal ergosphere of a rotating black hole [62].
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analytic expression for the probability to spontaneously nucleate an arbitrary mass and
charge black hole in de Sitter space. In order to be able to compute this we used a linear
approximation in the mass and charge of the entropy deficit. Although this is certainly
not a good approximation everywhere in the full configuration space of charged de Sitter
black holes, it does provide a reasonable result in closed form. We should stress that we
expect corrections, in particular we ignored any potential contributions from the one-loop
determinants around the two-parameter family of saddle-points. We hope to come back to
this point in the future, starting with the neutral case.

Finally, with the result for the Euclidean action, in arbitrary dimensions, and the
expectation that thermodynamics should be governing the decay of charged black holes in
de Sitter, we argued that a tunneling calculation similar to [61] should be able to explicitly
reproduce the slow effective decay of charged de Sitter black holes within the allowed shark fin
region as long as one avoids the superradiant regime. This would be particularly interesting
to check in the ultracold limit, where the effective evolution describing the decay is fixed
uniquely. We conjecture that by using the tunneling formalism it should be possible to
derive a more precise version of the Festina Lente type bound in arbitrary dimensions (see
our follow-up paper [63]).

Last, but not least, this study has further explored the space of non-perturbative
corrections in de Sitter space, as described by saddle points in a Euclidean (quantum) gravity
description. Although AdS/CFT has provided strong hints that saddle points in the partition
function of Euclidean Einstein gravity have an important role to play, it is unclear whether
this can be generalized to de Sitter space. Nevertheless, we believe it is important to further
study the potential implications of these non-perturbative contributions, in particular how
they might contribute to relevant observables, such as late-time correlators [25]. The hope is,
of course, that these corrections are such that these observables behave as they are expected
from a unitary (holographic) microscopic perspective.
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A Four dimensions

In this appendix we specialize to four dimensions and provide some potentially useful
expressions for the horizon radii, mass, charge and temperatures of the RNdS solution.

Horizon radii. In four dimensions the blackening factor can be written as

f(r) = (r − r+)(r − r++)(r − r−)(r − r−−)
l2 r2 . (A.1)
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(a) ρ = 0, 1/2. (b) α = 0, 1/2.

Figure 9. Horizon radii (a) as a function of the mass parameter α and (b) as a function of the charge
parameter ρ. The inner horizon radius r− is shown in green, the outer horizon radius r+ in blue, and
the cosmological horizon radius r++ in orange. Dark colors correspond to α, ρ = 0, and light colors to
α, ρ = 1/2. Note that for α = 0, the inner and outer horizons are identical (dashed on the right).

The outer horizon radius r+ and cosmological horizon radius r++ can be expressed as

r+,++ = rU

(
x ∓

√
3− x2 − 2m/(x mU )

)
, (A.2)

where x ≡
√
1 +

√
1− ρ2 cos 2η with η ≡ 1

3 arccos
√
(m2

E − m2)/(m2
E − m2

N ). Moreover, the
horizon radius, mass and charge of the ultracold black hole are given by

rU = l√
6

, mU = l

(2
3

) 3
2

, qU = l

2
√
3

. (A.3)

The mass for the extremal and Nariai cases as a function of the charge ρ is

mE,N = 2rU

√
1 + 3ρ2 ∓ (1− ρ2)3/2/3 , (A.4)

and the corresponding horizon radii can be found to be

rE,N = rU

√
1∓

√
1− ρ2 . (A.5)

Finally, we can use the relations between the roots of f(r)

r−− + r− + r+ + r++ = 0 , (A.6)
r2
−− + r2

− + r2
+ + r2

++ = 2l2 , (A.7)
r−−r− + r−−r+ + r−−r++ + r−r+ + r−r++ + r+r++ = −l2 , (A.8)

to find the following expressions for the other two roots

r− = −1
2

(
r+ + r++ −

√
2(2l2 − (r2

+ + r2
++))− (r+ + r++)2

)
(A.9)

r−− = −(r− + r+ + r++) . (A.10)

Note that (A.6) and (A.7) together yield a relation between the three positive roots and
the de Sitter radius

r2
− + r2

+ + r2
++ + r−r+ + r−r++ + r+r++ = l2 . (A.11)
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Horizon temperatures. The radius rO of the stationary free falling observer in D = 4
is given by

rO = a

1 +
√

m

mU

r3
U

a3 − 1

 where a ≡ rU

√√√√ρ cos
[
1
3 arccos

(
m2

m2
U

ρ−3

)]
, (A.12)

and the black hole and cosmological horizon temperatures take the form

T+,++ = r++ − r+

4πl2
√

f(rO)

2 + (1 + r+,++
r++,+

)2

−
(

l

r++,+

)2
 . (A.13)

For the Nariai solution, where r+ = r++ = rO = rN , these temperatures are the same
and equal to

TN =
4
√
1− ρ2

2π rN
=

√
3

π l
√
2 + 2/

√
1− ρ2

. (A.14)

The other equilibrium solution for which T+ = T++, but r+ ̸= r++, is the lukewarm solution,
which satisfies the relations rL,+ + rL,++ = l and mL = 2qL in four dimensions. The horizon
radii and temperature of the lukewarm solution as a function of the charge are

rL,+,++ = l

2

(
1∓

√
1− q/qLN

)
, TL =

√
1− q/qLN

2π l
√
1− q2/r2

O − 3r2
O/l2

. (A.15)

Finally, for the lukewarm-Nariai solution we find

rLN = l

2 , mLN = l

2 , qLN = l

4 , TLN = 1√
2π l

. (A.16)

B Arbitrary dimensions

In this appendix we collect some cumbersome relations for the mass, charge and horizon
radii of RNdS, which are valid in general dimensions. First, in arbitrary dimensions the
relations (A.6)–(A.8) between the roots of the blackening factor f(r) can be generalized to

2(D−2)∑
i=1

rn
i =

{
0 for 0 < n ≤ D − 2 odd
2ln for 0 < n ≤ D − 2 even and

2(D−2)∑
i,j=1
i ̸=j

ri rj = −l2 . (B.1)

Next, by solving f(r+) = f(r++) = 0, the mass and charge parameters can be expressed in
terms of the outer horizon radius r+, the cosmological horizon radius r++ and de Sitter radius l

m= r
2(D−3)
+ (r2

+−l2)−r
2(D−3)
++ (r2

++−l2)
(rD−3

++ −rD−3
+ )l2

, q2 = rD−3
++ (r2

++−l2)−rD−3
+ (r2

+−l2)
(r3−D

++ −r3−D
+ )l2

. (B.2)

Further, for the lukewarm solution, solving T+ = T++ (with the Bousso-Hawking normaliza-
tion) yields the following expression for (the square of) the de Sitter radius

l2 = 1

(D − 3)
(
rD−2

L,++ − rD−2
L,+

) (
rD−3

L,++ − rD−3
L,+

)2

[
(D − 3)

(
r

3(D−2)
L,++ − r

3(D−2)
L,+

)
(B.3)

− (D − 2)
(
rD−4

L,++ − rD−4
L,+

)
(rL,+rL,++)D−1 − (D − 1)

(
rD−2

L,++ − rD−2
L,+

)
(rL,+rL,++)D−2

]
.
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(a) Shark fins. (b) Normalized shark fins.

Figure 10. Shark fin phase diagrams for D = 4 (green), D = 5 (turquoise), D = 6 (blue) and D = 7
(purple) obtained with (2.6). In the limit D → ∞, the shark fins in the left panel get smaller and
smaller, whereas the ones in the right panel converge to the values in (B.7) and (B.8).

By plugging this into equation (B.2) one can obtain an equation for the ratio of the mass
mL and charge qL in the lukewarm case(

mL

qL

)2
= 4(rL,+ + rL,++)

l2(D − 3)
(
rD−2

L,++ − rD−2
L,+

) (
rD−3

L,++ − rD−3
L,+

)2× (B.4)

×

[
(D − 3)

(
r

2(D−2)
L,++ − r

2(D−2)
L,+

)
− (D − 2)rL,+rL,++

(
r

2(D−3)
L,++ − r

2(D−3)
L,+

)]2
(D − 3)

(
rD−1

L,++ − rD−1
L,+

)
− (D − 1)rL,+rL,++

(
rD−3

L,++ − rD−3
L,+

) .

In four dimensions this relation remarkably simplifies to mL = 2qL. The maximal values
of the parameters mL and qL are set by the Nariai black hole. Solving mL = mN (≡ mLN )
and qL = qN (≡ qLN ) yields in general dimensions(

mLN

mU

)2
= 3D−3(2D − 5)2 (D − 2)D−3

(3D − 8)D−1 ,

(
qLN

qU

)2
= 3D−3

(
D − 2
3D − 8

)D−2
, (B.5)

such that the horizon radius of the lukewarm-Nariai black hole is given by

r2
LN = 3(D − 3)2

(D − 1)(3D − 8) l2 . (B.6)

Finally, defining νN , νE ∈ [0, 1] via rN ≡ νN rU + (1 − νN ) r0
N and rE ≡ ν

1/D
E rU , where

r0
N =

√
D−3
D−1 l stands for the neutral Nariai radius and the radii rE,N are related to mE,N

and qE,N by (2.6), allows to obtain the limits of the ratios
mN

mU

D→∞−−−−→ 1
2(1 + νN ) e

1
2 (1−νN ) ,

qN

qU

D→∞−−−−→
√

νN e
1
2 (1−νN ) (B.7)

mE

mU

D→∞−−−−→ νE(1− ln νE) ,
qE

qU

D→∞−−−−→ νE

√
1− 2 ln νE . (B.8)

These values set the boundaries of the normalized shark fin phase diagram in figure 10
in the D → ∞ limit.
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