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1 Introduction

Without a theoretically self-consistent quantum theory of gravity, the classical Einstein
equation can be extended to the semiclassical form

G (g) = 8πGd

c4 ⟨T (g)⟩ , (1.1)

where G represents the Einsteinian curvature quantities associated with the bulk spacetime
metric g, Gd and c are the d-dimensional Newton constant and the speed of light respectively,
and ⟨T (g)⟩ denotes the expectation value of the renormalized stress-energy tensor of quantum
fields. This equation encodes the backreaction or corrections of quantum matter on the classical
geometry g. However, the equation is challenging to solve non-perturbatively. As pointed out
in [1–4], exact calculations of ⟨T (g)⟩ for the massless conformally coupled scalar field and its
backreaction can only be attained in the three-dimensional cases [5–7], specifically for the
Bañados-Teitelboim-Zanelli (BTZ) spacetime [8, 9] and also a two-dimensional model [10, 11],
particularly the one in the well-known Jackiw-Teitelboim (JT) gravity [12–16]. In other
cases where d ≥ 4, ⟨T (g)⟩ can only be obtained perturbatively, making it difficult to analyze
its backreaction effects.

In [17], a Randall-Sundrum (RS) geometry was constructed within a non-compact five-
dimensional anti-de Sitter (AdS) bulk spacetime. This construction involves embedding a
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four-dimensional brane (or a three-brane) with a finely tuned positive tension. As a result,
four-dimensional Newtonian gravitational effects, as well as low-energy and long-distance
effects of Einstein gravity, can be mimicked through the normalizable zero mode and the
Kaluza-Klein mode. Following this, the Karch-Randall (KR) brane theory was tested [18]
for the localization of AdS gravity on the brane, even in the presence of a divergent zero
mode wave function. Recently JT gravity was shown to be derivable from the KR braneworld
by considering small fluctuations of the brane [19, 20]. RS branes are codimension-one
Minkowski or de Sitter (dS) branes embedded in the ambient (d + 1)-dimensional AdSd+1
spacetime, whereas KR branes are codimension-one AdSd branes embedded in the ambient
AdSd+1 space [17, 19, 21]. These brane theories offer intriguing prospects for braneworld
scenarios [22–25] and have significant implications for the realization of the holographic
principle [26–31]. In the AdSd+1 holography framework, asymptotically AdSd+1 classical
gravity couples to a codimension-one AdSd brane. This brane intersects the asymptotic
boundary of the AdSd+1 spacetime at conformal defects where the DCFTd−1 (DCFTd−1) [32]
theory resides. On the asymptotic boundary, there is a boundary CFTd (BCFTd) [33–37]
that is coupled with the DCFTd−1 [38] on the intersection points of the brane and the
asymptotic boundary. Furthermore, in the braneworld holography framework [17, 18, 21, 39],
there is an asymptotically AdSd semiclassical gravity on the brane that is coupled with a
holographic CFTd that communicates with the BCFTd at the half-space of the asymptotic
boundary of the AdSd+1 spacetime. This scenario is known as double holography [40–43]:
classical gravity in AdSd+1 corresponds to localized quantum gravity on the AdSd KR brane,
and further this (semiclassical) quantum gravity on the brane is holographically dual to
the DCFTd−1 at the defect via AdS holography [44]. This formulation has been used to
study quantum extremal surfaces [45–60] beyond holographic entanglement entropy [61, 62]
for the information paradox [63–66].

Some time ago, a quantum BTZ (quBTZ) black hole was constructed [1, 2]. This was based
on a two-brane scenario contained within a four-dimensional bulk, diverging from the original
RS scenario. The introduced brane deformed the semiclassical equation (1.1) by incorporating
additional higher curvature corrections to Einstein gravity. These corrections originate from
a spatial cutoff of the brane, leaving the original complete three-dimensional CFT (CFT3) at
the asymptotic boundary dual to the AdS4 bulk to now consist of a codimension-one brane
and an S2/Z2 half CFT3 boundary [18]. Recently in [4] the same static quBTZ black hole
was further explored by considering the mechanisms of backreaction and higher curvature
corrections. This successful construction of the three-dimensional quBTZ black hole on the
brane is a realization of the braneworld holography principle: gravity can emerge from the
brane. The reason we refer to the black hole on the brane as a quantum black hole is that
it is a solution of the deformed semiclassical gravitational field equation [3].

There are many intriguing aspects of the quBTZ black hole on the brane [1, 2, 4, 67].
First and foremost, the quBTZ black hole is derived from the four-dimensional C-metric in
an AdS4 background, a metric that describes a uniformly accelerating black hole [68]. The
reason for using the C-metric is that a black hole on a brane in AdS should be accelerating;
this can be realized via the conical singularity of the four-dimensional accelerating black
hole [1, 69, 70]. Utilizing the braneworld construction, the relationship between the brane
tension and its position is constrained by the Israel junction condition [71]. This means
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the junction condition can be satisfied at a specific position [72]. The quBTZ black hole
exhibits BTZ-like characteristics, and its mass — determined by the asymptotic deficit angle
on the brane — matches the effective mass of the four-dimensional bulk, as derived from the
thermodynamic first law relation [2]. This model accurately incorporates the backreaction
of the cutoff holographic CFT and higher curvature corrections to the localized gravity on
the brane, both of which originate from integrating out the ultraviolet (UV) degrees of
freedom of the CFT at the asymptotic boundary. The introduction of the brane into the
bulk fundamentally alters the thermodynamics of the accelerating black hole, resulting in a
thermodynamic first law that differs from those found in [73–77].

Recently, significant progress has been made in the study of holographic quantum black
holes on the KR brane. The static quBTZ black hole was extended to include rotation [4],
thus becoming stationary. The renormalized CFT stress-energy tensor was obtained and the
holographic quantum entropy of this black hole were shown to satisfy the thermodynamic
first law. In the limit of vanishing backreaction, the solution can be reduced to either the
rotating BTZ black hole or a rotating conical defect. Subsequently, by starting from the
AdS4 C-metric and setting the AdS3 radius ℓ3 to iR3 (with R3 defined as the radius of the
dS brane with a positive cosmological constant; the corresponding three-dimensional effective
cosmological constant can be attained by considering a brane with large enough tension [18]),
it was shown that one can derive the quantum dS black hole, with or without rotation [78, 79].
Remarkably, while no classical black hole exists in a three-dimensional spacetime, within
the braneworld holography framework, a horizon emerges due to the backreaction of the
quantum conformal fields (the CFT degrees of freedom) residing on the brane. Beyond the
many potential research topics highlighted in [4, 78, 79], there have been developments in the
field of quantum black holes, particularly for the quBTZ black hole. These developments
partially encompass holographic complexity [80, 81], black hole chemistry [67, 82–85], inner
structure [86], and quantum inequalities [87]. These investigations enrich our understanding
of the holographic and thermodynamic properties of quantum black holes on the AdS3 brane.

Electromagnetic fields play a prominent role in spacetime structure [4, 79], influencing
properties such as singularities [86, 88, 89], thermodynamic characteristics [90–97], and many
other aspects [98–101]. It is therefore both natural and necessary to explore a quantum
charged black hole in the KR braneworld context. The feasibility of this exploration is
enhanced by the availability of the AdS charged C-metric [102], which is in an appropriate
form to serve as a starting point for studying a three-dimensional quantum charged black hole.

In this paper, we will demonstrate that a quantum charged black hole can be obtained
within the framework of braneworld holography. It is shown the quantum charged black
hole to be quite different from the charged BTZ black hole [103, 104], resembling more
closely to the Reissner-Nordström (RN) AdS black hole in terms of the form of the metric
function and the associated gauge field. In the next section, we will give a brief review
of the charged AdS C-metric. In section 3, we will present the explicit form of the three-
dimensional quantum charged black holes on the KR brane. The holographic stress-energy
tensor encoding the backreaction of the quantum CFT3 on the brane will be studied. We
will also calculate thermodynamic quantities related with the quantum charged black holes.
In section 4, we will study the thermodynamics of the quantum charged black holes within
the double holography framework. We obtain the doubly holographic formulations of both
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the first law of thermodynamics and the Smarr (energy) relations, generalizing previous
results for holographic black hole chemistry [67, 105, 106]. The final section will be devoted
to closing remarks. Throughout the paper, we will set c = 1 for convenience. Additionally,
the symbols used will be consistent with those in [4]; please refer to the symbol glossary
in appendix A of [4] for clarification.

2 A brief review of the charged AdS C-metric

We will first derive an asymptotically AdS charged C-metric solution in a specific form
through transformations of coordinates and rescalings of parameters. We will then analyze
the ranges of the parameters for the charged AdS C-metric solution.

2.1 Charged C-metric solutions

As a member of the Plebański-Demiański family of type-D metrics [68], the study of the
C-metric has a long history [107–110]. In 1970, the AdS charged C-metric solution was
obtained in the form [102]

ds2 = 1
A2(x − y)2

(
−Fdt̃2 + F−1dy2 + G−1dx2 + Gdϕ2

)
, (2.1)

where

F(y) = A2e2y4 + 2Amy3 − ky2 + λ , (2.2)
G(x) = −A2e2x4 − 2Amx3 + kx2 + 1 (2.3)

with A ≥ 0, m ≥ 0, e ≥ 0 being the acceleration, mass, and electric charge parameters,
respectively. The discrete values of k are 0, ±1. λ ≥ −1 is related to the cosmological
constant. The C-metric can be recovered with k = −1, λ → −1 and for λ > −1 we have
the AdS C-metric. In the limit of the static black hole with A → 0, k = −1 refers to a
spherical horizon, while k = 0, 1 refer to R2 flat and hyperbolic horizons, respectively [111].
It is straightforward to verify that the solution (2.1) satisfies the classical gravitational
field equation

Rab + 1
2¯

Fcd¯
F cdgab + 2

¯
Fa

c

¯
Fcb + 3

ℓ2
4
gab = 0 , ℓ4 = 1

A
√

λ + 1
, (2.4)

where ℓ4 is the AdS4 radius of the spacetime, and
¯
F is the electromagnetic field tensor

satisfying ∇ ·
¯
F = 0, where

¯
F = d

¯
A ,

¯
Aa = ey(dt)a (2.5)

with
¯
A the associated gauge potential [112].

We now carry out coordinate transformations and parameter rescalings on the C-
metric (2.1) by [4]

λ = (ℓ/ℓ3)2 , A = 1/ℓ , k = −κ , 2mA = µ ,

y = −ℓ/r , t̃ = t/ℓ ,
(2.6)
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where µ encodes the mass of the black hole, ℓ is the inverse of the black hole acceleration,
ℓ/ℓ3 replaces the cosmological constant parameter λ, κ (like k) also parameterizes the horizon
topology of the black hole, the coordinate r is used to represent the coordinate y, and the
coordinate t̃ is rescaled by the inverse acceleration parameter ℓ. We can also transform
the electric charge parameter e to a rescaled electric charge parameter q by q = eA. Since
A ≥ 0, ℓ ≥ 0, setting ℓ to zero corresponds to A → ∞. As a result, we obtain a new form
for the metric (2.1) and the electromagnetic potential (2.5), given by

ds2 = 1
Ω2

[
−H(r)dt2 + dr2

H(r) + r2
(

dx2

G(x) + G(x)dϕ2
)]

, (2.7)

¯
F = d

¯
A ,

¯
Aa = −qℓ

r
(dt)a , (2.8)

where

Ω = 1 + xr

ℓ
, (2.9)

H(r) = r2

ℓ2
3

+ κ − µℓ

r
+ q2ℓ2

r2 , (2.10)

G(x) = 1 − κx2 − µx3 − q2x4 . (2.11)

This metric satisfies the Einstein equation

Rab + 2
¯
Fa

c

¯
Fcb + 1

2¯
Fcd¯

F cdgab = −3
( 1

ℓ2 + 1
ℓ2

3

)
gab ≡ − 3

ℓ2
4
gab , (2.12)

where
ℓ4 =

( 1
ℓ2 + 1

ℓ2
3

)−1/2
(2.13)

is the AdS4 length scale of the bulk black hole spacetime. Note that in the limit ℓ → ∞,
i.e., A → 0, we have ℓ4 = ℓ3. The rescaling of the electric charge parameter e to q makes
qx dimensionless and will facilitate our calculations in what follows.

2.2 Parameter ranges

A basic requirement for the ranges of the parameters of the black hole (2.7) is that the
signature remains invariant in the domain of outer communication. The inner and outer
horizons r∓ of the black hole are determined by H(r∓) = 0. The conformal boundary rc is
determined by Ω = 0. H(r) and G(x) must not change sign between r+ < r < rc.

For the angular directions, the criteria for the range of x are governed by the regularity
at symmetry axes of ∂ϕ [2] and the requirement of G(x) ≥ 0. For x → 0 these criteria can
be satisfied directly; for κ = 1 we have x ≤ 1 in case of µ = 0, q = 0. In the general case
of µ ̸= 0, q ̸= 0, by continuity we have

0 ≤ x ≤ x1 , (2.14)

where x1 is the minimal positive solution of the equation

G(x) = 0 . (2.15)

Since (2.6) implies µ ≥ 0, we obtain

µ = −q2x4
1 − κx2

1 + 1
x3

1
≥ 0 (2.16)
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𝑟#

Figure 1. The braneworld construction for the C-metric spacetime (2.7) represented by M, shown
at a slice of constant t and ϕ. ∂M stands for the asymptotic boundary where the BCFT3 lives.
A KR brane (red line) cutting off the bulk near the asymptotic boundary is placed at x = 0; this
is tantamount to a UV cutoff of the asymptotic CFT. Localized three-dimensional gravity arises
on the codimension-one brane B. A bulk charged black hole is also housed on the brane, with its
corresponding inner and outer horizons r∓ represented by the green and black dots. The dotted purple
line denotes the ϕ axis x = x1 and a blue line traversing the bulk region for some 0 < x < x1 is also
shown. We do not display the second patch here that is glued to the current one at the brane via the
Israel junction conditions.

from (2.15). We can further derive that

x1 ∈ (0, 1) , 0 ≤ q ≤
√

1 − κx2
1

x4
1

, (or x1 = 1 , q = 0) , for κ = +1 , (2.17)

which indicates that the range of x1 is finite for the spherical horizons. In contrast, we have
x1 ∈ (0, ∞) for κ = 0, −1. Note that for all cases x1 cannot be zero. Just as in the uncharged
case [4], µ is a monotonically decreasing function of x1; specifically, we have

µ → ∞ , for x1 → 0 . (2.18)

If x1 and q approach their maximal values in (2.17) then µ → 0.

3 Quantum charged black holes

3.1 Quantum charged black hole solutions

With the four-dimensional AdS charged C-metric spacetime (2.7) at hand, we can obtain a
three-dimensional quantum charged black hole by using the KR braneworld formulation by
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considering a configuration where an AdS3 brane with tension τ is placed in the bulk spacetime
(see figure 1). In the notations of [67, 113], the total action of the system can be written as

I = Ibulk [M] + IGHY[∂M] + Ibrane [B] , (3.1)

where the bulk action, Gibbons-Hawking-York (GHY) action, and the action of the brane
are respectively given by

Ibulk = 1
16πG4

∫
M

d4x
√
−g

(
R + 6

ℓ2
4

)
− 1

4g2
4

∫
M

d4x
√
−gFabF

ab , (3.2)

IGHY = 1
8πG4

∫
∂M

d3x
√
−hK , (3.3)

Ibrane = −τ

∫
B

d3x
√
−h , (3.4)

where R is the Ricci scalar of the bulk M with a metric gab whose determinant is g, K is the
GHY extrinsic curvature scalar on the asymptotic boundary ∂M, and h is the determinant
of the induced metric on the brane B, and G4 is the four-dimensional Newton constant. The
electromagnetic field tensor F is minimally coupled with the spacetime curvature through
a dimensionless gauge coupling constant g4 (it is denoted as g⋆ in [113]), which determines
the normalization of the gauge field and is related with

¯
F in (2.5) or (2.8) by

4
¯
F2 = ℓ2

⋆F2 (3.5)

with ℓ2
⋆ ≡ 16πG4/g2

4 [113].
In the KR braneworld model, two patches of the AdS4 geometries are glued together

along the brane obeying the Israel junction condition [71]. The tension of the brane is [4, 72]

τ = 1
2πG4ℓ

(3.6)

if we place the brane at x = 0 in the bulk spacetime (2.7). On the brane, we have a
three-dimensional induced effective theory of gravity coupled to the gauge field, just as
in the bulk. The quantum charged black hole on the brane mapped from the classical
C-metric (2.7) in the bulk is

ds2 = −H(r)dt2 + dr2

H(r) + r2dϕ2 , (3.7)

where H(r) is given by (2.10).
Due to the conical deficit of the metric (3.7), the range of the coordinate ϕ is [0, 2π∆] with1

∆ = 2
|G′ (x1)| = 2x1

3 − κx2
1 + q2x4

1
. (3.8)

However, we can set the azimuthal coordinate ϕ to have the canonical range [0, 2π] via
the coordinate transformations

t = ∆t̄ , r = r̄

∆ , ϕ = ∆ϕ̄ , (3.9)

1We can expand the metric (2.10) at x = x1 + δ with δ ≪ 1 to see this [79].
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which result in a canonical form of the metric (3.7) for the quantum charged black hole as

ds2 = −H̄(r̄)dt̄2 + dr̄2

H̄(r̄)
+ r̄2dϕ̄2 , (3.10)

where we can now identify ϕ̄ with ϕ̄ + 2π. Furthermore, the metric function H̄(r̄) is

H̄(r̄) = r̄2

ℓ2
3
− 8G3M − ℓF (M)

r̄
+ ∆4q2ℓ2

r̄2 , (3.11)

where M is the mass of the black hole, ℓ3 (first introduced in (2.6)) is the AdS3 radius
on the brane, and

G3 = 1
2ℓ

G4 (3.12)

is a three-dimensional ‘renormalized’ Newton constant. The function F (M) reads

F (M) = µ∆3 ≥ 0 , (3.13)

where
M = − κ

8G3

ℓ

ℓ4
∆2 (3.14)

expresses the mass in terms of the conical deficit [2, 4, 72]. The gauge potential (2.8) becomes

Āµdx̄µ = −2qℓ∆2

ℓ⋆r̄
dt̄ . (3.15)

Solving H̄(r̄) = 0 yields the outer event horizon r̄+ and inner Cauchy horizon r̄− of the
quantum charged black hole on the brane with r̄± = ∆r±.

Comparing the induced metric function H̄(r̄) given by (3.11) and the gauge potential Ā
from (3.15) with those of the RN-AdS black hole and the charged BTZ black hole [103, 104],
we see that the quantum charged black hole is quite similar to the RN-AdS black hole in
form. Unlike the BTZ black hole, terms logarithmic in the radial variable do not appear. In
the following subsection, we will explain this by showing that a nonlinear electromagnetic
field arises on the brane.

3.2 Quantum backreactions

The metric (3.10) and the gauge potential (3.15) for the quantum charged black hole solves
a deformed semiclassical gravitational field equation

Ḡ (g) = 8πG4
〈
T̄ (g)

〉
, (3.16)

where Ḡ equals the Einstein term G (g) in (1.1) together with higher curvature correction
terms on the brane, and

〈
T̄ (g)

〉
encodes the extra leading order contributions from the

holographic CFT3 on the brane. Using the notation of [67], the field equation (3.16) can
be viewed as being derived from the low-energy effective action I as

I = IBgrav [B] + ICFT[B] , (3.17)
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where the first term on the right side of (3.17)

IBgrav = ℓ4
8πG4

∫
d3x

√
−h

[ 4
ℓ2

4

(
1 − ℓ4

ℓ

)
+ R + ℓ2

4

(3
8R2 − RabR

ab
)

+ · · ·
]

+
∫

d3x
√
−hf

(
F̃ab, ∇a, Rabcd

) (3.18)

is the gravitational contribution on the two-brane. Here R is the Ricci scalar on the brane,
the covariant derivative ∇a is compatible with the metric hab on the brane, F̃ = dĀ is the
electromagnetic tensor on the brane related to the gauge potential (3.15) and f(F̃ab, ∇a, Rabcd)
is a function of the electromagnetic field tensor, the spacetime curvature, and their derivatives.2

The second term on the right side of (3.17) is the action of the holographic CFT3 on the
brane whose explicit expression cannot be given in closed form but can be holographically
defined by the bulk [4].

We note that the Lagrangian of the electromagnetic field on the brane is no longer simply
F̃2, and a non-linear electromagnetic field nonminimally coupled with three-dimensional
induced effective gravity arises [113]. It can be verified that if we set f = F̃2, the equation of
motion for the electromagnetic field cannot be satisfied by the gauge potential (3.15). The
non-linearity emerges because the gravitational theory on the brane is modified by higher
curvature terms; in other words, the metric (3.10) and gauge potential (3.15) on the brane
are induced from (2.7) and (2.8) in the bulk, respectively, and the former equations of motion
for the fields in the bulk are not obeyed anymore. As pointed out in [113], we explicitly have
the scalar functional for the nonlinear electromagnetic field on the brane as [114]

f
(
F̃ab, ∇a, Rabcd

)
= − 5ℓ4

8g2
4

F̃2 + 2ℓ3
4

g2
4

f̄ , (3.19)

where

f̄ = 1
288RF̃2 − 5

8Ra
b F̃acF̃

bc + 5
24
(
∇ · F̃

)2
+ 3

98 F̃ ab
(
∇b∇cF̃ca −∇a∇cF̃cb

)
. (3.20)

According to the low-energy effective action (3.18) for the brane, we can define some
three-dimensional quantities. In (3.18), an effective three-dimensional Newton constant G3
can be identified as

G3 = 1
2ℓ4

G4 = ℓ

ℓ4
G3 , (3.21)

where in the last step we have used (3.12). Following [4], an AdS3 length scale L3 on the
brane can be extracted as

1
L2

3
= 2

ℓ2
4

(
1 − ℓ4

ℓ

)
= 1

ℓ2
3

[
1 + ℓ2

4ℓ2
3

+ O
(

ℓ4

ℓ4
3

)]
(3.22)

upon using (2.13) and neglecting terms quadratic in ℓ2. It is evident that L3 = ℓ3 when
ℓ → 0, which means that the backreaction from the CFT3 on the brane vanishes, or the

2Shortly after our paper appeared, the necessity of the inclusion of electromagnetic-curvature coupling
terms such as RF̃2 was pointed out in [113] based on the result in [114], which implies there will be current
on the brane.
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brane approaches the AdS4 boundary. In contrast, for ℓ → ∞, which by (3.6) implies that
the tension of the brane vanishes, we have ℓ3 → ℓ4 and ℓ4 →

√
2L3. Besides, we can define

a three-dimensional gauge coupling constant g3 as

g2
3 = 2g2

4
5ℓ4

, (3.23)

such that (3.19) can be transformed as

f
(
F̃ab, ∇a, Rabcd

)
= − 1

4g2
3

F̃2 + 4ℓ2
4

5g2
3

f̄ . (3.24)

With eqs. (3.21)–(3.24), the brane action (3.18) can be recast as

IBgrav = 1
16πG3

∫
d3x

√
−h

[ 2
L2

3
+ R + ℓ2

(3
8R2 − RabR

ab
)

+ · · ·
]

+
∫

d3x
√
−h

(
− 1

4g2
3

F̃2 + 4ℓ2
4

5g2
3

f̄

)
.

(3.25)

Furthermore, it is evident that we can define the three-dimensional cosmological constant
Λ3 in the effective theory on the brane through the AdS3 scale L3 by

Λ3 = − 1
L2

3
. (3.26)

For comparison, note that in the action (3.1), we can define the four-dimensional cosmological
constant as

Λ4 = − 3
ℓ2

4
, (3.27)

where ℓ4 has the same meaning as L4 in [67].
Using to (3.25), we can obtain the explicit form of the holographic stress-energy tensor〈

T̄ab

〉
in (3.16) as

8πG3
〈
T̄ab

〉
= Rab −

1
2hab

(
R + 2

L2
3

)
+ Eab

+ ℓ2
(1

2habRcdRcd + 3
4RabR − 3

16habR
2 − 2RcdRacbd

+1
4∇b∇aR −∇c∇cRab + 1

4hab∇c∇cR

)
+ · · · ,

(3.28)

where the electromagnetic term Eab is given by

Eab = 2πG3
g2

3

(
−4F̃a

cF̃bc + F̃2gab

)
+ O(ℓ2) , (3.29)

where the terms at the order of ℓ2 is not shown as it is lengthy, though it will be used in
what follows. Then we have the trace of the electromagnetic term as

Ea
a = 16π∆4G3P1q2ℓ2

2205g2
3r8ℓ2

3ℓ2
s

, (3.30)
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where

P1 = −119357Frℓℓ2
3ℓ2

4 − 801656G3Mr2ℓ2
3ℓ2

4 + 125424∆4q2ℓ2ℓ2
3ℓ2

4 + r4
(
2205ℓ2

3 + 22658ℓ2
4

)
.

(3.31)
To obtain (3.30), we can thus obtain the specific expression of the holographic stress-energy
tensor as

8πG3
〈
T̄ b

a

〉
= L2

3 − ℓ2
3

L2
3ℓ2

3
1 + Fℓ

2r̄3 diag (1, 1, −2) + O
(
ℓ2
)

= Fℓ

2r̄3 diag (1, 1, −2) + O
(
ℓ2
)

,

(3.32)

where in the second line (3.22) has been used. The trace of the stress-energy tensor is

8πG3
〈
T̄ a

a

〉
= ℓ2P2

8820g2
3 r̄6ℓ4

3ℓ2
⋆

(
8G3Mℓ2

3 − r̄2) + O
(
ℓ3
)

, (3.33)

where
P2 = 1128960π∆4G3G3Mq2r̄2ℓ6

3 − 141120π∆4G3q2r̄4ℓ4
3

+ 62906880π∆4G3G3Mq2r̄2ℓ4
3ℓ2

4 − 1450112π∆4G3q2r̄4ℓ2
3ℓ2

4

− 288855g2
3 r̄8ℓ2

⋆ − 410447872π∆4G3G2
3M2q2ℓ6

3ℓ2
4

+ 1746360g2
3G3Mr̄6ℓ2

3ℓ2
⋆ − 8820∆4g2

3q2r̄4ℓ4
3ℓ2

⋆

+ 70560∆4g2
3G3Mq2r̄2ℓ6

3ℓ2
⋆ − 4515840g2

3G2
3M2r̄4ℓ4

3ℓ2
⋆ .

(3.34)

Applying (3.32) and (3.33), we can see that the nonlinear Maxwell field on the brane affects the
stress-energy tensor only at the order of ℓ2. In the bulk, we have ∇ ·F = 0, which means that
there is no current; however, it is not the same case on the brane. The induced current density
on the brane is related with the stress-energy tensor of the nonlinear Maxwell field

〈
T ab

E

〉
by

〈
Jb
〉

= −∇a

〈
T ab

E

〉
= ∇a

(
2√
−h

δ(
√
−hf)

δF̃ab

)
= − 1√

−h

δ(
√
−hf)

δĀb

= − 1
g2

3
∇aF ab + ℓ2

4
g2

3

(
R∇aF̃ ab

90 − 89F̃ ab∇aR

90 + 12
245∇c∇b∇aF̃ ac

−562
735∇c∇c∇aF̃ ab + 12

245∇c∇c∇aF̃ ba − 2Rac∇cF̃
ab
)

.

(3.35)

Explictly, we obtain

〈
J t̄
〉

= −2∆2qℓ

g2
3 r̄3ℓ⋆

+ 2∆2qℓ3 (14352G3Mℓ2
3 + 1139r̄2)

245g2
3 r̄5ℓ2

3ℓ⋆
+ O

(
ℓ4
)

,
〈
J r̄
〉

= 0 ,
〈
J ϕ̄
〉

= 0 ,

(3.36)
which is consistent with the result in [113].

We note that from (3.30) it is obvious that unlike the Maxwell field in the bulk, the
nonlinear Maxwell field on the brane does not have the property of conformal symmetry due
to the backreaction of quantum matter from the CFT3 on the brane. Moreover, the deviation
of the nonlinear Maxwell field from conformal symmetry is triggered by the backreaction
strength parameter ℓ at the order of O(ℓ2).
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The preceding analysis shows that the quantum charged black hole (3.10) together with
a nonlinear Maxwell field (3.15) is induced on the brane. This can be viewed as an exact
solution to the semiclassical equation of motion (3.16) on the AdS3 brane. This quantum
black hole incorporates the backreaction from the CFT3 on the brane at every order of the
backreaction parameter ℓ. It serves as a localized gravity solution on the brane derived from
the AdS charged C-metric (2.7) solution to the classical equation of motion (2.12) in the bulk.

3.3 Thermodynamic quantities

As suggested by [1, 2, 4], we can define dimensionless variables related with ℓ, ℓ3, r+, and x1 as

z = ℓ3
r+x1

, ν = ℓ

ℓ3
. (3.37)

Additionally, we can redefine the charge parameter as

χ = qx2
1 , (3.38)

which is dimensionless. Then by combining H̄(r̄) = 0 with (2.15) we obtain the identities

x2
1 = −ν2χ2z4 + νz3 (χ2 − 1

)
+ 1

κz2(1 + νz) , (3.39)

r2
+ = − ℓ2

3κ(1 + νz)
ν2χ2z4 + ν (χ2 − 1) z3 + 1 , (3.40)

µx1 = −κ
(
ν2χ2z4 −

(
χ2 − 1

)
z2 + 1

)
ν2χ2z4 + ν (χ2 − 1) z3 + 1 . (3.41)

Since x2
1, r2

+,, and µx1 cannot be negative, the parameter κ defined in (2.6) is now deter-
mined by

κ = − sgn
(
ν2χ2z4 + νχ2z3 − νz3 + 1

)
, (3.42)

where sgn is the sign function.
As a result, F (M) in (3.13) can be rewritten as

F (M) = 8z4(νz + 1)2 (ν2χ2z4 −
(
χ2 − 1

)
z2 + 1

)
(ν2χ2z4 + 2ν (χ2 + 1) z3 + (χ2 + 3) z2 + 1)3 , (3.43)

where the identities (3.39)–(3.40) are used. The mass of the three-dimensional quantum
charged black hole, which is related to the conical deficit given by (3.14), can now be
rewritten as

M = − ℓ

2G3ℓ4

κx2
1(

3 − κx2
1 + q2x4

1
)2

= z2(νz + 1)
(
ν2χ2z4 + ν

(
χ2 − 1

)
z3 + 1

)
2G3 (ν2χ2z4 + 2ν (χ2 + 1) z3 + (χ2 + 3) z2 + 1)2 ,

(3.44)

where in the last step we have used the identities (3.21), which can be further written as

G3 = G3√
1 + ν2

. (3.45)
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To calculate the entropy of the quantum charged black hole, we first compute the entropy
associated with the bulk horizon using the bulk metric given by (2.7). The result is

Sgen = 2
4G4

∫ 2π∆

0
dϕ

∫ x1

0
dxr2

+
ℓ2

(ℓ + r+x)2

= πℓ3
√

ν2 + 1z

G3 (ν2χ2z4 + 2ν (χ2 + 1) z3 + (χ2 + 3) z2 + 1)

= πℓ3z

G3 (ν2χ2z4 + 2ν (χ2 + 1) z3 + (χ2 + 3) z2 + 1) ,

(3.46)

where we denote the bulk entropy as the general entropy Sgen [4] consisting of the Wald
entropy [115] and the entanglement entropy [116] and the factor of 2 originates from the left-
right symmetric configuration of the quantum black hole with two branes glued together. We
can view this entropy as a generalized entropy that incorporates the all orders of backreaction
of the quantum matter for the quantum black hole.

For comparison, we note that there can be two other kinds of entropies for the quantum
black hole, i.e., the Bekenstein-Hawking entropy and the Wald entropy. Employing (3.10),
the Bekenstein-Hawking area entropy of the quantum charged black hole on the brane is

Scl = 2πr+∆
4G3

= 1 + νz√
1 + ν2

Sgen =
(

1 − ν2

2 − ν3z

2 + νz + O
(
ν4
))

Sgen . (3.47)

This area entropy is, however, principally not suitable for the quantum charged black hole on
the brane. The reason is that the gravity on the brane is a higher curvature theory, and for
the quantum charged black hole, there is also a nonlinear electromagnetic field coupled with
the background spacetime curvature. Furthermore, as pointed out in [4] for the quBTZ black
hole, the three-dimensional area entropy Scl cannot satisfy the thermodynamic first law of the
black hole as zero and infinite derivatives emerge when differentiating it with respect to mass.

The Wald entropy [115] SW in such a sense thus can be an effective candidate entropy
for this gravitational theory, which, according to the formula presented in [117], is (see
appendix A for details)

SW = πzℓ3
(
ν3χ2z3(νz + 1)(3νz + 2) − ν

(
ν + ν2z

(
2z2 + 3

)
− 2z

)
+ 2

)
2G3

√
ν2 + 1 (z2 ((χ + νχz)2 + 2νz + 3) + 1)

. (3.48)

Note that the Wald entropy given by (3.48) is valid only in the small ν limit up to O(ν4).
However, we aim to obtain an entropy that accounts for the backreaction of the quantum
corrections from CFT on the brane at every order of ν. As a result, the generalized entropy
Sgen (3.46) for the classical four-dimensional black hole can be the only proper candidate
mapping to the three-dimensional quantum charged black hole. As we will see, this entropy
indeed satisfies the first law of the quantum charged black hole. We can also obtain the
four-dimensional area entropy Sgen as the entropy of the quantum black hole by the Euclidean
method, just as has been checked by [72] for the quBTZ black hole. When the backreaction
from the CFT3 vanishes (ν → 0), the differences between the generalized entropy, the area
entropy, and the Wald entropy vanish, yielding

Sgen |ν=0 = Scl|ν=0 = SW |ν=0 = πℓ3z

G3 ((χ2 + 3) z2 + 1) . (3.49)
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The canonical timelike Killing vector of the quantum charged black hole on the brane is ∂/∂t̄,
which gives the temperature of the black hole on the quantum horizon as

T = ∆H ′ (r+)
4π

= z
(
νz
(
z2 (1 − (χ + νχz)2)+ 3

)
+ 2

)
2πℓ3 (z2 ((χ + νχz)2 + 2νz + 3) + 1) . (3.50)

To calculate the electric charge of the quantum black hole, we identify the charge
computed on the brane with that of the bulk. Using the gauge potential (2.8) together with
the action (3.2) and the relation (3.5), we obtain for the latter

Q = 1
g2

4

∫
∗F

= 4qℓ

g2
4ℓ⋆

∫ 2π∆

0
dϕ

∫ x1

0
dx

= 2
√

2πνℓ3
g4
√
G3

χz2(νz + 1)
z2 ((χ + νχz)2 + 2νz + 3) + 1 .

(3.51)

We also find

Φ = Āµξµ
∣∣∣r→∞

r→r+
= g4

√
ν

2πG3ℓ3

χz3(νz + 1)
ν2χ2z4 + 2ν (χ2 + 1) z3 + (χ2 + 3) z2 + 1 (3.52)

for the conjugate electric potential on the brane, where we choose the Killing vector ξa to be
∂/∂t̄, and we have used the gauge potential (3.15). An alternative way to obtain (3.52) is to use
the gauge potential (2.8) for the bulk spacetime with the canonical time coordinate t̄ in (3.9).

According to the above results, it is straightforward to verify that the relations

∂zM − T∂zSgen − Φ∂zQ = 0 , (3.53)

∂χM − T∂χSgen − Φ∂χQ = 0 (3.54)

are satisfied, where we express thermodynamic quantities in terms of the ‘renormalized’
Newton constant G3. These two relations ensure that the thermodynamic first law of the
quantum charged black hole is

dM − TdSgen − ΦdQ = 0 . (3.55)

This universal differential relation applies for all parameters for the thermodynamic quantities
of the quantum charged black hole.

4 Thermodynamics of quantum charged black holes

We will now investigate the thermodynamic first law and Smarr (energy) relation [90, 118] in
the extended phase space of the quantum charged black hole, where the cosmological constant
is viewed as a dynamical quantity [95]. We shall examine this from three perspectives —
bulk, brane, and boundary — in the holographic braneworld model.
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Figure 2. Sketch of the bulk perspective. The bulk is the region enclosed by the three-dimensional
KR brane (red curve) and the half-space of the asymptotic boundary (solid black curve). From the
perspective of the bulk, the thermodynamic system consists of the classical black hole with inner and
outer horizons r∓ in the AdS4 bulk M and a brane B with a variable tension.

4.1 Bulk description

Let’s first consider the thermodynamics of the quantum charged black hole from the bulk
perspective. As shown in figure 2, the thermodynamic system consists of the bulk black hole
and a KR brane with variable tension. From the pure bulk perspective of this holographic
braneworld setup, we have an AdS4 bulk spacetime M, coupled with an AdS3 brane B with
a tension τ . The quantum charged black hole on the brane corresponds to the classical
solution of the bulk gravity with a brane and encodes all orders of backreactions from the
CFT3 residing on the brane. In the extended thermodynamic phase space, we can view
the four-dimensional cosmological constant Λ4 and the brane tension τ as variables. The
variation of Λ4 yields the four-dimensional pressure P4 and its conjugate four-dimensional
volume V4. The variation of τ amounts to altering the position of the brane according to the
Israel junction conditions. The quantity conjugate to τ has a dimension of area; we shall refer
to it as the thermodynamic area of the brane, denoting it as Aτ , so that Aτ dτ is a work term.

According to (3.12), (3.44), (3.46), and (3.51), the mass M , entropy S, and electric
charge Q of the quantum charged black hole from the bulk viewpoint are expressed in terms
of the four-dimensional Newton constant G4 as

M = z2ℓ(νz + 1)
(
ν2χ2z4 + ν

(
χ2 − 1

)
z3 + 1

)
G4 (ν2χ2z4 + 2ν (χ2 + 1) z3 + (χ2 + 3) z2 + 1)2 , (4.1)

S = Sgen = 2πzℓ2

G4ν (ν2χ2z4 + 2ν (χ2 + 1) z3 + (χ2 + 3) z2 + 1) , (4.2)

Q = 4
√

πχz2ℓ(νz + 1)√
G4 (g4z2 ((χ + νχz)2 + 2νz + 3) + g4)

. (4.3)

Furthermore, the thermodynamic pressure of the bulk spacetime is [95]

P4 = − Λ4
8πG4

= 3
(
ν2 + 1

)
8πG4ℓ2 , (4.4)
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where in the last step we have used (2.13), (3.27), and (3.37). As noted above, the tension (3.6)
of the brane can also be viewed as a thermodynamic variable, which is given in terms of
G4 and the backreaction parameter ℓ. This backreaction parameter ℓ also appears in the
expressions for M, S , Q, and P4.

According to the above setup, we can calculate the temperature T , electric potential Φ,
four-dimensional thermodynamic volume V4, and thermodynamic area Aτ for the brane as

T =
(

∂M

∂S

)
Q,P4, τ

=−νz
(
ν3χ2z5+2ν2χ2z4+ν

(
χ2−1

)
z3−3νz−2

)
2πℓ(ν2χ2z4+2ν (χ2+1)z3+(χ2+3)z2+1) , (4.5)

Φ =
(

∂M

∂Q

)
S,P4, τ

= g4νχz3(νz+1)√
πG4 (z2 ((χ+νχz)2+2νz+3)+1)

, (4.6)

V4 =
(

∂M

∂P4

)
S,Q,τ

= 8πz2ℓ3(2νz+1)
3ν2 (ν2χ2z4+2ν (χ2+1)z3+(χ2+3)z2+1)2 , (4.7)

Aτ =
(

∂M

∂τ

)
S,Q,P4

= 2πz2ℓ2(νz+1)
(
ν2+ν4χ2z4+ν3 (χ2+1

)
z3+2ν2z2−2νz−2

)
ν2 (ν2χ2z4+2ν (χ2+1)z3+(χ2+3)z2+1)2 . (4.8)

Here, we have kept the four-dimensional Newton constant G4 fixed, which is a natural setting.
The electric potential (4.6) we obtained here is identical to the one in (3.52). From the
bulk perspective, we find that the thermodynamic first law in the extended phase space,
where the four-dimensional cosmological constant Λ4 and the brane tension τ are viewed
as thermodynamic variables, can be written as

dM = TdS + ΦdQ + V4dP4 + Aτ dτ (4.9)

and the Smarr relation

M = 2TS − 2V4P4 − Aτ τ + ΦQ (4.10)

are satisfied. Note that this latter relation can be obtained by Euler’s theorem [67], as
√

G4M

is a homogeneous function of G4S, Λ4, G4τ, and
√

G4Q.

4.2 Brane description

Next, we consider the thermodynamics of the quantum charged black hole from the perspective
of the AdS3 brane (see figure 3). In the holographic KR braneworld, the AdS3 brane intersects
the asymptotic boundary of the bulk spacetime at two defects. The brane serves as a
holographic renormalization surface for the asymptotic CFT3, and the local higher curvature
gravitational theory on the brane receives backreaction effects from the CFT3 on the brane.
The UV microscopic degrees of freedom for the CFT3 are removed by the brane, leaving
its central charge to be [4, 80]

c3 = ℓ2
4

G4
= ℓ

2G3
√

ν2 + 1
= νℓ3

2G3
√

ν2 + 1
, (4.11)

where in the last step we have used (2.13) and (3.21) to express the central charge for
the CFT3 on the brane in terms of the AdS3 radius ℓ3 and the three-dimensional Newton
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@M : BCFT3

Figure 3. Sketch of the brane perspective. The thermodynamics of the quantum charged black hole
dwelling on the AdS brane B (red curve) with inner and outer horizons r∓ (green and black dots)
receiving quantum backreaction from the coupled holographic CFT3 on the brane, which communicates
with the BCFT3 at the asymptotic boundary ∂M.

constant G3. From (4.11), we also note that the central charge of the CFT3 is affected by
the backreaction parameter ℓ. This suggests that the central charge c3 can be regarded as a
thermodynamic variable [105, 119]. Different from the method used in [105, 119], we here
will keep the three-dimensional Newton constant G3 fixed.3 Our approach is similar to that
employed in [106, 125–130]; see [131] for a recent review on this topic.

In the extended phase space approach, the thermodynamic pressure corresponds to
the three-dimensional cosmological constant Λ3 in (3.26). Using (2.13), (3.22), and (3.37),
we obtain

P3 = − Λ3
8πG3

=
√

ν2 + 1
4πG3

(√
ν2 + 1 + 1

)
ℓ2

3
, (4.12)

which simplifies to P3 = 1/
(
8πG3ℓ2

3
)

when the strength of the backreaction goes to zero.
Reexpressing the mass (3.44), entropy (3.46), and electric charge (3.51) for the quantum
charged black hole on the brane, we get

M =
√

ν2 + 1z2(νz + 1)
(
ν2χ2z4 + ν

(
χ2 − 1

)
z3 + 1

)
2G3 (ν2χ2z4 + 2ν (χ2 + 1) z3 + (χ2 + 3) z2 + 1)2 , (4.13)

Sgen = πℓ3
√

ν2 + 1z

G3 (ν2χ2z4 + 2ν (χ2 + 1) z3 + (χ2 + 3) z2 + 1) , (4.14)

Q =

√
π (ν2 + 1)

5G3

4χz2(νz + 1)
g3z2 ((χ + νχz)2 + 2νz + 3) + g3

(4.15)

in terms of the three-dimensional Newton constant G3. The thermodynamics of the quantum
charged black hole encodes the backreaction of the quantum matter on the CFT3.

3See [120] for a discussion of a running Newton constant in the context of string/black hole transitions [121–
124].
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Keeping G3 as a constant, the temperature T , electric potential Φ, three-dimensional
thermodynamic volume V3, and three-dimensional chemical potential for the quantum charged
black hole µ3 are

T =
(

∂M

∂Sgen

)
Q,P3, c3

= z
(
νz
(
z2 (1−(χ+νχz)2)+3

)
+2
)

2πℓ3 (z2 ((χ+νχz)2+2νz+3)+1) , (4.16)

Φ =
(

∂M

∂Q

)
Sgen,P3, c3

=
√

5
4πG3

g3νχz3(νz+1)
z2 ((χ+νχz)2+2νz+3)+1 , (4.17)

V3 =
(

∂M

∂P3

)
Sgen,Q,c3

= −2πz2ℓ2
3(νz+1)

(
ν
(
ν+z

(
νz
(
νχ2z(νz+1)+νz+2

)
−2
))
−2
)

(z2 ((χ+νχz)2+2νz+3)+1)2 , (4.18)

µ3 =
(

∂M

∂c3

)
Sgen,Q,P3

=
(
χ2−1

)
z5+z3

ℓ3 ((χ2+3)z2+1)2 (4.19)

−νz2 (3(χ2+3
)
z2+4z4 (χ2+

(
χ4−3χ2−2

)
z2+2

)
+3
)

2ℓ3 ((χ2+3)z2+1)3 +O
(
ν2
)

,

where the temperature and electric potential are the same as their respective bulk counterparts
in (4.5) and (4.6). This is not difficult to understand, as fixing P4 and τ yields dℓ = 0 = dν

in (4.5) and (4.6), and fixing P3 and c3 yields dℓ3 = 0 = dν in (4.16) and (4.17), which,
according to (3.37), also gives dℓ = 0. We here only show the expression for µ3 to the linear
order of ν in (4.19); see appendix B for the full expression. From these relationships, it is
straightforward to verify that the first law

dM = TdSgen + ΦdQ + V3dP3 + µ3dc3 (4.20)

and the Smarr relation

0 = TSgen − 2P3V3 + µ3c3 (4.21)

for the quantum charged black hole are both satisfied when viewed from the perspective
of the brane. The Smarr mass relation is consistent with a scaling argument as G3M is a
homogeneous function of G3Sgen, Λ3, and G3c3, . The absence of M and Q in the Smarr
relation is due to

√
G3M and Q being dimensionless.

The form of the first law given in (4.20) is illuminating, as all thermodynamic quantities
involved are three-dimensional. These quantities pertain either to the black hole or to the
CFT3 with a central charge c3 and its conjugate chemical potential µ3 on the brane. This
equation, in fact, represents a mixed form of the first law, comprising both brane quantities
and CFT quantities, which is quite similar to the results obtained in [105, 119]. In this context,
there may be central charge criticality for the quantum charge black hole on the brane; this is a
topic we leave for future investigation. It’s also worth noting that in the Smarr relation (4.21),
the electric charge is absent since it is dimensionless in the three-dimensional brane setup.
This result differs from that obtained in [132] for the three-dimensional classical charged
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@M : BCFT3

Figure 4. Sketch of the pure boundary perspective. The KR brane intersects the BCFT3 (black
curve) at two defects (purple points). In the pure boundary perspective, we study the thermodynamics
of the quantum charged black hole on the brane via the dual DCFT2, which is coupled with BCFT3
at the asymptotic boundary ∂M.

BTZ black hole, where the charge is presented in the mass formula via the introduction of
a thermodynamic renormalization length scale.

4.3 Boundary description

From the bulk perspective, the thermodynamic system comprises a four-dimensional bulk
black hole spacetime coupled to a three-dimensional KR brane. From the brane perspective,
however, the thermodynamic system transits to a quantum charged black hole spacetime
coupled with a three-dimensional CFT on the AdS3 two-brane. As depicted in figure 4,
the brane intersects the BCFT3, resulting in the formation of two defects, each hosting
a two-dimensional DCFT. According to the double holography prescription, this DCFT2,
coupled to the BCFT3 and in conjunction with the dynamical higher curvature gravity on
the AdS3 brane, provides a dual description of the thermodynamics on the brane.

Let’s consider the thermodynamics of the quantum charged black hole from the boundary
perspective, i.e., from the viewpoint of the DCFT2, which is coupled with the BCFT3. The
degrees of freedom for the DCFT2 are related to the three-dimensional cosmological constant
L3 and the Newton constant G3 through the holographic correspondence formula [133]

c2 = 3L3
2G3

= 3ℓ

2G3

√
2ν2 − 2

√
ν2 + 1 + 2

. (4.22)

The coefficient here is not crucial and will not affect our results qualitatively. According
to the holographic dictionary, the energy E, entropy S, electric charge Q, and volume V2
for the DCFT2 are respectively given by

E = M , (4.23)

S = Sgen = π
√

ν2 + 1zℓ

G3ν (ν2χ2z4 + 2ν (χ2 + 1) z3 + (χ2 + 3) z2 + 1) , (4.24)
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Q = QL3 =
√

8π

5G3

4√ν2 + 1χz2ℓ(νz + 1)√√
ν2 + 1 − 1 (g3z2 ((χ + νχz)2 + 2νz + 3) + g3)

, (4.25)

V2 = 2πL3 = 2πℓ√
2ν2 − 2

√
ν2 + 1 + 2

, (4.26)

where the specific form of the energy E for the DCFT2 was chosen to match (4.13) and
the electric charge Q on the DCFT2 was rescaled by L3 [119, 125, 127]. To obtain the
thermodynamic volume V2 for the DCFT2, we can write the boundary metric as [106]

ds2
bdy = ω2

(
−dt̄2 + L2

3dϕ̄2
)

, (4.27)

where ω is a dynamical conformal factor, implying V2 ∝ ωL3; we have set ω = 1 in (4.26).
Based on the above results, the temperature T , two-dimensional pressure P2, two-

dimensional chemical potential µ2, and electric potential ϕ for the DCFT2 are given by

T =
(

∂E

∂S

)
ℓ, V2, c2,Q

= −νz
(
ν3χ2z5 + 2ν2χ2z4 + ν

(
χ2 − 1

)
z3 − 3νz − 2

)
2πℓ (ν2χ2z4 + 2ν (χ2 + 1) z3 + (χ2 + 3) z2 + 1) , (4.28)

P2 = −
(

∂E

∂V2

)
ℓ, S, c2,Q

= νz2

4πG3ℓ ((χ2 + 3) z2 + 1)2 + O(ν2) , (4.29)

µ2 =
(

∂E

∂c2

)
ℓ, S, V2,Q

=
√

2ν2 + 2
√

ν2 −
√

ν2 + 1 + 1
(
ν2z4 + 2νz3 + 2νz + 1

)
−3z−2ℓ (ν2χ2z4 + 2ν (χ2 + 1) z3 + (χ2 + 3) z2 + 1)2 , (4.30)

ϕ =
(

∂E

∂Q

)
ℓ, S, V2, c2

=
√

5
2πG3

g3ν 4√ν2 + 1
√√

ν2 + 1 − 1χz3(νz + 1)
ℓ (ν2χ2z4 + 2ν (χ2 + 1) z3 + (χ2 + 3) z2 + 1) . (4.31)

These respectively are conjugate to the entropy S, thermodynamic volume V2, central charge
c2, and electric charge Q of the DCFT2. The full expression for P2 is presented in appendix B
and we here just expand it to the linear term of a small ν limit, i.e., in the small backreaction
limit. Note that we have kept the backreaction parameter ℓ fixed; a fixed ℓ does not necessarily
mean that the tension of the brane is fixed; cf. (3.6). This seems to be the only choice, as we
cannot obtain a cohomogeneity thermodynamics if other quantities G3, z, or ν were fixed.

The first law on the DCFT2 reads

dE = TdS − P2dV2 + µ2dc2 + ϕdQ , (4.32)

where a work term P2dV2 indicates that the energy E plays the role of the thermodynamic in-
ternal energy. Remarkably, different from the case of the brane perspective, the corresponding
integral internal energy formula now contains the electric charge term,

E = TS + µ2c2 + 1
2Qϕ . (4.33)

The energy formula is consistent with a scaling argument as G4E is a homogeneous function
of G3Sgen, V2/G3, , G3c2, and Q . The absence of V2 in the mass relation is due to that V2/G3
is dimensionless. It is noticeable that G3 and ν are variable in the above configuration, which,
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according to (4.11), means that the central charge c3 in (4.11) on the brane is variable. If G3
were substituted with ℓ/

(
2c3

√
ν2 + 1

)
(cf. (4.11)), we can check that the results obtained

above would be the same. In such a condition, c3 does not enter the thermodynamic first
law and the energy formula as it is featured not for the DCFT but for the holographic CFT3
on the brane as well as for the BCFT3.

5 Closing remarks

In this paper, we utilized the KR braneworld holography formulation to derive a quantum
charged black hole on an AdS3 brane, starting from the AdS4 C-metric. We analyzed the
backreaction effect from the CFT3 on the brane by calculating the holographic stress-energy
tensor, revealing that the conformal symmetry property of the nonlinear electromagnetic field
on the brane is lost. We derived the mass, generalized entropy, and electric charge, along
with their respective conjugate thermodynamic quantities, for the quantum charged black
hole. In the extended phase space, we scrutinized the thermodynamic first law and mass
(energy) relations for classical and holographic thermodynamics of the quantum charged
black hole from the perspectives of the pure bulk, brane, and boundary, adhering to the
double holography prescription.

In the absence of charge, previous results indicated that the quantum black hole resembles
the BTZ black hole under a specific parameter setup. However, the quantum charged black
hole we derived is not analogous to the charged BTZ black hole [103, 104] in any sense. As
anticipated in [79], it resembles the RN-AdS black hole, primarily because we have a charge
term proportional to q2/r̄2. This is a consequence of the nonlinear nature of the gauge field on
the brane. In our procedure to obtain this quantum charged black hole, we selected a brane
at a specific position in the original AdS4 C-metric spacetime. This operation reduced the
four-potential of the Maxwell field in the bulk to a three-potential. Consequently, the induced
gravity on the brane is modified by higher curvature terms, and the induced electromagnetic
field on the brane became nonlinear and coupled with the background spacetime curvature.

Note that throughout our study, we did not assign specific values to the parameter κ.
The values of κ = ±1, 0 correspond to different slicings of the brane. In the uncharged
quBTZ scenario, both rotating and non-rotating BTZ black holes can be recovered for
κ = −1, and there exist branches of black holes and black strings for specific values of
the combination κx2

1. By conducting a similar parametric analysis, we believe that there
could also be analogous branches of solutions for quantum charged objects within a limited
mass range. These solutions include a branch with negative mass and a branch representing
black strings for specific combinations of parameters {κ, x1, q}; see [113] for detailed analysis.
Note that in our thermodynamic study of the black hole, κ does not appear independently
in the physical quantities. A more thorough analysis of the parameter space is necessary,
particularly when our goal is to delve deeper into the thermodynamic phase transitions and
the dynamical stability for the quantum charged black holes. Beyond the event horizon, the
quantum charged black hole may also have a Cauchy horizon. The stability of this Cauchy
horizon is a topic that warrants further clarification. Additionally, studying the quasinormal
modes for the quantum charged black hole on the brane could be a fruitful avenue for future
research. This will provide us with a deeper understanding of the dynamical properties of
the quantum charged black holes.
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The study of the thermodynamics for the quantum charged black holes was inspired, in
part, by the investigations in [67] on quBTZ black holes. We have found that the holographic
black hole chemistry [105, 106] can be generalized to a doubly holographic scenario, leading
to a number of interesting observations. One is that the Smarr mass relation we derived
in this paper, from the brane perspective, does not explicitly contain a charge term. This
indicates that the quantum black hole owns a dimensionless gauge charge viewed from the
brane perspective. Another point is that, different from the result shown in [67], the Euler
energy relation (4.33) we obtained from the pure boundary perspective does not contain
the µ3 and c3 terms. All quantities in this Euler energy relation are characterized by the
DCFT. To achieve this, we fixed the backreaction parameter ℓ, which, according to (2.6),
means that the acceleration of the bulk black hole is constant.
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A Wald entropy

For the Lagrangian (3.25), according to the formula given in [117], the Wald entropy is

SW = 1
4G3

∫
dx

√
qW , (A.1)

where

W = 1+ℓ2((a1 + 2a2) R−a1qabRab+8πG3
(
(−a1 − 4a2) T − 8πG3a1qabTab

)
+O

(
ℓ4
)

. (A.2)

Here a1 = −1, a2 = 3/8, T is the trace of the stress-energy tensor Tab, and qab is the induced
metric on a cross section of the black hole horizon. Considering (3.28) and (3.29), we know that

8πG3 ⟨Tab⟩ = Rab −
1
2gabR + O

(
ℓ2
)

, (A.3)

in turn yielding [117]

SW = 1
4G3

∫
dx

√
q
(
1 + ℓ2

(
2a2R + a1gab

⊥ Rab

))
(A.4)

for the Wald entropy of the quantum charged black hole up to O (ℓ/ℓ3)4, where gab
⊥ = gab−qab

is the metric normal to the black hole horizon, and gab denotes (3.10). Explicitly we obtain
SW

Sgen
= ν3χ2z3(νz + 1)(3νz + 2) − ν

(
ν + ν2z

(
2z2 + 3

)
− 2z

)
+ 2

2
√

ν2 + 1
= 1 − ν2 + ν3

(
χ2z3 − z3 − 2z

)
+ νz + O

(
ν4
)

, (A.5)

SW

Scl
= ν3χ2z3(νz + 1)(3νz + 2) − ν

(
ν + ν2z

(
2z2 + 3

)
− 2z

)
+ 2

2νz + 2

= 1 − ν2

2 + ν3
(
χ2z3 − z3 − z

)
+ O

(
ν4
)

. (A.6)
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B Explicit expressions of some thermodynamic quantities

The full expression of the chemical µ3 in (4.19) is

µ3 = −
(
ν2 + 1

)
(X1 + X2 + X3) z2

ℓ3 (ν2 + 2x + 2) (z2 ((χ + νχz)2 + 2νz + 3) + 1)2 , (B.1)

where

νx =
√

ν2 + 1 ,

X1 = 2ν(νx + 2) + ν2χ2z5
(
ν2 + 2

(
ν2 − 1

)
νx − 2

)
+ z

(
ν2(2νx + 5) − 2(νx + 1)

)
,

X2 = 2νz4
(
ν2
(
χ2 + 2χ2νx + νx + 1

)
− 2χ2(νx + 1)

)
,

X3 = z3
(
ν2
(
χ2 + 2

(
χ2 + 3

)
νx + 7

)
− 2

(
χ2 − 1

)
(νx + 1)

)
.

The full expression of the pressure P2 in (4.29) is

P2 = − (Y1 + Y2) z2 (ν2 − νx + 1
) 3/2νx

2
√

2πG3ν2Y 2
3 ℓ (νx − 1) (−2ν2 + νx − 2)

, (B.2)

where

Y1 = −ν2 + 4νx + 4ν5χ2z5νx − 2νz
(
ν2 − 4νx + 4

)
− 4 ,

Y2 = ν4z4
(
8χ2νx − 4νx + 3

)
+ 2ν3z3

(
2χ2νx − 4νx + 3

)
,

Y3 = ν2χ2z4 + 2ν
(
χ2 + 1

)
z3 +

(
χ2 + 3

)
z2 + 1 .
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