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Abstract: We present a detailed study concerning a new physics scenario involving four
fermion operators of the Nambu-Jona-Lasinio type characterized by a strong-coupling ul-
traviolet fixed point where composite particles are formed as bound states of elementary
fermions at the scale Λ = O(TeV). After implementing the model in the Universal FeynRules
Output format, we focus on the phenomenology of the scalar leptoquarks at the LHC and
the High-Luminosity option. Leptoquark particles have undergone extensive scrutiny in the
literature and experimental searches, primarily relying on pair production and, more recently,
incorporating single, Drell-Yan t-channel, and lepton-induced processes. This study marks, for
the first time, the examination of these production modes at varying jet multiplicities. Novel
mechanisms emerge, enhancing the total production cross section. A global strategy is devised
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to capture all final state particles produced in association with leptoquarks or originating
from their decay, which we termed “exclusive”, in an analogy to the nomenclature used in
nuclear reactions. The assessment of the significance in current and future LHC runs, focusing
on the case of a leptoquark coupling to a muon–c quark pair, reveals greater sensitivity
compared to ongoing searches. Given this heightened discovery potential, we advocate the
incorporation of exclusive leptoquark searches in future investigations at the LHC.
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1 Introduction

Thanks to its remarkably strong quantitative agreement with experimental results over the past
decades, the Standard Model (SM) has been solidified as a cornerstone of elementary particle
physics. Nonetheless, it is regarded as an effective theory that falls short in encompassing
several foundational aspects of both theoretical and observed particle physics. Numerous
extensions have been put forward, suggesting specific tests to challenge the SM at the LHC.
Regrettably, all of these searches have thus far yielded a negative outcome in the quest for
detecting new physics and have placed significant constraints on many beyond-the-SM (BSM)
models in mass scales up to a few TeV [1–8].

Therefore, the question arises as to whether ongoing searches have exhaustively explored
all avenues, or if unprecedented aspects can yet be harnessed to devise better methods that
would probe yet uncharted territory. In this paper, we present an in-depth phenomenological
study of a novel composite scenario based on Nambu-Jona-Lasinio (NJL) type four-fermion
operators recently proposed in [9–11]. The model is characterized by a strong coupling
ultraviolet (UV) fixed point where composite particles arise as bound states of SM elementary
fermions. The counterpart of a strong-coupled electron system is studied [12] in condensed-
matter physics. The effective four-fermion interactions considered in this new model are
motivated by theoretical inconsistencies [13–15] between the SM bilinear Lagrangian of chiral
gauged fermions and the UV regularization of some unknown dynamics, such as quantum
gravity. These inconsistencies imply, at high energies, quadrilinear effective operators (four-
fermion interactions) of the NJL or Einstein-Cartan type [16–18]. A first phenomenological
study related to the production at the LHC of composite fermions in the gauge symmetric
phase of this NJL model was conducted in [19] where a recent CMS analysis [20] of the
dilepton plus dijet final state was recast to derive constraints on the parameter space of the
NJL model. More recent studies of the XENON1T experiment [21], neutrino-less double
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beta decay [22], and W -boson mass tension [23] addressed the broken-gauge phase of the
model. In this work we specifically address the phenomenology at the LHC of the scalar
leptoquarks (LQs) arising in the gauge symmetric phase of the model, thus delving into one
of the most extensively studied subjects in the BSM landscape. While reviewing current
investigations, production modes, and search strategies, we investigate the potential for new
mechanisms and approaches at the LHC.

LQs are hypothetical particles that carry both lepton number L and baryon number B,
have a fractional electric charge, and can be either scalar (spin 0) or vector (spin 1) particles.
They offer a natural explanation for the symmetry between the quark and lepton families,
attempting to pave the way toward matter unification. They inherently appear in many well-
motivated extensions of the SM that endeavor to unify the fundamental interactions, such as
grand unified theories [24–29], technicolor models [30–33], and compositeness scenarios [34, 35],
as well as R-parity violating supersymmetry [36–45], and as mediators of dark matter-SM
interactions [46]. More recently, LQs have gained enhanced interest, as they provide a suitable
explanation for a series of anomalies observed in several precision measurements: the B → D∗

anomaly reported by BaBar [47, 48], Belle [49], and LHCb [50] that could be explained by
the mediation of an intermediate LQ scalar [51–63]; the muon anomalous magnetic moment
(g− 2)µ measurement from the E989 and E821 collaborations [64, 65] which could be resolved
assuming the existence of LQs [64–81]; the charged proton radius obtained from muon Lamb
shift [82], and atomic parity violation [83, 84], where low-energy corrections via virtual LQ
scalars and internal loop diagrams can contribute. In a search for a LQ coupling to a τ

lepton and a b quark, the CMS collaboration has reported an excess with a significance of 2.8
standard deviations above the SM expectation using Run 2 data [85], though consistency
with the SM prediction is observed in a similar search from the ATLAS collaboration [86].

Both the ATLAS and the CMS collaborations have a broad LQ search program that
covers various particle hypotheses and different lepton-quark-LQ vertex couplings λ. The
main production modes considered are illustrated in figure 1 (a–d) and have been extensively
discussed in literature [87–104]. The majority of the analyses rely on the LQ pair production
mode in figure 1 (c) [2, 105–138], which does not depend on λ. Some searches are designed to
intercept the single LQ production process in figure 1 (b) [86, 139–141] or the single and pair
productions together [7, 86, 142], as the former brings enhanced sensitivity due to a cross
section that varies as a function of λ2. A recent investigation [143] added further Drell-Yan
dilepton t-channel contributions as displayed in figure 1 (a) and [144] was designed specifically
for this process, whose cross section depends on λ4. An additional recent search relies on
lepton-induced processes [145], as that in figure 1 (d).

Upon reviewing the existing literature and LHC searches, a noteworthy observation
emerges: the generation of LQs via t-channel, single, and pair production processes is solely
regarded in terms of their primary production modes. No studies have been carried out to
explore the implications of these production mechanisms at various jet multiplicities, assuming
that a jet is originating from either a gluon or a quark. Nevertheless, previous research [146–
153] has demonstrated that such an approach could amplify the discovery potential by
incorporating additional signal sources while effectively reducing the SM background. In
this work, we pursue this effort and investigate how LQs would manifest in association with
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(a) (b) (c) (d)

Figure 1. Examples of Feynman diagrams for the Drell-Yan t-chnnel (a), single (b), pair (c), and
lepton-induced (d) production modes considered at the LHC.

jets. Our investigation uncovers new production mechanisms and topological aspects not yet
considered in ongoing searches. Furthermore, we devise a comprehensive strategy to look
for LQs, taking into account all signal contributions. For the case of the lepton-induced
process, we undertake a study to separate elastic and inelastic contributions. Our findings
reveal that the sensitivity achieved surpasses that of all ongoing searches. This new approach
developed here for the specific case of LQs can be adapted and applied in searches for any
type of particle to enhance further the expected sensitivity.

In section 2, we introduce the reference LQ model utilized in this analysis, while in
section 3 we delve into its implementation and the generation of the signal samples. Section 4
describes the LQ production modes in conjunction with jets and touches upon the possibility
of distinguishing elastic and inelastic lepton-induced processes. In section 5 and section 6,
we present a global strategy for the detection of LQs based on our findings, as well as the
anticipated sensitivity results at both the LHC and the High-Luminosity (HL)-LHC. Finally,
in section 7, we summarize the work with some closing remarks.

2 Nambu-Jona-Lasinio composite leptoquark model

The No-Go theorem [13–15] shows that, as a renormalizable quantum field theory at infrared
(IR) low energies, the SM bilinear fermion Lagrangian at UV cutoff Λcut suffers theoretical
inconsistencies with SM chiral gauge symmetries and fermion spectra at low energies. This
implies that new physics at the UV scale Λcut effectively presents quadrilinear operators
Gcutψ̄

f
L
ψf

R
ψ̄f

R
ψf

L
(Gcut ∝ Λ−2

cut) [9, 10] of NJL or Einstein-Cartan type. They are SM gauge
symmetric interactions of SM left- and right-handed fermions (ψf

L, ψ
f
R) in the family “f”.

The strong coupling gcut = GcutΛ2
cut > 1 dynamics leads to massive composite bosons

Πf ∼ (ψ̄f
R
ψf

L
) and fermions F f

R ∼ ψf
R
(ψ̄f

R
ψf

L
) ∼ ψf

R
Πf [154–156]. They carry SM charges and

couple to massless SM gauge bosons in a gauge-invariant manner. The effective SM gauge
symmetric and renormalizable theory realizes in the scaling domain of the UV fixed point g∗cut
at the composite scale Λ ≪ Λcut [10, 157]. As the energy scale decreases below Λ, the effective
theory undergoes [11] a phase transition of composite particles decays into their constituents
and spontaneous SM symmetries breaking via the top-quark channel (t̄LtRt̄RtL), leading to
the SM at the electroweak scale v ≈ 246GeV [158]. The scale Λ = O(TeV) is estimated by
using the top quark and Higgs boson masses and extrapolating the renormalization-group
solution to the high-energy regime [159].
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Bosons ΠQ
a Charge Qi = Y + ti3L, SUL(2) 3-isospin ti3L, UY (1) charge Y , SUc(3) color a, LQ

Π+5/3
a ∝ ēRuLa +5/3 +1/2 +7/6 3 R

+5/3
2

Π−1/3
a ∝ ν̄e

RdLa −1/3 −1/2 +1/6 3 R̃
−1/3
2

Π+2/3
ua ∝ ν̄e

RuLa +2/3 +1/2 +1/6 3 R̃
+2/3
2

Π+2/3
da

∝ ēRdLa +2/3 −1/2 +7/6 3 R
+2/3
2

Π−5/3
a ∝ ūRaeL −5/3 −1/2 −7/6 3 R

−5/3
2

Π+1/3
a ∝ d̄Raν

e
L +1/3 +1/2 −1/6 3 R̃

+1/3
2

Π−2/3
ua ∝ ūRaν

e
L −2/3 +1/2 −7/6 3 R

−2/3
2

Π−2/3
da

∝ d̄RaeL −2/3 −1/2 −1/6 3 R̃
−2/3
2

Table 1. Composite bosons, their constituents, standard model charges, and corresponding leptoquark
according to the nomenclature used in [160, 161] for the first generation of standard model fermions.

Composite bosons Πf and fermions F f spectra at the Λ scale offer a vast range of new
searches and tests of the SM, as shown in [19]. In this article, we study the phenomenological
analysis of composite boson states Φ ∼ (ℓ̄RqL) with fractional electric charge, or LQ, as listed
in table 1. Their SM gauge charges are the sum of the SM gauge charges of their fermionic
constituents. The gauge-invariant kinetic Lagrangian is

(DµΦ)†(DµΦ) +M2
ΠΦ†Φ, (2.1)

with covariant derivative,

Dµ = ∂µ + ig1Y Bµ + 1
2 ig2σiW

i
µ + ig3T

aGa
µ (2.2)

where Y is the LQ hypercharge, σi are the standard Pauli matrices and T a are the Gell-Mann
matrices. Moreover, g1, g2, and g3 are the SM gauge couplings for the respective groups. In
eq. (2.1) SUc(3) triplet LQ bosons form SUL(2) doublets. Identification of doublets in terms of

hypercharge is given as Πa
1/6=

 Π2/3
ua

Π−1/3
a

 and Πa
7/6=

Π5/3
a

Π2/3
da

. The effective coupling between

a LQ composite boson and its two constituents can be written as effective contact interactions,

LCI = gΠ5/3
(ēRuLa)Π−5/3

a + gΠ1/3
(ν̄e

RdLa)Π1/3
a + gΠ−2/3

(ν̄e
RuLa)Π−2/3

ua

+ gΠ−2/3
(ēRdLa)Π−2/3

da
+ h.c.

(2.3)

where the LQ effective Yukawa coupling gΠi
= (FΠi/Λ)2 ∼ O(1). The gΠi

parameter defines
the decay width (as calculated in [19] for composite bosons with integer charge) via the
formula Γ(qℓ) = (g2

Πi
mΠ)/16π that coincides with the general formula used for a scalar

LQ (see [160]). For the sake of simplicity and to align to the notation commonly used in
experiments (see e.g. [7, 85]) we will use λ to stand for gΠi

in the sections below. The
effective interacting Lagrangian (2.1)–(2.3) at the scale Λ is dimension-4 renormalizable,
namely independent from the cutoff Λcut. We tabulate the four quark-lepton composite
bosons Π5/3

a , Π−1/3
a , Π2/3

ua and Π2/3
da

, identified by constituent fermions and SM gauge charges.
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Their conjugated fields are (Π5/3
a )† = Π−5/3

a , (Π−1/3
a )† = Π1/3

a and (Π2/3
ua )† = Π−2/3

da
, and

(Π2/3
da

)† = Π−2/3
ua . The renormalized LQ bosons ΠQ

a = Z
−1/2
Π ℓ̄RqLa with the form-factor

Z
−1/2
Π = (

√
4π/FΠ)2 have the same dimension [energy] of elementary boson fields. Their

masses MΠ ∝ Λ and decay constants FΠ ∝ Λ, due to the composite dynamics at the scale Λ.
These LQ states have baryon number B = 1/3 and lepton number L = −1, corresponding
to R2 and R̃2 states in the LQ nomenclature [160, 161], which do not suffer interference
with SM processes as pointed out in [97]. The spectra in table (1), interactions (2.3), can
be generalized by νe, e, u, d→ νµ, µ, c, s for the second generation, and νe, e, u, d→ ντ , τ, t, b

for the third generation.
Although coupling Gcut and the composite scale Λ are unique, the coupling gΠi

and mass
MΠi have different values but are similar and related across generations. The main reason
is that, in the four-fermion interactions, the fermion fields ψf

L,R are SM gauge eigenstates.
While in the ground state, they mix in different charged sectors and generations by unitary
transformations Uν,ℓ,u,d

L,R [9]. Therefore, LQ states in different generations mix, provided they
have the same SM charges of table 1. For example, Π5/3

a (ēRuLa) exhibits mixing amongst the
LQ states (µ̄RcLa) and (τ̄RtLa). In addition to the Yukawa coupling (2.3), it can also couple to
the lepton and quark in the second and third generations via flavor-mixed Yukawa couplings,

gΠ5/3
(U †

RUL)1,2(µ̄RcLa)Π−5/3
a + gΠ5/3

(U †
RUL)1,3(τ̄RtLa)Π−5/3

a , (2.4)

where the flavor-suppressed factors (U †
RUL)1,3 < (U †

RUL)1,2 < 1 stand for the CKM-like mixing
matrix elements between the first and other generations. The same discussions apply to
other LQ states in table 1. Other flavor-mixed Yukawa couplings are possible, as long as they
preserve SM gauge symmetries. For these reasons, LQ boson masses and Yukawa couplings
should be different in generations and related by an unknown mixing matrix (Uν,ℓ,u,d

L,R )†Uν,ℓ,u,d
L,R ,

in analogy to the CKM matrix in the quark sector and PMNS matrix in the lepton sector.
We treat different composite boson masses MΠi and Yukawa couplings gΠi

as theoretical
parameters. The constraint g2

Πi
< 8π/

√
3 is inferred by studying the unitary problem [162].

These LQ bosons (table 1) and interactions (2.2)–(2.3) are the counterparts of color
singlets Π0,± in table V and interactions (26-28) of ref. [19] by exchanging eL,R ↔ da

L,R and
νe

L,R ↔ ua
L,R. The parameter spaces of Yukawa couplings gΠi

and masses MΠi for investigating
Π0,± are the same as those of LQ bosons up to the aforementioned mixing matrix elements of
the order of unity. The differences are only the initial states’ parton density functions (PDFs)
used and the final states detected. For color singlets Π0,±, there are decay (production)
channels to (from) SM gauge bosons W,Z and γ, while color LQ states can be produced
by gluon splitting or via a lepton-quark vertex. Analogously to the studies of composite
fermions [19], we will discuss composite LQ fermions in a separate article, e.g. FR ∼ ℓRΦ or
qRΦ, interacting with SM gauge bosons and decaying to ℓR(qR) + Φ → ℓR(qR) + ℓ̄R + qL.
We also mention the possibility of nontrivial contributions to the B → D∗ anomaly RD(∗)

of the charged current channel b → cτ ν̄ based on the composite boson spectra (table 1).
Having the same SM charges, the state Π−2/3

ua (ūRaν
e
L) mixes with the states (c̄Raν

µ
L), and

the state Π2/3
da

(ēRdLa) mixes with the states (τ̄RbLa). Therefore, we have the transition
amplitude ⟨[Π2/3

ua (0)]†Π2/3
da

(x)⟩ → (C/Λ2)⟨(c̄Raν
µ
L)(τ̄RbLa)⟩, yielding to the probability of the
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flavour-changing process b → cτ ν̄, where the C relates to the mixing amongst quark and
lepton flavours. This is similar to the discussion of the LQ scalar R+2/3

2 (Π+2/3
da

) contribution
to RD(∗) [163], see also [58]. We leave for a future effort the detailed analysis in this context.

3 Signal implementation and samples generation

To generate signal and background events, we utilize MadGraph5 aMC@NLO [164], incor-
porating the gauge (eq. (2.1)) and the contact (eq. (2.3)) interaction terms described in the
previous section via the Feynrules package [165] as a Universal FeynRules Output (UFO)
module [166]. Subsequently, we generate Monte Carlo (MC) samples for both the signal and
SM background processes via MadGraph5 aMC@NLO, then use Pythia 8.2 [167] for including
initial and final parton showering and fragmentation. The Madgraph implementation includes
the b quark in our proton definition, and the interactions have been implemented up to the
3rd fermion generation with the corresponding couplings.

In this article, we consider LQs with a charge of 5/3 that couple to electron-u quark
(λeu) and muon-c quark (λµc) pairs for the signal generation, along with an LQ with a charge
of 2/3 that couples to tau-b quark (λτb). The signal process is generated with two types of
beam hypotheses: proton-proton (pp) and photon-proton (γp). For the pp LQ production, the
NNPDF31-lo-as-0118 [168] PDF is used. For the γp collisions, we choose the MRST2004qed-
proton PDF [169]. This decision is motivated by our aim to distinguish between the elastic and
inelastic contributions of the photon. The NNPDF set previously mentioned incorporates both
the elastic and inelastic contributions (as does the LUX PDF [170]), rendering it impractical
to separate the two components. The MRST2004qed PDF allows for the separation of
the elastic and inelastic contributions with the configurations available in Madgraph. In
our studies, we simulate the processes pp → ℓ+ℓ− plus 0, 1, 2, or at least 3 partons to
incorporate the standard production modes in figure 1 (a–c) and the new production modes
that are presented in the subsequent section. For the photon-induced processes, we consider
γp→ ℓ+ℓ− plus 1 parton to focus our study on elastic versus inelastic contribution only.

The center-of-mass energy is set to 13 TeV. The values of λ vary in the range [0.5-2.5] in
steps of 0.5. For the LQ masses, we consider values in the ranges (in TeV) [1.00-2.00] in steps
of 0.25, [2.00, 10.00] in steps of 0.50, plus 20.00 and 30.00 TeV. Extra jets in the production of
the LQ may originate from either gluons or quarks, as specified below. The former corresponds
to initial or final state radiation emitted in one of the well-searched, tree-level diagrams, while
the latter may give rise to novel mechanisms to generate LQs. We note that both scenarios
can contribute to the overall signal, necessitating the avoidance of double counting of events
among different processes. To achieve this, in the production of the signal samples, we employ
the matrix-element parton shower matching technique known as MLM matching [171]. We
set a matching scale of 30 GeV and ensure appropriate overlap removal in the differential jet
rates of our samples. We have verified that the cross sections obtained using our implemented
model are consistent within 1% with those yielded by the models LQ-UFO [172], commonly
used in analyses at LHC [7], using the same generator configurations and relying on the
resonant pair production mode (figure 1 (c)) that depends on αs only.

– 6 –
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4 Exclusive LQ production

In this section, we explain LQ production in detail, emphasizing the mechanisms where LQs
appear with additional jets compared to the well-established modes depicted in figure 1. We
refer to this as “exclusive” LQ production, drawing an analogy to the nomenclature utilized in
the study of inelastic scattering, where every reaction product is interested. Our examination
of the numerous Feynman diagrams reveals three distinct cases of interest: (1) the splitting of
a gluon into two quarks, one of which participates in the LQ generation, the other appearing
as an additional jet; (2) the emission of a gluon from a parton that contributes to the LQ
formation through separation into two quarks, with the original radiating parton and one of
the gluon’s quarks ending as additional jets; (3) the exchange of a lepton that may lead to
up to two additional jets. We remark that, although we are highlighting these possibilities in
the context of the LQ particle, they apply to any SM and BSM particle that permits the
relevant couplings to quarks and leptons. It is also possible to have the emission of a gluon,
arising from initial or final state radiation, that subsequently manifests as an additional jet
(or two jets if it divides into quarks) and does not couple to the LQ. Although this latter
occurrence also augments the jet multiplicity compared to the reference modes at the Born
level, this scenario does not introduce new production processes, as it is anticipated within
the hadronic environment of the LHC for any mechanism. The third instance above has been
previously discussed in relation to pair production [89, 90] only, although it may occur also
in t-channel and single production, and it introduces two additional new physics vertices that
enhance the cross section rapidly with respect to λ. The generation of an LQ initiated via a
lepton is a unique production mode, and we treat it in the next sub-section.

The t-channel process studied in literature refers to the diagram in figure 1 (a) where
the LQ interacts with two valence quarks in the initial state. However, such a production
mode may be induced from the initial-state gluon splitting in either one or both incoming
protons, as indicated in figure 2 (a, b). Another possibility is that a gluon or a lepton is
exchanged, as illustrated in figure 2 (c, d), or a combination of the previous two cases, see
figure 2 (e, f). Single LQ production is displayed on the diagrams in figure 1 (b) where the
LQ creation starts from a gluon and a quark. Cases of both initial gluon splitting or gluon
emission from a parton are possible, as illustrated in figure 2 (g-m). Figure 2 (n, o) instead
shows the case where a lepton is exchanged in the process. The quantum chromodynamic
LQ pair production happens via a gluon that separates into two LQs, and the primary
mode is shown in figure 1 (c). Extra jets in final states coming from two LQ decays can
originate from processes like those shown in figure 2 (p, q), while an example with a lepton
exchange is displayed in figure 2 (r).

The examples discussed above describe some of the possible modes to produce LQs with
additional jets, and one can expect different variants allowed by crossing-symmetry of the
particles involved in the interaction vertices. We note that combining the instances (1), (2),
(3), as in diagram figure 2 (e,f), further increases the number of jets and such diagrams
are indeed produced by MadGraph, although their production cross section decreases as
the number of jets increases.

In this study, we aim to understand the impact of these processes in addition to those
usually considered in traditional LHC searches. To accomplish this, we compare the cross
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r)

Figure 2. Examples of Feynman diagrams for leptoquarks originating via one of the three mechanisms
highlighted in exclusive production: (i) the splitting of a gluon into two quarks, (ii) the emission of a
gluon from a parton, and (iii) the exchange of a lepton. They are illustrated for t-channel (a-f), single
(g-o), and pair (p-r) production of leptoquarks.
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sections of the reference LQ production modes in figure 1 (b, c) with those obtained by
specifying the corresponding dilepton plus jets (originating from quarks) final state that
intercepts the new mechanisms described above. The t-channel process in figure 1 (a) is not
considered, as it is produced with only two leptons in its traditional form. The comparison is
presented in figure 3 with respect to both single (a) and pair (b) production, along with the
ratio of the two production variants (c) for λeu, λµc, and λτb equal to 1.0. These couplings
encompass each fermion generation and are selected to represent all potential lepton-quark-LQ
vertices. Indeed, the primary factor influencing the LQ production cross section, aside from
its mass and coupling strength, is the specific quark to which it couples. Consequently, we can
anticipate a comparable enhancement in the cross section for LQs coupling to other quarks,
in alignment with the PDFs, as well as for couplings involving neutrinos and cross-diagonal
interactions between quarks and leptons.

Our analysis reveals a significant enhancement in the cross section across all cases when
incorporating the new production modes. Specifically, there is an approximately 70%, 85%,
and threefold (fourfold, 2.4-fold, 75%) increase against single (pair) production of figure 1
for λeu, λµc, and λτb set to 1 and an LQ mass of 1 TeV. This increase becomes larger at LQ
mass of 3 TeV, corresponding to a factor of about 16, 17, 240 (300, 190, 170), respectively.

The observed enhancement is influenced by two factors: the flavor of the quark involved
in the lepton-quark-LQ vertex according to the PDFs of the proton and the diminishing
resonant single and pair production cross section as a function of LQ mass due to the
kinematic limit imposed by the LHC center-of-mass energy. The former implies that the new
mechanisms contribute more for lower generation quarks with respect to pair production
(figure 1 (c)), which is mainly determined by gluon-gluon fusion and is independent of the
quark generation, while they become more relevant for higher generation quarks against
single production (figure 1 (b)) that depends on one quark and is thus reduced for higher
quark generations. The latter determines the larger increase at higher LQ masses, where the
probability of creating a resonant LQ becomes lower and lower, while for the non-resonant
mechanisms of figure 2 such a constraint is less stringent. For completeness, we should note
that the new processes introduced here rely on the presence of gluons in the protons, which
taper off at higher LQ masses, where valence quarks will dominate, as will the Drell-Yan
t-channel. The gain of these new mechanisms for other beyond SM (or SM) particles will
vary depending on their possible production modes.

This study marks the first presentation of such an analysis in the literature, demonstrating
a significant benefit from considering the aforementioned production mechanisms. Based on
these findings, we propose two distinct recommendations for future experimental strategies in
searches for LQs or other particles at the LHC. First, we suggest revising the current approach
where searches designed to detect events with a specific final state only consider particles
from the corresponding primary production mode. As an example, it is customary that
searches requiring two leptons and two jets in the final state target only LQ pair production
(figure 1 (c)). Our study, instead, as indicated in figures 2 and 3 for LQs, shows that the
primary production modes contribute at varying jet multiplicities. Therefore, searches should
be expanded to include all possible signal contributions, even if they target a single final
state. Second, we remark the importance of considering t-channel contributions at any
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jet multiplicity, not just figure 1 (a), by exploiting its unique topology and using angular
spectra of dileptons, which outperform traditional energy-related observables in terms of
sensitivity (see [85]). We will discuss in section 5 how to leverage this feature to enhance
the overall search sensitivity.

As a final consideration, we address how to integrate all production modes to analyze
the expected sensitivity to LQ signals at the LHC. Our focus is on an LQ with coupling
λµc, as λeu is predominantly determined by the Drell-Yan t-channel, and λτb has a more
complicated nature due to the presence of a τ lepton. Simply generating LQ events separately
for each jet multiplicity and adding them would result in some degree of double counting
of events. Instead, we produce exclusive LQ signal incorporating a lepton pair plus 0, 1,
2, and 3 jets (a jet being either a quark or a gluon to better simulate radiation effects),
simultaneously. We correct for potential double counting issues using the jet matching
technique detailed in section 3. The cross sections for all relevant processes are presented
in figure 4, showing that exclusive LQ production dominates and is therefore utilized for
our sensitivity analysis discussed below.

4.1 Lepton initiated LQ production

The idea that LQs may be produced from a lepton that stems via vacuum fluctuations in the
proton was proposed a long time ago [92]. It has become recently feasible due to an improved
estimate of the lepton density functions (LDFs) [100–102] and it has been used at CMS [145].
Here, we discuss how such a process enters our view to proceed to a global search for LQs.

The first point to remark on is that the works [100–102, 145] study s-channel LQ
production only. However, t-channel LQ exchange is possible and should be considered. The
second aspect to note is that one can consider lepton-induced processes using the exclusive
production approach introduced here by noting that all the processes illustrated in figure 2
and discussed above are equally possible by simply substituting a gluon that splits into two
quarks with a photon that splits into two leptons.

There is another more general consideration to mention in relation to the lepton that
produces the LQ, and it concerns whether its mother particle, the photon, for example, stems
from elastic (the proton remains intact, figure 5 (a)) or inelastic (the proton does not remain
intact, figure 5 (b)). For the elastic case, we define one of the protons to be a photon, while
for the inelastic case, we include the photon in the proton without changing the default type.
For λµc = 1, we see that the ratio of the contribution to the cross section from the elastic
to the inelastic case is about 27%. Despite the lower ratio for the elastic case, we point out
that a dedicated search relying on the elastic case would have an enormous advantage in
mitigating the SM background, as pointed out in several investigations [173].

By comparing the total cross section obtained summing up both elastic and inelastic cases
with that using the LDFs as in figure 1 (d), we see that the two are consistent within 20%.

5 Search strategy

The signal we look for produces a signature with two leptons in the final state plus a given
number of jets (0, 1, 2, or at least 3). The samples described in section 3 for the λµc

coupling, as discussed in section 4, are used in the event selection. The events pass the
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Figure 3. Comparison of cross sections versus LQ mass for single (a) and pair (b) productions of
figure 1 (b, c) with those obtained by specifying the corresponding dilepton plus jets (originating from
quarks) final state, along with their ratio (c) for λeu, λµc, and λτb set to 1.0.

signal selection if they satisfy the following baseline requirements: exactly two muons with
transverse momentum pT > 20 GeV, pseudorapidity |η| < 2.5, and invariant mass greater
than 120 GeV; missing transverse energy lower than 50 GeV; and no jets originating from b
quarks. We find that the selection efficiency is about 30% or higher from masses of 1 TeV
and all coupling values.

Jets are chosen to have pT > 20 GeV and |η| < 5, and to be spatially separated from the
selected muons by ∆R > 0.4, where ∆R =

√
(∆η)2 + (∆ϕ)2 and ϕ is the azimuthal angle.
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Figure 4. Cross sections for different leptoquark production modes, for a coupling of the muon to
the c quark λ = 1.

(a) (b)

Figure 5. Feynman diagrams for the single leptoquark production for the cases where a photon that
splits into two leptons is radiated by the proton elastically (a) or inelastically (b).
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We do not set any condition on a minimal number of jets, as we separate the signal region
events into categories with 0, 1, 2, or at least 3 jets.

As discussed in section 4, one significant finding of this study is the contribution from
t-channel processes among the new mechanisms illustrated in figure 2, in addition to the Drell-
Yan production depicted in figure 1. To optimize our search criteria to be sensitive to these
processes, we consider angular spectra of dileptons. This method offers superior discrimination
against background (see [85]) compared to methods considering the energy-related observables
typically employed in LQ searches, which are instead well-suited for signal events featuring
resonant LQs. Given our goal of building a comprehensive search strategy, we propose
leveraging both these aspects simultaneously to enhance our sensitivity to the LQ signal.

In figure 6 we show the distribution from pp events from processes including two jets in the
two-dimensional plane of χ and ST, where χ = e|η1−η2| and η1, η2 are the pseudorapidities of
the two muons, while ST is defined as the sum of the scalar pT of the leptons and selected jets.
The plots are shown for two signal hypotheses: with leptoquark mass equal to MLQ = 2TeV
and coupling λµc = 1, plot (a), and MLQ = 4TeV and coupling λµc = 2.5 plot (b). The
SM background is shown on plot (c).

Background events are generated at leading order (LO) with PDF NNPDF31-lo-as-
0118 [168], and scaled using next-to-leading-order (NLO) cross sections where appropriate.
The processes we consider are W + jets (W → l + ν), Drell-Yan (charged lepton decays) +
jets, single top, tt̄, and diboson (WW, WZ, and ZZ). Background processes are generated with
sufficiently high jet multiplicities to yield an accurate comparison against our targeted signal.
Generator-level production is then interfaced with Pythia 8.2 [167] for parton showering and
hadronization using the Monash 2013 tune [174]. Detector response simulation is obtained
via the Delphes framework [175]. As in our signal events, jet matching is implemented using
the MLM algorithm to avoid double counting of events after showering and hadronization.

6 Expected sensitivity at LHC and HL-LHC

The distributions of the χ and ST variables per jet multiplicity for the events of the signal
regions are used as the final discriminant between the LQ signal and the background. We
sum up signal events from both the pp and γp collisions, accounting for production cross
section, efficiency, and luminosity, and use a profile-binned likelihood statistical test [176]
for assessing the expected signal significance. Nuisance parameters encompassing systematic
uncertainties are introduced for the signal (background), incorporating log-normal priors.
We follow the same prescriptions used in the published LQ searches [122, 124] and we briefly
summarize them below. The uncertainties arising from the selection of the parton distribution
function in the MC production is 2.8% (3.0%), while that related to additional interaction
vertices in the event amount to 0.2% (1.0%). The uncertainties associated with jet and lepton
energy resolution are 0.1% (1.7%) and 0.2% (5.3%), respectively. Additionally, jet and lepton
energy scale uncertainties are included with values of 0.5% (0.9%) and 1.5% (2.5%). The
uncertainties for leptonic reconstruction and identification efficiency stand at 3.0% and 1.3%
(0.3%). For the calculation of expected significance the “Combine Tool” is used [177]. In
figure 7, we present contour plots of the expected significance in the two-dimensional plane
of the coupling λ and the mass of the LQ. These plots are obtained at the center-of-mass
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Figure 6. The plots are shown for two signal hypotheses: with leptoquark mass equal to MLQ = 2TeV
and coupling λµc = 1, plot (a), and MLQ = 4TeV and coupling λµc = 2.5 plot (b). The SM background
is shown on plot (c).

energy of 13TeV and an integrated luminosity of 300 fb−1 (left), as a possible value of the
luminosity expected by the end of the ongoing data-taking period at the LHC referred to as
Run 3, and varying luminosity assumptions (right) at 140 (blue), 300 (red), 3000 (green) fb−1,
for the 5 σ (plain line) and 2 σ (dashed line) significance levels. The vertical lines show
the most recent exclusion limits results at 95% confidence level from a search for LQs from
ATLAS [112] (black dashed) and CMS [124] (violet plain) collaborations scaled for 300 (left)
and 3000 (right) fb−1. The results obtained with the exclusive LQ approach report a 5 (2)
σ significance for LQ masses up to 2.0, 2.2, 2.5 (2.3, 2.4, 3.4) TeV, for λµc = 0.5, and 8.0,
9.7, 18.6 (14.9, 17.5, 27.3) TeV, for λµc = 2.5, at 140, 300, 3000 fb−1. While ATLAS and
CMS scaled results would exclude a LQ coupling to a muon–c quark pair up to masses of 1.7,
1.8, 2.2, and 1.8, 1.9, 2.3 TeV regardless of the coupling value and for the same luminosity
scenarios. With the strategy developed in this article, we obtain that the 2 σ significance
with 140 fb−1 is comparable to the scaled upper limit on the LQ mass expected by ATLAS
and CMS with 3000 fb−1, for the lowest coupling value that we consider.
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(a) (b)

Figure 7. Signal significance in the plane of the coupling λµc and the mass of the LQ using pp and
γp events at

√
s = 13TeV expected for 300 fb−1 (left) and different luminosity scenarios (right). The

colored solid and dashed lines represent 5 and 2 σ levels for the analysis presented in this text, while
the vertical lines show the most recent exclusion limits results at 95% confidence level from a search
for LQs from ATLAS [112] (black dashed) and CMS [124] (violet plain) collaborations scaled for 300
(left) and 3000 (right) fb−1.

7 Summary and remarks

As the LHC proceeds in collecting more data at the utmost center-of-mass energy and with
the slow relative increase in luminosity anticipated by the High-Luminosity initiative of the
accelerator, the absence of compelling evidence for new physics prompts a critical consideration.
It becomes increasingly important to assess whether existing searches have thoroughly
investigated all conceivable paths or whether new approaches may still be formulated to
enhance the discovery potential and to unlock access to a phase space that was not considered
reachable before.

In this paper, we have tackled this question by conducting a comprehensive study of
the well-motivated, known, and extensively researched LQ particle. Although we carry out
a study that is valid for any model, we have relied on a novel scenario of LQ composite
particles via the NJL model with effective strong four-fermion couplings [10, 11]. This is an
important addition to the literature, as in the event of discovering a beyond Standard Model
particle consistent with an LQ, it will be crucial to ascertain its nature and determine its
classification within the various discernible models. In particular, the NJL model introduces
a different concept of compositeness than those considered at LHC [106, 178–184] and offers
a broad variety of new composite particles: integer charge bosons Πf ∼ (ψ̄f

R
ψf

L
) and fermions

F f
R ∼ ψf

R
(ψ̄f

R
ψf

L
) ∼ ψf

R
Πf [19], fractional charge bosons such as the LQ bosons studied here,

composite LQ fermions, and composite Higgs to be studied in future works. These could
manifest in signatures that have not yet been explored at the LHC.

Compared to existing investigations that rely on the primary LQ production modes in
figure 1, for the first time, we have examined the impact on the sensitivity of the search
for particles when they are produced in association with additional jets. We have found
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that several new mechanisms are possible besides the classical pair, single, and Drell-Yan
non-resonant LQ generation, as discussed in section 4 and illustrated in figure 2. We refer
to the ensemble of all allowed processes as “exclusive” LQ production, in analogy to the
terminology adopted in inelastic scattering, where all reaction products are involved.

We have observed that the exclusive cross section exceeds those of the mechanisms
considered in traditional searches. These carry an increase of approximately 70%, 85%, and
threefold (fourfold, 2.4-fold, 75%) over the single (pair) production modes shown in figure 1
respectively for λeu, λµc, and λτb with their value set to 1 and an LQ mass of 1 TeV. This
increase becomes larger at an LQ mass of 3 TeV, corresponding to a factor of about 16, 17,
240 (300, 190, 170), respectively for the considered couplings over single (pair) production.
This result represents an outstanding gain in discovery potential due to the enhanced signal
cross section. Additionally, the signal significance is further increased because, for the same
primary mode, the exclusive production captures new mechanisms at higher jet multiplicities,
which have been shown to further mitigate the SM background [146–153].

Given all the findings presented in this paper, we propose two fundamental recommenda-
tions for developing strategies to investigate new physics, whether for LQs or other particles.
The first is the inclusion of all possible signal contributions across varying jet multiplicities,
employing the exclusive approach rather than relying solely on the primary production
modes, even if an analysis targets a single final state. The second is to use angular spectra
in conjunction with energy-related observables to fully exploit t-channel contribution and
achieve the highest significance.

Moreover, we have expanded this approach referring to LDFs and we also pursued
an unprecedented distinction between inelastic and elastic modes, the former resulting
in about 80% of the total although the latter would benefit from reduced background
contamination [173].

Finally, we propose a global strategy as our key recommendation, to intercept t-channel,
single, and pair signal generation at different jet multiplicities and simultaneously using
the ST and χ distributions. We anticipate that an optimal combination of the energetic
and angular variables could be exploited by relying on machine learning techniques. As
shown in figure 7, we achieve a significance of 5 (2) σ for LQ masses up to 2.0, 2.2, 2.5
(2.3, 2.4, 3.4) TeV, for λµc = 0.5, and 8.0, 9.7, 18.6 (14.9, 17.5, 27.3) TeV, for λµc = 2.5,
at 140, 300, 3000 fb−1. The significance of 2 σ with 140 fb−1 is comparable to the scaled
upper limit on the LQ mass expected by ATLAS [112] and CMS [124] with 3000 fb−1 for
the lowest coupling value that we consider.

These results are notably relevant for BSM scenarios with preferential couplings to
higher fermion generations, including models that have the potential to explain some of the
persistent, yet to be confirmed, anomalies in high energy physics (such as the aforementioned
B → D∗ and (g − 2)µ precision measurements), as they allow to probe a much wider region
of the LQ coupling-mass plane compared to traditional searches and especially for couplings
to higher generation fermions.

In light of the discovery potential and the results presented in this paper, we assert
that an exclusive approach to LQ searches should be incorporated into future investigations
at the LHC. In generalizing these results, we find that the exclusive paradigm and the
aforementioned recommendations should be applied to the exploration of any new particles.
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