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1 Introduction

Gravitational physics and condensed matter theory provide good motivation to investigate
strongly coupled quantum theories in the presence of chemical potentials and curved back-
ground geometries. In this article, we will study systems in 2 + 1 dimensions consisting
of a defect that sources an electric charge, or a magnetic flux, of a U(1) field. In fact, we
can consider dyonic defects that carry both electric charge and magnetic flux (which may
provide a model for anyons). We will find the effects induced by these defects on quantum
conformal fields. Perhaps more intriguingly, we can also hide the defects inside the horizon
of a black hole, where they will continue to have an effect on the quantum conformal fields
outside. The study of all these systems through conventional quantum field theory methods
can often be difficult and of limited reach. However, we will see that holography provides
an efficient means to solve the problem.

Viewed another way, we are dressing the defects and the black holes with quantum
conformal fields that get excited, or polarized, by the background where they live. An
interesting question is how these quantum fields affect the backgrounds when their backreaction
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— gravitational or electromagnetic — is large enough that it must be taken into account.
Holography, in its version as ‘braneworld holography’, allows us to compute this backreaction.
For a range of parameters (charge smaller than the mass — we will make this precise), the
gravitational effect of quantum fields gives rise to quantum black holes which are horizon-
dressed conical defects or quantum-corrected black holes. These were explored, as neutral
solutions, in [1, 2]. Here, with the addition of a chemical potential that becomes a dynamical
gauge field, we will see how quantum black holes charge up in a manner that differs markedly
from the classically charged black holes. In particular, the quantum-induced electromagnetic
field in 2 + 1 dimensions will have better asymptotic behavior than its classical counterpart.
A notable outcome is a new class of (near-)extremal charged black hole solutions.

Chemical defects: charged, conical, and hidden. The simplest system that we study
consists of a CFT in the presence of a defect which sources a chemical potential of the form

A = a

r
dt + µm dϕ (1.1)

at the origin of flat 2 + 1 spacetime

ds2 = −dt2 + dr2 + r2dϕ2 . (1.2)

This potential, with constant a and µm, introduces a marginal deformation in the CFT and
corresponds to a pointlike electric charge and magnetic vortex. We will solve the state of the
CFT using holography, namely, by finding a dual bulk solution of the Einstein-Maxwell-AdS4
theory whose potential and geometry at the boundary are (1.1) and (1.2).

This is not a new problem: the solution for a purely electric defect (a ̸= 0, µm = 0) was
found and analyzed in [3].1 Adding the magnetic flux µm is the first of the extensions that
we will investigate in this article. We will then consider the defect in non-trivial geometries:
first by coupling it to a conical defect in the planar geometry, and then by putting it in a
negatively curved spacetime, namely AdS3, with or without a conical defect. That is, instead
of (1.2) we consider the two-parameter family of spacetimes

ds2 = −
(

α2 + r2

ℓ2
3

)
dt2 + dr2

α2 + r2

ℓ2
3

+ r2dϕ2 . (1.3)

When ℓ3 → ∞ and α ̸= 1, this is a locally flat spacetime with a conical deficit angle (which
is also a marginal deformation)

δ = 2π (1 − α) (1.4)

at r = 0. Such geometries may be engineered in lab systems but are also of general interest
in gravitational theory, e.g., as sections of cosmic strings. When ℓ3 < ∞, the defect (with the
same deficit angle (1.4)) lives in an AdS3 spacetime of locally constant negative curvature
with radius ℓ3. This curvature acts as a potential well that pushes the field energy towards
the origin.

1See also [4] for related considerations.
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It is now a simple step to extend the scheme and hide the defect inside a black hole. For
this purpose, we replace (1.3) with the BTZ black hole geometry [5, 6]

ds2 = −
(

r2 − r2
+

ℓ2
3

)
dt2 + ℓ2

3
dr2

r2 − r2
+

+ r2dϕ2 , (1.5)

which has a black hole horizon at r = r+. In this case, the chemical potential can only be
regular if, in addition to (1.1), there is a constant, relevant term

µe = − a

r+
(1.6)

for the electric component, such that the potential

A =
(

µe + a

r

)
dt (1.7)

vanishes on the horizon.
In this article we will describe the states of a holographic CFT in all these backgrounds

by constructing four-dimensional bulk spacetimes that are dual to them. Using them, we will
compute the expectation values of the stress-energy tensor and the U(1) current induced by the
defect. In contrast with [3], we will argue that these defects must not be assigned an entropy.

Charged quantum black holes and point defects in 2 + 1 dimensions. At this point,
one may notice an apparent oddity, especially in the case of a black hole in a chemical
potential. The U(1) symmetry in this problem is not dynamical. If this meant that it is a
global symmetry, then the charge of the defect would be a global charge, and so would, too, the
charge of the black hole. However, black holes are notorious for not supporting global charges.

In the setup above, the catch is readily apparent. The U(1) symmetry is ‘weakly gauged’,
namely, the CFT couples to the gauge potential A (think of the gauge-covariant derivative)
but the dynamical term ∝ F 2 for the gauge field is suppressed. The weak gauging allows
to compute the vev of the CFT currents that a dynamical gauge field would couple to,2
and therefore the black hole can be charged.

For this to be consistent, the black hole itself must not be dynamical, and indeed the
boundary spacetimes (1.3) and (1.5), like the gauge fields (1.1), are fixed backgrounds for
the CFT. An extension of holographic duality, namely braneworld holography, allows us
to switch on dynamics for both gravity and the gauge field.

By doing this, braneworld holography automatically includes the backreaction of the
quantum CFT on the geometries (1.3) and (1.5) and on the potential (1.1). In the absence of
charge, it was discovered in [1, 2] that this quantum backreaction has notable consequences.
First, it dresses the conical singularities with horizons, to yield quantum black holes in
regimes of 2 + 1 gravity where otherwise there would not be any classical black holes. Second,
it allows the incorporation of the non-linear quantum backreaction on the BTZ black hole.
This is the quantum BTZ black hole.3

2This is analogous to computing the stress tensor in a non-gravitational theory from the variation of the
action with respect to the metric. There, we weakly gauge the diff symmetry to compute the stress tensor
that dynamical gravity would couple to.

3See [7] for the backreaction of free fields on the BTZ black hole.
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In this article, we will draw on the methods of [1, 2] to construct novel charged quantum
black holes in 2+1 dimensions, and also solutions for charged point sources that backreact
on the geometry without creating a horizon.

Charged quantum black holes. The solution of a classical charged BTZ black hole coupled
to a Maxwell field was obtained in [5] (see also [8–10]), but the logarithmic radial dependence
of the classical gauge field in 2 + 1 dimensions endows it with rather pathological features.
Our solution is different in crucial respects. The dynamics of the gauge field is induced
by quantum effects, namely by integrating out the CFT degrees of freedom above a UV
cutoff. This is the same phenomenon that induces gravitational dynamics in the 2 + 1 system,
and it results in a theory of gravity and electromagnetism with a tower of higher derivative
corrections for both fields. The fact that gauge field dynamics is induced by loop effects and
involves a specific infinite tower of higher-order terms (e.g., RF 2, ∇F∇F , etc), implies that
the classical ln r dependence is absent, and is instead replaced by a 1/r fall-off. As a result,
the asymptotic behavior of the solution poses no difficulties.

Charged point sources. When charge is present the backreaction will not dress all the
defects with a horizon. If the charge to mass ratio of the defect is large enough, we find
backreacted charged point sources that have naked curvature singularities. These solutions
should not be discarded away, for the same reason that the Reissner-Nordström solutions with
Q > M > 0 are not regarded as pathological. They correctly describe the gravitational field
created by pointlike charged sources down to the distance where quantum electrodynamics
modifies the electromagnetic field around the charge. This occurs a Compton wavelength away
from the source, and farther than this the classical solution remains valid. In contrast, in the
absence of charge the solutions with negative energy are as pathological as the negative-mass
Schwarzschild solution. All the conical defects with positive energy above the ground state
develop a horizon around them.

The space of solutions of charged quantum black holes is very rich, and we will only
begin to uncover their thermodynamics (in this respect, see [11] for the possibilities that
quantum black holes afford). Their causal structure is like that of the Reissner-Nordström
solution, with an inner horizon that, arguing like [12, 13], is expected to become singular
at the next order in quantum backreaction.

Near-extremal quantum throats. A particularly interesting feature is that the quantum
charged black holes have extremal and near-extremal regimes where they develop long AdS2
throats. Recently, the dynamics of black holes near extremality has been shown to be
dominated by quantum gravitational fluctuations of the throat [14]. These are not part of the
quantum effects in our solution, which come only from the CFT and are an O(1/G) effect
from the large number of holographic CFT degrees of freedom. In the region far from the
throat, these effects are much larger than the quantum fluctuations of the geometry, but the
latter dominate in the throat if the temperature is sufficiently low. Related considerations
have appeared earlier in [13]. Although in this article we will not study the Schwarzian theory
of the throat, we will obtain the parameters and main features of the near-extremal solutions.

These new extremal black holes in 2+1 dimensions necessitate that the charge backreaction
on the horizon is comparable to chargeless effects. Thus they need a nonzero (i.e., not
perturbative) backreaction, and when this is small there are two classes of solutions: black
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holes whose horizons result from the quantum backreaction on a charged horizonless defect,
or small-mass BTZ black holes (with small area) that become extremal through the addition
of quantum charge.

The quantum extremal black holes appear at the parameter boundary between the
charged quantum black holes and the point sources, but there is no discontinuous jump in
the entropy when crossing this boundary. Since the quantum fluctuations of the AdS2 throat
bring down the degeneracy of the extremal black hole, this describes a single microscopic
state [14]. In this sense, the extremal black hole is more like the charged point defects, with
the geometry dominated by large quantum fluctuations.

More recently, it has also been realized that when extremal black holes are deformed
away from spherical shape, their horizon generically develops a tidal singularity [15, 16]. The
horizon of our extremal black holes is not spherical but it is nevertheless smooth because the
solutions are type D and the Weyl tensor is algebraically special. A more generic deformation
is expected to turn them singular.

The plan for the remainder of the article is as follows. In section 2 we construct and
analyze the holographic bulk duals of the quantum conformal fields in the fixed geometric
and chemical backgrounds described above. We obtain them through double-Wick rotation of
Reissner-Nordström-AdS4 solutions, extending the constructions in [3, 17]. In section 3 we use
braneworld holography as in [1, 18] to compute the backreaction of the quantum conformal
fields on the geometry and the gauge field, and examine the properties of the new solutions,
in particular of the new quantum charged BTZ black holes and their extremal limits. We
then conclude in section 4. To improve the readability of sections 2 and 3 without omitting
relevant detail, many of the technical analyses are postponed to a series of appendices.

N.B. While we were writing up this article, ref. [19] appeared in arXiv, which overlaps
with our section 3.

2 Holographic CFT on curved spacetime with a chemical potential

We will now construct the bulk solutions that describe the coupling of a holographic CFT to
the chemical defects (1.1) and geometries (1.3) at the boundary, and from these solutions we
extract the relevant CFT data. In all cases, these are solutions of Einstein-Maxwell theory

I = 1
16πG4

∫
d4x

√
−g

[
6
ℓ2

4
+ R − ℓ2

⋆

4 F 2
]

. (2.1)

We measure the coupling between the Einstein and Maxwell terms using a length scale ℓ⋆.
Equivalently, this can be expressed in terms of the dimensionless gauge coupling constant g⋆ by

ℓ2
⋆ = 16πG4

g2
⋆

. (2.2)

The solutions of this theory are holographic duals to states of a 2+1 dimensional CFT
with a chemical potential. Its central charge is

c = ℓ2
4

G4
(2.3)
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up to a factor that depends on the concrete realization of the duality. Following [12], we will
keep it simple and fix this factor as in (2.3) without being more specific about it. Observe
that the 2+1-dimensional theory only specifies dimensionless ratios of 3+1 quantities, namely

ℓ2
4

ℓ2
⋆

= g2
⋆c

16π
. (2.4)

2.1 Dyonic defects in (conical) AdS3 and Minkowski

Equations (1.1) and (1.3) describe a dyonic defect in a conical AdS3 (for finite ℓ3) or conical
Minkowski geometry (for ℓ3 → ∞). Only in the case α = 1 is the geometry global AdS3
or Minkowski.

Bulk solution. An exact solution of the theory (2.1) with these boundary data is

ds2 = ρ2α2

r2

−(α2 + r2

ℓ2
3

)
dt2 + dr2

α2 + r2

ℓ2
3

+ r2ℓ2
4

ρ2 F−1(ρ)dϕ2

+ dρ2

F−1(ρ) , (2.5)

A = a

r
dt + µm

(
1 − ρ0

ρ

)
dϕ , (2.6)

where
F−1(ρ) = ρ2

ℓ2
4
− 1 − 2G4m

ρ
− Q2

ρ2 . (2.7)

Here m and Q are integration constants of the bulk solution. The constant Q is related to
the parameters appearing in the boundary chemical potential according to

Q2 = ℓ2
⋆

4α2

[
a2

α2 + ρ2
0µ2

m
ℓ2

4

]
, (2.8)

and the interpretation of ρ0 will be clarified momentarily. A detailed analysis of the solution
is provided in appendix A, where we show that it is equivalent to a double Wick rotation
of the familiar Reissner-Nordström AdS black hole with hyperbolic transverse geometry.
Here we summarize the salient features.

The physically sensible solutions are those for which the bulk metric function F−1(ρ)
has a zero at ρ = ρ0 > 0, i.e.,

F−1(ρ0) = 0 , (2.9)

since otherwise the diverging curvature at ρ → 0 is naked. Then the action of ∂ϕ has a fixed
point at ρ = ρ0, and for generic parameter values the solutions exhibit conical singularities
in the (ρ, ϕ) section of the metric. Eliminating them requires that

α = 2
ℓ4

1
|F ′

−1(ρ0)| . (2.10)

With this identification, the bulk geometry is completely regular. While the boundary will
generically have a conical singularity at r = 0 this feature does not extend into the bulk,
as a consequence of the conformal factor.
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CFT state. Equations (2.8), (2.9) and (2.10) give us the complete solution to the state of
the holographic CFT in the presence of the background potentials (1.1) and geometry (1.3).
Namely, once we fix the boundary data a, µm and α, these three equations determine m,
Q and ρ0 in terms of them so that the bulk solution is completely specified. Note that ℓ3
is not involved since it does not appear in (2.8), (2.9) and (2.10), so the relationships are
between the dimensionless parameters (α, a, µm) and (m/ℓ4, Q/ℓ4, ρ0/ℓ4). These have been
worked out in appendix B. In addition, recall that the parameters of the Einstein-Maxwell
theory G4, ℓ4 determine the central charge c of the CFT, (2.3), while ℓ⋆ controls how the
CFT couples to the chemical potential. With this, any quantity computed using the bulk
solution can be translated into a property of the CFT state.

It is now straightforward to obtain the entries of the holographic dictionary, e.g., by
transforming the metric to Fefferman-Graham gauge. The azimuthal component of A sources
a non-trivial response of the CFT, which along with the stress-tensor read

⟨T ν
µ ⟩ = 3c

16π

2mα3

3ℓ4r3 diag {1, 1,−2} , (2.11)

⟨Jϕ⟩ = µmαρ0
ℓ4r3 . (2.12)

According to the discussion above, here m and ρ0 must be regarded as functions of the CFT
background parameters α, a and µm. Any possible dependence of (2.11) and (2.12) on ℓ3
is restricted by conformal invariance, since on dimensional grounds the radial dependence
must be of the form r−3f(r/ℓ3). That the holographic solution has constant f(r/ℓ3), and
hence no dependence on ℓ3, has been argued in [1, 12] to be a consequence of the transparent
boundary conditions for the conformal fields that the holographic construction implicitly
imposes. The argument in [1, 12] was made for neutral systems, but we expect it is also
valid for the charged systems.

The bulk field strength has non-trivial components tangent to the boundary,

F tr|bdry = − a

r2 . (2.13)

This should be interpreted to mean that the CFT is immersed in a background electric field
of precisely this character. This situation is analogous to the dyonic AdS4 black hole, for
which the dual description is a CFT at finite chemical potential immersed in a background
magnetic field [20].

The boundary contains a point charge defect localized at r = 0. This can be seen by
considering the computation of the charge of the bulk solution. Let us change r/α = α/r̃

in (2.5) so the metric becomes

ds2 = ρ2

−(r̃2 + α2

ℓ2
3

)
dt2 + dr̃2

r̃2 + α2

ℓ2
3

+ α2ℓ2
4F−1(ρ)dϕ2 + dρ2

F−1(ρ) . (2.14)

In this form it is apparent that the (t, r̃) part of the geometry describes an AdS2 spacetime,
with the location r = 0 of the defect corresponding to the AdS2 boundary at r̃ → ∞.
The charge of the defect may be computed by integrating the electromagnetic flux at this
boundary, with the result that

Qe = 1
g2

⋆

∫
⋆F = 2πa

αg2
⋆

, Qm = 1
g2

⋆

∫
F = 2πµmρ0

ℓ4g2
⋆

. (2.15)
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Figure 1. The conical deficit/excess is shown across the (m, Q) parameter space, where, roughly, Q

gives a measure of the defect charge and m the stress-energy of the quantum fields. The blue-shaded
region corresponds to conical deficits, while the yellow-shaded region corresponds to conical excesses.
The solid, black curve corresponds to the family of smooth geometries with α = 1. Superposed on
this plot we show several contours of constant α. The blue curves correspond to conical defects with
constant α < 1 and the red curves correspond to conical excesses with constant α > 1. The opacity of
the curves decreases away from the regular solution with lighter colors corresponding to a greater
defect (either excess or deficit).

These charges are bulk quantities and thus they give the expected interpretation of the
total charge (2.8) as

Q2 = g2
⋆G4
πα2

(
Q2

e + Q2
m

)
. (2.16)

Moreover, they can be regarded as parameters of the CFT with a weakly gauged U(1)
symmetry, allowing to write

⟨Jϕ⟩ = α

2π

g2
⋆Qm
r3 . (2.17)

No defect entropy. The authors of [3] noted that, in the case ℓ2
3 → ∞ that they studied, the

AdS2 geometry has an extremal horizon at r̃ = 0 (r → ∞). They interpreted the (regularized)
area of this horizon as a defect entropy. However, this does not seem appropriate for two
reasons. First, recent studies have shown that the entropy of extremal non-supersymmetric
horizons vanishes once the quantum fluctuations of the AdS2 throat are included [14]. Here
we will not perform this analysis (which should be similar to the one in [21]) but we expect
that the same result holds. Second, the extremal horizon is absent when ℓ3 < ∞, which
corresponds to defects in AdS3 instead of flat spacetime. It would seem odd that an intrinsic
property of the defect such as its entropy should depend on the asymptotics of the spacetime
it resides in. The vanishing of the extremal horizon entropy is consistent with this view.

Parameter space. A detailed analysis of the allowed deficit angle is performed in appendix B,
with the final results displayed in figure 1. It shows the conical deficit/excess over the (m, Q)
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parameter space.4 It is possible to have both conical deficits and excesses (with α ≶ 1),
along with a one-parameter family of smooth boundary geometries (α = 1). When the
chemical potential vanishes, the only case with a regular boundary geometry is when the
bulk is AdS4 and the boundary is AdS3. With chemical potential, the situation is actually
much more intricate, with regular geometries existing over a range of m and Q parameters.
All of these states, except for the one with m = 0, have negative energy density, which
must be regarded as a Casimir energy.

Finally, let us highlight that for a certain range of parameters the plot is double-valued.
In these cases, the boundary geometry with a given defect charge has two corresponding bulk
duals. That is, for certain values of the geometric and chemical deformations, there are two
different CFT states. These two possibilities are distinguished by the stress-tensor, which is
sensitive to the value of m. It is plausible that the state with lowest energy is preferred.

2.2 Dyonic defects inside BTZ black holes

It is also possible to hide the charged defect inside a horizon. We therefore consider the
following boundary geometry and chemical potential,

ds2
bdry = −f(r)dt2 + dr2

f(r) + r2dϕ2 with f(r) = r2 − r2
+

ℓ2
3

, (2.18)

Abdry =
(

µe + a

r

)
dt + µmdϕ . (2.19)

The Einstein-Maxwell equations admit an exact solution with these boundary data at
ρ → ∞, namely,

ds2 = ρ2r2
+

r2ℓ2
3

[
−

r2 − r2
+

ℓ2
3

dt2 + ℓ2
3

r2 − r2
+

dr2 + r2 ℓ2
4F+1(ρ)

ρ2 dϕ2
]

+ dρ2

F+1(ρ) , (2.20)

A =
(

µe + a

r

)
dt + µm

(
1 − ρ0

ρ

)
dϕ , (2.21)

with
F+1 = ρ2

ℓ2
4

+ 1 − 2G4m

ρ
− Q2

ρ2 (2.22)

and Q now takes the form

Q2 = ℓ2
⋆ℓ2

3
4r2

+

[
a2ℓ2

3
r2

+
+ ρ2

0µ2
m

ℓ2
4

]
. (2.23)

Analogous to the conical AdS3/Minkowski geometries, this bulk solution can be obtained as
a double Wick rotation of the spherical AdS4 Reissner-Nordström black hole.5 The analysis
is very similar to the previous one for the defects, so we will proceed more quickly, only
emphasizing the differences that the horizon introduces.

4Here Q is the parameter appearing in the metric function (2.7), meaning both electric and magnetic cases
are included in the analysis.

5This is an extension of the construction in [17] to include charge.
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The new feature here is the appearance of µe in the gauge potential. This is necessary
to have a regular gauge field at the horizon at r = r+, which fixes it to

µe = − a

r+
. (2.24)

Therefore µe must not be thought of as an independent parameter in the boundary data.
As before, the relevant bulk geometries are those for which the metric function F+1(ρ)

vanishes at ρ0 > 0. This leads to a regularity requirement in the bulk that fixes the horizon
radius of the boundary black hole in terms of bulk quantities,

r+ = ℓ3
ℓ4

2
|F ′

+1(ρ0)| . (2.25)

Conversely, for the CFT interpretation we regard (2.25) together with (2.23) and F+1(ρ0) = 0
as determining the bulk solution parameters (m, Q, ρ0) (in units of ℓ4) in terms of the CFT
boundary data (r+, a, µm). The relationships are given in appendix B.3. The bulk solution
then provides the state of a strongly coupled CFT deformed by the chemical potential above,
in a thermal equilibrium state on a non-dynamical BTZ black hole. The horizon radius
directly determines the temperature of the boundary system,

T = r+
2πℓ2

3
. (2.26)

A simple analysis of the polynomial F+1(ρ) allows one to make some useful conclusions
about this system. First, by applying Descartes’ rule of signs to the polynomial it can be
determined that there is always a single real, positive root ρ0. A more detailed analysis shows
that at fixed Q, F ′

+1(ρ0) always has a minimum as a function of ρ0. This translates into
an upper bound on the temperature of the boundary BTZ black hole. The upper bound
is Q-dependent with an inverse relationship. That is, for larger values of Q the maximum
temperature of the boundary black hole is lower. The global maximum of temperature is
achieved in the case Q = 0 and decreases to zero as Q → ∞.

The standard tools of holographic renormalization give the CFT data

⟨T ν
µ ⟩ = 3c

16π

2mr3
+

3ℓ4ℓ3
3r3 diag {1, 1,−2} , (2.27)

⟨Jϕ⟩ = µmρ0r+
ℓ4r3ℓ3

, (2.28)

and the same background electric field at the boundary as before, (2.13). For the same
reasons as before, all the dependence on r+ and ℓ3 enters through their ratio r+/ℓ3.

There is a defect at the boundary at r = 0, but now it is inside the horizon of the black
hole. For the BTZ black hole (2.13), this is a null singularity. Computations of the charge
can be carried out in the same manner as before to find

Qe = 2πaℓ3
g2

⋆r+
, Qm = 2πµmρ0

g2
⋆ℓ4

. (2.29)

Then
Q2 = g2

⋆G4ℓ2
3

πr2
+

(
Q2

e + Q2
m

)
, (2.30)

and (2.28) can be expressed as

⟨Jϕ⟩ = r+
2πℓ3

g2
⋆Qm
r3 . (2.31)
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The defect is hidden inside a black hole horizon, but since the boundary geometry is not
dynamical, it is not appropriate to view the horizon area as giving the entropy of the BTZ
black hole at the boundary. Instead, it must be interpreted as the entanglement entropy of
the CFT across this horizon. This is infinite since the horizon extends all the way out to the
boundary at ρ → ∞, but it would be possible to compute finite entropy differences between
states with the same boundary geometry, i.e., the same value of r+ but different values of a

and µm. We expect that the entanglement entropy decreases as the potential increases.

3 Quantum backreaction on charged defects and black holes

To understand how the charged CFT states backreact on the geometry and the gauge field,
we shall use the approach of braneworld holography, which provides a solution to the effective
Einstein-Maxwell theory with higher-derivative terms for both the geometry and the gauge
field. Specifically, we are interested in the charged version of the quBTZ black hole [2]. This
is possible, with remarkable analytic control, due to the existence of a four-dimensional
solution of the Einstein-Maxwell-AdS theory that describes a three-dimensional quantum
black hole on a brane, namely, the AdS4 C-metric, which has a dyonic extension including
electric and magnetic charges of the bulk black hole [22]. The metric can be conveniently
written in the form

ds2 = ℓ2

(ℓ + xr)2

[
−H(r)dt2 + dr2

H(r) + r2
(

dx2

G(x) + G(x)dϕ2
)]

, (3.1)

with
H(r) = r2

ℓ2
3

+ κ − µℓ

r
+ q2ℓ2

r2 , G(x) = 1 − κx2 − µx3 − q2x4 , (3.2)

where the parameters ℓ3, κ, µ, q and ℓ will be soon clarified. Following the same conventions
as in the previous section, the gauge field is taken to be

A = 2ℓ

ℓ⋆

[
e

( 1
r+

− 1
r

)
dt + g (x − x1) dϕ

]
, (3.3)

where e and g are related to the electric and magnetic charge of the black hole,

q2 = e2 + g2 . (3.4)

Note that we have chosen a gauge for the potential that is regular at the relevant zeroes
of H(r) and G(x), namely H(r+) = 0 and G(x1) = 0, where r+ is the largest positive
root and x1 is smallest positive root of the respective polynomial. To ensure Lorentzian
signature, we need to impose G(x) ≥ 0. Therefore, we will consider only the portion of
the spacetime where 0 ≤ x ≤ x1. Importantly, we shall take the brane to be located at
x = 0, which is always a totally umbilic surface in the C-metric. In the following we give a
succinct description of these geometries and the braneworld construction of them, referring
the reader to [2, 23, 24] for more details.

The AdS4 radius ℓ4 in (3.1) is

1
ℓ2

4
= 1

ℓ2
3

+ 1
ℓ2 , (3.5)
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where ℓ3 is the AdS3 radius on the brane and ℓ is directly related with the tension of the
(two-sided) brane as

τ = 1
2πG4ℓ

. (3.6)

The other two parameters in the solution are dimensionless: κ = ±1, 0, which is a discrete
one, and the real number µ, which can be either a positive or a negative quantity. In the
case κ = −1 and µ > 0 we recover the BTZ black hole on the brane, but we will carry out
the study with arbitrary κ and µ to include other interesting quantum black holes. We will
eventually see from later results that we will get the holographic quantum corrections to the
black hole. Since our interest is the induced three-dimensional physics, we will typically keep
ℓ3 fixed and then study the solutions for different values of µ, q and ℓ. Then ℓ4 is a derived
scale, as befits the notion that the bulk emerges from boundary physics.

The bulk is cut off at a brane at x = 0. The Israel junction conditions for the geometry
determine the tension (3.6) [25]. The junction conditions for the electromagnetic field can be
easily obtained starting from Maxwell equations. We take nµ to be a unit normal vector to
the brane pointing towards increasing values of x and eµ

a is a basis for the tangent space to the
brane. Therefore, projecting Fµν on the brane as Fab ≡ Fµνeµ

aeν
b and fa ≡ Fµνeµ

anν , we get [26]

[Fab] = F +
ab − F−

ab = 0, (3.7)
[fa] = f+

a − f−
a = 4πja, (3.8)

where the indices a, b refer to the brane coordinates and the solution labelled as + and − refers
to the spacetime at each side of the brane. The vector ja is the electromagnetic surface current.

The final regularity condition to consider is the smoothness of the geometry along the
rotational symmetry axis x = x1 where G(x1) = 0. Absence of conical singularities requires
that the coordinate ϕ is periodically identified as

ϕ ∼ ϕ + 2π∆ with ∆ = 2
|G′(x1)| = 2x1∣∣−3 + κx2

1 − q2x4
1
∣∣ . (3.9)

Let us now study the induced metric on the brane. We first ensure the coordinates
are canonically normalized by rescaling

t = ∆t̄, ϕ = ∆ϕ̄, r = r̄

∆ . (3.10)

The metric on the brane is then

ds2|x=0 = −H(r̄)dt̄2 + dr̄2

H(r̄) + r2dϕ̄2 (3.11)

with
H(r̄) = r̄2

ℓ2
3
− 8G3M − ℓF (M, q)

r̄
+ ℓ2Z(M, q)

r̄2 . (3.12)

We have identified

F (M, q) = µ∆3 = 8 1 − κx2
1 − q2x4

1
(3 − κx2

1 + q2x4
1)3 , (3.13)

Z(M, q) = q2∆4 = q2 16x4
1

(−3 + κx2
1 − q2x4

1)4 , (3.14)
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and G3 is a ‘renormalized’ Newton’s constant, which is given by

G3 = ℓ4
ℓ

G3 = 1
2ℓ

G4 . (3.15)

This renormalization accounts for the effects that higher curvature terms induced on the
brane have on the definition of the three-dimensional mass M . The identification proceeds
in exactly the same way as in [2], and

M = − κ

8G3
∆2 . (3.16)

On the other hand, the charges are given by the four-dimensional bulk charges,

Qe = 2
g2

⋆

∫
⋆F = 8πℓe∆x1

g2
⋆ℓ⋆

, Qm = 2
g2

⋆

∫
F = 8πℓg∆x1

g2
⋆ℓ⋆

. (3.17)

This point is subtle, and we will discuss it at greater length after we introduce the effective
theory on the brane. Importantly, the physical charges are proportional to (e, g) and vanish
if and only if (e, g) vanish. Therefore, the (e, g) can be usefully used to characterize certain
features of the solution.

The projected components of the electromagnetic tensor on the brane are

Fr̄t̄ = 2eℓ

ℓ⋆r̄2 ∆2 and fϕ̄ = −2gℓ

ℓ⋆r̄
∆2 , (3.18)

which together with the matching condition (3.7) allows us to determine that the induced
current density on the brane takes the form

jϕ̄ = gℓ∆2

πℓ⋆r̄3 . (3.19)

Anticipating the more detailed analysis of backreaction below, the interpretation of
these solutions as three-dimensional quantum backreacted black holes requires that ℓ be
small — otherwise the three-dimensional effective theory breaks down. If one performs a
perturbative expansion in ℓ, then it follows from (3.1) that the effects of the charge only
enter at O

(
ℓ2). Therefore, any finite effects of the introduction of charge, such as we study

next, require to consider finite values of ℓ.

3.1 Branches of charged quantum black holes

The parameter q in quantum black holes allows for extremal static black holes on the brane,
with degenerate, zero temperature horizons. These are a qualitatively new consequence of the
introduction of charge, and understanding their main features allows to discern the behavior
of the intermediate regimes of non-extremal charged quantum black holes. Therefore we will
begin by examining the extremal limits of our black hole solutions.

Reaching extremality requires that the effects of charge backreaction on the horizon of the
black hole are of the same size as those of chargeless origin. Since, as we have argued, charge
backreaction appears at quadratic order, when the backreaction is non-zero but small the
extremal horizon must also be small. There are two different ways in which this is possible:
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• κ = +1: the horizon appears when the backreaction dresses a horizonless defect of the
kind in section 2.1.

• κ = −1: these solutions go over to massless BTZ black holes (whose area is zero) when
backreaction is absent, as in section 2.2.

The distinction between κ = ±1 will be relevant in the discussions that follow.

3.1.1 Extremal quantum black holes

Extremality requires a double root r+ > 0 of H(r), where H(r+) = H ′(r+) = 0. For this
to be possible with ℓ3 and ℓ fixed, the parameters µ and q must be related. It is actually
convenient to use r+ as a parameter, in terms of which the relation between µ and q required
for extremality is

µ0 = 2r+
ℓ

(
κ + 2r2

+
ℓ2

3

)
, q0 = r+

ℓ

√
κ + 3r2

+
ℓ2

3
. (3.20)

From the viewpoint of the brane it is clear that a non-zero quantum backreaction, ℓ ̸= 0,
is needed in order to have an extremal horizon r+ ̸= 0. The differences between κ = ±1
become apparent now:

• When κ = −1 an extremal limit is possible in the absence of charge, q0 = 0, with
r2

+/ℓ2
3 = 1/3. These are extremal hyperbolic black holes in the bulk with µ0 < 0. The

extremal charged solutions all have r2
+/ℓ2

3 > 1/3. For q0 ̸= 0, in the zero backreaction
limit ℓ → 0 these black holes approach a massless BTZ black hole with a charged defect
inside.6 Nevertheless, when ℓ is small but finite the distortion away from the BTZ
geometry must be large enough to render the horizon extremal; the angular distortion
of the bulk horizon is large since in G(x) the charge is not accompanied by factors of ℓ.

• When κ = +1 and ℓ ̸= 0 the extremal horizon appears only when charge and its
backreaction are included. When ℓ is small the black holes have small non-zero size
r+ ∼ µ0ℓ/2 ∼ q0/ℓ and from the bulk viewpoint they are well approximated as four-
dimensional extremal Reissner-Nordström black holes — indeed, in the limit r+/ℓ3 → 0
we recover the relation q0 = µ0/2 characteristic of them.

In appendix C.1 we give a more complete analysis of the different branches of solutions
for the different roots r+.

AdS2 throat. We now show that the geometry near the extremal horizon possesses an
AdS2 throat. We will actually include the leading order away from extremality, which is also
captured in the throat limit. For this purpose, we keep q = q0 fixed, take

µ = µ0

(
1 + ε2

2

)
, r = r+ (1 + ερ) (3.21)

6The limit is singular and subtle and will be clarified in (3.60).
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and expand to leading order for ε ≪ 1. Then

−H(r)dt2 + dr2

H(r) → −ε2r2
+

ρ2 − ρ2
0

L2
2

dt2 + L2
2

dρ2

ρ2 − ρ2
0

(3.22)

with

ρ2
0 = 2r2

+ + κℓ2
3

6r2
+ + κℓ2

3
, L2

2 = r2
+ℓ2

3
6r2

+ + κℓ2
3

. (3.23)

We recognize in (3.22) the geometry of thermal AdS2 with radius L2. In the parametrization
we have chosen, the backreaction parameter ℓ is absent and indeed the expressions in (3.23)
are essentially the same as for the extremal RN-AdS4 black holes [14, 27], which correspond
to the limit ℓ → ∞ of our metrics.

In contrast to the RN-AdS solutions, the angular S2 is not homogeneous. The function
G(x) for this part of the geometry can be expressed in the extremal solutions as

G(x) = 1 − x2
(

1 + r+
ℓ

x

)2
− x3

(
4 + 3r+

ℓ
x

)
r3

+
ℓℓ2

3
, (3.24)

which deviates from the form appropriate for a round sphere, 1− x2, since the acceleration of
the black hole deforms the shape of its horizon. Furthermore, the AdS2 factor is distorted
in the angular direction x due to the conformal factor ∝ 1/(ℓ + xr+)2 in (3.1). This feature
is also present in the extremal rotating qBTZ solutions [13].

Parameter space. Later, when we study the thermodynamics of the general solutions, we
will comment further on the entropy of the near-extremal black holes. We now characterize
over which parameter regimes these solutions exist. The absence of ℓ-dependence in (3.23)
suggests that the main qualitative features of the families of extremal solutions should remain
the same for any finite nonzero value of the backreaction ℓ. We will verify this in the following.

It is convenient to characterize these solutions as a function of the charge parameter q

and the dimensionless backreaction parameter introduced in [2],

ν = ℓ

ℓ3
. (3.25)

In figure 2 we show for a fixed value of ν a plot of F (M, q) vs. M for the extremal quantum
black holes. We break the curve into four segments which we label as 1a, 1b, 2a and 2b
with the meeting points of each branch indicated by blue and red dots. Branches 1a and
1b both have κ = +1 while branches 2a and 2b have κ = −1. The blue dots mark the
transition between the different branches of solutions. The uppermost blue dot, which marks
the meeting point of 1a and 1b, occurs at the maximum value of F (M, q) for the extremal
quantum black holes. The rightmost blue dot, which marks the meeting point of 2a and 2b,
occurs at the maximum value of M . On the other hand, the red dot corresponds to the limit
q → ∞. Note that while the connection between branch 1b and 2b is smooth in the (M, F )
space, it is reached in the limit q → ∞ independently from each side.

While we have fixed ν = 1/5 in the left plot of figure 2, the qualitative shape of the
curve is the same for any finite nonzero value of ν. This is clear from figure 2, where we
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Figure 2. Left: the function F (M, q), which characterizes the holographic stress-energy tensor, for
the four branches of an extremal charged quantum black hole for ν = 1/5. The curve is a parametric
function of q and the arrows indicate the direction of increasing q. Right: branches of extremal
quantum black holes for different values of ν. The dark blue curve corresponds to the limit ν → 0
(which does not describe black holes but charged point defects), while the red curve corresponds to
ν → ∞. The curves in between correspond to ν = 1/5, 3, 25 in order of decreasing opacity. The dashed
black lines show the points of maximum F (M, q) (upper, center) and maximum M (lower, right) as a
function of ν.

show the extremal quantum black holes for different values of ν. All branches of extremal
quantum black holes fall between two limiting cases: that given by the dark blue curve,
which corresponds to the limit ν → 0, and the dark red curve, which corresponds to ν → ∞.
Notably, the red curve perfectly agrees with the parameter ranges of the neutral quBTZ black
hole. In addition to these limiting cases, in the plot we include the branches of extremal
quantum black holes for three finite, nonzero values of ν = 1/5, 2 and 25. The dashed black
lines mark, as a function of ν the points where the different branches meet. That is, the
points where F (M, q) and M reach their maxima for each value of ν.

One notable feature of the extremal quantum black holes is the appearance of solutions
with F (M, q) < 0, as we saw in figure 2. This occurs for the κ = −1 case when the value
of µ at extremality is negative. Note that the ability to have µ < 0 is a feature that is
possible for the charged C-metric, but not the uncharged one. In the case where q = 0
and κ = −1, the existence of a horizon in the bulk requires µ < 0. But this requirement is
inconsistent with G(x) having positive, finite roots. Hence the negative µ solutions cannot
be consistently included in the ordinary quBTZ analysis. However, no such problem occurs
when q ̸= 0, allowing for the exploration of this parameter space. The same fact will extend
to the non-extremal solutions, as we will see below.

We will see below that the function F (M, q) controls the stress-energy tensor of the CFT.
In the absence of charge, the fact that F (M) > 0 means that the energy density is negative
and this is associated with the fact that the stress-energy tensor of the CFT is of Casimir type.
The regimes where F (M, q) < 0 must then be regarded as states where the charge results in
a positive energy density of the CFT large enough to overcome the negative Casimir energy.

A simple analysis of the µext — see appendix C—shows that the extremal solutions
have negative µ when

q <
1√
12 ν

. (3.26)

– 16 –



J
H
E
P
0
8
(
2
0
2
4
)
1
5
0

Figure 3. The branches of non-extremal quantum black holes for ν = 1/5. The red curve is the
quBTZ black hole with q = 0, while the grey curves correspond to q = 1/5, 1, 3 in order of decreasing
opacity. The blue curve traces out the extremal quantum black holes. Solutions with M < 0 can be
roughly viewed as the result of quantum backreaction on the horizonless charged defects of section 2.1.
In the bulk they are approximately Reissner-Nordström black holes. Solutions with M > 0 with large
F (M, Q) are the continuation of the previous ones, but the branches with smaller F (M, Q) are better
viewed as the deformations by quantum backreaction of BTZ black holes of relatively small M . When
the charge is large enough, its backreaction can result in F (M, Q) < 0.

Hence quantum black holes with negative F (M, q) are present for all values of ν for some
appropriate range of q. As it can be seen in figure 2, these black holes are all close to the
M = 0 BTZ black hole. When ν → 0, this portion of the curve becomes sharper, ultimately
limiting to the portion of the dark blue curve that lies along the vertical axis. This is a
non-perturbative feature, corresponding to the simultaneous limit ν → 0 and q → ∞, and
should not be regarded as physical solutions. On the other hand, as ν becomes large, the
range of q values for which F (M, q) is negative decreases. This portion of the curve is still
there, but becomes hardly visible for larger values of ν.

3.1.2 Non-extremal quantum black holes

Having understood the structure of the families of extremal black holes, it is now simple to
understand the non-extremal ones. We show a representative case in figure 3 for ν = 1/5. In
this figure, the blue curve corresponds to the extremal black holes for the fixed value of ν,
while the red curve corresponds to the parameters traced out by the ordinary, q = 0 quBTZ
black hole. The three dark curves are black holes with fixed values of the charge parameter q.
Roughly speaking, the curves traced out by the charged quantum black holes “fill in” the
space between the quBTZ and extremal black hole curves.

The branches of non-extremal quantum black holes share qualitative features with the
neutral quBTZ black hole. First of all, the range of masses is always bounded — see
appendix C—and a proper subset of the allowed masses for the quBTZ black hole. The
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minimum and maximum allowed masses are a function of both q and ν. The minimal mass is
achieved for the κ = +1 black holes, and coincides with the extremal limit in all cases except
for q = 0, in which case the minimum mass corresponds to global AdS3. The maximum mass
occurs for the κ = −1 black holes, but whether it is achieved by an extremal or non-extremal
black hole depends on the particular values of q and ν.

3.1.3 The effect of backreaction

We have so far discussed the properties of the quantum black holes localized on the brane.
However, when ν → 0, the brane approaches the asymptotic AdS boundary. In this limit, the
gravity and gauge field on the brane become non-dynamical and the situation reduces precisely
to the one considered in section 2, with charged defects on a nondynamical boundary geometry.
The solutions just discussed can be understood, in the context of braneworld holography, as
the result of incorporating semiclassical backreaction effects to the configurations discussed
in section 2.

In the absence of backreaction, depending on the parameter values, the defects can reside
either in a black hole or in a conical AdS3 or Minkowski geometry.

For the configurations with κ = −1 that, without backreaction, correspond to a charged
defect inside of a black hole, then backreaction always produces a charged quantum black
hole on the brane. This is to be expected: the BTZ geometry at the boundary in the limit
ν → 0 continues to possess a regular horizon after quantum backreaction is included.

Figure 4 shows what happens when backreaction is implemented in the more subtle
situation with κ = +1, when the ν = 0 geometries are charged defects in AdS3 or Minkowski.
In this case the horizon can only appear due to quantum backreaction, but (in contrast
to the neutral case) it need not do so if the charge is large enough. That is, the effect of
backreaction depends on the ratio of the charge and mass. We highlight this dependence in
figure 4. If the non-backreacted system has q ≥ µ/2, then backreaction will always result in
a naked timelike singularity. If q < µ/2, then the backreaction will produce a quantum black
hole if the backreaction is not too large, but as the backreaction grows it reaches a value
(which is smaller for larger q) at which an extremal black hole eventually forms. Stronger
backreaction results in naked singularities.

The solutions with a naked singularity are not necessarily unphysical. The regime of
q > µ/2 is analogous (when not actually the same) as the regime of Q > M in the Reissner-
Nordström solutions. These are interpreted as correctly describing the gravitational field
of a charged particle at least down to the distances where quantum electrodynamics (not
quantum gravity), through virtual production of charged pairs, modifies the stress tensor of
the electromagnetic field making it less singular. Our solutions must be interpreted in the
same manner. Observe that we find that backreaction creates a naked singularity even in the
situations with α = 1 where, in the absence of backreaction, the geometry where the defect
lives is smooth. The reason is that the electric potential ∝ a/r is singular at r = 0, and thus
its stress tensor diverges and creates a curvature singularity. Like in the Reissner-Nordström
case, these solutions must be regarded as charged pointlike sources.
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Figure 4. We reproduce figure 1 adding the consequences of the backreaction on the solutions
with κ = +1. The backreaction parameter ν increases along the vertical axis. In the first section
(corresponding to the no-backreaction plane ν = 0), the blue-shaded region were conical defects, the
yellow-shaded region were conical excesses, and the black line were smooth boundary geometries. Their
fate when backreaction is accounted for depends on which side of the red surface they lie on. This
surface, which intersects the plane ν = 0 along the red line q = µ/2, indicates extremal black holes
that separate between naked timelike singularities, i.e., charged point sources (above the extremal
surface), and charged quantum black holes (below the extremal surface). When a ν = 0 solution above
the red line, with q ≥ µ/2, is backreacted, it always results in a charged point source. In particular,
the smooth geometries of the first section, on the black line, all turn into singular charged point
sources. Solutions below the red line, with q < µ/2, produce charged black holes if the backreaction is
small enough (smaller for larger charge) and charged point sources if it is larger.

3.2 Effective brane theory and CFT response

The three-dimensional black holes we have been discussing are to be understood as solutions of
an effective theory obtained by integrating out the degrees of freedom above a cutoff energy 1/ℓ,

I = 1
16πG4

[ ∫
ρ≥ℓ

d4x
√
−g(R − 2Λ) +

∫
ρ=ℓ

d3x
√
−hK − 16πG4

∫
ρ=ℓ

d3x
√
−hτ

− ℓ2
⋆

4

∫
ρ≥ℓ

d4x
√
−gFµνF µν + 16πG4

∫
ρ=ℓ

d3x
√
−hAaja

]
, (3.27)

where ρ → 0 is the boundary of AdS and the brane is located near the boundary, at ρ = ℓ.
The above is to be evaluated in a small ℓ expansion. The resulting action is

I = ℓ4
8πG4

∫
d3x

√
−h

[ 4
ℓ2

4

(
1 − ℓ4

ℓ

)
+ R + ℓ2

4

(3
8R2 − RabR

ab
)

+ O(ℓ3
4)
]

+ IEM + ICFT .

(3.28)

– 19 –



J
H
E
P
0
8
(
2
0
2
4
)
1
5
0

In the above, the first terms are the ones that would be cancelled by the counterterms of
holographic renormalization of AdS Einstein gravity (with an additional factor of 2 due to
the Z2 symmetry of the configuration) plus the brane tension term. Additionally, we have
ICFT, which is the action of the conformal fields residing on the brane and, in our setup, are
defined holographically by the four-dimensional bulk. Finally, due to the presence of the
Maxwell term in the four-dimensional action, there arise also U(1) fields on the brane,

IEM = 2
∫

d3x
√
−hAaja + Ict

EM (3.29)

where Ict
EM are the counterterms of the electromagnetic action. Since there are no divergences

associated to the Maxwell term in four-dimensional space-time, these counterterms are not
required in the usual prescription of holographic renormalization. However, since here the
brane is at a finite distance from the boundary, these terms make essential contributions
to the effective field theory on the brane. These terms were thoroughly studied in [28],
leading to the result

Ict
EM = ℓ4ℓ2

⋆

8πG4

∫
d3x

√
−h

[
− 5

16F 2+ℓ2
4

( 1
288RF 2− 5

8Ra
b FacF bc

+ 3
98F ab (∇b∇cFca−∇a∇cFcb)+ 5

24∇aF ab∇cF c
b

)
+O(ℓ3

4)
]

. (3.30)

Strictly speaking, the brane theory should be treated in the sense of effective field
theory [29–32], with the relevant length scale set by the parameter ℓ. Considering this to be a
small parameter, i.e. ℓ ≪ ℓ3, we can expand ℓ4 ∼ ℓ so that the leading terms in the action read

I = 1
16πG3

∫
d3x

√
−h

{
2

L2
3

+ R − ℓ̃2
⋆

4 F 2 + 16πG3Aaja + ℓ2
(3

8R2 − RabR
ab
)

+ O(ℓ4)
}

+ ICFT , (3.31)

where we have also identified the bare three-dimensional Newton’s constant, three-dimensional
cosmological constant, and gauge coupling as

G3 = 1
2ℓ4

G4 ,
1

L2
3

= 2
ℓ2

4

(
1− ℓ4

ℓ

)
= 1

ℓ2
3

(
1+ ℓ2

4ℓ2
3

+O(ℓ4)
)

, ℓ̃2
⋆ = 16πG3

g2
3

. (3.32)

Note that we have absorbed the numerical factors above into the definition of G3 and the
gauge field length scale so that the action takes the conventional form. The relationship
between the central charge c of the CFT and the parameter ℓ of the three-dimensional theory
is unaltered and given by [2]

ℓ = 2cG3
(
1 + O(cG3/L3)2

)
. (3.33)

The three-dimensional gauge coupling is related to the four-dimensional one by

g2
3 = 2

5
g2

⋆

ℓ4
≈ 2

5
g2

⋆

ℓ
. (3.34)
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The numerical factors ensure that the Maxwell sector of the theory has the conventional
normalization,

IEM =
∫

d3x
√
−h

[
− 1

4g2
3

F 2 + Aaja + · · ·
]

, (3.35)

(where the dots indicate the various higher-derivative operators that appear in the effective
action). The appearance of ℓ in eq. (3.34) makes manifest that the gauge field becomes
non-dynamical in the limit ℓ → 0, when the brane is pushed to the asymptotic AdS boundary.

The metric and gauge field (3.11) solve the — Einstein-Maxwell equations that follow from
the above effective theory. We can identify the holographic CFT stress tensor as the right-hand
side of the gravitational equations derived from the action (3.31), which take the form

8πG3⟨Tab⟩ = Rab −
1
2hab

(
R + 2

L2
3

)
− ℓ̃2

⋆

2

(
F c

aFbc −
1
4habF

2
)

+ 16πG3Acj
chab

+ ℓ2
[
4Ra

cRbc −
9
4RRab −∇2Rab + 1

4∇a∇bR

+hab

(13
8 R2 − 3RcdRcd + 1

2∇
2R

)]
+ O(ℓ3) . (3.36)

Computing these terms for the exact metric (3.11) coordinates and taking the limit of small
backreaction ℓ → 0 with (3.33) we get at leading order

⟨T a
b⟩ ∼

cF (M)
r̄3 diag{1, 1,−2} + O(ℓ2) . (3.37)

The effects of charge appear at O
(
ℓ2) and therefore to leading order the function F (M, q)

reduces to the same F (M) as computed for neutral quantum black holes in [12]. For the
extremal solutions the small-ℓ expansion of the stress-energy tensor is expected to break down,
since the curvature and/or the gauge field become large near the horizon, e.g., Ra

cRbc ∼ ℓ−2

or F c
aFbc ∼ ℓ̃−2

⋆ .
From the brane action we can also compute the current response, which sources the

semiclassical Maxwell equations. The result is

⟨Jb⟩ = jb + ℓ̃2
⋆

16πG3

[
∇aF ba + 16

5 ℓ2
(
− 1

72R∇aF ba + 11
18F b

a∇aR + 209
294Rba∇cFa

c

+ 5
4Rac∇cF

b
a + 5

4F ac∇cR
b
a + 317

588∇a∇a∇cF
bc + 317

588∇
b∇c∇aF ac

)
+ O(ℓ3)

]
.

(3.38)

Computing the terms for the Maxwell tensor at the brane (3.18) and (3.19), obtain the
following components of the current density at leading order in ℓ

⟨Jϕ⟩ = ℓ

ℓ⋆

g∆2

πr̄3 , ⟨J t⟩ = − ℓℓ̃2
⋆

8πG3ℓ⋆

e∆2

r̄3 . (3.39)

We can re-express holographic current density in terms of CFT parameters giving

⟨Jϕ⟩ ∝ gg⋆
√

c

r̄3 , ⟨J t⟩ ∝ eℓ
√

c

g⋆r̄3 . (3.40)
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Figure 5. Left: temperature of the black hole as a function of the mass M with ν = 1/5. Each curve
represents a different value of q = 0.1, 0.2, 0.4, 0.8, 1. The darker curves corresponds to smaller values
of q. Right: generalized entropy of a black hole as a function of the mass for q = 0.4 and ν = 1/5.
The blue line corresponds to the generalized entropy and the red one to the classical entropy. The red
dots indicate the extremal black hole.

We see that the azimuthal component is independent of the backreaction parameter ℓ, while
the temporal component has a linear ℓ-dependence. As such, in the limit ℓ → 0 we recover
the same behaviour as obtained in section 2.

Finally, let us comment on the notion of charge from the three-dimensional perspective.
In three dimensions, an electric monopole charge arises from a potential with a logarithmic
dependence on the radial variable, i.e.

Amonopole
t ∼ Q log r . (3.41)

Here, the gauge field does not possess any such logarithmic behaviour. This can be understood
as a consequence of the fact that the four-dimensional gauge field does not localize on the
brane in the same way that gravity does — see [33] for a related discussion in the context of
Randall-Sundrum braneworlds. To compute the charge one should include the full, infinite
tower of higher-derivative corrections to the Einstein-Maxwell theory, and study the conserved
U(1) current of the resulting theory.7 As we will see below, based on thermodynamic reasoning,
the result should be equivalent to the charge computed in the higher-dimensional spacetime.

3.3 Thermodynamics

Finally, we discuss the thermodynamics of the quantum black holes. The determination of
the mass, temperature, and entropy is straightforward as it formally follows from the general
discussion of [2]. The black hole mass M computed on the brane taking into account the
higher-curvature corrections to the gravitational action, was already given in (3.16). The
temperature and generalized entropy are

T = ∆H ′(r+)
4π

= 3∆
4πx1ℓ3

[
1
z

+ κzx2
1

3 − ν2q2x4
1z3

3

]
, (3.42)

7See [34] for an explanation of the infinite derivative theory of gravity arising in the braneworld construction.
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Sgen = 2
4G4

∫ 2π∆

0
dϕ

∫ x1

0

ℓ2r2
+

(ℓ + xr+)2 dx = πℓ3
2G3

∆
√

1 + ν2

x1z (1 + νz) , (3.43)

where we have defined

z = ℓ3
r+x1

. (3.44)

The temperature T is computed relative to the timelike Killing vector, ∂/∂t̄, which has
the correct normalization for a black hole on the brane. The entropy Sgen is identified
with twice the entropy of the four-dimensional black hole, with the factor of two arising
from the Z2 symmetry. From the brane perspective, this includes both the Wald entropy
(including contributions from higher-derivative corrections) along with the entanglement
entropy of the quantum fields.

We show the behaviour of the temperature and entropy in figure 5 for representative
values of the parameters. In the case of the entropy, we also compare it with the ‘classical’
Bekenstein-Hawking entropy, which is the area of the black hole horizon on the brane,

Scl = 1
4G3

2πr+∆ = 1 + νz√
1 + ν2

Sgen . (3.45)

The behaviour of the temperature in the regime of positive masses is qualitatively similar
to the uncharged quBTZ black hole. Differences arise for negative mass. The temperature
of the uncharged quBTZ black hole grows monotonically as the mass is decreased toward
its minimum value. Contrast this with the charged quantum black hole, for which the
temperature reaches a maximum and the rapidly tends to zero in the extremal limit. The
behaviour of the generalized entropy is qualitatively the same for both the uncharged and
charged quBTZ metrics. The only major difference is that, in the charged case, the curve
terminates at finite entropy when extremal solutions are reached.

As for the chemical potential, in the electric case we have chosen a gauge so that it
vanishes on the black hole horizon. The electric chemical potential is the boundary value
of the gauge field

µe = 2ℓe∆
r+ℓ⋆

. (3.46)

The magnetic potential has exactly the same form upon changing e → g.
The most subtle aspect is the determination of the ‘charge’ that enters into the first law.

Ultimately, this is equivalent to the charge from the four-dimensional bulk. As discussed above,
since the gauge field does not localize on the brane, a determination of the charge from the
brane action requires a full resummation of the infinite tower of corrections appearing in the
effective action. The four-dimensional bulk performs this resummation, with the result that

Qe = 2
g2

⋆

∫
⋆F = 8πℓe∆x1

g2
⋆ℓ⋆

, (3.47)

where the prefactor of 2 arises from the Z2 symmetry of the configuration. The magnetic
charge has the same form with e → g.
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The thermodynamics can be put into a form that is quite amenable to computation
by introducing the notation

γ = qx2
1 , γe = ex2

1 , γg = gx2
1 . (3.48)

The thermodynamic parameters then read

M =
√

1 + ν2 (zν + 1)
(
1 + γ2ν2z4 + ν

(
γ2 − 1

)
z3) z2

2G3 (1 + γ2ν2z4 + (2γ2 + 2) ν z3 + (γ2 + 3) z2)2 (3.49)

T =
(
2 − γ2ν3z5 − 2γ2ν2z4 − ν

(
γ2 + 1

)
z3 − 3zν

)
z

2πℓ3 (1 + γ2ν2z4 + (2γ2 + 2) ν z3 + (γ2 + 3) z2) , (3.50)

Sgen = πℓ3
G3

√
1 + ν2 z

(1 + γ2ν2z4 + (2γ2ν + 2ν) z3 + (γ2 + 3) z2) , (3.51)

µe =
√

5g2
3

4πG3

νγe z3 (zν + 1)
(1 + γ2ν2z4 + (2γ2 + 2) ν z3 + (γ2 + 3) z2) , (3.52)

Qe =
√

16π

5g2
3G3

γez2 (zν + 1)
√

1 + ν2

(1 + γ2ν2z4 + 2ν (γ2 + 1) z3 + (γ2 + 3) z2) . (3.53)

The magnetic chemical potential and charge are given simply by replacing γe → γg in
the last two expressions above. Taken all together, these quantities satisfy the first law
of thermodynamics

dM = TdSgen + µedQe + µgdQg , (3.54)

where the variations are computed at fixed values of G3, g3, ℓ3 and ν. While the parameters
introduced above make the verification of the first law rather simple, care must be exercised
in determining the allowed range of parameters which follow from the combined regularity
constraints of the H(r) and G(x) polynomials.

While it would be interesting to study in full detail the thermodynamic properties of
the solutions — see [11, 35–38] for recent progress on this in the case of the quBTZ black
hole—, here we will focus our attention on the solutions near extremality. As mentioned in
the introduction, at sufficiently low temperatures the physics of the near-extremal solutions
is dominated by quantum gravitational fluctuations of the AdS2 throat [14]. Our analysis
includes the quantum effects of the CFT, which dominate over the quantum fluctuations
of the metric only away from the throat. Here we provide some commentary on when the
semiclassical description of the throat can be expected to break down.

The entropy of a near-extremal black hole can be expanded at low temperatures as

S = S0 + 4π2

Mgap
T + . . . , (3.55)

where S0 is the saddle-point entropy of the extremal solution (given by the four-dimensional
area) and Mgap is an energy scale dependent on the characteristics of the solution. When
the temperature is below the scale set by Mgap quantum gravitational fluctuations become
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Figure 6. Entropy for extremal black holes S0 as a function of q for κ = +1 (left) and κ = −1 (right).
The former are dressed charged defects that in the bulk are Reissner-Nordström-like, and the latter
are like small-mass-BTZ driven to extremality with charge. The curves with lighter colors correspond
to higher values of the backreaction ν. The red line corresponds to the zero backreaction limit ν → 0.

important. Expanding the entropy and temperature near extremality allows us to identify

Mgap = 4G3
L2

2

(1 + νz)2
√

1 + ν2 (1 + 2νz)
, (3.56)

where z is evaluated for the extremal solution. We have expressed the result in terms of the
curvature radius of the AdS2 throat L2 — see eq. (3.23)—for simplicity.

As we have explained, quantum fluctuations of the throat cancel the saddle-point value
of the entropy S0 and drive the extremal black hole entropy to zero. However, the value of
S0 still has interest as a measure of the size of the black hole in Planck units. In figure 6 we
plot it as a function of the charge q for different values of the backreaction ν and κ = ±1.
For context, recall that in the limit of vanishing backreaction, the quantum black holes with
κ = +1 reduce to charged point particles at the boundary, while for κ = −1 they were BTZ
black holes with a charged defect inside. Gravitational backreaction dresses the former with
a horizon that, in the bulk, resembles that of a Reissner-Nordström black hole. The solutions
with κ = −1 that are extremal must be regarded as small-mass BTZ black holes driven to
extremality by the addition of quantum charge.

The left plot is for κ = +1, i.e., dressed charged defects that in the bulk are roughly
like Reissner-Nordström black holes. These behave as expected: as the charge grows, and
also as the backreaction increases, the size of the black hole, and hence S0, always grows.
The right plot in figure 6 is for κ = −1. Increasing the backreaction (for fixed q) always
increases the black hole size S0. This is expected, but the effect of adding charge is less
obvious: larger q makes the horizon size grow, as might be expected, but only up to value
where S0 reaches a maximum and then slowly decreases.

While the expression for Mgap is rather simple to state, the analysis is more subtle. This
is because the parameters entering into the expression must be evaluated for the extremal
solution — see appendix C for some relevant technical discussion. This information is
condensed in figure 7, which shows Mgap as a function of q and ν for κ = ±1.

First, let us discuss the case of κ = +1. The behavior of Mgap for them is displayed in
the left column of plots in figure 7. Expanding Mgap in the limit of small ν we find that

Mgap = 4G3
ℓ2

3

1
ν2q2 + . . . , (3.57)
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Figure 7. Mgap as a function of q (top) and ν (bottom) for κ = +1 (left) and κ = −1 (right). The
curves with lighter colours correspond to higher values of q and ν. The blue and red line corresponds
to the limit q → 0 and ν → 0, respectively. For κ = +1, Mgap diverges in these limits, see eq. (3.57).

which indicates that quantum throat effects cannot be neglected for the black holes obtained
in this limit. The reason is that the horizon of these black holes arises due to the backreaction,
so when ν is small the black hole is also small and Mgap will be large.

Examining the extremal solutions we find that as the limit is approached

r+ = ℓ3qν+O(ν3) , Sext
gen = πr+

2G3

(1−
√

1+4q)2

(1+4q−
√

1+4q)(1+
√

1+4q) +O(ν3) . (3.58)

Thus, at weak backreaction the extremal black holes are small and their entropy approaches
zero in proportion to their radius. The limiting extremal configurations we are discussing
correspond to the red line in figure 4. These are the boundary defects that have µ = 2q and
form an infinitesimal extremal black hole when backreaction is turned on. In the bulk, they
are similar to the extremal Reissner-Nordström black hole

The behaviour of Mgap as a function of q is qualitatively similar. When q is small, the
expansion of Mgap has the same asymptotic dependence on q as above, i.e. Mgap ∼ q−2. These
once again correspond to small extremal black holes, and quantum effects are important
for this reason. On the other hand, when q is large, the extremal black holes are large and
quantum effects are more suppressed.

By comparing the left plot in figure 6 with the left ones in figure 7, we see that when
κ = +1 the values of S0 and Mgap are inversely related to each other: both as a function of q

and ν, when S0 increases, Mgap decreases. This is generally expected: the larger the black
hole is in Planck units, the smaller the scale at which quantum gravitational fluctuations
are expected to appear.
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Next let us consider κ = −1, described in the right column of figure 7. For small
backreaction we now have

Mgap = 12G3
ℓ2

3

[
1 + 3q(1 + q)ν2 + O(ν4)

]
. (3.59)

In the same limit, we have

r+ = ℓ3√
3

[
1 + 3ν2q2

2 + · · ·
]

(3.60)

along with

Sext
gen = 81πℓ3q4ν3

8G3
+ O(ν5) , M ext = 19683q8ν6

128G3
+ O(ν8) . (3.61)

At first glance this behaviour may seem strange but it is actually to be expected. Recall
that as ν → 0 the κ = −1 geometries limit to BTZ black holes at the boundary. These black
holes do not have extremal limits with nonzero area, and therefore the limit is in this sense
singular. To maintain the conditions of extremality, the geometric parameters behave as

x1 = 2
√

3
9q2ν

+ O(ν) , ∆ = 81
√

3 q4ν3

4 + O(ν5) , (3.62)

and this forces the limit to zoom in to the M = 0 BTZ black hole, as expected. The
entropy of this black hole behaves linearly in T like (3.55), but with S0 = 0. They have long
throats but their quantum dynamics is not dominated by the Schwarzian mode. Therefore
the relation between S0 and Mgap for these black holes is not as straightforward as it was
for the κ = +1 solutions.

On the other hand, the dependence on q is now qualitatively different. At fixed ν

we can expand

Mgap ≈ 4G3
ℓ2

3

3√
1 + ν2

+ O(q2) . (3.63)

This limit is also understood to be singular. At fixed ν, the q → 0 limit of the extremal
solution would produce an extremal, negative mass hyperbolic black hole in the bulk. However,
due to this metric having µ < 0, the function G(x) does not have any positive, real solutions
in that limit, with x1 → ∞ like x1 ∼ q−2.

4 Final remarks

Using holography we have solved several difficult problems of quantum field theory in the
presence of charged sources, with or without their backreaction on the geometry. It is worth
noting that even solving for a free complex scalar field in a background electric potential
At = a/r in 2+1 dimensions is not simple. This is in contrast with how a free quantum
scalar in a conical geometry (a Zn orbifold) or in a BTZ black hole can be readily solved
through the method of images [39–41] with results that can be usefully compared to the
holographic calculation. The electric potential background cannot be solved with the same
method, and thus we only have the holographic solution.
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The inclusion of charge has also considerably enlarged the class of known quantum black
holes in 2+1 dimensions, with the notable addition of new families of near-extremal black
holes. In this article we have only obtained their main features, but a more complete analysis
of the space of solutions and their physics, including quantum Schwarzian fluctuations of the
throats, seems possible. Extensions to include rotation and other values of the cosmological
constant on the brane can be obtained within the class of type D solutions of Einstein-
Maxwell-AdS theory in [22]. This will allow to add charge to quantum black holes in 2 + 1
de Sitter space of the type constructed in [18, 42, 43].
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A Charged defects from Wick-rotated dyonic AdS black holes

Let us consider the following dyonic black hole solutions in AdS4 (2.1)

ds2 = −Fk(ρ)dT 2 + dρ2

Fk(ρ) + ρ2dΣ2
k (A.1)

with

Fk(ρ) = ρ2

ℓ2
4

+ k − 2G4m

ρ
+ Q̃2

ρ2 and A = 2
ℓ⋆

[(
g̃

ρ+
− g̃

ρ

)
dT + ẽgk(θ)dΦ

]
, (A.2)

where the 2-dimensional metric dΣ2
k is

dΣ2
k =

{
dθ2+sin2 θdΦ2 for k = +1

dθ2+sinh2 θdΦ2 for k = −1 and gk(θ) =
{

1−cosθ for k = +1
s−coshθ for k = −1 .

(A.3)

In both cases, either spherical (k = +1) or hyperbolic (k = −1) black holes, ℓ4 is the
cosmological length scale of AdS4, m is the ADM mass, Q̃2 = g̃2 + ẽ2 is the charge of the
black hole and ρ+ is the largest root of Fk(ρ).
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A.1 AdS at the boundary

We can obtain a boundary geometry that is AdS3 with/without conical defects. A simple
way to obtain this is by starting from the hyperbolic AdS4 black hole in the bulk, this
is (A.1), (A.2) and (A.3) with k = −1.

We now carry out the double Wick rotation of this solution analogous to [17]. The
coordinates and charges are transformed as

T = iαℓ4ϕ , Φ = i
αt

ℓ3
, sinh θ = αℓ3

R
, ẽ = −ie , g̃ = −ig , Q̃ = −iQ . (A.4)

Here α is a dimensionless parameter whose value is determine by regularity of the bulk solution,

α = 1
ℓ4

2
|F ′

−1(ρ0)| . (A.5)

This gives ϕ a period of 2π. The metric and gauge field after these transformations is

ds2 = ρ2α2

R2

−(α2 + R2

ℓ2
3

)
dt2 + dR2

α2 + R2

ℓ2
3

+ R2ℓ2
4

ρ2 F−1(ρ)dϕ2

+ dρ2

F−1(ρ) , (A.6)

A = 2
ℓ⋆

[
−eα2

R
dt + gαℓ4

ρ0

(
1 − ρ0

ρ

)
dϕ

]
, (A.7)

where we have set s = 0. We can bring this metric into Fefferman-Graham form

ds2 = ℓ2
4

z2

(
dz2 + γµν(x, z)dxµdxν

)
, (A.8)

where the metric γµν admits the expansion

γµν(x, z) = γ(0)
µν (x) + z2γ(2)

µν (x) + z3γ(3)
µν (x) + z4γ(4)

µν (x) + . . . . (A.9)

Let us perfom the following change of coordinates

ρ = ℓ4r

αz
+ ℓ4z(f(r) + α2)

4αr
+ O(z2) , R = r + f(r)

2r
z2 + O(z4) , (A.10)

where we have introduced

f(r) = α2 + r2

ℓ2
3

. (A.11)

With this transformation, the metric γµν takes the form:

γ(0)
µν dxµdxν = −f(r)dt2 + dr2

f(r) + r2dϕ2 , (A.12)

and the gauge field can be expanded as a function of z:

At = −2eα2

ℓ⋆r
+ O(z4) , Aϕ = 2gαℓ4

ℓ⋆ρ0

[
1 − αρ0z

ℓ4r
+ O(z2)

]
. (A.13)
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A.2 Minkowski at the boundary

We can obtain a boundary geometry that is three-dimensional Minkowski space with or
without conical defects. To do this, we once again take the hyperbolic AdS4 black hole in the
bulk as our starting point. This time it is convenient to use an alternate slicing for the H2,

ds2 = −F−1(ρ)dT 2 + dρ2

F−1(ρ) + ρ2
[

dR2

R2 + dx2

R2

]
, (A.14)

A = 2
ℓ⋆

[(
g̃

ρ0
− g̃

ρ

)
dT − ẽ

R
dx

]
. (A.15)

We then perform the following transformations

T = iαℓ4ϕ , x = iαt , R → αR , ẽ = −ie , g̃ = −ig . (A.16)

The resulting metric is then

ds2 = ρ2

R2

[
−dt2 + dR2 + ℓ2

4F−1(ρ)
ρ2 α2R2dϕ2

]
+ dρ2

F−1(ρ) , (A.17)

A = 2
ℓ⋆

[
−eα2

R
dt + αℓ4

(
g

ρ0
− g

ρ

)
dϕ

]
. (A.18)

Just as before, the parameter α is fixed by the regularity conditions of the geometry. In
this case, it takes the form

α = 2
ℓ4

1
|F ′

−1(ρ0)| . (A.19)

The coordinate ϕ in the metric is then 2π-periodic.
The metric can be brought into Fefferman-Graham form (A.8) via the transformations

ρ = ℓ4r

z
+ ℓ4z

2r
+ O(z2) , R = r + z2

2r
+ O(z4) , (A.20)

which leads to the following result for the boundary metric,

γ(0)
µν dxµdxν = −dt2 + dr2 + r2α2dϕ2 , (A.21)

and for the gauge field

At = 2eα

ℓ⋆

[
−α

r
+ αz2

2r3 + O(z4)
]

, Aϕ = 2gα

ℓ⋆

[
ℓ4
ρ0

− z

r
+ O(z3)

]
. (A.22)

A.3 BTZ black hole at the boundary

We can obtain a boundary geometry that is the BTZ black hole by starting from the spherical
AdS4 black hole in the bulk, this is (A.1), (A.2) and (A.3) with k = +1.

We now carry out the double Wick rotation of this by transforming the Killing coordinates
and charges as

T = iχ , Φ = iτ , ẽ = −ie , g̃ = −ig . (A.23)
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This brings the metric and gauge field into the following form

ds2 = F+1(ρ)dχ2 + dρ2

F+1(ρ) + ρ2(dθ2 − sin2 θdτ2) , (A.24)

A = 2
ℓ⋆

[(
e

ρ0
− e

ρ

)
dχ + g(1 − cos θ)dτ

]
. (A.25)

We now perform one final transformation of the coordinates given by

τ = r+
ℓ2

3
t , cos θ = r+

R
, χ = ℓ4

ℓ3
r+ϕ , (A.26)

after which the quantities of interest take their final form

ds2 = ρ2r2
+

R2ℓ2
3

[
−

R2 − r2
+

ℓ2
3

dt2 + ℓ2
3

R2 − r2
+

dR2 + R2 ℓ2
4F+1(ρ)

ρ2 dϕ2
]

+ dρ2

F+1(ρ) , (A.27)

A = 2er+
ℓ2

3ℓ⋆

(
1 − r+

R

)
dt + 2ℓ4r+

ℓ3ℓ⋆

(
g

ρ0
− g

ρ

)
dϕ . (A.28)

The constant r+ is determined by requiring ϕ is 2π-periodic, giving (2.25). By performing
a coordinate transformation, we can bring this metric into Fefferman-Graham form (A.8).
We find the following change of coordinates

ρ = rℓ3ℓ4
r+z

+ ℓ4(r2 − 2r2
+)z

4rr+ℓ3
+ O(z2) , R = r + (r2 − r2

+)z2

2rℓ2
3

+ O(z4) . (A.29)

With this transformation, the metric γµν admits the expansion

γ(0)
µν dxµdxν = −f(r)dt2 + dr2

f(r) + r2dϕ2 , (A.30)

where we have introduced

f(r) = r2 − r2
+

ℓ2
3

, (A.31)

which is the metric function on the BTZ black hole. Finally, we expand the components
of the gauge field in the Fefferman-Graham coordinates:

At = 2er+
ℓ2

3ℓ⋆

[(
1 − r+

r

)
+ O(z2)

]
, Aϕ = 2gr+

ℓ3ℓ⋆

[
ℓ4
ρ0

− r+z

rℓ3
+ O(z3)

]
. (A.32)

B Regularity analysis and parameter ranges of boundary geometries

In this appendix, we provide further analysis relevant to obtaining the information presented
in figure 1. The main purpose is to highlight subtleties in the analysis of the different branches
of solutions. For convenience, we work in units of the bulk AdS length, so ℓ4 = 1.
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B.1 Regular geometries

The boundary geometry (A.6) is regular when α = 1, for which we must find a simultaneous
solution to

F−1(ρ0) = 0 and |F ′
−1(ρ0)| = 2 , (B.1)

where ρ+ is the largest root of F (ρ). If Q = 0, the only consistent solution is M = 0,
which corresponds to the original bulk geometry being AdS4 written in a hyperbolic slicing.
With Q ̸= 0 the situation is more interesting. Now, a consistent solution can be obtained
corresponding to the following constraints among the parameters:

m = 2x3 − x2 − x , Q = x
√
−3x2 + 2x + 1 , (B.2)

where x is a root of F (ρ) = 0. While x is a root of F , we have not called this parameter ρ+
because it has not yet been determined whether x is the largest root.

We require that Q is real, which constrains the allowed values of x to lie in the interval
0 ≤ x ≤ 1.8 However, there is a stricter lower bound that arises because ρ+ used in the
determination of α must be the largest root of F (ρ) = 0. Requiring this further restricts
the range to be

x⋆ < x ≤ 1 , (B.3)

where x⋆ ≈ 0.225762 satisfies

−1 + 14x2
⋆ + 36x3

⋆ − 33x4
⋆ − 88x5

⋆ + 72x6
⋆ = 0 , (B.4)

which is the discriminant of x2F (x) written in terms of the quantities above. For x ≤ x⋆

there is a root of F (ρ) = 0 that is larger than x and regular solutions cannot be constructed.
Therefore, there are bounds on the bulk parameters (M, Q) over which regular boundary
geometries are possible: m⋆ < m ≤ 0 and 0 ≤ Q < Q⋆ where

m⋆ ≡ 2x3
⋆ − x2

⋆ − x⋆ ≈ −0.253717 , Q⋆ ≡ x⋆

√
−3x2

⋆ + 2x⋆ + 1 ≈ 0.257272 . (B.5)

We illustrate this in figure 8. Further, we illustrate how exactly these bounds arise with
a plot of the metric function in figure 9.

B.2 Geometries with defects

We now focus on the circumstance when the boundary geometry contains a charged defect
in AdS3 or Minkowski3.

For generic values of the bulk parameters (m, Q) the boundary will contain a conical
defect. First, solve the conditions

F−1(ρ0) = 0 and |F ′
−1(ρ0)| = 2

α
, (B.6)

8The quadratic under the square root in Q has roots −1/3 and 1, and is positive between these roots.
Absence of naked singularities in the bulk requires positive x, resulting in the range given in the main text.
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Figure 8. The bulk mass parameter m (left) and bulk charge parameter Q (right) against the horizon
radius. The parameters are restricted so that the boundary geometry is AdS3.
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Figure 9. The bulk metric function F (ρ) for parameter x > x⋆ (green) x < x⋆ (blue). The red dots,
which are zeroes of F , indicate the value of x. As x → x⋆, the curve shifts vertically downward. This
shows how the value of x for which the boundary solution is regular fails to be the largest root of F

for x < x⋆.

for Q and m as functions of α and ρ+. Doing so gives,

m = ρ0(2αρ2
0 − ρ0 − α)

α
, Q = ρ0

√
−3αρ2

0 + 2ρ0 + α

α
. (B.7)

Now, write the metric function in terms of these reduced parameters,

F−1(ρ) = (ρ − ρ0)
[
αρ3 + αρ0ρ2 + (1 + ρ2

0)αρ − ρ0(3αρ2
0 − 2ρ0 + α)

]
ρ2α

. (B.8)

This is written in a way that makes manifest the zero of F at ρ = ρ0. However, the term in
square brackets has a mixture of positive and negative terms so in general could have zeros.
We need to examine this term to ensure it does not have a zero that is larger than ρ0, which
would violate the working assumption that ρ0 is the largest root of F .
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A quick way make progress is the following. We write ρ = ρ+ + y and substitute this
into the term inside the square brackets,

αy3 + 4ρ0αy2 + (6ρ2
0 − 1)αy + 2ρ2

0 . (B.9)

If there are zeros of F larger than ρ0, then this polynomial will have a positive root y.
We apply Descartes’ rule of signs. All coefficients in the polynomial are positive unless
ρ0 < 1/

√
6, in which case the polynomial has two sign flips. Issues can arise only in this

case. If ρ0 ≤ 1/
√

6, there are either zero or two positive solutions for y. If it turns out
there are two solutions, then there would exist a root of F larger than ρ0, violating the
assumption that ρ0 is the largest such root. This would prove that there is a smallest value
of ρ0, and indeed this is what we find.

To proceed further we study the discriminant of the polynomial eq. (B.9). The dis-
criminant takes the form

∆ = −4α2
(
72α2ρ6

0 − 88αρ5
0 − 3(20α2 − 9)ρ4

0 + 36αρ3
0 + 14α2ρ2

0 − α2
)

. (B.10)

We restrict our attention to the interval 0 ≤ ρ+ ≤ 1/
√

6. In this case, the discriminant
is positive provided that

α < α⋆ ≡
2ρ3

0(22ρ2
0 − 9) − ρ2

0

√
(3 − 2ρ2

0)3

(−1 + 2ρ2
0)(−1 + 6ρ2

0)2 , (B.11)

and otherwise negative. This gives us all the information we need. Since eq. (B.9) is a
cubic, it will have at most three real roots. When the discriminant is negative, there is
a single real root. However, we know this must occur for negative values of y. This is
because, as we concluded via Descartes’ rule of signs, there are only ever zero or two positive
roots for y. So, if there is a single root, it must be negative. A negative root for y means
that the largest root of F is ρ0 (recall ρ = ρ0 + y) and so there is no problem. On the
other hand, when α ≤ α⋆ the discriminant is positive. This means that all three roots
of (B.9) are positive, and so there must be two roots of F that are larger than ρ0, which
is a contradiction. This means there is actually a α-dependent smallest value of ρ0, and it
is determined through the solution of eq. (B.11).

For a given fixed value of α there is also a largest value of ρ0. This is determined through
the requirement that Q is real, which yields another (this time upper) bound on ρ0.

When producing figure 1, or doing any analysis of the solutions, these bounds on the
parameters must be satisfied. One cannot treat naively ρ0 as a positive but otherwise
free parameter.

B.3 BTZ at the boundary

Let us examine the allowed parameter ranges for setup with a BTZ black hole on the boundary.
To ensure the absence of naked singularities in the bulk, we require that the metric function
has a zero F+1(ρ0) = 0, corresponding to the constraint

ρ4
0 + ρ2

0 − G4mρ0 − Q2 = 0 . (B.12)
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Figure 10. Left: we show the dependence of ρ0/ℓ4 on the bulk parameters (m, Q). Here the solid,
red curve corresponds to Q = 0, while the blue curves correspond to different values of Q, with the
lighter curves corresponding to larger values of Q. Right: we show the dependence of the BTZ horizon
radius r+ on the parameters (ρ0, Q). The red curve corresponds to Q = 0, while the blue curves have
nonzero Q. The value of Q is larger for the lighter colored curves.

Applying Descartes’ rule of signs, we see that there is always a single sign flip, regardless
of the sign of m or Q. This guarantees the existence of a real, positive solution ρ0 for any
value of the parameter m, be it positive or negative. This should be constrasted with the
Q = 0 situation, in which the existence of solutions requires m > 0. We show the behaviour
of ρ0 as a function of the solution parameters (m, Q) in the left panel of figure 10. Here, we
see that the negative m solutions correspond to smaller values of ρ0, while as m becomes
large and positive the curves tend toward the same asymptotic behaviour as in the Q = 0
case. Importantly, in all cases and regardless of the value of Q, the parameter ρ0 takes
on all positive numbers, ρ0 ∈ [0,∞).

Eq. (2.25) requires that the horizon radius of the BTZ black hole be given by

r+ = ℓ3
ℓ4

2∣∣F ′
+1(ρ0)

∣∣ = 2ℓ3ρ3
0

3ρ4
0 + ρ2

0 + Q2 . (B.13)

Together with (2.23), eqs. (B.12) and (B.13) allow to translate the bulk parameters (m, Q, ρ0)
into boundary data (r+, a, µm).

The analysis in this case is particularly simple. We see that r+ → 0 in the limit ρ0 → 0
and in the limit ρ0 → ∞. In the intermediate regime, the function r+(ρ0) has a maximum at

ρ0 =

√
6 + 6

√
1 + 36Q2

6 (B.14)

for which

rmax
+
ℓ3

=

(
1 +

√
36Q2 + 1

)√
6 + 6

√
36Q2 + 1

72Q2 + 6
√

36Q2 + 1 + 6
. (B.15)

The essential detail is that the maximum value of r+ is never larger than the maximum that
occurs for Q = 0. Since the temperature of the black hole has a simple relationship with
the horizon radius, eq. (2.26), these observations directly translate into a statement about
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the temperature. In particular, we can conclude that, for any fixed Q, there is a maximum
temperature and this maximum temperature decreases as the charge of the defect increases.
We show r+ as a function of bulk parameters in the right panel of figure 10, illustrating
the behaviour we have just described.

C Global aspects of the bulk and the brane

C.1 Range of parameters in the bulk and extremality

Let us now make some general remarks about the global structure. The existence of horizons
is governed by the metric function H(r), while G(x) determines the geometry of the transverse
sections. Therefore, the root structure of G(x), and in particular the allowed values of the
smallest root x1 as a function of the solution parameters, determines the possible solutions
that can be described on the brane. For ease of comparison with the quBTZ case, we will
use x1 and q as primary parameters with

G(x1) = 1 − κx2
1 − µx3

1 − q2x4
1 = 0 ⇒ µ = 1 − κx2

1 − q2x4
1

x3
1

. (C.1)

We will need to determine the allowed range of x1 as a function of q. In order to do it we
implement only two requirements: (a) the bulk geometry should have a horizon r0 > 0, (b)
the surfaces of constant bulk (t, r) should be compact, i.e. x1 should be generally a finite
number. In the case of κ = 0, +1 the requirement of horizons necessitates µ > 0. Meanwhile,
for κ = −1 it is possible for horizons to exist for both positive and some range of negative µ.
We find that the key difference here is that extremal black holes are possible in the bulk for
all values of κ which result in a bound on the allowed values of µ in all cases. In eq. (3.20) we
gave the extremal values of µ(q) in parametric form (µ(r0), q(r0)), with r0 the horizon radius.
This is conveniently simple but it does not fully discriminate among branches corresponding
to square root sign choices. Therefore we give here the explicit forms

µ
(κ)
ext =

√
2
3

√√
κ2 + 12ν2q2 − κ

(
2κ +

√
κ2 + 12ν2q2

)
3ν

, r
(κ)
0 =

ℓ3

√√
κ2 + 12ν2q2 − κ

√
6

.

(C.2)
When µ = µ

(κ)
ext the maximum value of x1 — xmax

1 — is obtained. Recall that in the cases
where the braneworld holography can be trusted ν should be a small parameter. We can
expand µ

(κ)
ext for small ν and see the following behaviours:

µ
(+1)
ext = 2q + ν2q3 + O(ν4) , (C.3)

µ
(0)
ext = 4

√
νq3/2

33/4 + O(ν7/2) , (C.4)

µ
(−1)
ext = − 2

3
√

3ν
+
√

3νq2 + O(ν3) . (C.5)

What is notable here is that for κ = −1 the extremal value of µ depends on an inverse power
of ν, and hence should generally be very large. It is also negative in this case.

To determine the value of x1 in the extremal case we must solve G(x1) = 0 with µ = µ
(κ)
ext.

This can be done analytically, but to gain some insight it is useful to look at perturbative
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Figure 11. Left: minimum mass of the charged qBTZ as a function of q for ν = 1/5. It corresponds
to an extremal black hole. Right: maximum mass of the charged qBTZ as a function of q for ν = 1/5.
The red line is the maximum mass of the black hole Mmax allowed by the bulk. The blue line is the
extremal limit.

expansions at small and large values of q and also considering small values of ν. In the
case of large q we get

xmax
1 = 1

√
q

h(ν) − κ

4 × 31/4
1√
νq

+
κ2
(
31/4h(ν) + 2

√
3ν
)

96h(ν)ν3/2
1
q2 + · · ·

 , (C.6)

with
h(ν) = 1 −

√
ν

33/4 + ν

2
√

3
+ . . . . (C.7)

Let us now consider the opposite limit when q is small, we find

xmax
1 = h(ν)

√
q

for κ = 0 , (C.8)

xmax
1 = 1 − q + 2q2 + . . . for κ = +1 , (C.9)

xmax
1 = 2

3
√

3νq2 +
√

3ν

2 − 21
√

3ν3q2

8 + . . . for κ = −1 . (C.10)

We see that for κ = 0 the full and exact solution is xmax
1 = h(ν)√

q . However, for κ = ±1 we
conclude that in all cases we recover the appropriate quBTZ result for xmax

1 as q → 0. Again
here we note that for κ = −1 the result depends on 1/ν, which should be a large number
in the domain of validity of braneworld holography.

C.2 Bounded mass of the charged quBTZ black hole

The range of masses (3.16) is always bounded, and in fact a proper subset of the allowed
masses for the quBTZ black hole. In this case, however, the minimum and maximum allowed
masses is a function of both q and ν. The minimal mass is achieved for the κ = +1 black
holes, and coincides with the extremal limit in all cases (except for q = 0, in which case the
minimum mass corresponds to global AdS3). Let us explore the range of masses (3.16) of
the charged quantum black holes of maximum mass. As a function of x1, M will always
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have a maximum. This occurs when

dM

dx1
= 0 ⇒ xturn

1 =

√
−1 +

√
1 + 36q2

√
6q

. (C.11)

If this value of xturn
1 is less than xmax

1 for the particular values of q and ν, then the maximum
of the mass will occur at this point, and will be given by

Mmax =
27q2

(√
36q2 + 1 − 1

)
4
(
36q2 +

√
36q2 + 1 − 1

)2 . (C.12)

However, it is also possible that xmax
1 < xturn

1 . If this is the case, then it is the extremal
black hole that will have maximum mass — see figure 11.
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