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1 Introduction and physics motivations

In the present paper we work out in dimensional regularization several equivalent versions
of a low-energy theorem (LET) of NSVZ type in SU(N) QCD with Nf massless quarks
derived in [1].

In fact, in the original NSVZ papers [4, 5] an identity has been demonstrated that
relates nonperturbatively the glueball condensate ⟨TrF 2⟩ to the glueball propagator at
zero momentum

∫
⟨TrF 2(x) TrF 2(0)⟩ d4x — or, more generally, a condensate to a suitable

zero-momentum 2-point correlator — hence, the name LET.
In the present paper — following [1] — we study a vast generalization of the above

identity, which we also refer to as LET — that relates n-point correlators in the l.h.s. to
n+ 1-point correlators with the extra insertion of TrF 2 integrated over space-time — i.e.
at zero momentum — in the r.h.s. Apart from its intrinsic interest, the above study has
several applications that we divide in two installments.
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The first installment — in the present paper — concerns the LET applied to 2-point cor-
relators C(O,O)′

0 (z) = ⟨O(z)O(0)⟩′ at distinct points z ̸= 0 of a multiplicatively renormalizable
operator O in the l.h.s.

We demonstrate that the corresponding integrated 3-point correlator in the r.h.s. needs
in general an infinite additive renormalization as ϵ → 0 in addition to the multiplicative
one order by order in perturbation theory. The corresponding counterterm consists in the
subtraction of an integrated — i.e. at zero momentum — divergent contact term proportional
to a δ(4) multiplying the 2-point correlator of O.

We also work out the relation of the LET — in our gauge-invariant framework provided
by dimensional regularization — with a certain OPE coefficient of TrF 2 with an operator O
defined by the solution of the Callan-Symanzik (CS) equation in the momentum representation,
C

(F 2,O)
1 (p), its perturbative and nonperturbative renormalization in the asymptotically free

(AF) phase of QCD, and the nonperturbative renormalization in large-N QCD briefly
recalled below.

The second installment — in a forthcoming paper [6] — concerns the LET in the phases
inside and above the conformal window of QCD, and at the Wilson-Fisher conformal fixed
point in 4− 2ϵ dimensions. In fact, it depends crucially on some delicate results in the first
one that we report in detail in the conclusions.

We now recall further relations of the LET in the present paper with the existing literature.
The LET has two versions [1], one involving in the l.h.s. the logarithmic derivative with

respect to the gauge coupling, and one involving the logarithmic derivative with respect to
the RG-invariant scale, ΛUV , in YM theories AF in the UV.

Originally, the LET has been employed [1] to study the nonperturbative renormalization
of large-N confining massless QCD-like theories and, in particular, massless QCD [7–10],
since the second version of the LET and the nonperturbative renormalization [1] of ΛQCD

in the large-N ’t Hooft [7] and Veneziano [8] expansions control [1] the structure of the
nonperturbative counterterms for the YM action.

In fact, the second version of the LET provides an obstruction [11] to the existence
of canonical string models implementing the open/closed string duality that would realize
nonperturbatively the large-N ’t Hooft expansion of QCD and massive N = 1 SUSY QCD
in the confining phase.

Besides, the first version of the LET demonstrates how the open/closed string duality may
be implemented in canonical string models [11] perturbatively realizing massless QCD-like
theories to order g2. In this context an essential tool to actually compute the possible
divergences in the r.h.s. of the LET has been the OPE of O with TrF 2, both in perturbation
theory and in its RG-improved form by a hard-cutoff regularization of the space-time integral
in the r.h.s. [11, 12].

The logic above can be inverted and the relevant contribution to order g2 in the r.h.s. of
the LET for the OPE of O with TrF 2 can be recovered [12] from the anomalous dimension
of O in the l.h.s. by assuming the LET for the 2-point correlator of O.

We should also mention the approach to the OPE in [15] that is closely related to the
LET, but actually independent of the present paper that employs dimensional regularization.
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2 Plan of the paper

In section 3 we work out several equivalent versions of the LET in dimensional regular-
ization and establish their main implications with respect to the aforementioned additive
renormalization.

In section 4 we investigate the relation between the LET and the OPE coefficient C(F 2,O)
1

including contact terms, both in the coordinate and momentum representation. Moreover,
we explicitly compute the corresponding finite and divergent contact terms for C(F 2,F 2)

1
to order g4.

In section 5 we compare the perturbative version of the LET with its nonperturbative
resummation to all perturbative orders.

In section 6 we solve the LET in perturbation theory to order g2, where the theory
is exactly conformal.

In section 7 we investigate — analogously to C
(F 2,F 2)
1 in section 4 — the occurrence

of finite and divergent contact terms for C(F 2,F 2)
0 to order g2, both in the coordinate and

momentum representation.
In section 8 we employ one of our versions of the LET in dimensional regularization

to verify in a gauge-invariant framework the implications of the aforementioned version in
hard-cutoff regularization [11, 12], both perturbatively and nonperturbatively.

In section 9 we summarize the main results of the present paper.
In the appendices A–F we report several ancillary computations.

3 LET

The LET applies to YM theories in d = 4 dimensions.

3.1 LET and Wilsonian normalization of the action

Starting from the Euclidean functional integral of SU(N) YM theories in d = 4 dimensions, the
LET has been derived for bare correlators with the Wilsonian normalization of the action [1]:

⟨O1 · · · On⟩0 =
∫
O1 · · · On e

− N

2g2
0

∫
TrF2d4x+···

∫
e
− N

2g2
0

∫
TrF2d4x+···

(3.1)

with g0 the bare ’t Hooft coupling g2
0 = g2

0Y MN , Tr the trace in the fundamental representation,
Oi local bare operators independent of g0, TrF2 ≡ Tr(FµνFµν), Fµν = ∂µAν − ∂νAµ +
i[Aµ, Aν ], and the sum over repeated indices understood. We explicitly write in eq. (3.1) only
the term in the action that depends on g0 and, therefore, enters the derivation of the LET.
We immediately arrive at the LET by deriving eq. (3.1) with respect to −1/g2

0:

∂

∂ log g0
⟨O1 · · · On⟩0 = N

2g2
0

∫
⟨O1 · · · OnF2(x)⟩0 − ⟨O1 · · · On⟩0 ⟨F

2(x)⟩0 d
4x (3.2)

with F2 ≡ 2TrF2.
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3.2 LET and canonical normalization of the action

We rescale the gauge fields in eq. (3.1) by the factor g0√
N

in order to rewrite the LET for the

canonically normalized YM action [12]. Defining g2
0

N TrF 2 = TrF2 and ( g0√
N
)cOkOk = Ok for

some cOk
— for example, cF 2 = 2 — after the rescaling, with Ok now dependent on g0 but

canonically normalized and Fµν = ∂µAν − ∂νAµ + i g0√
N
[Aµ, Aν ], we get the identity [12]:

⟨O1 · · · On⟩0 =
k=n∏
k=1

(
g0√
N

)cOk

⟨O1 · · ·On⟩0 (3.3)

with the expectation values in the l.h.s. and r.h.s. defined by the Wilsonian and canonical
normalization, respectively. The LET in eq. (3.2) is rewritten in terms of canonically
normalized bare local operators [12] by employing eq. (3.3):

k=n∑
k=1

cOk
⟨O1 · · ·On⟩0 +

∂

∂ log g0
⟨O1 · · ·On⟩0

= 1
2

∫
⟨O1 · · ·OnF

2(x)⟩0 − ⟨O1 · · ·On⟩0 ⟨F
2(x)⟩0 d

4x (3.4)

with F 2 ≡ 2TrF 2. In fact, we only consider the applications of the LET for n = 2 and
O1 = O2 = O:

2cO ⟨O(z)O(0)⟩0 +
∂

∂ log g0
⟨O(z)O(0)⟩0

= 1
2

∫
⟨O(z)O(0)F 2(x)⟩0 − ⟨O(z)O(0)⟩0 ⟨F

2(x)⟩0 d
4x (3.5)

3.3 Dimensional regularization

In general, the bare correlators are divergent and need regularization and, eventually, renormal-
ization. Therefore, the first issue to apply the LET to YM theories is to find a regularization
of the bare correlators and, correspondingly, of the LET. Dimensional regularization preserves
gauge invariance to all orders of perturbation theory and it is our natural choice. It may
be performed both in the coordinate and momentum representation for the correlators of
the fundamental fields and the corresponding composite operators.

3.4 Dimensional regularization of YM theories

In dimensional regularization the space-time dimension is shifted:

d→ d̃ = d− 2ϵ (3.6)

with ϵ positive and small and, in the present paper, d = 4. The canonical dimension
of the bare operators in the action follows by dimensional analysis, for the action to be
dimensionless in d̃ dimensions. In particular, the canonically normalized YM action formally
reads in d̃ dimensions:

S = 1
2

∫
TrF 2

0 d
d̃x (3.7)
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with TrF 2
0 = Tr(FµνFµν) the bare operator. Given [dd̃x] = −d̃, with [.] the mass dimension

of its argument, [S] = 0 implies:

[TrF 2
0 ] ≡ ∆̃F 2

0
= d̃ (3.8)

As Fµν = ∂µAν − ∂νAµ + i g0√
N
[Aµ, Aν ], the canonical dimension of the bare gauge field

Aµ follows:

[Aµ] =
∆̃F 2

0

2 − 1

= d̃

2 − 1
d=4= 1− ϵ (3.9)

Besides, since [∂µ] = 1, eq. (3.9) implies for the bare gauge coupling:

[g0] = −2[Aµ] +
d̃

2

= 2− d̃

2
d=4= ϵ (3.10)

We recall some relations needed to rewrite the LET in terms of the renormalized coupling
and correlators in dimensionally regularized YM theories. According to eq. (3.10) we get:

g0 = Zg(g, ϵ)µϵg (3.11)

where g is the dimensionless renormalized gauge coupling and Zg the renormalization fac-
tor that in MS-like renormalization schemes is a series of pure poles in ϵ — as it is the
renormalization factor ZO for a multiplicatively renormalizable operator O. Moreover, the
beta function reads in d̃ = 4 − 2ϵ dimensions:

β(g, ϵ) = −ϵg + β(g) (3.12)

with:

β(g, ϵ) = dg

d logµ (3.13)

and:

β(g) = −g d logZg

d logµ

= dg

d logµ

∣∣∣∣
ϵ=0

(3.14)

the beta function in d = 4 dimensions. We obtain from eq. (A.6):

∂ log g
∂ log g0

=
(
1 + ∂ logZg

∂ log g

)−1

= 1− β(g)
ϵg

= Z−1
F 2 (g, ϵ) (3.15)

– 6 –
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that follows from the logarithmic derivative of eq. (3.11) by equating eq. (3.12) to:

β(g, ϵ) = −ϵg
(
1 + ∂ logZg

∂ log g

)−1
(3.16)

Finally, from the anomalous dimension γO of a multiplicatively renormalizable operator
O = ZOO0:

γO(g) = −d logZO

d logµ (3.17)

we obtain:

∂ logZ−2
O

∂ log g0
= −2∂ logZO

∂ log g0

= −2d logZO

d logµ
d logµ
d log g

∂ log g
∂ log g0

= 2γO(g)
(1
g

dg

d logµ

)−1 (
1 + ∂ logZg

∂ log g

)−1

= 2γO(g)
(
β(g, ϵ)
g

)−1 (
1− β(g)

ϵg

)
= −2γO(g)

ϵ

(
1− β(g)

ϵg

)−1 (
1− β(g)

ϵg

)
= −2γO(g)

ϵ
(3.18)

employing eqs. (3.17) and (3.15).

3.5 LET in dimensional regularization

The LET in d̃ dimensions with the Wilsonian normalization of bare operators may be written
in terms of the dimensionless bare coupling ḡ0 = g0µ

d̃/2−2 according to eq. (3.10):

∂

∂ log ḡ0
⟨O1 · · · On⟩0 = N

2ḡ2
0
µ2− d̃

2

∫
⟨O1 · · · OnF2(x)⟩0 − ⟨O1 · · · On⟩0 ⟨F

2(x)⟩0 d
d̃x (3.19)

where the µ dependence in the r.h.s. is due to [F2
0 ] = 4. Rewriting eq. (3.19) in terms of

canonically normalized bare operators we get in d̃ dimensions:

k=n∑
k=1

cOk
⟨O1 · · ·On⟩0 +

∂

∂ log g0
⟨O1 · · ·On⟩0

= 1
2

∫
⟨O1 · · ·OnF

2(x)⟩0 − ⟨O1 · · ·On⟩0 ⟨F
2(x)⟩0 d

d̃x (3.20)

where the integral over space-time in the r.h.s. is defined by analytic continuation and, since
[F 2

0 ] = d̃, no dependence on the scale µ appears in the r.h.s. As for the notation, every time
that in an equation the integral over space-time is denoted by:∫

dd̃x (3.21)

– 7 –
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dimensional regularization of the correlators is understood as well. For n = 2 with O1 =
O2 = O we get:

2cO ⟨O(z)O(0)⟩0 +
∂

∂ log g0
⟨O(z)O(0)⟩0

= 1
2

∫
⟨O(z)O(0)F 2(x)⟩0 − ⟨O(z)O(0)⟩0 ⟨F

2(x)⟩0 d
d̃x (3.22)

3.6 Bare LET

We limit ourselves to correlators of gauge-invariant scalar operators O(z) that are multiplica-
tively renormalizable up to the mixing with operators that are BRST variations and operators
that vanish by the equations of motion (EOM) [16–18]. We neglect the mixing with BRST
operators, since their insertion in gauge-invariant correlators vanishes. The mixing with EOM
operators produces at most contact terms. Therefore, we set z ̸= 0 unless otherwise stated,
so that we may ignore the above mixing both in the l.h.s. and r.h.s. of the LET and express
the LET in terms of the multiplicatively renormalized operator O(z). Then, the LET reads
in terms of the bare operator F 2

0 (x) and the multiplicatively renormalized one O(z):

⟨O(z)O(0)⟩
(
2cO − 2γO(g)

ϵ
+ Z−1

F 2
∂ log ⟨O(z)O(0)⟩

∂ log g

)
= 1

2

∫
⟨O(z)O(0)F 2

0 (x)⟩ − ⟨O(z)O(0)⟩ ⟨F 2
0 (x)⟩ dd̃x (3.23)

with:

Z−1
F 2 = 1− β(g)

ϵg
(3.24)

Eq. (3.23) is obtained from eq. (3.22) as follows. The renormalized operator O is related
to the bare one O0 by a multiplicative renormalization, hence:

O0(z) = Z−1
O (g, ϵ)O(z) (3.25)

The l.h.s. of eq. (3.23) is then obtained by multiplying by the factor Z2
O the l.h.s. of eq. (3.22)

that reads:

2cO Z
−2
O ⟨O(z)O(0)⟩+ g0

∂

∂g0
Z−2

O ⟨O(z)O(0)⟩+ Z−2
O g0

∂

∂g0
⟨O(z)O(0)⟩

= Z−2
O ⟨O(z)O(0)⟩

(
2cO + ∂ logZ−2

O

∂ log g0
+ ∂ log ⟨O(z)O(0)⟩

∂ log g0

)

= Z−2
O ⟨O(z)O(0)⟩

(
2cO − 2γO(g)

ϵ
+
(
1− β(g)

ϵg

)
∂ log ⟨O(z)O(0)⟩

∂ log g

)
(3.26)

where in the last line we have employed:

∂

∂ log g0
= ∂ log g
∂ log g0

∂

∂ log g (3.27)

and eqs. (3.15) and (3.18).

– 8 –



J
H
E
P
0
8
(
2
0
2
4
)
1
4
5

3.7 Renormalized LET

In general, both sides of the LET in eq. (3.23) diverge as ϵ→ 0 order by order in perturbation
theory. Hence, we derive from eq. (3.23) two renormalized versions of the LET requiring
that the l.h.s. — and therefore also the r.h.s. — is finite as ϵ → 0.

They differ by a finite term in the renormalized object in the l.h.s. and we find it convenient
to present each of them, (I) and (II), in three — though totally equivalent — ways as follows.

Version (IA):

∂ ⟨O(z)O(0)⟩
∂ log g = 1

2ZF 2

∫
⟨O(z)O(0)F 2

0 (x)⟩ − ⟨O(z)O(0)⟩ ⟨F 2
0 (x)⟩ dd̃x

−ZF 2

(
2cO − 2γO(g)

ϵ

)
⟨O(z)O(0)⟩ (3.28)

(IA) shows that, since the l.h.s. above is by construction finite as ϵ→ 0 because it is expressed
only in terms of a renormalized object, also the r.h.s. must be finite. Moreover, it shows
that the integrated correlator in the r.h.s. needs an additive renormalization in addition
to the multiplicative one.

Version (IB):

∂ ⟨O(z)O(0)⟩
∂ log g

= 1
2ZF 2

∫
⟨O(z)O(0)F 2

0 (x)⟩ −
(
2cO − 2γO(g)

ϵ

) (
δ(d̃)(x− z) + δ(d̃)(x)

)
⟨O(z)O(0)⟩

− ⟨O(z)O(0)⟩ ⟨F 2
0 (x)⟩ dd̃x (3.29)

where δ(d̃)(x) is defined by analytic continuation by means of the equation [19]:∫
δ(d̃)(x) dd̃x = 1 (3.30)

and it is a well-defined distribution in integer dimensions. (IB) shows that the aforementioned
additive renormalization is equivalent to the subtraction of finite and divergent contact terms
as ϵ→ 0 from the bare 3-point correlator in the r.h.s. By locality and dimensional analysis,
in d = 4 dimensions this counterterm is proportional to the product of the 2-point correlator
⟨O(z)O(0)⟩ and the sum of contact terms δ(4)(x) + δ(4)(x− z). Only after the subtraction
involving the above mentioned finite and divergent contact terms, the integrated bare 3-point
correlator becomes multiplicatively renormalizable.

Version (IC):

∂ ⟨O(z)O(0)⟩
∂ log g

= 1
2ZF 2

∫
⟨O(z)O(0)F 2

0 (x)⟩ − 2cO

(
δ(d̃)(x− z) + δ(d̃)(x)

)
⟨O(z)O(0)⟩

− ⟨O(z)O(0)⟩ ⟨F 2
0 (x)⟩ dd̃x+ ZF 2

2γO(g)
ϵ

⟨O(z)O(0)⟩ (3.31)

(IC) shows that subtracting only the finite contact terms in (IB) from the bare correlator
in the r.h.s. changes the divergent contact terms to be subtracted from the multiplicatively

– 9 –
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renormalized one, in order to obtain the very same finite fully renormalized object defined
in the l.h.s.

In fact, there is a finite ambiguity also in the definition of the fully renormalized object
in the l.h.s. that affects the infinite additive renormalization of the integrated bare 3-point
correlator in the r.h.s.

Version (IIA):

∂ ⟨O(z)O(0)⟩
∂ log g + 2cO ⟨O(z)O(0)⟩

= 1
2ZF 2

∫
⟨O(z)O(0)F 2

0 (x)⟩ − ⟨O(z)O(0)⟩ ⟨F 2
0 (x)⟩ dd̃x

+ZF 2
2γO(g)− 2cO

β(g)
g

ϵ
⟨O(z)O(0)⟩ (3.32)

where we have employed (IA) and the identity:

− 2cO

1− β(g)
ϵg

+ 2cO = −
2cO

β(g)
g

ϵ
(
1− β(g)

ϵg

) (3.33)

As anticipated, the finite change in (IIA) with respect to (IA) in the definition of the fully
renormalized object in the l.h.s. of the LET produces an infinite change in the needed additive
renormalization of the bare 3-point correlator in the r.h.s.

Version (IIB):

∂ ⟨O(z)O(0)⟩
∂ log g + 2cO ⟨O(z)O(0)⟩

= 1
2ZF 2

∫
⟨O(z)O(0)F 2

0 (x)⟩+
2γO(g)− 2cO

β(g)
g

ϵ

(
δ(d̃)(x− z) + δ(d̃)(x)

)
⟨O(z)O(0)⟩

− ⟨O(z)O(0)⟩ ⟨F 2
0 (x)⟩ dd̃x (3.34)

that is the analogue of (IB).
Version (IIC):

∂ ⟨O(z)O(0)⟩
∂ log g + 2cO ⟨O(z)O(0)⟩

= 1
2ZF 2

∫
⟨O(z)O(0)F 2

0 (x)⟩ −
2cO

β(g)
g

ϵ

(
δ(d̃)(x− z) + δ(d̃)(x)

)
⟨O(z)O(0)⟩

− ⟨O(z)O(0)⟩ ⟨F 2
0 (x)⟩ dd̃x+ ZF 2

2γO(g)
ϵ

⟨O(z)O(0)⟩ (3.35)

that is the analogue of (IC).

3.8 Renormalized LET and operator mixing of F 2 in massless QCD

The various forms of the LET in terms of the bare operator F 2
0 apply to any YM theory.

However, it is convenient to express the LET in terms of the renormalized operator F 2. The
renormalization of F 2 depends on the specific choice of the YM theory.
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In massless QCD F 2 mixes [20] with the quark Lagrangian density ψ̄γµDµψ that vanishes
by the EOM, whose insertion in the correlators produces at most contact terms. Yet, contact
terms cannot be ignored in the r.h.s. of the LET because of the space-time integration.

Nevertheless, even if F 2
0 mixes with ψ̄γµDµψ, (IIA) shows that the integrated correlator

in the r.h.s. is made finite by the multiplicative renormalization ZF 2 in addition to the
additive one, despite the possible nontrivial mixing of F 2. Hence, as far as the LET is
concerned, we may define F 2 ≡ ZF 2F 2

0 and ignore the mixing.

3.9 RG-invariant form of the LET

It is worth writing the LET in a form that involves the RG-invariant operator (appendix A):

−ϵF 2
0 = −ϵZ−1

F 2 (g, ϵ)ZF 2(g, ϵ)F 2
0

= −ϵZ−1
F 2 (g, ϵ)F 2

= −ϵ
(
1− β(g)

ϵg

)
F 2

= β(g, ϵ)
g

F 2

(3.36)

Multiplying eq. (3.23) by −ϵ and employing eq. (3.15) we obtain:

⟨O(z)O(0)⟩
(
2γO(g)− 2cOϵ+

β(g, ϵ)
g

∂ log ⟨O(z)O(0)⟩
∂ log g

)
= 1

2
β(g, ϵ)
g

∫
⟨O(z)O(0)F 2(x)⟩ − ⟨O(z)O(0)⟩ ⟨F 2(x)⟩ dd̃x (3.37)

Interestingly, in this form of the LET no infinite additive renormalization arises.
Finally, setting O0 = F 2

0 and multiplying eq. (3.22) by (−ϵ)3 we get:

−2cOϵ ⟨
β(g, ϵ)
g

F 2(z)β(g, ϵ)
g

F 2(0)⟩+ β(g, ϵ)
g

∂

∂ log g ⟨β(g, ϵ)
g

F 2(z)β(g, ϵ)
g

F 2(0)⟩

= 1
2

∫
⟨β(g, ϵ)

g
F 2(z)β(g, ϵ)

g
F 2(0)β(g, ϵ)

g
F 2(x)⟩

− ⟨β(g, ϵ)
g

F 2(z)β(g, ϵ)
g

F 2(0)⟩ ⟨β(g, ϵ)
g

F 2(x)⟩ dd̃x (3.38)

3.10 LET involving ΛUV

In an AF YM theory the LET can be rewritten in terms of the RG-invariant scale ΛUV [1].
We obtain in dimensional regularization:

⟨O(z)O(0)⟩
(
2γO(g)− 2cOϵ−

∂ log ⟨O(z)O(0)⟩
∂ log ΛUV

)
= 1

2
β(g, ϵ)
g

∫
⟨O(z)O(0)F 2(x)⟩ − ⟨O(z)O(0)⟩ ⟨F 2(x)⟩ dd̃x (3.39)
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employing the chain rule ∂
∂ log g = ∂ΛUV

∂ log g
∂

∂ΛUV
, the defining relation of the RG invariance

of ΛUV (appendix D.1): (
µ
∂

∂µ
+ β(g, ϵ) ∂

∂g

)
ΛUV = 0 (3.40)

and the identity:
∂ΛUV

∂ logµ = ΛUV (3.41)

that follows from ΛUV = µf(g, ϵ) = elog µf(g, ϵ) for a certain function f(g, ϵ) with g = g(µ).
The l.h.s. of the LET has a finite limit for ϵ → 0. Therefore, also the r.h.s. must be finite
as ϵ → 0. Hence, in the AF phase of the theory this in turn implies the finiteness of the
space-time integral itself in the r.h.s. as ϵ→ 0, so that eq. (3.39) reads in the limit ϵ→ 0:

⟨O(z)O(0)⟩
(
2γO(g)−

∂ log ⟨O(z)O(0)⟩
∂ log ΛUV

)
= 1

2
β(g)
g

∫
⟨O(z)O(0)F 2(x)⟩ − ⟨O(z)O(0)⟩ ⟨F 2(x)⟩ d4x (3.42)

where the integral in the r.h.s. and all the correlators are in d = 4 dimensions.

4 LET and OPE

We show in the following that the infinite additive renormalization of the integrated 3-
point correlator in the r.h.s. of the LET is related to the corresponding divergence of the
multiplicatively renormalized OPE coefficient ZF 2C

(F 2
0 ,O)

1 (p) in the momentum representation:
1
2[ZF 2

∫
⟨O(z)O(0)F 2

0 (x)⟩ dd̃x]div = [ZF 2C
(F 2

0 ,O)
1 (p)]div ⟨O(z)O(0)⟩ (4.1)

The divergence is represented by a contact term in the momentum representation, i.e. a
polynomial in momentum, and it is just a constant in our specific case. The OPE coefficient
in the coordinate representation reads:

ZF 2F 2
0 (x)O(0) = · · ·+ ZF 2C

(F 2
0 ,O)

1 (x)O(0) + · · · (4.2)

Actually, we define C(F 2
0 ,O)

1 (x) as a certain extension, including a distribution supported at
coinciding points x = 0, of the OPE coefficient C(F 2

0 ,O)
1

′
(x) at distinct points x ̸= 0. The above

extension is naturally defined as the inverse Fourier transform of the OPE coefficient in the
momentum representation ZF 2C

(F 2
0 ,O)

1 (p) in the sense of distributions, both in dimensional
regularization and d = 4 by taking the limit ϵ → 0:

ZF 2C
(F 2

0 ,O)
1 (x) = 1

(2π)4−2ϵ

∫
ZF 2C

(F 2
0 ,O)

1 (p)eip·xd4−2ϵp (4.3)

that is inverted as:

ZF 2C
(F 2

0 ,O)
1 (p) =

∫
ZF 2C

(F 2
0 ,O)

1 (x)e−ip·xd4−2ϵx (4.4)

This definition involves implicitly an interplay between the solutions of the CS equation in
the momentum and coordinate representation and the corresponding contact terms.
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4.1 OPE and contact terms from the CS equation in the momentum
representation

We start by recalling the CS equation in the coordinate representation for 2-point correlators
and OPE coefficients of multiplicatively renormalizable operators at distinct points. The
renormalized 2-point correlator at distinct points — denoted by a prime — in d = 4
dimensions satisfies the CS equation (appendix E):(

z · ∂
∂z

+ β(g) ∂
∂g

+ 2(∆O0 + γO(g))
)
⟨O(z)O(0)⟩

∣∣∣∣
d=4

= 0 (4.5)

and analogously for the OPE coefficient at distinct points:(
x · ∂

∂x
+ β(g) ∂

∂g
+ 4 + γF 2(g)

)
C

(F 2,O)
1

′
(x)
∣∣∣∣
d=4

= 0 (4.6)

Similarly, the dimensionally regularized correlator satisfies (appendix D):(
z · ∂

∂z
+ β(g, ϵ) ∂

∂g
+ 2(∆̃O0 + γO(g))

)
⟨O(z)O(0)⟩

∣∣∣∣
d̃=4−2ϵ

= 0 (4.7)

and the OPE coefficient:(
x · ∂

∂x
+ β(g, ϵ) ∂

∂g
+ 4− 2ϵ+ γF 2(g)

)
C

(F 2,O)
1

′
(x)
∣∣∣∣
d̃=4−2ϵ

= 0 (4.8)

where ∆O0 , ∆̃O0 = ∆O0 − δOϵ are the canonical dimensions of O in d = 4 and d̃ = 4 − 2ϵ
dimensions, ∆O = ∆O0 + γO, ∆̃O = ∆̃O0 + γO the scaling dimensions of O, and γO its
anomalous dimension, respectively.

We stress that all the above equations only capture the multiplicative renormalization
of the correlators and OPE coefficients at distinct points, so that their solutions cannot be
extended at coinciding points, even in the dimensionally regularized case. Indeed, to take
into account contact terms, they need to be modified to include additive renormalizations,
as we demonstrate momentarily.

The general solution for the 2-point correlator at distinct points in d = 4 dimensions
is (appendix E):

⟨O(z)O(0)⟩d=4 = G(O)
2 (g(z))
|z|2∆O0

Z(O)2(g(z), g(µ)) (4.9)

with |z| =
√
z2, and for the OPE coefficient:

C
(F 2,O)
1

′
(x)d=4 = G(F 2,O)(g(x))

|x|4
Z(F 2)(g(x), g(µ)) (4.10)

Moreover, in d̃ = 4− 2ϵ dimensions we get for the 2-point correlator (appendix D):

⟨O(z)O(0)⟩d̃=4−2ϵ = G(O)
2 (g̃(z))
|z|2∆̃O0

Z(O)2(g̃(z), g(µ)) (4.11)
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and OPE coefficient:

C
(F 2,O)
1

′
(x)d̃=4−2ϵ = G(F 2,O)(g̃(x))

|x|
∆̃

F 2
0

Z(F 2)(g̃(x), g(µ)) (4.12)

The above solutions may be extended at coinciding points as distributions to include contact
terms. In fact, the — possibly divergent — contact terms are most conveniently obtained
in the momentum representation as ϵ → 0, where the operators are not multiplicatively
renormalizable in general.

To clarify this issue, we discuss the CS equations for the 2-point correlator and OPE
coefficient in the momentum representation that include the aforementioned additive renor-
malization (appendix F).

We denote the fully renormalized 2-point correlator in the momentum representation in
d̃ = 4 − 2ϵ dimensions as the OPE coefficient of the identity C

(O,O)
0 (p):

C
(O,O)
0 (p) = Z2

OC
(O0,O0)
0 (p) + p2∆O0−4µ2(1−δO)ϵZ0c.t. (4.13)

It decomposes into the sum of the multiplicatively renormalized contribution Z2
O C

(O0,O0)
0 (p)

and the — in general divergent as ϵ→ 0 — additive renormalization proportional to Z0c.t..
The corresponding CS equation in dimensional regularization reads (appendix F):(

µ
∂

∂µ
+ β(g, ϵ) ∂

∂g
+ 2γO(g)

)
C

(O,O)
0 (p, µ, g(µ)) = p2∆O0−4µ2(1−δO)ϵγ0c.t.(g) (4.14)

where:

γ0c.t.(g) = µ
dZ0c.t.
dµ

+ 2γOZ0c.t. + 2(1− δO)ϵZ0c.t.

= β(g, ϵ)∂Z0c.t.
∂g

+ 2γOZ0c.t. + 2(1− δO)ϵZ0c.t. (4.15)

Hence, the CS equation in d = 4 dimensions reads:(
µ
∂

∂µ
+ β(g) ∂

∂g
+ 2γO(g)

)
C

(O,O)
0 (p, µ, g(µ)) = p2∆O0−4γ0c.t.(g) (4.16)

Perturbatively, in dimensional regularization as ϵ→ 0, the fully renormalized OPE coefficient
C

(F 2,O)
1 (p) similarly decomposes into the sum of a nontrivial function of p2

µ2 — ZF 2C
(F 2

0 ,O)
1 (p)

— that is obtained by multiplicative renormalization of the bare OPE coefficient C(F 2
0 ,O)

1 (p)
and a — in general divergent as ϵ → 0 — constant term Z1c.t.:

C
(F 2,O)
1 (p) = ZF 2C

(F 2
0 ,O)

1 (p) + Z1c.t. (4.17)

The corresponding CS equation in dimensional regularization reads (appendix F):(
µ
∂

∂µ
+ β(g, ϵ) ∂

∂g
+ γF 2(g)

)
C

(F 2,O)
1 (p, µ, g(µ)) = γ1c.t.(g) (4.18)
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with:

γ1c.t.(g) = µ
dZ1c.t.
dµ

+ γF 2(g)Z1c.t.

= β(g, ϵ)∂Z1c.t.
∂g

+ γF 2(g)Z1c.t. (4.19)

Hence, the CS equation in d = 4 dimensions reads:(
µ
∂

∂µ
+ β(g) ∂

∂g
+ γF 2(g)

)
C

(F 2,O)
1 (p, µ, g(µ)) = γ1c.t.(g) (4.20)

We demonstrate by explicit computation for O = F 2 (section 4.2) that — contrary to eqs. (4.3)
and (4.4), which by definition are the inverse of each other in dimensional regularization
at least in the limit ϵ → 0 — in general:

ZF 2C
(F 2

0 ,O)
1 (p) ̸=

∫
ZF 2C

(F 2
0 ,O)

1
′
(x)e−ip·xd4−2ϵx (4.21)

as ϵ→ 0, with the objects in the coordinate and momentum representation defined by means of
the corresponding CS equations above. The interpretation of the inequality is that in general
not all the divergent contact terms that occur in the momentum representation as ϵ→ 0 arise
from the divergence of the Fourier transform of the OPE coefficient at distinct points as ϵ→ 0.

In general, in order for the Fourier transform of ZF 2C
(F 2

0 ,O)
1 (x) to reproduce ZF 2C

(F 2
0 ,O)

1 (p),
ZF 2C

(F 2
0 ,O)

1 (x) must contain in the sense of distributions some extra divergent contact terms
as ϵ → 0, [ZF 2C

(F 2
0 ,O)

1 (x) − ZF 2C
(F 2

0 ,O)
1

′
(x)]div, that add to the ones that arise from the

Fourier transform of ZF 2C
(F 2

0 ,O)
1

′
(x) at distinct points. We refer to (minus) the divergent

contact terms of the multiplicatively renormalized OPE coefficient in the momentum rep-
resentation as additive counterterms, while we refer to the divergent contact terms that
are extensions of the OPE coefficient in the coordinate representation at coinciding points
[ZF 2C

(F 2
0 ,O)

1 (x) − ZF 2C
(F 2

0 ,O)
1

′
(x)]div as divergent proper contact terms.

To summarize, according to eq. (4.21), in the above language the divergent proper contact
terms do not vanish in general, as we demonstrate below.

4.2 A paradigmatic example: the OPE coefficient for O = F 2

In massless QCD the occurrence of the additive renormalization in the OPE coefficient
C

(F 2,F 2)
1 (p) of F 2 with itself — i.e. in the special case O = F 2 — in the momentum

representation has been discovered to order g4 [3] and g6 [14] in perturbation theory, and
computed in a closed form in terms of the beta function and its first derivative [2] (appendix B),
so that the fully renormalized object reads in our notation:

C
(F 2,F 2)
1 (p) = ZF 2C

(F 2
0 ,F 2)

1 (p) + ZF 2

2g ∂
∂g

(
β(g)

g

)
− 4β(g)

g

ϵ
(4.22)

Interestingly, the above additive counterterm is scheme independent to order g4 [3]:

ZF 2

2g ∂
∂g

(
β(g)

g

)
− 4β(g)

g

ϵ
= −4β1g

4

ϵ
+ · · · (4.23)
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and must cancel a corresponding scheme-independent divergence in ZF 2C
(F 2

0 ,F 2)
1 (p) to order

g4 that we report in our notation in the MS scheme [3]:

ZF 2C
(F 2

0 ,F 2)
1 (p) = 4− 4B1,1g

2 − 4B1,2g
4 + 4β1g

4

ϵ

−4β0g
2 log p

2

µ2 + 4β2
0g

4 log2 p
2

µ2 + 4B1,3g
4 log p

2

µ2 + · · · (4.24)

with the beta-function universal coefficients:

β0 = 1
(4π)2

(11
3 − 2

3
Nf

N

)
β1 = 1

(4π)4

(34
3 − 13

3
Nf

N
+ Nf

N3

)
(4.25)

and the scheme-dependent coefficients:

B1,1 = 1
(4π)2

(
−49

9 + 10
9
Nf

N

)
B1,2 = 1

(4π)4

(
−11509

81 + 66ζ3 + (13− 12ζ3)
Nf

N2
N2 − 1
N

+
(3095

81 + 12ζ3

)
Nf

N
− 100

81
N2

f

N2

)
B1,3 = −4β1 + 2β0B1,1 (4.26)

where we have conveniently rewritten B1,3 [3] in terms of β0, β1 and B1,1.
Hence, as pointed out in [3], it follows from eq. (4.24) that the bare OPE coefficient

C
(F 2

0 ,F 2)
1 (p) in the momentum representation is not multiplicatively renormalizable because

a divergent contact term +4β1g4

ϵ arises in ZF 2C
(F 2

0 ,F 2)
1 (p) to order g4 that is cancelled by

the additive renormalization in eq. (4.22) to order g4.
Our aim now is to reconstruct the OPE coefficient ZF 2C

(F 2
0 ,F 2)

1 (x) in the coordinate
representation to order g4 from the OPE coefficient ZF 2C

(F 2
0 ,F 2)

1 (p) in the momentum repre-
sentation according to eqs. (4.3) and (4.4) as ϵ→ 0. In doing so we verify the inequality in
eq. (4.21) up to order g4, thus demonstrating the occurrence of both additive counterterms
and divergent proper contact terms, according to the terminology introduced above.

To find the OPE coefficient in the coordinate representation whose Fourier transform is
ZF 2C

(F 2
0 ,F 2)

1 (p) in eq. (4.24) it is mandatory to start with an ansatz for the multiplicatively
renormalized coefficient in the coordinate representation at distinct points:

C
(F 2,F 2)′
1 (x) = Z(F 2)(g̃(x), g(µ))

x4−2ϵ
(ag̃2(x) + bg̃4(x) + · · · ) (4.27)

that is solution of the CS equation in d̃ = 4− 2ϵ dimensions in eq. (4.8) for O = F 2, where
to the relevant order (appendix D):

g̃2(x)
g2(µ) = |xµ|2ϵ

1− β0g2(µ) |xµ|2ϵ−1
ϵ

(4.28)

and:

Z(F 2)(g̃(x), g(µ)) = g̃2(x)
g2(µ) |xµ|

−2ϵ (4.29)
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By inserting eqs. (4.28) and (4.29) into eq. (4.27) and setting g(µ) = g, the matching of the
logarithmic terms to order g2 in eq. (4.24) fixes a = 4β0/π

2 and b = −4B̃1,3/π
2 with B̃1,3

to be determined a posteriori. Hence, we get:

C
(F 2,F 2)′
1 (x) = 4β0

π2
µ2ϵg2

x4−4ϵ

(
1− β0g

2 |xµ|2ϵ − 1
ϵ

)−2

−4B̃1,3
π2

µ4ϵg4

x4−6ϵ

(
1− β0g

2 |xµ|2ϵ − 1
ϵ

)−3
+ · · ·

= 4β0
π2

µ2ϵg2

x4−4ϵ

(
1 + 2β0g

2 |xµ|2ϵ − 1
ϵ

)
− 4B̃1,3

π2
µ4ϵg4

x4−6ϵ
+ · · ·

= 4β0
π2

µ2ϵg2

x4−4ϵ

(
1− 2β0g

2

ϵ

)
+ 8β2

0
π2 ϵ

µ4ϵg4

x4−6ϵ
− 4B̃1,3

π2
µ4ϵg4

x4−6ϵ
+ · · · (4.30)

where the second equality is the perturbative expansion for small g with ϵ fixed and the dots
stand for order g6 contributions. Its Fourier transform (FT) is:

FT
[
C

(F 2,F 2)′
1 (x)

]
= 4β0g

2

π2

(
1− 2β0g

2

ϵ

)
FT

[
µ2ϵ

x4−4ϵ

]
+ 4g4

π2

(2β2
0
ϵ

− B̃1,3

)
FT

[
µ4ϵ

x4−6ϵ

]
+ · · ·

= 4β0g
2
(1
ϵ
− log p

2

µ2 + 2 + 3Γ′(1)− log π4

)
+ 8β2

0g
4
{
− 1

2ϵ2 + 1
2 log2 p

2

µ2

−
(1
ϵ
− log p

2

µ2

)(
2 + 3Γ′(1)− log π4

)
+
(1
ϵ
− 2 log p

2

µ2

)(3
2 + 5

2Γ
′(1)− log

√
π

4

)
− 1

2

(
2 + 3Γ′(1)− log π4

)2
+
(3
2 + 5

2Γ
′(1)− log

√
π

4

)2
+ 1

4 − 1
4Γ

′2(1) + 1
4Γ

′′(1)
}

− 4B̃1,3g
4
( 1
2ϵ − log p

2

µ2 + 3
2 + 5

2Γ
′(1)− log

√
π

4

)
+ · · · (4.31)

where in the second equality we have employed the FT in d dimensions:

FT
[
µd−2∆

x2∆

]
≡
∫
ddx

µd−2∆

x2∆ e−ipx = πd/2Γ(d/2−∆)
Γ(∆)

(
p2

4µ2

)∆−d/2

(4.32)

that for d = 4 − 2ϵ and perturbatively in ϵ gives us for ∆ = 2 − 2ϵ:

FT
[
µ2ϵ

x4−4ϵ

]
= π2

(
πp2

4µ2

)−ϵ Γ(ϵ)
Γ(2− 2ϵ)

= π2
(
πp2

4µ2

)−ϵ(1
ϵ
+ 2 + 3Γ′(1) + ϵ

(
4 + 6Γ′(1)(1 + Γ′(1))− 3

2Γ
′′(1)

)
+ · · ·

)
t = π2

(1
ϵ
− log πp

2

4µ2 + 2 + 3Γ′(1) + ϵ

(1
2
(
log πp

2

4µ2 − 2− 3Γ′(1)
)2

+2 + 3
2Γ

′2(1)− 3
2Γ

′′(1)
)
+ · · ·

)
(4.33)
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and for ∆ = 2 − 3ϵ:

FT
[
µ4ϵ

x4−6ϵ

]
= π2

(√
πp2

4µ2

)−2ϵ Γ(2ϵ)
Γ(2−3ϵ)

= π2
(√

πp2

4µ2

)−2ϵ( 1
2ϵ+

3
2+

5
2Γ

′(1)+ ϵ

2
(
9+15Γ′(1)(1+Γ′(1))− 5

2Γ
′′(1)

)
+· · ·

)
= π2

( 1
2ϵ−log

√
πp2

4µ2 +3
2+

5
2Γ

′(1)+ϵ
((

log
√
πp2

4µ2 − 3
2−

5
2Γ

′(1)
)2

+9
4+

5
4Γ

′2(1)− 5
4Γ

′′(1)
)
+· · ·

)
(4.34)

Setting in eq. (4.31):

B̃1,3 = B1,3 − 2β2
0

(
2 + 3Γ′(1)− log π4

)
+ 4β2

0

(3
2 + 5

2Γ
′(1)− log

√
π

4
)

(4.35)

we obtain:

FT
[
C

(F 2,F 2)′
1 (x)

]
= 4β0g

2
(
1
ϵ
− log p

2

µ2 + 2 + 3Γ′(1)− log π4

)

+ 8β2
0g

4
{
− 1

2ϵ2 + 1
2 log2 p

2

µ2 − 1
2ϵ
(
2 + 3Γ′(1)− log π4

)
− 1

2
(
2 + 3Γ′(1)− log π4

)2
−
(3
2 + 5

2Γ
′(1)− log

√
π

4
)2

+
(
2 + 3Γ′(1)− log π4

)(3
2 + 5

2Γ
′(1)− log

√
π

4
)
+ 1

4 − 1
4Γ

′2(1) + 1
4Γ

′′(1)
}

− 4B1,3g
4
( 1
2ϵ − log p

2

µ2 + 3
2 + 5

2Γ
′(1)− log

√
π

4

)
+ · · ·

= 4β0g
2
(
1
ϵ
− log p

2

µ2

)
+ 8β2

0g
4
(
− 1

2ϵ2 + 1
2 log2 p

2

µ2

)
+ 4B1,3g

4 log p
2

µ2 + 8β1g
4

ϵ

− 4β0g
4

ϵ

(
B1,1 + β0

(
2 + 3Γ′(1)− log π4

))
+ finite contact terms + · · · (4.36)

where in the last equality we have employed B1,3 = −4β1 + 2β0B1,1 in eq. (4.26) to rewrite
the order g4/ϵ terms, and:

finite contact terms = 4β0g
2
(
2 + 3Γ′(1)− log π4

)
+ 8β2

0g
4
{
− 1

2
(
2 + 3Γ′(1)− log π4

)2
−
(3
2 + 5

2Γ
′(1)− log

√
π

4
)2

+
(
2 + 3Γ′(1)− log π4

)(3
2 + 5

2Γ
′(1)− log

√
π

4
)
+ 1

4 − 1
4Γ

′2(1) + 1
4Γ

′′(1)
}

− 4B1,3g
4
(3
2 + 5

2Γ
′(1)− log

√
π

4

)
(4.37)

From eq. (4.36) it is clear that the Fourier transform of the OPE coefficient at distinct points
does not reproduce the object in eq. (4.24), thus proving the inequality in eq. (4.21) up to
order g4. Specifically, it differs from it by finite and divergent proper contact terms.
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To further proceed we define an extension of the OPE coefficient including the finite
and divergent proper contact terms according to the ansatz:

C
(F 2,F 2)
1 (x) = C

(F 2,F 2)′
1 (x)

+δ(d̃)(x)
[
ZF 2

(
4− 4B̃1,1g

2 − 4B̃1,2g
4 + · · ·

)]
up to order g4

(4.38)

The corresponding Fourier transform reads:

FT
[
C

(F 2,F 2)
1 (x)

]
= FT

[
C

(F 2,F 2)′
1 (x)

]
+
[
ZF 2

(
4− 4B̃1,1g

2 − 4B̃1,2g
4 + · · ·

)]
up to order g4

(4.39)

where:
B̃1,1 = B1,1 + β0

(
2 + 3Γ′(1)− log π4

)
(4.40)

B̃1,2 is determined a posteriori to match the finite contributions to order g4 in eq. (4.24),
and (appendix A):

ZF 2(g, ϵ) = 1− β0g
2

ϵ
− β1g

4

ϵ
+ β2

0g
4

ϵ2
+ · · · (4.41)

The ansatz above is obtained multiplying by ZF 2 the finite proper contact terms up to
order g4, thus obtaining:[

ZF 2

(
4− 4B̃1,1g

2 − 4B̃1,2g
4 + · · ·

)]
up to order g4

=[(
1− β0g

2

ϵ
− β1g

4

ϵ
+ β2

0g
4

ϵ2
+ · · ·

)(
4− 4B̃1,1g

2 − 4B̃1,2g
4 + · · ·

)]
up to order g4

= 4− 4B̃1,1g
2 − 4B̃1,2g

4 − 4β0g
2

ϵ
+ 4β

2
0g

4

ϵ2
− 4β1g

4

ϵ
+ 4B̃1,1

β0g
4

ϵ
+ · · · (4.42)

Hence, by means of eqs. (4.36), (4.40) and (4.42), eq. (4.39) reads:

FT
[
C

(F 2,F 2)
1 (x)

]
= 4β0g

2
(
1
ϵ
− log p

2

µ2

)
+ 8β2

0g
4
(
− 1

2ϵ2 + 1
2 log2 p

2

µ2

)

+ 4B1,3g
4 log p

2

µ2 + 8β1g
4

ϵ
− 4B̃1,1

β0g
4

ϵ
+ finite contact terms

+ 4− 4B̃1,1g
2 − 4B̃1,2g

4 − 4β0g
2

ϵ
+ 4β

2
0g

4

ϵ2
− 4β1g

4

ϵ
+ 4B̃1,1

β0g
4

ϵ
+ · · ·

= 4− 4B̃1,1g
2 − 4B̃1,2g

4 + finite contact terms

− 4β0g
2 log p

2

µ2 + 4β2
0g

4 log2 p
2

µ2 + 4B1,3g
4 log p

2

µ2 + 4β1g
4

ϵ
+ · · ·

= 4− 4B1,1g
2 − 4B1,2g

4 + 4β1g
4

ϵ

− 4β0g
2 log p

2

µ2 + 4β2
0g

4 log2 p
2

µ2 + 4B1,3g
4 log p

2

µ2 + · · · (4.43)
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where in the last equality we have employed eq. (4.40) and:

B̃1,2 = B1,2 −B1,3

(3
2 + 5

2Γ
′(1)− log

√
π

4

)
+ 2β2

0

{
− 1

2

(
2 + 3Γ′(1)− log π4

)2

−
(3
2 + 5

2Γ
′(1)− log

√
π

4

)2
+
(
2 + 3Γ′(1)− log π4

)(3
2 + 5

2Γ
′(1)− log

√
π

4

)
+1
4 − 1

4Γ
′2(1) + 1

4Γ
′′(1)

}
(4.44)

The result in eq. (4.43) reproduces eq. (4.24) to order g4. We have thus verified the inequality
in eq. (4.21) for O = F 2 up to order g4 in perturbation theory. Indeed, the object in the co-
ordinate representation whose Fourier transform reproduces the multiplicatively renormalized
coefficient ZF 2C

(F 2
0 ,F 2)

1 (p) in eq. (4.24) is provided by eq. (4.38) as ϵ→ 0, with C
(F 2,F 2)′
1 (x)

in eq. (4.30). It differs from the multiplicatively renormalized C
(F 2,F 2)′
1 (x) at distinct points

by divergent and finite proper contact terms. Specifically, to order g2 the multiplicatively
renormalized C

(F 2,F 2)
1 (p) is finite, so that no additive counterterm occurs, while the Fourier

transform of the multiplicatively renormalized C
(F 2,F 2)′
1 (x) at distinct points is divergent,

thus implying the occurrence of divergent proper contact terms in C
(F 2,F 2)
1 (x) to cancel the

latter divergence. To order g4 the multiplicatively renormalized C
(F 2,F 2)
1 (p) is divergent and

the additive renormalization occurs, but the divergence — as to order g2 — does not entirely
arise from the Fourier transform of C(F 2,F 2)′

1 (x).

4.3 Contact terms in the OPE from the LET

Having clarified the nature of contact terms in the Fourier transform of the OPE coefficient
of ZF 2F 2

0 (x) with O(0), we demonstrate the relation between its divergences and the ones of
the integrated 3-point correlator in the r.h.s. of the LET according to eq. (4.1). Obviously, it
suffices to consider the OPE of F 2(x) with O(0), the OPE with O(z) being entirely analogous:

ZF 2F 2
0 (x)O(0) = · · ·+ ZF 2C

(F 2
0 ,O)

1 (x)O(0) + · · · (4.45)

In general, for dimensional reasons the above OPE coefficient is the only one that may
contribute in the integrated 3-point correlator the product of a dimension 4 — possibly
divergent — contact term times the 2-point correlator at distinct points ⟨O(z)O(0)⟩ that has
to be cancelled by the counterterm with the same structure in the r.h.s. of the LET, both in
its perturbative and RG-improved version. The argument is as follows.

It is convenient to consider at the same time the theory in d = 4 dimensions and
its dimensionally regularized version in d̃ = 4 − 2ϵ dimensions. The theory in d = 4
dimensions is exactly conformal perturbatively to order g2 in a conformal scheme [21], which
may differ by a finite renormalization from a generic scheme, because the beta function
β(g) = −β0g

3 + · · · affects the solution of the CS equation only starting from order g4. The
theory in d̃ = 4 − 2ϵ dimensions is exactly conformal perturbatively to order g0, because
the beta function β(g, ϵ) = −ϵg + · · · affects the solution of the CS equation only starting
from order g2.

It follows that up to the perturbative order where the theory is conformal, under the
standard assumption that O belongs to a basis of mutually orthogonal conformal primary
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operators, along with the term in the OPE in eq. (4.45) only the terms in the OPE of
ZF 2F 2

0 (x) with the descendants of O(0) may a priori also contribute to the r.h.s. of the LET,
once inserted in the v.e.v. with O(z). Indeed, all the 2-point correlators of O(z) with different
primary operators and their descendants vanish identically, given the orthogonality of the basis.
Such a basis of Hermitian primary operators certainly exists, since the 2-point correlators of
primary operators with different conformal dimensions vanish by the conformal symmetry, and
the 2-point correlators of operators with the same conformal dimension are a real symmetric
matrix that can always be diagonalized — times a universal conformal structure.

In fact, the OPE of ZF 2F 2
0 (x) with the descendants of O(0) cannot contribute to the

divergence of the integrated 3-point correlator: the corresponding OPE coefficients have
conformal dimensions lower than 4 — their integrals being therefore UV finite — and the
insertion of the descendants gives rise to derivatives of the 2-point correlator, instead of
the correlator itself.

A similar argument holds to higher orders in perturbation theory and nonperturbatively,
both in d = 4 and d̃ = 4− 2ϵ dimensions, in AF massless QCD. In both cases, for dimensional
reasons, only operators O′ with the same canonical dimension of O may a priori contribute
to the relevant OPE. Yet, their insertion gives rise to 2-point correlators ⟨O(z)O′(0)⟩ that —
by the above conformal argument, because of the orthogonality of O and O′ in the conformal
limit — are necessarily suppressed by powers of the coupling g2n(µ) perturbatively, with n a
positive integer. To actually rule out their contribution to the divergences in the r.h.s. of the
LET in the AF case, we show that ⟨O(z)O(0)⟩ is in fact linearly independent of ⟨O(z)O′(0)⟩
with coefficients valued in the renormalized coupling g(µ), so that no linear combination
of ⟨O(z)O′(0)⟩ may occur in the divergent part of the integrated 3-point correlator in the
r.h.s. of the LET. To this aim, it suffices to observe that in d = 4 dimensions in general
the asymptotics of ⟨O(z)O′(0)⟩ as z → 0:

⟨O(z)O′(0)⟩d=4 = G(O,O′)
2 (g(z))
|z|2∆O0

Z(O)(g(z), g(µ))Z(O′)(g(z), g(µ))

∼ g2n(z)
|z|2∆O0

g
γ

(O)
0 +γ

(O′)
0

β0 (z) (4.46)

is linearly independent of the one of ⟨O(z)O(0)⟩d=4:

⟨O(z)O(0)⟩d=4 = G(O)
2 (g(z))
|z|2∆O0

Z(O)2(g(z), g(µ))

∼ 1
|z|2∆O0

g
2γ

(O)
0

β0 (z) (4.47)

and analogously in d̃ = 4− 2ϵ dimensions (appendix D). The only exception may occur for
γ

(O′)
0 + 2nβ0 = γ

(O)
0 that, in the terminology of [22, 23], is the resonant condition for the

operator mixing of O with O′, necessary for the nonexistence of a renormalization scheme
where O,O′ are multiplicatively renormalizable.

We conclude that, if the nonresonant condition γ
(O′)
0 + 2nβ0 ̸= γ

(O)
0 is satisfied, the OPE

coefficient of ZF 2F 2
0 with O′, the latter having the same canonical dimension of O, does
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not contribute to the divergent part of the integrated 3-point correlator in the r.h.s. of the
LET for a given 2-point correlator of O in the l.h.s.

However, we should stress that the nonresonant condition is sufficient but by no means
necessary. First, even if the UV asymptotics of ⟨O(z)O(0)⟩ and ⟨O(z)O′(0)⟩ coincide, the
actual 2-point correlators may still be functional independent to higher orders in the running
coupling. Second, even if the resonant condition is realized, the resulting correlators may
still be functional independent for different reasons. For example, for O = F 2 in massless
QCD, despite the resonant condition with n = 1 is satisfied for O′ = ψ̄γµDµψ, the correlator
⟨F 2(z)ψ̄γµDµψ(0)⟩ at distinct points vanishes because of the EOM both in d = 4 and
d̃ = 4 − 2ϵ dimensions.

Hence, under the above assumptions, we can relate the divergent contact terms that
arise in the integrated 3-point correlator in the r.h.s. of the LET as ϵ → 0 to those of the
corresponding multiplicatively renormalized OPE coefficient in the momentum representation:

1
2[ZF 2

∫
⟨O(z)O(0)F 2

0 (x)⟩ dd̃x]div = [ZF 2C
(F 2

0 ,O)
1 (p)]div ⟨O(z)O(0)⟩ (4.48)

where the Fourier transform in the r.h.s. may be conveniently computed at nonvanishing
momentum p to avoid infrared divergences in perturbation theory, without affecting the
divergent contact terms:

[ZF 2C
(F 2

0 ,O)
1 (p)]div = [ZF 2C

(F 2
0 ,O)

1 (0)]div contact (4.49)

because they are the Fourier transform of a δ(4) — or a δ(d̃) in d̃ = 4−2ϵ dimensions (section 3.7)
— thus a momentum-independent constant. We should notice that in perturbation theory
there is a finite ambiguity in eq. (4.48), due to the fact that the l.h.s. is computed in the
coordinate representation and the r.h.s. in the momentum representation.

Finally, once the lowest order finite contact term 2cOδ
(4) is determined consistently with

perturbation theory according to (IIA), under the above assumptions, the LET unambiguously
predicts the fully renormalized OPE coefficient in the momentum representation:

C
(F 2,O)
1 (p) = ZF 2C

(F 2
0 ,O)

1 (p) + ZF 2
2γO(g)− 2cO

β(g)
g

ϵ
(4.50)

in terms of the multiplicatively renormalized one and the divergent contact term occurring
in the r.h.s. of the LET. Indeed, given that γF 2(g) = g ∂

∂g

(
β(g)

g

)
(appendix A), the contact

term above coincides for O = F 2 with the one computed in eq. (4.22) [2].

5 Perturbative versus nonperturbative LET

5.1 Perturbative LET

(IIA) shows that in general the 3-point correlator with the insertion of ZF 2F 2
0 (x) at zero mo-

mentum needs — order by order in perturbation theory — an infinite additive renormalization
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as ϵ → 0 to yield the finite fully renormalized object defined by the l.h.s.:

∂ ⟨O(z)O(0)⟩
∂ log g + 2cO ⟨O(z)O(0)⟩

= 1
2ZF 2

∫
⟨O(z)O(0)F 2

0 (x)⟩ − ⟨O(z)O(0)⟩ ⟨F 2
0 (x)⟩ dd̃x

+ZF 2
2γO(g)− 2cO

β(g)
g

ϵ
⟨O(z)O(0)⟩ (5.1)

Indeed, we have already compared the additive counterterm in (IIA) to order g4 in perturbation
theory for O = F 2 with the corresponding counterterm in the OPE coefficient C(F 2,F 2)

1 (p)
finding perfect agreement (section 4). Besides, in doing so we have discovered the existence
of divergent proper contact terms in the coordinate representation.

5.2 Nonperturbative LET

We take the limit ϵ → 0 of the LET in eq. (5.1) in the AF phase:

∂ ⟨O(z)O(0)⟩
∂ log g + 2cO ⟨O(z)O(0)⟩

= 1
2

∫
⟨O(z)O(0)F 2(x)⟩ − ⟨O(z)O(0)⟩ ⟨F 2(x)⟩ d4x

−
2γO(g)− 2cO

β(g)
g

β(g)
g

⟨O(z)O(0)⟩ (5.2)

where we have employed:

ZF 2
2γO(g)− 2cO

β(g)
g

ϵ
=

2γO(g)− 2cO
β(g)

g

ϵ(1− β(g)
ϵg )

(5.3)

Hence, eq. (5.2) reads identically:

∂ ⟨O(z)O(0)⟩
∂ log g

= 1
2

∫
⟨O(z)O(0)F 2(x)⟩ − ⟨O(z)O(0)⟩ ⟨F 2(x)⟩ d4x

−2γO(g)
β(g)

g

⟨O(z)O(0)⟩ (5.4)

Somehow unexpectedly, no infinite additive renormalization occurs nonperturbatively in d = 4
dimensions in the AF phase, since in the last term no zero of the beta function arises in
the denominator but the one at g = 0 that is cancelled by the zero of the same order due
to the anomalous dimension γO(g) in the numerator.

Another important difference with the perturbative case is that in the nonperturbative
AF case an infinite additive renormalization cannot either arise from the integrated OPE
coefficient at distinct points, since the latter turns out to be UV finite because of the
asymptotic freedom for small x2 [11]:∫

C
(F 2,O)
1

′
(x)e−ip·xd4x ∼

∫
g2(x)
g2(µ)

g2(x)
x4 e−ip·xd4x < +∞ (5.5)
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where the first factor in the last integrand arises from the anomalous dimension of F 2 and
the second one from the fact that the first contribution to the OPE coefficient at distinct
points occurs to order g2 in perturbation theory. As a consequence, no divergent proper
contact term occurs nonperturbatively in the AF phase.

6 Solving for the perturbative correlators to order g2 by the LET

We find an a-priori solution of the LET for the correlators up to order g2 in perturbation
theory, where a massless QCD-like theory is conformal invariant in d = 4 dimensions. Though
LET (IC) and (IIB) are strictly equivalent, for technical reasons it is interesting to compute
to order g2 both versions: (IC) is further employed to verify (section 8.1) the corresponding
version that involves a hard-cutoff regularization [11, 12], while (IIB) is suitable to match
the finite and divergent proper contact terms in the OPE coefficient C(F 2,O)

1 (x) up to order
g2 in perturbation theory.

6.1 LET (IC) and (IIB) to order g2

We find the common solution of (IC):

∂ ⟨O(z)O(0)⟩
∂ log g

= 1
2ZF 2

∫
⟨O(z)O(0)F 2

0 (x)⟩ − 2cO

(
δ(d̃)(x− z) + δ(d̃)(x)

)
⟨O(z)O(0)⟩ dd̃x

+ZF 2
2γO(g)
ϵ

⟨O(z)O(0)⟩ (6.1)

and (IIB):

∂ ⟨O(z)O(0)⟩
∂ log g + 2cO ⟨O(z)O(0)⟩

= 1
2ZF 2

∫
⟨O(z)O(0)F 2

0 (x)⟩

+ZF 2
2γO(g)− 2cO

β(g)
g

ϵ

(
δ(d̃)(x− z) + δ(d̃)(x)

)
⟨O(z)O(0)⟩ dd̃x (6.2)

up to order g2, where we have set z ̸= 0 once for all, and ⟨F 2
0 (x)⟩ = 0 perturbatively in

dimensional regularization.
The l.h.s. of the LET is computed from the exact solution of the CS equation at distinct

points in dimensional regularization by means of (appendix D.5):

∂ ⟨O(z)O(0)⟩d̃=4−2ϵ

∂ log g = ⟨O(z)O(0)⟩d̃=4−2ϵ

∂ log ⟨O(z)O(0)⟩d̃=4−2ϵ

∂ log g (6.3)

expanded up to order g2. We obtain:

∂ log ⟨O(z)O(0)⟩d̃=4−2ϵ

∂ log g

∣∣∣∣
up to order g2

= ∂ logN2(g)
∂ log g − 2g∂γO

∂g
log |zµ|+ · · ·

∣∣∣∣
up to order g2

(6.4)
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that coincides, up to terms that vanish as ϵ→ 0, with the corresponding object computed by
means of the conformal renormalized 2-point correlator in d = 4 dimensions to order g2:

⟨O(z)O(0)⟩d=4 = N2(g)µ2∆O0−2∆O

|z|2∆O
(6.5)

Hence, (IC) reads:

⟨O(z)O(0)⟩
(
∂ logN2(g)
∂ log g − 2g∂γO

∂g
log |zµ|+ · · ·

) ∣∣∣∣
up to order g2

= 1
2ZF 2

∫
⟨O(z)O(0)F 2

0 (x)⟩ − 2cO

(
δ(d̃)(x− z) + δ(d̃)(x)

)
⟨O(z)O(0)⟩ dd̃x

+ZF 2
2γO(g)
ϵ

⟨O(z)O(0)⟩
∣∣∣∣
up to order g2

(6.6)

and (IIB) reads:

⟨O(z)O(0)⟩
(
2cO + ∂ logN2(g)

∂ log g − 2g∂γO

∂g
log |zµ|+ · · ·

) ∣∣∣∣
up to order g2

= 1
2ZF 2

∫
⟨O(z)O(0)F 2

0 (x)⟩

+ZF 2
2γO(g)− 2cO

β(g)
g

ϵ

(
δ(d̃)(x− z) + δ(d̃)(x)

)
⟨O(z)O(0)⟩ dd̃x

∣∣∣∣
up to order g2

(6.7)

Because of the structure of (IC) the following ansatz is natural for the bare 3-point correlator
extended at coinciding points:

⟨O(z)O(0)F 2
0 (x)⟩d̃=4−2ϵ

∣∣∣∣
up to order g2

= (2cO + B̃g2)(δ(d̃)(x− z) + δ(d̃)(x)) ⟨O(z)O(0)⟩

+Z−1
F 2 ⟨O(z)O(0)F 2(x)⟩′

∣∣∣∣
up to order g2

= (2cO + B̃g2)(δ(d̃)(x− z) + δ(d̃)(x)) ⟨O(z)O(0)⟩

+ ⟨O(z)O(0)F 2(x)⟩′
∣∣∣∣
up to order g2

(6.8)

where the second equality follows from the fact that ⟨O(z)O(0)F 2(x)⟩′ is necessarily of order
g2 by the LET. Therefore, the bare correlator in eq. (6.8) differs from the multiplicatively
renormalized one at distinct points by finite proper contact terms and it is finite up to
order g2. It follows from eq. (6.8) the multiplicatively renormalized correlator extended
at coinciding points:

ZF 2 ⟨O(z)O(0)F 2
0 (x)⟩

∣∣∣∣
up to order g2

= ZF 2(2cO + B̃g2)(δ(d̃)(x− z) + δ(d̃)(x)) ⟨O(z)O(0)⟩

+ ⟨O(z)O(0)F 2(x)⟩′
∣∣∣∣
up to order g2

(6.9)
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Hence, inserting eq. (6.8) into the r.h.s. of (IC), we conclude that to order g2 the additive
counterterm in the last line of the r.h.s. of (IC) may only be compensated for by the divergence
of the space-time integral of the bare 3-point correlator at distinct points:

1
2

∫
⟨O(z)O(0)F 2(x)⟩′ dd̃x

∣∣∣∣
to order g2

(6.10)

that to order g2 coincides with the nultiplicatively renormalized one.
Instead, the multiplicatively renormalized 3-point correlator extended at coinciding points

in eq. (6.9) that occurs in (IIB) differs from the correlator at distinct points by finite and
divergent proper contact terms to order g2, consistently with the explicit computation of the
OPE coefficient for O = F 2. Therefore, the finiteness of the r.h.s. of (IIB) arises from a more
involved cancellation between the integral of the correlator at distinct points, the divergent
proper contact terms in eq. (6.9) and the additive counterterm in the r.h.s. of (IIB) to order g2.

Yet, the two versions of the LET are equivalent, and we employ (IC) in the following. We
need an ansatz for the 3-point correlator at distinct points to order g2 in d̃ = 4−2ϵ dimensions:

⟨O(z)O(0)F 2(x)⟩′d̃=4−2ϵ =
N3(g)µ

2∆̃O+∆∗
F 2−2∆̃O0−∆̃

F 2
0

|z|2∆̃O−∆∗
F 2 |x|∆

∗
F 2 |x− z|∆

∗
F 2

∣∣∣∣
to order g2

(6.11)

where ∆∗
F 2 is uniquely determined by the two conditions:

(I) The correlator should be conformal in the limit ϵ→ 0.

(II) The correlator should imply the correct OPE coefficient to order g2 in d̃ = 4 − 2ϵ
dimensions.

The ansatz in eq. (6.11) fulfills property (I) provided that ∆∗
F 2 → 4 as ϵ → 0, since N3(g)

is of order g2.
We point out that (II) is in general incompatible with an exact conformal symmetry

in d̃ = 4 − 2ϵ dimensions because of the soft breaking of the latter in the CS equation to
order g2, due to the nonvanishing beta function β(g, ϵ) = −ϵg + · · · induced by dimensional
regularization. We determine ∆∗

F 2 from (II) by observing that up to order g2:

⟨O(z)O(0)F 2(x)⟩′ ∼ C
(F 2,O)′
1 (x) ⟨O(z)O(0)⟩

∣∣∣∣
to order g2

(6.12)

should hold as x2 approaches zero, with C
(F 2,O)′
1 (x) the OPE coefficient at distinct points.

C
(F 2,O)′
1 (x) satisfies eq. (4.8), and the perturbative expansion to order g2 of its solution

in eq. (4.12) reads:

C
(F 2,O)
1

′
(x) = G(F 2,O)(g̃(x))

|x|4−2ϵ
Z(F 2)(g̃(x), g)

= (ag̃2(x) + · · · )
|x|4−2ϵ

g̃2(x)
g2 |xµ|−2ϵ

= ag2

|x|4−2ϵ

( |xµ|2ϵ

1− β0g2 |xµ|2ϵ−1
ϵ

)2
|xµ|−2ϵ + · · ·

= aµ2ϵg2

|x|4−4ϵ
+ · · ·

∣∣∣∣
to order g2

(6.13)
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where we have employed ∆̃F 2
0
= 4 − 2ϵ, eq. (4.28) and eq. (4.29), with g(µ) = g. On the

other hand, the short-distance singularity as x2 → 0 of the 3-point correlator in eq. (6.11)
reads to order g2:

⟨O(z)O(0)F 2(x)⟩′d̃=4−2ϵ ∼ N3(g)µ
∆∗

F 2−∆̃
F 2

0

|x|∆
∗
F 2

µ2∆̃O−2∆̃O0

|z|2∆̃O

∣∣∣∣
to order g2

∼ N3(g)
N2(g)

µ
∆∗

F 2−∆̃
F 2

0

|x|∆
∗
F 2

⟨O(z)O(0)⟩
∣∣∣∣
to order g2

(6.14)

The comparison of eq. (6.13) with eq. (6.14) and the asymptotics in eq. (6.12) then imply that
the corrected dimension due to the nonvanishing beta function in dimensional regularization
is ∆∗

F 2
0
= ∆̃F 2

0
− 2ϵ = 4− 4ϵ in the denominator of eq. (6.11), while the powers of µ in the

numerator compensate for the change of dimension. From eq. (6.12) we also deduce the
normalization of the OPE coefficient:

ag2 = N3(g)
N2(g)

∣∣∣∣
O(g2)

≡ N3
N2

g2 (6.15)

in terms of the normalization of the 3- and 2-point correlators. Therefore, to order g2 we obtain:

1
2

∫
⟨O(z)O(0)F 2(x)⟩′ dd̃x

∣∣∣∣
up to order g2

= 1
2

∫
µ2ϵN3(g)

|z|
2∆̃O0−∆̃

F 2
0

+2ϵ
|x|

∆̃
F 2

0
−2ϵ

|x− z|
∆̃

F 2
0
−2ϵ

dd̃x

∣∣∣∣
up to order g2

= ⟨O(z)O(0)⟩d̃=4−2ϵ

π2

2
N3(g)
N2(g)

(2
ϵ
+ 4 log |zµ| − 2 log π + 2 + 2Γ′(1)

)∣∣∣∣
up to order g2

(6.16)

where the above integral has been computed in appendix C. Hence, the finiteness of the
r.h.s. of (IC) in eq. (6.6) implies:

−π
2

2
N3(g)
N2(g)

∣∣∣∣
to order g2

= γO(g)
∣∣∣∣
to order g2

(6.17)

with γO(g) = −γ(O)
0 g2 + · · · , that in turn implies for the OPE coefficient of a generic operator

O with F 2 at distinct points to order g2:

C
(F 2,O)
1

′
(x) = 2γ(O)

0
π2

µ2ϵg2

|x|4−4ϵ
+ · · · (6.18)

by means of eqs. (6.13) and (6.15). Besides, the matching to order g2 of the logarithmic
terms in the l.h.s. and r.h.s. of eq. (6.6), which is independent of the regularization, leads
to the constraint:

−2g∂γO

∂g
log |zµ|

∣∣∣∣
order g2

= 4π
2

2
N3(g)
N2(g)

log |zµ|
∣∣∣∣
order g2

(6.19)
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that implies:

g
∂γO

∂g

∣∣∣∣
order g2

= −π2N3(g)
N2(g)

∣∣∣∣
order g2

(6.20)

Putting the above results together, we get:

g
∂γO

∂g

∣∣∣∣
order g2

= 2γO(g)
∣∣∣∣
order g2

(6.21)

whose only solution is that the anomalous dimension γO(g) = −γ(O)
0 g2 is one-loop exact,

which is obviously consistent with our perturbative assumption to order g2.
Vice versa, since γO(g) = −γ(O)

0 g2 to order g2, no divergent contact term may arise in
the bare correlator in eq. (6.8), otherwise the LET would not be satisfied. The LET further
implies the matching of the finite terms to order g2:

∂ logN2(g)
∂ log g

∣∣∣∣
to order g2

= B̃g2 − γO(g)
(
2 + 2Γ′(1)− 2 log π

)∣∣∣∣
to order g2

(6.22)

that agrees with eq. (D.57) for O = F 2.

6.2 Verifying the LET for O = F 2

It is interesting to further verify the predictions of the LET for O = F 2 by comparing with
the perturbative computation [2, 3, 12–14]. First, to order g0:

F 2(x)F 2(0) = 2cF 2 δ(4)(x)F 2(0) + · · · (6.23)

with cF 2 = 2 [2, 3, 12–14] according to the LET.
Second, eq. (6.20):

−π
2

2
4β0
π2 g

2 = −2β0g
2 = γF 2(g) (6.24)

is satisfied to order g2, where γF 2(g) = −2β0g
2 + · · · (appendix A) and we read from the

OPE of F 2 with itself [2, 3, 12–14] that N2 = 48(N2−1)
π4 and N3 = N2

4β0
π2 g

2 to their leading
order, respectively.

6.3 Conformal resummation to order g2

We find an a-priori solution of the resummed version of the LET in eq. (5.4) to order g2

by employing the resummed conformal 3-point correlator in d = 4 dimensions expanded
to order g2 after the space-time integration:

⟨O(z)O(0)⟩
(
∂ logN2(g)
∂ log g − 2g∂γO

∂g
log |zµ|

) ∣∣∣∣
up to order g2

= 1
2

∫
ZF 2 ⟨O(z)O(0)F 2

0 (x)⟩

− 2γO(g)
β(g)

g

(
δ(4)(x− z) + δ(4)(x)

)
⟨O(z)O(0)⟩ d4x

∣∣∣∣
up to order g2

(6.25)
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In the resummed conformal theory the multiplicatively renormalized 3-point correlator in
the coordinate representation must be finite, since no contact term may arise for γF 2 ̸= 0
for dimensional reasons:

⟨O(z)O(0)F 2
0 (x)⟩

∣∣∣∣
up to order g2

= Z−1
F 2 ⟨O(z)O(0)F 2(x)⟩′

∣∣∣∣
up to order g2

(6.26)

Moreover, in d = 4 dimensions the space-time integral of the resummed conformal 3-point
correlator at distinct points:∫

⟨O(z)O(0)F 2(x)⟩′ d4x

∣∣∣∣
up to order g2

=
∫

N3(g)µ−2γO−γF 2

|z|2∆O−∆F 2 |x|∆F 2 |x− z|∆F 2
d4x

∣∣∣∣
up to order g2

= ⟨O(z)O(0)⟩π2N3(g)
N2(g)

|zµ|−γF 2
Γ
(
2 + γF 2

)
Γ
(
− γF 2

2
)2

Γ
(
2 + γF 2

2
)2Γ(− γF 2

) ∣∣∣∣
up to order g2

= ⟨O(z)O(0)⟩π2N3(g)
N2(g)

( 2
β0g2 + 4 log |zµ|+ · · ·

) ∣∣∣∣
up to order g2

(6.27)

is finite because ∆F 2 = 4 + γF 2 , with nonzero γF 2 = −2β0g
2 to order g2 (appendix C).

Hence, the LET implies the following matching of the logarithmic terms in the l.h.s. and
r.h.s. up to order g2:

−2g∂γO

∂g
log |zµ|

∣∣∣∣
up to order g2

= π2

2
N3(g)
N2(g)

4 log |zµ|
∣∣∣∣
up to order g2

(6.28)

that is regularization independent, and leads to the constraint:

g
∂γO

∂g

∣∣∣∣
up to order g2

= −π2N3(g)
N2(g)

∣∣∣∣
up to order g2

(6.29)

The latter implies that N3(g)
N2(g) is of order g2 and it reproduces the same constraint implied

by (IC) and (IIB) in perturbation theory. The finite contribution in the r.h.s. of eq. (6.25)
reads to order g0 by means of eq. (6.27):

0 = π2

2
N3(g)
N2(g)

2
β0g2 − 2γO(g)

β(g)
g

∣∣∣∣
order g0

= − 1
β0g2 g

∂γO

∂g
− 2γO(g)

β(g)
g

∣∣∣∣
order g0

(6.30)

that vanishes identically for γO(g) = −γ(O)
0 g2 and β(g)

g = −β0g
2. The LET is then fulfilled

because ∂ log N2(g)
∂ log g in the l.h.s. vanishes identically to order g0. Yet, the finite terms cannot

be determined to order g2 consistently with the conformal symmetry, since:
π2

2
N3(g)
N2(g)

2
β0g2 − 2γO(g)

β(g)
g

∣∣∣∣
order g2

= π2

2
N3(g)
N2(g)

∣∣∣∣
order g4

2
β0g2 − 2γO(g)

β(g)
g

∣∣∣∣
order g2

(6.31)

involve the evaluation of N3(g)
N2(g)

∣∣∣∣
order g4

and 2γO(g)
β(g)

g

∣∣∣∣
order g2

that is not consistent with the

conformal symmetry.
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7 Contact terms revisited

The occurrence of divergent proper contact terms in C
(F 2,O)
1 (x) may seem surprising. In the

following we establish whether they are an isolated phenomenon or a more general one, by
investigating whether they exist in C

(F 2,F 2)
0 (z) as well, where in this section we allow z = 0.

Indeed, we demonstrate that to order g0 the multiplicatively renormalized ZF 2 C
(F 2

0 ,F 2
0 )

0 (p)
needs an infinite additive renormalization that fully originates from the Fourier transform
of C(F 2,F 2)′

0 (z) at distinct points, so that no divergent proper contact term occurs to this
order. Yet, we show that divergent proper contact terms do occur to order g2 in C

(F 2,F 2)
0 (z)

as in C
(F 2,F 2)
1 (x).

7.1 ⟨F 2(z)F 2(0)⟩ to order g2 in perturbation theory

We expand the solution of the CS equation in d̃ = 4 − 2ϵ dimensions at distinct points
(appendix D):

⟨F 2(z)F 2(0)⟩′ = 1
z8−4ϵ

G(F 2)
2 (g̃(z))Z(F 2)2(g̃(z), g(µ)) (7.1)

perturbatively up to order g2. The RG-invariant function G(F 2)
2 reads:

G(F 2)
2 (g̃(z)) = G(F 2)

2 (0)(1 + δ
(F 2)
2 g̃2(z) + · · · ) (7.2)

and, by means of eq. (D.35), we obtain:

⟨F 2(z)F 2(0)⟩′ = G(F 2)
2 (0)
z8−4ϵ

(1 + δ
(F 2)
2 g̃2(z) + · · · ) g̃

4(z)
g4(µ) |zµ|

−4ϵ + · · · (7.3)

By employing the perturbative expansion of the running coupling g̃(z) in eq. (D.23):
g̃2(z)
g2(µ) = |zµ|2ϵ

1− β0g2(µ) |zµ|2ϵ−1
ϵ + · · ·

= |zµ|2ϵ

(
1 + β0g

2(µ) |zµ|
2ϵ − 1
ϵ

+ · · ·
)

(7.4)

and setting g(µ) = g, eq. (7.3) yields:

⟨F 2(z)F 2(0)⟩′ = G(F 2)
2 (0)
z8−4ϵ

(
1 + δ

(F 2)
2 |zµ|2ϵg2 + · · ·

)(
1 + 2β0g

2 |zµ|2ϵ − 1
ϵ

+ · · ·
)
+ · · ·

= G(F 2)
2 (0)
z8−4ϵ

(
1 + g2

(
δ

(F 2)
2 |zµ|2ϵ + 2β0

|zµ|2ϵ − 1
ϵ

)
+ · · ·

)
= G(F 2)

2 (0)
{ 1
z8−4ϵ

(
1− 2β0g

2

ϵ

)
+ µ2ϵ

z8−6ϵ
g2
(
δ

(F 2)
2 + 2β0

ϵ

)
+ · · ·

}
(7.5)

Its Fourier transform is:

FT
[
⟨F 2(z)F 2(0)⟩′

]
=
∫
dd̃z eipz ⟨F 2(z)F 2(0)⟩′

= G(F 2)
2 (0)

{
FT

[ 1
z8−4ϵ

](
1− 2β0g

2

ϵ

)

+FT
[
µ2ϵ

z8−6ϵ

]
g2
(
δ

(F 2)
2 + 2β0

ϵ

)
+ · · ·

}
(7.6)
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with d̃ = 4 − 2ϵ. It is convenient to first Fourier transform the correlator in eq. (7.5) and
then to expand in ϵ. To this aim, we employ the general FT:

FT
[ 1
x2∆

]
= π

d
2
Γ
(

d
2 −∆

)
Γ
(
∆
) (

p2

4

)∆− d
2

(7.7)

that for d = 4 − 2ϵ and ∆ = 4 − 2ϵ yields to the relevant order in ϵ:

FT
[ 1
x8−4ϵ

]
=
(
πp2

4

)2(
πp2

4

)−ϵ Γ(−2 + ϵ)
Γ(4− 2ϵ)

= π2p4

16

(
πp2

4

)−ϵ 1
12ϵ

(
1 + ϵ

(31
6 + 3Γ′(1)

)
+ϵ2

(601
36 + 31

2 Γ′(1)− 3
2Γ

′′(1) + 6Γ′2(1)
)
+ · · ·

)
(7.8)

and, for ∆ = 4 − 3ϵ:

FT
[
µ2ϵ

x8−6ϵ

]
=
(
πp2

4

)2

µ2ϵ

(√
πp2

4

)−2ϵ Γ(−2 + 2ϵ)
Γ(4− 3ϵ)

= π2p4

16 µ2ϵ

(√
πp2

4

)−2ϵ 1
24ϵ

(
1 + ϵ

(17
2 + 5Γ′(1)

)
+ϵ2

(179
4 + 85

2 Γ′(1)− 5
2Γ

′′(1) + 15Γ′2(1)
)
+ · · ·

)
(7.9)

By means of eqs. (7.8) and (7.9), eq. (7.6) reads as ϵ → 0:

FT
[
⟨F 2(z)F 2(0)⟩′

]
= π2G(F 2)

2 (0)
192 p4

{1
ϵ
− log p2 − log π4 + 31

6 + 3Γ′(1)

−g
2β0
ϵ2

+ g2

2ϵ

(
δ

(F 2)
2 − 2β0

(11
6 + Γ′(1)− log π

))
+ g2β0

ϵ
logµ2

+g2β0 log2 p
2

µ2 − g2β0
2 log2 µ2 (7.10)

−g2
(
δ

(F 2)
2 + 2β0

(10
3 + 2Γ′(1) + log 4

))
log p

2

µ2

−g
2

2

(
δ

(F 2)
2 − 2β0

(11
6 + Γ′(1)− log π

))
logµ2

−g2δ
(F 2)
2

(
log

√
π

4 − 17
4 − 5

2Γ
′(1)

)
+ g2β0

((11
6 + Γ′(1)

)
log π

+4
(5
3 + Γ′(1)

)
log 4 + 409

36 + 23
2 Γ′(1) + 1

2Γ
′′(1) + 3Γ′2(1)

)
+ · · ·

}

We now compare the above result with the perturbative computation of C(F 2,F 2)
0 (p) in the

MS scheme [2, 3]:

C
(F 2,F 2)
0 (p) = Z2

F 2C
(F 2

0 ,F 2
0 )

0 (p) + p4Z0c.t. (7.11)
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where in our notation the multiplicatively renormalized contribution to order g2 reads [2, 3]:

Z2
F 2C

(F 2
0 ,F 2

0 )
0 (p) = N2 − 1

4π2 p4
{
1 + 1

ϵ
− log p

2

µ2 + g2β0 log2 p
2

µ2 − g2β0
ϵ2

+ 2g2(c1 − β0) log
p2

µ2 − g2c1
ϵ

+ g2

16π2

(
− 12ζ3 +

485
12 − 17

2
Nf

N

)
+ · · ·

}
(7.12)

and the additive counterterm up to order g2 reads [2, 3]:

p4Z0c.t. =
N2 − 1
4π2 p4

{
− 1
ϵ
+ g2β0

ϵ2
+ g2c1

ϵ
+ · · ·

}
(7.13)

where, for later convenience, we have defined:

c1 = − 1
16π2

(17
2 − 5

3
Nf

N

)
(7.14)

so that we obtain the coefficient of the subleading log p2

µ2 to order g2 in eq. (7.12):

2(c1 − β0) = − 1
16π2

(73
3 − 14

3
Nf

N

)
(7.15)

Eq. (7.10) reproduces the leading divergence as well as the leading log p2

µ2 to order g0 of
the multiplicatively renormalized coefficient in eq. (7.12), once the overall normalization
has been matched:

G(F 2)
2 (0) = 48(N2 − 1)

π4 (7.16)

We conclude that no divergent proper contact term occurs to order g0.
The matching of the subleading log p2

µ2 to order g2 in eqs. (7.10) and (7.12) implies:

δ
(F 2)
2 = −2(c1 − β0)− 2β0

(10
3 + 2Γ′(1) + log 4

)
(7.17)

that inserted in the subleading divergence to order g2 in eq. (7.10), by neglecting temporarily
the pure logµ2 terms, yields:

g2

2ϵ

(
δ

(F 2)
2 − 2β0

(11
6 + Γ′(1)− log π

))
= g2

2ϵ

(
− 2c1 + 2β0 − 2β0

(10
3 + 2Γ′(1) + log 4

)
− 2β0

(11
6 + Γ′(1)− log π

))
= −g

2c1
ϵ

+ g2

2ϵ

(
− 2β0

(25
6 + 3Γ′(1)− log π4

))
(7.18)

The last line differs from the corresponding divergent term in eq. (7.12) because of the last
contribution proportional to β0. Hence, the above calculation implies that both a finite and
divergent proper contact term µ−2ϵC̃ ∆2δ(d̃)(z) occur to order g2, with:

C̃ = N2 − 1
4π2

g2

2ϵ2β0

(25
6 + 3Γ′(1)− log π4

)
+ N2 − 1

4π2

(
Ã0 + Ã1g

2 + · · ·
)

(7.19)
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so that the FT of:

⟨F 2(z)F 2(0)⟩′ + µ−2ϵC̃∆2δ(d̃)(z) (7.20)

reproduces the multiplicatively renormalized OPE coefficient in eq. (7.12) up to pure logµ2

terms, with ∆ the Laplacian in d̃ Euclidean space-time dimensions, ⟨F 2(z)F 2(0)⟩′ given
by eqs. (7.5) and (7.16), and:

Ã0 = 1− 31
6 − 3Γ′(1) + log π4

Ã1 = δ
(F 2)
2

(
log

√
π

4 − 17
4 − 5

2Γ
′(1)

)
− β0

((11
6 + Γ′(1)

)
log π + 4

(5
3 + Γ′(1)

)
log 4

+409
36 + 23

2 Γ′(1) + 1
2Γ

′′(1) + 3Γ′2(1)
)
+ 1

16π2

(
− 12ζ3 +

485
12 − 17

2
Nf

N

)
(7.21)

with δ
(F 2)
2 in eq. (7.17) and c1 in eq. (7.14).

Finally, as a further check, the fully renormalized OPE coefficient C(F 2,F 2)
0 (p) in the

momentum representation is obtained by adding to the FT of eq. (7.20) the counterterm
proportional to Z0c.t. in eq. (7.13):

C
(F 2,F 2)
0 (p) = FT

[
⟨F 2(z)F 2(0)⟩′

]
+ FT

[
µ−2ϵC̃∆2δ(d̃)(z)

]
+FT

[
µ−2ϵZ0c.t. ∆2δ(d̃)(z)

]
(7.22)

where:

µ−2ϵZ0c.t. =
N2 − 1
4π2

(
1− ϵ logµ2 + 1

2ϵ
2 log2 µ2 + · · ·

)(
− 1
ϵ
+ g2β0

ϵ2
+ g2c1

ϵ
+ · · ·

)
= N2 − 1

4π2

(
− 1
ϵ
+ g2β0

ϵ2
+ g2c1

ϵ
+ log µ2 − g2β0

ϵ
logµ2

+g
2β0
2 log2 µ2 − g2c1 logµ2 + · · ·

)
(7.23)

Indeed, the identity in eq. (7.18) provides the complete cancellation of the divergences and pure
logµ2 terms in eq. (7.22), thus reproducing the fully renormalized C

(F 2,F 2)
0 (p) in eq. (7.11).

8 LET versus perturbative and nonperturbative renormalization

8.1 Perturbative renormalization

A perturbative computation of the bare LET to order g2 has been worked out for O = F 2

with a hard-cutoff regularization [11]. The corresponding bare LET (IC) reads in dimensional
regularization (section 3.5):

∂

∂ log g0
⟨O(z)O(0)⟩0

∣∣∣∣
dim. reg.

= 1
2

∫
⟨O(z)O(0)F 2(x)⟩0 − ⟨O(z)O(0)⟩0 ⟨F

2(x)⟩0 d
4x− 2cO ⟨O(z)O(0)⟩0

∣∣∣∣
dim. reg.

(8.1)
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Eq. (8.1) is the most convenient to verify to order g2 in perturbation theory the compatibility
of the LET in [11] regularized by a hard-cutoff in d = 4 with our gauge-invariant formulation
in dimensional regularization. Indeed, in [11] the occurrence of the finite contact terms in
the r.h.s. has not been taken into account because of the hard-cutoff regularization in d = 4,
which is consistent with their automatic subtraction in the r.h.s. of eq. (8.1).

The bare LET expressed in terms of renormalized objects follows by employing eq. (3.26):

Z−1
F 2Z

−2
O

∂ ⟨O(z)O(0)⟩
∂ log g − 2γO(g)

ϵ
Z−2

O ⟨O(z)O(0)⟩
∣∣∣∣
dim. reg.

= 1
2Z

−2
O

∫
⟨O(z)O(0)F 2

0 (x)⟩ − 2cO

(
δ(4)(x− z) + δ(4)(x)

)
⟨O(z)O(0)⟩

− ⟨O(z)O(0)⟩ ⟨F 2
0 (x)⟩ d4x

∣∣∣∣
dim. reg.

(8.2)

Then, the above LET allows us to verify to order g2 in perturbation theory for the special case
O = F 2 the corresponding version in [11], with the identification 1

ϵ = log(Λ2

µ2 ). Indeed, to this
order we can set ZF 2 = ZO = 1, since both sides of the LET are already of order g2. It follows
that all the perturbative arguments in [11] — strictly limited to order g2 — hold unmodified.

8.2 Nonperturbative large-N renormalization

In the AF nonperturbative case, once the l.h.s. of the LET is expressed in terms of the
derivative with respect to ΛUV , the r.h.s. necessarily contains the insertion of the RG-invariant
object according to eq. (3.39):

⟨O(z)O(0)⟩
(
2γO(g)− 2cOϵ−

∂ log ⟨O(z)O(0)⟩
∂ log ΛUV

)
= 1

2
β(g, ϵ)
g

∫
⟨O(z)O(0)F 2(x)⟩ − ⟨O(z)O(0)⟩ ⟨F 2(x)⟩ dd̃x (8.3)

It follows that no divergent contact term arises in the limit ϵ → 0 both in the l.h.s. and
r.h.s. according to eq. (3.42), so that all the arguments involving the nonperturbative large-N
renormalization in d = 4 dimensions in [11] hold unmodified.

9 Conclusions

We summarize our main results.
First, we have worked out in dimensional regularization the renormalized LET for 2-

point correlators C(O,O)′
0 (z) = ⟨O(z)O(0)⟩′ at distinct points z ̸= 0 of a multiplicatively

renormalizable operator O in the l.h.s. Our key result is that the corresponding integrated
3-point correlator in the r.h.s. needs in general an infinite additive renormalization as
ϵ → 0 — completely controlled by the LET — in addition to the multiplicative one order
by order in perturbation theory. The corresponding counterterm consists in the subtraction
of an integrated — i.e. at zero momentum — divergent contact term proportional to a δ(4)

multiplying the 2-point correlator of O. In fact, we have provided two equivalent versions
of the above LET — (I) and (II) — that differ by a finite contribution in the l.h.s. Besides,
each version has three equivalent formulations (IA), (IB), (IC) in eqs. (3.28), (3.29), (3.31)
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and (IIA), (IIB), (IIC) in eqs. (3.32), (3.34), (3.35) respectively, corresponding to different
ways of writing the aforementioned counterterm in the r.h.s.

Second, we have worked out two RG-invariant forms of the LET involving the insertion
of β(g,ϵ)

g F 2 in the r.h.s., in terms of the derivative with respect to the gauge coupling in
the l.h.s. of eq. (3.37) and, in AF gauge theories, in terms of the derivative with respect to
RG-invariant scale in the l.h.s. of eq. (3.39). Perhaps not surprisingly, no infinite additive
renormalization occurs in this case.

Third, we have demonstrated in eq. (4.48) that the aforementioned divergent contact
term in the r.h.s. of the LET coincides with the corresponding countertem for ZF 2C

(F 2
0 ,O)

1 (p),
so that the fully renormalized OPE coefficient C(F 2,O)

1 (p) in the momentum representation is
unambigoulsly fixed by the LET in eq. (4.50). We have also verified that, for the special case
of O = F 2, the fully renormalized C

(F 2,F 2)
1 (p) in eq. (4.22) agrees with a previous result [2]

obtained by means of an independent argument.
Fourth, we have argued according to eq. (4.21) that, in general, the aforementioned coun-

terterm for C(F 2,O)
1 (p) satisfying eq. (4.18) does not totally arise in dimensional regularization

from the Fourier transform of C(F 2,O)′
1 (x) restricted at distinct points satisfying eq. (4.8).

As a consequence, an intrinsically divergent contact term — that we have referred to as a
divergent proper contact term — must be added to C

(F 2,O)′
1 (x) in order to reproduce the

correct infinite additive renormalization of C(F 2,O)
1 (p). Indeed, we have verified the above

statements by direct computation for O = F 2 in eqs. (4.38), (4.39) and (4.43).
These observations will play a key role in our second installment, where we apply the

LET to QCD inside and above the conformal window.
Fifth, taking advantage that YM theory is conformal invariant to order g2, we have

employed the LET to reconstruct to order g2 the relation between the normalization of the
involved 2- and 3-points correlators and the anomalous dimension in eqs. (6.17), (6.20), (6.21)
and (6.22). The above technique will play an important role in our second installment as well.

Sixth, we have demonstrated in eq. (5.4) that in the AF phase of the theory the additive
renormalization in the r.h.s. of the LET turns out to be finite after the nonperturbative
resummation to all perturbative orders.

Finally, we have employed the LET in dimensional regularization to verify in a manifestly
gauge-invariant framework in eqs. (8.2) and (8.3) some perturbative and nonperturbative
computations [11] involving a hard-cutoff regularization of the bare LET, respectively.

A Anomalous dimension of F 2

We compute in two different ways the anomalous dimension of TrF 2 = 1
2F

2 in massless
QCD and N = 1 SUSY YM theory: first, from the multiplicative renormalization of TrF 2

in MS-like schemes. Second, from the RG invariance of the trace anomaly that reads in
d = 4 dimensions [20]:

Tαα = β(g)
g

TrF 2 (A.1)

The two computations are not actually independent. Indeed:

Tαα = −ϵTrF 2
0 (A.2)
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in d̃ = 4 − 2ϵ dimensions, with TrF 2
0 the bare operator. Hence, we get:

Tαα = −ϵZ−1
F 2 (g, ϵ)ZF 2(g, ϵ) TrF 2

0

= −ϵZ−1
F 2 (g, ϵ) TrF 2

= −ϵ
(
1− β(g)

ϵg

)
TrF 2

= β(g, ϵ)
g

TrF 2 (A.3)

where:
dg

d logµ = β(g, ϵ) = −ϵg + β(g) (A.4)

is the beta function in d̃ = 4 − 2ϵ dimensions. It follows that the trace anomaly is a
consequence of the multiplicative renormalization of TrF 2 that also implies the anomalous
dimension of TrF 2 (appendix A.1). Vice versa, the anomalous dimension of TrF 2 follows
from the trace anomaly as well (appendix A.2).

A.1 Multiplicative renormalization of F 2

In gauge-invariant correlators of massless QCD and N = 1 SUSY YM theory TrF 2 is
multiplicatively renormalizable in MS-like schemes up to operators proportional to the EOM:

TrF 2 = ZF 2(g, ϵ) TrF 2
0 (A.5)

where ZF 2(g, ϵ) [3, 20]:

ZF 2(g, ϵ) = 1 + g
∂

∂g
logZg(g, ϵ) =

(
1− β(g)

ϵg

)−1
(A.6)

with:

g0 = Zg(g, ϵ)µϵg(µ) (A.7)

and β(g) = −g d log Zg

d log µ . Thus, by means of d
d log µ = β(g, ϵ) ∂

∂g + ∂
∂ log µ and eq. (A.6), we get

the anomalous dimension of TrF 2:

γF 2(g) = −d logZF 2

d logµ = −β(g, ϵ)∂ logZF 2

∂g
= g

∂

∂g

(
β(g, ϵ)
g

)
= g

∂

∂g

(
β(g)
g

)
(A.8)

Besides, from eq. (A.6) it follows:

ZF 2(g, ϵ) = 1− β0g
2

ϵ
− β1g

4

ϵ
+ β2

0g
4

ϵ2
+O(g6) (A.9)

and:

Zg(g, ϵ) = 1− β0g
2

2ϵ − β1g
4

4ϵ + 3β2
0g

4

8ϵ2 +O(g6) (A.10)

up to two loops. As a consequence:

Z2
g (g, ϵ) = 1− 2β0g

2

2ϵ − 2β1g
4

4ϵ + 23β
2
0g

4

8ϵ2 +
(
β0g

2

2ϵ

)2

+O(g6)

= 1− β0g
2

ϵ
− β1g

4

2ϵ + β2
0g

4

ϵ2
+O(g6) (A.11)

Hence, only to one loop ZF 2 coincides with Z2
g [3].
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A.2 γF 2(g) from the trace anomaly

Eq. (A.8) follows from the trace anomaly as well [24, 25]. Because of the RG invariance of
the trace anomaly the CS equation reads in d = 4 dimensions:(

x · ∂
∂x

+ β(g) ∂
∂g

+ 4
)(

β(g)
g

TrF 2(x)
)
= 0 (A.12)

Hence: (
x · ∂

∂x
+ β(g) ∂

∂g
+ 4 + β(g) ∂

∂g
log

(
β(g)
g

))
TrF 2(x) = 0 (A.13)

that implies: (
x · ∂

∂x
+ β(g) ∂

∂g
+ 4 + g

∂

∂g

(
β(g)
g

))
TrF 2(x) = 0 (A.14)

Comparing the above equation with the CS equation for TrF 2:(
x · ∂

∂x
+ β(g) ∂

∂g
+ 4 + γF 2(g)

)
TrF 2(x) = 0 (A.15)

we obtain:

γF 2(g) = g
∂

∂g

(
β(g)
g

)
(A.16)

that coincides with eq. (A.8).1 The anomalous dimension up to two loops in MS-like
schemes follows:

γF 2(g) = −2β0g
2 − 4β1g

4 + · · · (A.17)

with:

β(g) = −β0g
3 − β1g

5 + · · · (A.18)

The first coefficient γ(F 2)
0 = −2β0 is universal, i.e. scheme independent, as for the one-loop

coefficient of the anomalous dimension of any canonically normalized operator. Instead,
γ

(F 2)
1 = −4β1 is scheme dependent, and it may be changed [22] by a finite multiplicative

renormalization of TrF 2 reducing to the identity for g = 0, contrary to a reparametrization
of g that would not affect β1 — the second universal coefficient of the beta function.

B Contact terms in the OPE for F 2 [2, 3]

The Euclidean version of the Minkowskian operator O1 [2, 3] reads in our notation:

O1 = − 1
2g2

Y M

TrFµνFµν

= − N

2g2 TrFµνFµν

= − N

2g2
g2

N
TrFµνFµν

= −1
2 TrFµνFµν

= −1
4F

2 (B.1)

1The analogous reasoning in d̃ = 4 − 2ϵ dimensions also leads to eq. (A.8).
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where g2 = Ng2
Y M and we have expressed Fµν in the Wilsonian normalization in terms of

Fµν in the canonical one (section 3). It follows the fully renormalized OPE coefficient of
O1 with itself [2] in the momentum representation:∫

O1(x)O1(0)e−ip·xd4−2ϵx

=
∫

· · ·+
(
C

(S)
1CZ(x)− δ(4−2ϵ)(x)

(
ZL

11
Z11

+ · · ·
))

O1(0) + · · · e−ip·xd4−2ϵx (B.2)

with:
Z11 =

(
1− β(αs)

ϵ

)−1
(B.3)

and [2]:

ZL
11

Z11
= 1
ϵ

(
1− β(αs)

ϵ

)−1
α2

s

∂

∂αs

(
β(αs)
αs

)
= 1
ϵ

(
1− β(αs)

ϵ

)−1 (
αsβ

′(αs)− β(αs)
)

(B.4)

where β(αs) reads in our notation:

β(αs) = d logαs

d logµ2 = 1
2
1
αs

∂αs

∂g

dg

d logµ

= 1
2
4πN
g2

2g
4πN

dg

d logµ = 1
g

dg

d logµ

= β(g)
g

(B.5)

with αs = g2
Y M/4π = g2/4πN . Hence, employing:

α2
s

∂

∂αs

(
β(αs)
αs

)
= 1

2
1

4πN g3 ∂

∂g

(
4πN β(g)

g3

)
= 1

2g
3 ∂

∂g

(
β(g)
g3

)
= 1

2g
3 ∂

∂g

( 1
g2
β(g)
g

)
= 1

2g
∂

∂g

(
β(g)
g

)
− β(g)

g

= 1
2γF 2(g)− β(g)

g
(B.6)

we obtain from eq. (B.4):

ZL
11

Z11
= 1
ϵ

(
1− β(g)

ϵg

)−1 (1
2g

∂

∂g

(
β(g)
g

)
− β(g)

g

)
(B.7)

According to F 2 = −4O1 in eq. (B.1), we get the OPE coefficients in both notations:∫
C

(F 2,F 2)
1 (x)e−ip·xd4−2ϵx = −4

∫
C

(S)
1CZ(x)e

−ip·xd4−2ϵx (B.8)

Then, the infinite additive renormalization of C(F 2,F 2)
1 (p) is given by:

4Z
L
11

Z11
(B.9)

that coincides with eq. (4.50) for O = F 2.
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C Integral Id̃,∆F 2 ,∆F 2

Eqs. (6.16) and (6.27) involve special cases of the integral [26]:

Id,∆1,∆2 =
∫ 1

|x|∆1 |x− z|∆2
ddx

= (2π)dC
d,

∆1
2 ,

∆2
2
|z|d−∆1−∆2 (C.1)

with:

C
d,

∆1
2 ,

∆2
2

=
Γ
(∆1+∆2−d

2
)
Γ
(d−∆1

2
)
Γ
(d−∆2

2
)

(4π)
d
2 Γ
(∆1

2
)
Γ
(∆2

2
)
Γ
(
d− ∆1

2 − ∆2
2
) (C.2)

For d → d̃ and ∆1 = ∆2 → ∆F 2 in eqs. (C.1) and (C.2) we get:

Id̃,∆F 2 ,∆F 2
=
∫ 1

|x|∆F 2 |x− z|∆F 2
dd̃x

= (2π)d̃C
d̃,

∆
F 2
2 ,

∆
F 2
2

|z|d̃−2∆F 2 (C.3)

with:

C
d̃,

∆
F 2
2 ,

∆
F 2
2

=
Γ
(2∆F 2−d̃

2
)
Γ
( d̃−∆F 2

2
)2

(4π)
d̃
2 Γ
(∆F 2

2
)2Γ(d̃−∆F 2

) (C.4)

Eq. (6.16) is obtained for d̃ = 4 − 2ϵ and ∆F 2 = 4 − 4ϵ in eqs. (C.3) and (C.4):

I4−2ϵ,4−4ϵ,4−4ϵ = (2π)4−2ϵC4−2ϵ,2−2ϵ,2−2ϵ |z|−4+6ϵ

= (2π)4−2ϵ Γ(2− 3ϵ)Γ(ϵ)2

(4π)2−ϵΓ(2− 2ϵ)2Γ(2ϵ) |z|
−4+6ϵ

= π2π−ϵ
(2
ϵ
+ 2 + 2Γ′(1) + · · ·

)
|z|−4+6ϵ

= π2
(2
ϵ
+ 2 + 2Γ′(1)− 2 log π + · · ·

)
|z|−4+6ϵ (C.5)

where in the ϵ expansion of the ratio of Γ functions we have repeatedly employed zΓ(z) =
Γ(z + 1) and the Taylor expansion Γ(1 + ϵ) = 1 + ϵΓ′(1) + · · · . Eq. (C.5) multiplied by

µ2ϵ

|z|−4+4ϵ yields as ϵ → 0:

µ2ϵ

|z|−4+4ϵ
I4−2ϵ,4−4ϵ,4−4ϵ = π2|zµ|2ϵ

(2
ϵ
+ 2 + 2Γ′(1)− 2 log π + · · ·

)
= π2

(2
ϵ
+ 4 log |zµ|+ 2 + 2Γ′(1)− 2 log π

)
(C.6)

reported in eq. (6.16). Eq. (6.27) is obtained for d̃→ d = 4 and ∆F 2 = 4 + γF 2 in eqs. (C.3)
and (C.4):

I4,4+γF 2 ,4+γF 2 = (2π)4C4,2+
γ

F 2
2 ,2+

γ
F 2
2

|z|−4−2γF 2

= (2π)4 Γ(2 + γF 2)Γ(−γF 2
2 )2

(4π)2Γ(2 + γF 2
2 )2Γ(−γF 2)

|z|−4−2γF 2

= π2
(
− 4
γF 2

+O
(
γF 2

))
|z|−4−2γF 2 (C.7)
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expanded perturbatively in γF 2 . Eq. (C.7) multiplied by µ
−γ

F 2

|z|−4−γ
F 2 yields perturbatively in γF 2 :

µ−γF 2

|z|−4−γF 2
I4,4+γF 2 ,4+γF 2 = π2

(
− 4
γF 2

+O
(
γF 2

))
|zµ|−γF 2

= π2
(
− 4
γF 2

+ 4 log |zµ|+O
(
γF 2

))
(C.8)

reported in eq. (6.27) for γF 2 = −2β0g
2 + · · · .

D Callan-Symanzik equation in d̃ = 4 − 2ϵ dimensions in the coordinate
representation

The CS equation [27, 28] in a massless QCD-like theory for connected 2-point correlators
G(2) ≡ ⟨O(z)O(0)⟩′ at distinct points z ̸= 0 of a multiplicatively renormalizable gauge-
invariant scalar operator O with canonical dimension D̃ is a consequence of the independence
of the bare correlator G(2)

0 ≡ ⟨O(z)O(0)⟩′0:

G
(2)
0 (z, ϵ, g0) = Z−2

O (ϵ, g(µ))G(2)(z, µ, g(µ)) (D.1)

from the renormalization scale µ:

µ
d

dµ
G

(2)
0

∣∣∣∣
ϵ,g0

= 0 (D.2)

with fixed bare parameters g0 and ϵ of the dimensionally regularized theory. Substituting
eq. (D.1) into eq. (D.2) we get the CS equation [27–30]:(

µ
∂

∂µ
+ β(g, ϵ) ∂

∂g
+ 2γO(g)

)
G(2)(z, µ, g(µ)) = 0 (D.3)

with:
β(g, ϵ) = dg

d logµ

∣∣∣∣
ϵ,g0

= −ϵg + β(g) (D.4)

and:
γO(g) = −d logZO

d logµ

∣∣∣∣
ϵ,g0

(D.5)

the anomalous dimension of O. As the theory is massless to all orders of perturbation
theory we define:

G(2)(z, µ, g(µ)) = 1
z2D̃

Ḡ(2)(zµ, g(µ)) (D.6)

with the dimensionless correlator Ḡ(2) that satisfies eq. (D.3) as well. Besides:(
z · ∂

∂z
+ β(g, ϵ) ∂

∂g
+ 2γO(g)

)
Ḡ(2)(zµ, g(µ)) = 0 (D.7)

as Ḡ(2) depends on z via the product zµ only. Therefore:(
z · ∂

∂z
+ β(g, ϵ) ∂

∂g
+ 2D̃ + 2γO(g)

)
G(2)(z, µ, g(µ)) = 0 (D.8)
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The solution of eqs. (D.8) and (D.3) may then be written as:

G(2)(z, µ, g(µ)) = 1
z2D̃

Ḡ(2)(zµ, g(µ))

= 1
z2D̃

G(O)
2 (g̃(z))Z(O)2(g̃(z), g(µ)) (D.9)

where G(O)
2 is an RG-invariant function of the running coupling g̃(z) ≡ g̃(zµ, g(µ)) in d̃

dimensions that solves:

− dg̃(z)
d log |z| = β(g̃(z), ϵ) (D.10)

with the initial condition g̃(1, g(µ)) = g(µ), and the renormalized multiplicative factor
Z(O)(g̃(z), g(µ)):

Z(O)(g̃(z), g(µ)) = exp
∫ g̃(z)

g(µ)

γO(g)
β(g, ϵ)dg (D.11)

solves:

γO(g(µ)) = −d logZ
(O)

d logµ (D.12)

Moreover, it follows from the RG invariance of g̃(z):

0 = dg̃(z)
d logµ

= ∂g̃(z)
∂ logµ + ∂g̃(z)

∂g(µ)
dg(µ)
d logµ

= dg̃(z)
d log |z| +

∂g̃(z)
∂g(µ)

dg(µ)
d logµ

= −β(g̃(z), ϵ) + ∂g̃(z)
∂g(µ)β(g(µ), ϵ) (D.13)

according to eq. (D.10) and the fact that g̃(z) depends on z via the product zµ only. As
a consequence:

∂g̃(z)
∂g(µ) = β(g̃(z), ϵ)

β(g(µ), ϵ) (D.14)

D.1 Asymptotics of the running coupling

In d̃ = 4 − 2ϵ dimensions the beta function:

β(g, ϵ) = −ϵg + β(g)
= −ϵg − β0g

3 − β1g
5 + · · · (D.15)

has a UV zero at g = 0. The running coupling satisfies:∫ g̃(z)

g(µ)

dg

β(g, ϵ) = −
∫ |z|

µ−1
d log |z| (D.16)
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We evaluate asymptotically eq. (D.16) including the leading order of the perturbative ex-
pansion of β(g) = −β0g

3 + · · · , with β0 > 0:∫ g̃(z)

g(µ)

dg

−ϵg − β0g3 + · · ·
= −

∫ |z|

µ−1
d log |z| (D.17)

where both length scales, |z| =
√
z2 and µ−1, are assumed to be close to zero in order for

g̃(z) and g(µ) to stay in a neighborhood of g = 0. By employing:∫ g̃(z)

g(µ)

dg

g(ϵ+ β0g2) = 1
2ϵ log

g2

ϵ+ β0g2

∣∣∣∣g̃(z)

g(µ)
(D.18)

eq. (D.17) yields:

log
(
g̃2(z)
g2(µ)

ϵ+ β0g
2(µ) + · · ·

ϵ+ β0g̃2(z) + · · ·

)
= 2ϵ log |zµ| (D.19)

After exponentiating both sides:

g̃2(z)
g2(µ) = |zµ|2ϵ ϵ+ β0g̃

2(z) + · · ·
ϵ+ β0g2(µ) + · · ·

(D.20)

we obtain:
ϵ

g̃2(z) + β0 + · · · = |zµ|−2ϵ
(

ϵ

g2(µ) + β0 + · · ·
)

(D.21)

that implies:

g2(µ)
g̃2(z) = |zµ|−2ϵ

(
1− β0g

2(µ) |zµ|
2ϵ − 1
ϵ

+ · · ·
)

(D.22)

whose inverse is:

g̃2(z)
g2(µ) = |zµ|2ϵ

1− β0g2(µ) |zµ|2ϵ−1
ϵ + · · ·

(D.23)

For ϵ → 0 eq. (D.23) provides the solution in d = 4 dimensions (appendix E.1):

lim
ϵ→0

g̃2(z)
g2(µ) = lim

ϵ→0

1 + 2ϵ log |zµ|+ · · ·
1− 2β0g2(µ) log |zµ|+ · · ·

= 1
1− 2β0g2(µ) log |zµ|+ · · ·

(D.24)

Instead, for fixed ϵ > 0 and around the 1
g̃(z) singularity as g̃(z) → 0, i.e. for large log |zµ|,

the asymptotics of the solution in eq. (D.23) reads:

g̃2(z) ∼ ϵ

β0
|zµ|2ϵ (D.25)

Moreover, eq. (D.19):

− 1
2ϵ log β0

(
1 + ϵ

β0g̃2(z) + · · ·
)
− log |z| = 1

2ϵ log β0

(
1 + ϵ

β0g2(µ) + · · ·
)
+ log µ (D.26)
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implies that both sides are independent of |z| and µ−1, i.e. RG-invariant, though scheme
dependent. After subtracting the infinite constant − 1

2ϵ log β0 from both sides and introducing
a scheme-dependent integration constant C, eq. (D.26) thus defines the RG-invariant mass
scale ΛUV in d̃ = 4 − 2ϵ dimensions:

log ΛUV = − 1
2ϵ log

(
1 + ϵ

β0g̃2(z) + · · ·
)
− log |z| − C

2β0
(D.27)

whose exponential reads:

ΛUV = |z|−1
(
1 + ϵ

β0g̃2(z) + · · ·
)− 1

2ϵ

exp
(
− C

2β0

)
(D.28)

Solving eq. (D.28) in terms of g̃(z) as ϵ → 0 and asymptotically as |z| → 0+ we get:

g̃2(z) ∼ 1
β0

1(
−1+|zΛUV |−2ϵ+···

)
e
− ϵC

β0

ϵ

∼ 1
β0

1
−2 log |z|ΛUV − C

β0
+ · · ·

∼ 1
−2β0 log |z|ΛUV

(
1− C

2β0 log |z|ΛUV

+ · · ·
)

(D.29)

Eqs. (D.28) and (D.29) yield as ϵ → 0 the corresponding eqs. (E.12) and (E.13) in d = 4
dimensions.

D.2 Asymptotics of ⟨O(z)O(0)⟩′

In perturbation theory:2

γO(g) = −γ(O)
0 g2 − γ

(O)
1 g4 + · · · (D.30)

with the first coefficient γ(O)
0 universal, i.e. scheme independent. We employ γO(g) to leading

order to evaluate asymptotically the renormalized multiplicative factor Z(O)(g̃(z), g(µ)) for
small coupling, i.e. g̃(z), g(µ) → 0:

Z(O)(g̃(z), g(µ)) ∼ exp
∫ g̃(z)

g(µ)

−γ(O)
0 g2 + · · ·

−ϵg − β0g3 + · · ·
dg

∼ exp
(
γ

(O)
0
2

∫ g̃2(z)

g2(µ)

1 + · · ·
ϵ+ β0g2 + · · ·

dg2
)

∼ exp
(
γ

(O)
0
2β0

log
(
ϵ+ β0g̃

2(z) + · · ·
ϵ+ β0g2(µ) + · · ·

))

∼ exp
(
γ

(O)
0
2β0

log
(
g̃2(z)
g2(µ) |zµ|

−2ϵ

))

∼
(
g̃2(z)
g2(µ) |zµ|

−2ϵ
) γ

(O)
0

2β0
(D.31)

2In the present paper the convention about the sign of the coefficients γ
(O)
i agrees with [12, 24, 31], but it

is opposite to the standard one [22].
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where we have employed eq. (D.20). It follows the short-distance asymptotics of the 2-point
correlator in eq. (D.9) as g̃(z), g(µ) → 0:

⟨O(z)O(0)⟩′ ∼ G(O)
2 (0)
z2D̃

(
g̃2(z)
g2(µ) |zµ|

−2ϵ
) γ

(O)
0
β0

(D.32)

D.3 Asymptotics of ⟨F 2(z)F 2(0)⟩′

Z(F 2) admits a closed form in terms of the beta function according to eqs. (A.16) and (D.11):

Z(F 2)(g̃(z), g(µ)) = exp
∫ g̃(z)

g(µ)

γF 2(g)
β(g, ϵ)dg

= exp
∫ g̃(z)

g(µ)

∂
∂g

(
β(g,ϵ)

g

)
β(g,ϵ)

g

dg

= β(g̃(z), ϵ)
g̃(z)

g(µ)
β(g(µ), ϵ) (D.33)

Correspondingly, we get for the solution of the CS equation:

⟨F 2(z)F 2(0)⟩′ = G(F 2)
2 (g̃(z))
z8−4ϵ

(
β(g̃(z), ϵ)
g̃(z)

)2 ( g(µ)
β(g(µ), ϵ)

)2
(D.34)

with D̃ = d̃ = 4 − 2ϵ the canonical dimension of F 2. For small coupling we evaluate
asymptotically eq. (D.33):

Z(F 2)(g̃(z), g(µ)) = β(g̃(z), ϵ)
g̃(z)

g(µ)
β(g(µ), ϵ)

∼ ϵ+ β0g̃
2(z) + · · ·

ϵ+ β0g2(µ) + · · ·

∼ g̃2(z)
g2(µ) |zµ|

−2ϵ (D.35)

that, indeed, for γ(F 2)
0 = 2β0 coincides with eq. (D.31). The short-distance asymptotics of

eq. (D.34) as g̃(z), g(µ) → 0 follows:

⟨F 2(z)F 2(0)⟩′ ∼ G(F 2)
2 (0)
z8−4ϵ

g̃4(z)
g4(µ) |zµ|

−4ϵ (D.36)

D.4 Change of renormalization scheme

Replacing z → µ̃−1 in eq. (D.23) and expanding for small g(µ), we obtain:

g2(µ̃) =
(
µ

µ̃

)2ϵ

g2(µ)
(
1 + 2β0g

2(µ) log µ
µ̃
+ · · ·

)
(D.37)

Hence, the change of scheme µ̃ = αµ yields for the coupling:

g2(µ̃ = αµ) = α−2ϵg2(µ)
(
1− 2β0g

2(µ) logα+ · · ·
)

= α−2ϵg2(µ)
(
1 + · · ·

)
(D.38)
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where the dots contain O(g2) contributions. We determine the scheme dependence of the
complete 2-point correlator entering the FT in eq. (7.22) and the 2-point correlator at distinct
points in eq. (7.5) by replacing µ → µ̃ = αµ and rewriting g2 → g2(µ̃ = αµ) in terms
of g(µ) = g by means of eq. (D.38). For the correlator at distinct points in eq. (7.5), we
obtain to order g2:

⟨F 2(z)F 2(0)⟩′
∣∣
µ̃

= G(F 2)
2 (0)

{ 1
z8−4ϵ

(
1− 2g2(µ̃)β0

ϵ

)
+ µ̃2ϵ

z8−6ϵ
g2(µ̃)

(
δ

(F 2)
2 + 2β0

ϵ

)
+ · · ·

}

= G(F 2)
2 (0)

{ 1
z8−4ϵ

(
1− 2g2β0α

−2ϵ

ϵ

)
+ µ2ϵα2ϵ

z8−6ϵ
g2α−2ϵ

(
δ

(F 2)
2 + 2β0

ϵ

)
+ · · ·

}

= G(F 2)
2 (0)

{ 1
z8−4ϵ

(
1− 2g2β0

ϵ

)
+ µ2ϵ

z8−6ϵ
g2
(
δ

(F 2)
2 + 2β0

ϵ

)}

+ G(F 2)
2 (0)
z8−4ϵ

2g2β0
ϵ

(1− α−2ϵ) + · · ·

= ⟨F 2(z)F 2(0)⟩′
∣∣
µ
+ G(F 2)

2 (0)
z8−4ϵ

2g2β0
ϵ

(1− α−2ϵ) + · · ·

= ⟨F 2(z)F 2(0)⟩′
∣∣
µ
+ 48(N2 − 1)

π4z8−4ϵ

2g2β0
ϵ

(1− α−2ϵ) + · · · (D.39)

where we have employed eq. (7.16) in the last equality. For the complete correlator entering
the FT in eq. (7.22) we obtain to order g2:

⟨F 2(z)F 2(0)⟩
∣∣
µ̃

= ⟨F 2(z)F 2(0)⟩′
∣∣
µ̃
+ N2 − 1

4π2 ∆2δ(d̃)(z)µ̃−2ϵ
{
− 1
ϵ
+ g2(µ̃)β0

ϵ2

− g2(µ̃)
ϵ

( 1
16π2

(17
2 − 5

3
Nf

N

)
− β0

(25
6 + 3Γ′(1)− log π4

))
+ Ã0 + Ã1g

2(µ̃)
}
+ · · ·

= ⟨F 2(z)F 2(0)⟩′
∣∣
µ
+ 48(N2 − 1)

π4z8−4ϵ

2g2β0
ϵ

(1− α−2ϵ)

+ N2 − 1
4π2 ∆2δ(d̃)(z)µ−2ϵα−2ϵ

{
− 1
ϵ
+ g2α−2ϵβ0

ϵ2

− g2α−2ϵ

ϵ

( 1
16π2

(17
2 − 5

3
Nf

N

)
− β0

(25
6 + 3Γ′(1)− log π4

))
+ Ã0 + Ã1g

2α−2ϵ
}
+ · · ·

= ⟨F 2(z)F 2(0)⟩
∣∣
µ
+ 48(N2 − 1)

π4z8−4ϵ

2g2β0
ϵ

(1− α−2ϵ)

+ N2 − 1
4π2 ∆2δ(d̃)(z)µ−2ϵ

{1− α−2ϵ

ϵ
+ (1− α−4ϵ)

[
− g2β0

ϵ2

+ g2

ϵ

( 1
16π2

(17
2 − 5

3
Nf

N

)
− β0

(25
6 + 3Γ′(1)− log π4

))
− Ã1g

2
]}

+ · · · (D.40)
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Hence, the scheme dependence of its FT in eq. (7.22) to order g2 reads as ϵ → 0:

FT
[
⟨F 2(z)F 2(0)⟩

∣∣
µ̃

]
= FT

[
⟨F 2(z)F 2(0)⟩

∣∣
µ

]
+ N2 − 1

4π2 p4
{2g2β0

ϵ2

(
πp2

4

)−ϵ(
1 + ϵ

(31
6 + 3Γ′(1)

)
+ · · ·

)
(1− α−2ϵ)

}
+ N2 − 1

4π2 p4µ−2ϵ
{1− α−2ϵ

ϵ
+ (1− α−4ϵ)

[
− g2β0

ϵ2

+ g2

ϵ

( 1
16π2

(17
2 − 5

3
Nf

N

)
− β0

(25
6 + 3Γ′(1)− log π4

))
− Ã1g

2
]}

+ · · ·

= FT
[
⟨F 2(z)F 2(0)⟩

∣∣
µ

]
+ N2 − 1

4π2 p4
{

2g2β0
ϵ2

(
2ϵ logα− 2ϵ2 log2 α− 2ϵ2 logα

(
log p2 + log π4 − 31

6 − 3Γ′(1)
))

+ 2 logα− g2β0
ϵ2

(
4ϵ logα− 8ϵ2 log2 α− 4ϵ2 logα logµ2

)
+ 4g2 logα

( 1
16π2

(17
2 − 5

3
Nf

N

)
− β0

(25
6 + 3Γ′(1)− log π4

))}
+ · · ·

= FT
[
⟨F 2(z)F 2(0)⟩

∣∣
µ

]
+ N2 − 1

4π2 p4
{
2 logα− 4g2β0 logα log p

2

µ2

+ 4g2β0 log2 α+ 2g2 logα 1
16π2

(73
3 − 14

3
Nf

N

)}
+ · · · (D.41)

where we have employed eqs. (7.8) and (7.18). Eq. (D.41) manifestly agrees with the scheme
dependence obtained by replacing µ → µ̃ = αµ in C

(F 2,F 2)
0 (p) in eq. (7.11).

D.5 Derivative of the 2-point correlator ∂ log⟨O(z)O(0)⟩′

∂ log g
in the l.h.s. of the LET

The l.h.s. of the LET (IC) in d̃ = 4 − 2ϵ dimensions for z ̸= 0 reads:

l.h.s. = ⟨O(z)O(0)⟩′ ∂ log ⟨O(z)O(0)⟩′

∂ log g (D.42)

where g = g(µ) and the 2-point correlator is the solution in eq. (D.9) of the CS equation
in 4 − 2ϵ dimensions. By explicit computation we obtain:

∂ log ⟨O(z)O(0)⟩′

∂ log g = ∂ log G(O)
2 (g̃(z))

∂ log g + 2∂ logZ
(O)(g̃(z), g(µ))
∂ log g

= g
∂ log G(O)

2 (g̃(z))
∂g

+ 2g ∂
∂g

∫ g̃(z)

g

γO(g′)
β(g′, ϵ) dg

′

= g
∂ log G(O)

2 (g̃(z))
∂g

+ 2g
(
∂g̃(z)
∂g

γO(g̃(z))
β(g̃(z), ϵ) −

γO(g)
β(g, ϵ)

)

= g
∂ log G(O)

2 (g̃(z))
∂g

+ 2g
(
β(g̃(z), ϵ)
β(g, ϵ)

γO(g̃(z))
β(g̃(z), ϵ) −

γO(g)
β(g, ϵ)

)

= g
∂ log G(O)

2 (g̃(z))
∂g

+ 2g
β(g, ϵ)

(
γO(g̃(z))− γO(g)

)
= g

∂ log G(O)
2 (g̃(z))
∂g

− 2ZF 2

ϵ

(
γO(g̃(z))− γO(g)

)
(D.43)

– 46 –



J
H
E
P
0
8
(
2
0
2
4
)
1
4
5

where — in the order — we have employed eq. (D.11) for Z(O), eq. (D.14) for the ratio of
the running couplings, eq. (A.6) and β(g, ϵ) = −ϵg + β(g) that imply Z−1

F 2 = −β(g,ϵ)
ϵg . To

order g2 in perturbation theory:

G(O)
2 (g̃(z)) = G(O)

2 (0)(1 + δ
(O)
2 g̃2(z) + · · · )

= G(O)
2 (0)(1 + δ

(O)
2 |zµ|2ϵg2 + · · · ) (D.44)

and:

γO(g̃(z))− γO(g) = −γ(O)
0 (g̃2(z)− g2) + · · ·

= −γ(O)
0 g2(|zµ|2ϵ − 1) + · · · (D.45)

so that eq. (D.43) reads to order g2 as ϵ → 0:
∂ log ⟨O(z)O(0)⟩′

∂ log g

∣∣∣∣
to order g2

= 2δ(O)
2 |zµ|2ϵg2 + 2

ϵ
γ

(O)
0 g2(|zµ|2ϵ − 1)

= 2δ(O)
2 g2 + 4γ(O)

0 g2 log |zµ|+ · · · (D.46)

where the dots stand for O(ϵ) contributions. For O = F 2, eq. (D.46) yields:

∂ log ⟨F 2(z)F 2(0)⟩′

∂ log g

∣∣∣∣
to order g2

= 2δ(F 2)
2 g2 + 8β0g

2 log |zµ|+ · · · (D.47)

where we have employed γ
(F 2)
0 = 2β0.

D.6 Scheme dependence of the l.h.s. of the LET for O = F 2 to order g2

The scheme dependence of the derivative in eq. (D.47) is implied by the one of the correlator
at distinct points in eq. (D.39). For µ̃ = αµ and setting g(µ) = g, the derivative of
eq. (D.39) yields:

∂ log ⟨F 2(z)F 2(0)⟩′
∣∣
µ̃

∂ logg(µ̃) = ∂

∂ logg log
(
⟨F 2(z)F 2(0)⟩′

∣∣
µ
+G(F 2)

2 (0)
z8−4ϵ

2β0g
2

ϵ
(1−α−2ϵ)+· · ·

)
= ∂

∂ logg

{
log ⟨F 2(z)F 2(0)⟩′

∣∣
µ

+log
(
1+ 1

⟨F 2(z)F 2(0)⟩′
∣∣
µ

G(F 2)
2 (0)
z8−4ϵ

2β0g
2

ϵ
(1−α−2ϵ)+· · ·

)}

=
∂ log ⟨F 2(z)F 2(0)⟩′

∣∣
µ

∂ logg

+ ∂

∂ logg log
(
1+ 1

G(F 2)
2 (0)
z8−4ϵ (1+O(g2))

G(F 2)
2 (0)
z8−4ϵ

2β0g
2

ϵ
(1−α−2ϵ)+· · ·

)

=
∂ log ⟨F 2(z)F 2(0)⟩′

∣∣
µ

∂ logg + ∂

∂ logg log
(
1+2β0g

2

ϵ
(1−α−2ϵ)+· · ·

)

=
∂ log ⟨F 2(z)F 2(0)⟩′

∣∣
µ

∂ logg +4β0g
2

ϵ
(1−α−2ϵ)+· · ·

=
∂ log ⟨F 2(z)F 2(0)⟩′

∣∣
µ

∂ logg +8β0g
2 logα+· · · (D.48)
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where we have employed to the relevant order as ϵ → 0:

∂

∂ log g(µ̃) = ∂

∂ log g
∂ log g

∂ log g(µ̃) = ∂

∂ log g
(
1 + · · ·

)
(D.49)

The result in eq. (D.48) can also be straightforwardly obtained by replacing µ→ µ̃ = αµ in
eq. (D.47). Hence, after factoring out the 2-point correlator ⟨F 2(z)F 2(0)⟩′ in eq. (D.42) for
O = F 2, the remaining scheme dependence of the l.h.s. of the LET to order g2 amounts to:

∂ log ⟨F 2(z)F 2(0)⟩′
∣∣
µ̃

∂ log g(µ̃)

∣∣∣∣
to order g2

=
∂ log ⟨F 2(z)F 2(0)⟩′

∣∣
µ

∂ log g

∣∣∣∣
to order g2

+ 8β0g
2 logα

(D.50)

D.7 Scheme dependence of the r.h.s. of the LET for O = F 2 to order g2

For O = F 2, the r.h.s. of the LET (IC) to order g2 in d̃ = 4− 2ϵ dimensions reads for z ̸= 0:

r.h.s. = 1
2ZF 2

∫
⟨F 2(z)F 2(0)F 2

0 (x)⟩ dd̃x

−1
2ZF 2

∫
4
(
δ(d̃)(x− z) + δ(d̃)(x)

)
⟨F 2(z)F 2(0)⟩′ dd̃x

+ZF 2
2γF 2(g)

ϵ
⟨F 2(z)F 2(0)⟩′

∣∣∣∣
up to order g2

= 1
2

∫
⟨F 2(z)F 2(0)F 2(x)⟩′ dd̃x

+1
2

∫
B̃

(F 2)
0 g2

(
δ(d̃)(x) + δ(d̃)(x− z)

)
⟨F 2(z)F 2(0)⟩′ dd̃x

+2γF 2(g)
ϵ

⟨F 2(z)F 2(0)⟩′
∣∣∣∣
up to order g2

= 2β0g
2
(2
ϵ
+ 4 log |zµ| − 2 log π + 2 + 2Γ′(1)

)
⟨F 2(z)F 2(0)⟩′

+B̃(F 2)
0 g2 ⟨F 2(z)F 2(0)⟩′ − 4β0g

2

ϵ
⟨F 2(z)F 2(0)⟩′

∣∣∣∣
to order g2

(D.51)

where we have employed eq. (6.8) for O = F 2:

⟨F 2(z)F 2(0)F 2
0 (x)⟩

∣∣∣∣
up to order g2

= (4 + B̃
(F 2)
0 g2)(δ(d̃)(x− z) + δ(d̃)(x)) ⟨F 2(z)F 2(0)⟩′

+Z−1
F 2 ⟨F 2(z)F 2(0)F 2(x)⟩′

∣∣∣∣
up to order g2

(D.52)

and eqs. (6.16) and (6.17), with γF 2(g) = −2β0g
2 + · · · . After factoring out ⟨F 2(z)F 2(0)⟩′ in

eq. (D.51), the scheme dependence of the r.h.s. of the LET to order g2 amounts to:

2β0g
2
(2
ϵ
+ 4 log |zµ| − 2 log π + 2 + 2Γ′(1)

)
+ B̃

(F 2)
0 g2 − 4β0g

2

ϵ

= 2β0g
2
(
4 log |zµ| − 2 log π + 2 + 2Γ′(1)

)
+ B̃

(F 2)
0 g2 (D.53)
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where the divergent contact term has cancelled the divergence of the integrated contribution
at distinct points. Correspondingly, the result in the µ̃-scheme is related to the one in the
µ-scheme, with µ̃ = αµ and g(µ) = g, as ϵ → 0 as follows:

2β0g
2(µ̃)

(
4 log |zµ̃| − 2 log π + 2 + 2Γ′(1)

)
+ B̃

(F 2)
0 g2(µ̃)

= 2β0g
2
(
4 log |zµ|+ 4 logα− 2 log π + 2 + 2Γ′(1)

)
+ B̃

(F 2)
0 g2

= 2β0g
2
(
4 log |zµ| − 2 log π + 2 + 2Γ′(1)

)
+ B̃

(F 2)
0 g2 + 8β0g

2 logα (D.54)

where we have employed eq. (D.38) for ϵ → 0.

D.8 Matching the finite terms in the LET for O = F 2 to order g2

Importantly, we verify that the matching of the l.h.s. and r.h.s. of the LET is scheme
independent. Indeed, after factoring out ⟨F 2(z)F 2(0)⟩′ on both sides of the LET, the scheme
dependence of the l.h.s. is given by eq. (D.50), i.e. it consists of the shift by the term
8β0g

2 logα that equates the one of the r.h.s. of the LET in eq. (D.54).
Hence, for O = F 2 the LET implies the following scheme-independent matching to

order g2 as ϵ → 0:

∂ log ⟨F 2(z)F 2(0)⟩′

∂ log g

∣∣∣∣
to order g2

= 2β0g
2
(
4 log |zµ| − 2 log π + 2 + 2Γ′(1)

)
+ B̃

(F 2)
0 g2 (D.55)

that, by means of eq. (D.47), reads:

2δ(F 2)
2 g2 + 8β0g

2 log |zµ| = 2β0g
2
(
4 log |zµ| − 2 log π + 2 + 2Γ′(1)

)
+ B̃

(F 2)
0 g2 (D.56)

The terms proportional to log |zµ| indeed match. The matching of the remaining finite
terms implies the relation:

δ
(F 2)
2 = 1

2B̃
(F 2)
0 + β0

(
2 + 2Γ′(1)− 2 log π

)
(D.57)

between the coefficients δ(F 2)
2 and B̃

(F 2)
0 computed in the same RG scheme.

The LET thus relates in a scheme-independent way two scheme-dependent quantities
that enter different OPE coefficients computed in perturbation theory. Specifically, δ(F 2)

2 —
hence the coefficient 2(c1 − β0) of the subleading log p2

µ2 to order g2 — that enters C(F 2,F 2)
0 (p)

computed in [2, 3, 13] and B̃(F 2)
0 — hence B1,1 — that enters C(F 2,F 2)

1 (p) computed in [3, 14].
The value of B̃(F 2)

0 determined in [3, 14] in the MS scheme in our notation reads:

B̃
(F 2)
0 CZ = −4B̃1,1

= −4B1,1 − 4β0

(
2 + 3Γ′(1)− log π4

)
= −4 1

(4π)2

(
− 49

9 + 10
9
Nf

N

)
− 4β0

(
2 + 3Γ′(1)− log π4

)
(D.58)
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where in the last line we have employed the value of B1,1 reported in eq. (4.26). The value
of δ(F 2)

2 determined in [2, 3] in the MS scheme in our notation reads:

δ
(F 2)
2 CZ = −2(c1 − β0)− 2β0

(10
3 + 2Γ′(1) + log 4

)
= 1

(4π)2

(73
3 − 14

3
Nf

N

)
− 2β0

(10
3 + 2Γ′(1) + log 4

)
= −2 1

(4π)2

(
− 49

9 + 10
9
Nf

N

)
− 2β0

(3
2 + 2Γ′(1) + log 4

)
= −2B1,1 − 2β0

(3
2 + 2Γ′(1) + log 4

)
= 1

2B̃
(F 2)
0 CZ + 2β0

(
2 + 3Γ′(1)− log π4

)
− 2β0

(3
2 + 2Γ′(1) + log 4

)
= 1

2B̃
(F 2)
0 CZ + β0

(
1 + 2Γ′(1)− 2 log π

)
(D.59)

where we have employed eqs. (7.17), (7.15), (4.26) and (D.58). Eq. (D.59) differs from the
LET constraint in eq. (D.57) for a term β0:(

δ
(F 2)
2 CZ − 1

2B̃
(F 2)
0 CZ

)
=
(
δ

(F 2)
2 − 1

2B̃
(F 2)
0

)
− β0 (D.60)

whereas all terms with Γ′(1), log π and log 4 do agree. Tentatively, we suggest two alternative
explanations.

Either, eq. (D.59) for the coefficient in C(F 2,F 2)
0 (p) in [2, 3] or eq. (D.58) for the coefficient

in C
(F 2,F 2)
1 (p) in [3, 14] need a correction. Or, our ansatz conformal in the limit ϵ → 0 for

the solution of the LET to order g2 — despite reproducing exactly the OPE to the relevant
order — introduces an error of order ϵ that somehow generates a finite discrepancy once
multiplied by some divergence in the r.h.s. of the LET.

E Callan-Symanzik equation in d = 4 dimensions in the coordinate
representation

The CS equation in d = 4 dimensions for G(2) ≡ ⟨O(z)O(0)⟩′ at distinct points z ̸= 0 and a
multiplicatively renormalizable gauge-invariant scalar operator O with canonical dimension
D follows from eq. (D.3) as ϵ → 0:(

µ
∂

∂µ
+ β(g) ∂

∂g
+ 2γO(g)

)
G(2)(z, µ, g(µ)) = 0 (E.1)

whose solution reads:

G(2)(z, µ, g(µ)) = 1
z2D

Ḡ(2)(zµ, g(µ))

= 1
z2D

G(O)
2 (g(z))Z(O)2(g(z), g(µ)) (E.2)

in terms of the RG-invariant function G(O)
2 of the running coupling g(z) ≡ g(zµ, g(µ))

that solves:

− dg(z)
d log |z| = β(g(z)) (E.3)
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with the initial condition g(1, g(µ)) = g(µ) and the renormalized multiplicative factor
Z(O)(g(z), g(µ)):

Z(O)(g(z), g(µ)) = exp
∫ g(z)

g(µ)

γO(g)
β(g) dg (E.4)

that solves:

γO(g(µ)) = −d logZ
(O)

d logµ (E.5)

Moreover, the RG invariance of g(z) implies:

0 = dg(z)
d logµ

= ∂g(z)
∂ logµ + ∂g(z)

∂g(µ)
dg(µ)
d logµ

= dg(z)
d log |z| +

∂g(z)
∂g(µ)

dg(µ)
d logµ

= −β(g(z)) + ∂g(z)
∂g(µ)β(g(µ)) (E.6)

according to eq. (E.3) and the fact that g(z) depends on z via the product zµ only. As
a consequence:

∂g(z)
∂g(µ) = β(g(z))

β(g(µ)) (E.7)

E.1 Asymptotics of the running coupling

The beta function has a zero at g = 0:

β(g) = −β0g
3 − β1g

5 − β2g
7 + · · · (E.8)

and for β0 > 0 the theory is AF at short distances. From the integral of the inverse of
the beta function: ∫ g(z)

g(µ)

dg

−β0g3 − β1g5 + · · ·
= −

∫ |z|

µ−1
d log |z| (E.9)

where the length scales, |z| =
√
z2 and µ−1, are assumed to be close to zero in order for g(z)

and g(µ) to stay in a neighborhood of g = 0, we obtain:

1
g2(z) −

1
g2(µ) = −2β0 log |zµ| − 2β1

β0
log

(
g(z)
g(µ)

)
+ · · · (E.10)

or, equivalently:

1
g2(z) +2β0 log |z|+2β1

β0
log g(z)+C+· · · = 1

g2(µ)−2β0 logµ+2β1
β0

log g(µ)+C+· · · (E.11)
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where the scheme-dependent integration constant C arises from the indefinite version of
the integral in eq. (E.9). The above equation implies the existence of an RG-invariant
mass scale ΛUV :

ΛUV = µ exp
(
− 1
2β0g2(µ)

)
g
− β1

β2
0 (µ) exp

(
− C

2β0
+ · · ·

)
= |z|−1 exp

(
− 1
2β0g2(z)

)
g
− β1

β2
0 (z) exp

(
− C

2β0
+ · · ·

)
(E.12)

with the dots a scheme-dependent series in even powers of g(µ) and g(z) respectively. Solving
eq. (E.12) asymptotically as |z| → 0+ we get:

g2(z) ∼ 1
−2β0 log(|z|ΛUV )

(
1 + β1

2β2
0

log(−2β0 log(|z|ΛUV ))
log(|z|ΛUV )

− C

2β0 log(|z|ΛUV )
+ · · ·

)
(E.13)

Incidentally, the MS scheme is defined by choosing C = (β1/β0) log β0 that cancels the last
term in eq. (E.13) against the term β1

2β2
0

log 2β0
log(|z|ΛUV ) in the first line. The universal asymptotics

of the running coupling as |z| → 0+ follows:

g2(z) ∼ 1
−2β0 log(|z|ΛUV )

(
1 + β1

2β2
0

log(−2β0 log(|z|ΛUV ))
log(|z|ΛUV )

)
(E.14)

Perturbatively to order g4(µ) we obtain from eq. (E.10):

g2(µ)
g2(z) = 1− g2(µ)2β0 log |zµ|+ g2(µ)β1

β0
log

(
g2(µ)
g2(z)

)
+ · · ·

= 1− g2(µ)2β0 log |zµ| − g4(µ)2β1 log |zµ|+ · · · (E.15)

for log |zµ| of order one, where we have employed in the second equality:

log
(
g2(µ)
g2(z)

)
= log(1− g2(µ)2β0 log |zµ|+ · · · ) = −g2(µ)2β0 log |zµ|+ · · · (E.16)

Eq. (E.15) yields:

g2(z) = g2(µ)
(
1 + g2(µ)2β0 log |zµ|+ g4(µ)(2β1 log |zµ|+ 4β2

0 log2 |zµ|) + · · ·
)

(E.17)

E.2 Asymptotics of ⟨O(z)O(0)⟩′

From eq. (E.4) it follows asymptotically at short distances by means of eq. (D.30):

Z(O)(g(z), g(µ)) ∼
(
g(z)
g(µ)

) γ
(O)
0
β0 exp

(
γ

(O)
1 β0 − γ

(O)
0 β1

2β2
0

(g2(z)− g2(µ)) + · · ·
)

∼
( 1
−g2(µ)2β0 log(|z|ΛUV )

(
1 + β1

2β2
0

log(−β0 log(|z|ΛUV ))
log(|z|ΛUV )

)) γ
(O)
0

2β0
Z(O)′(g(µ))

(E.18)

where:

Z(O)′(g(µ)) = exp
(
− γ

(O)
1 β0 − γ

(O)
0 β1

2β2
0

g2(µ) + · · ·
)

(E.19)
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and we have employed eq. (E.14) for g(z). It follows from eq. (E.18) the asymptotics at
short distances of the 2-point correlator [12, 24, 31]:

⟨O(z)O(0)⟩′ ∼ G(O)
2 (0)
z2D

(
g(z)
g(µ)

) 2γ
(O)
0

β0 exp
(
γ

(O)
1 β0 − γ

(O)
0 β1

β2
0

(g2(z)− g2(µ)) + · · ·
)

∼ G(O)
2 (0)
z2D

( 1
−g2(µ)2β0 log(|z|ΛUV )(

1 + β1
2β2

0

log(−β0 log(|z|ΛUV ))
log(|z|ΛUV )

)) γ
(O)
0
β0
Z(O)′2(g(µ)) (E.20)

Perturbatively, from eqs. (E.18) and (E.17) we get:

Z(O)(g(z), g(µ)) = 1+g2(µ)γ(O)
0 log |zµ|+g4(µ)

(
γ

(O)
1 log |zµ|+

(
γ

(O)
0 β0+

γ
(O)2
0
2

)
log2 |zµ|

)
+· · ·

(E.21)

E.3 Asymptotics of ⟨F 2(z)F 2(0)⟩′

Z(F 2) admits the closed form:

Z(F 2)(g(z), g(µ)) = exp
∫ g(z)

g(µ)

γF 2(g)
β(g) dg

= exp
∫ g(z)

g(µ)

∂
∂g

(
β(g)

g

)
β(g)

g

dg

= β(g(z))
g(z)

g(µ)
β(g(µ)) (E.22)

that follows from eq. (D.33) as ϵ → 0. Correspondingly:

⟨F 2(z)F 2(0)⟩′ = G(F 2)
2 (g(z))

z8

(
β(g(z))
g(z)

)2 ( g(µ)
β(g(µ))

)2
(E.23)

whose asymptotics at short distances reads:

⟨F 2(z)F 2(0)⟩′ ∼ G(F 2)
2 (0)
z8 g4(z)β2

0

(
g(µ)

β(g(µ))

)2

∼ G(F 2)
2 (0)
z8

( 1
−2β0 log(|z|ΛUV )

(
1 + β1

2β2
0

log(−β0 log(|z|ΛUV ))
log(|z|ΛUV )

))2 ( β0g(µ)
β(g(µ))

)2

(E.24)

by means of eq. (E.14) and:

β(g(z))
g(z) = −β0g

2(z)
(
1 + β1

β0
g2(z) + · · ·

)
(E.25)

It agrees with eq. (E.20) for O = F 2, D = 4, γ(F 2)
0 = 2β0 due to:

g(µ)
β(g(µ)) = 1

−β0g2(µ)

(
1− β1

β0
g2(µ) + · · ·

)
(E.26)
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that implies: (
β0g(µ)
β(g(µ))

)2
= 1
g4(µ)

(
1− 2β1

β0
g2(µ) + · · ·

)
= 1
g4(µ)Z

(F 2)′2(g(µ)) (E.27)

with Z(F 2)′(g(µ)) in eq. (E.19) for O = F 2 and γ
(F 2)
1 = 4β1.

Perturbatively, by means of eq. (E.17) we obtain:

Z(F 2)(g(z), g(µ)) =
(
β(g(z))
g(z)

)(
g(µ)

β(g(µ))

)
= g2(z)
g2(µ)

(
1 + β1

β0
(g2(z)− g2(µ)) + · · ·

)
= 1 + g2(µ)2β0 log |zµ|+ g4(µ)(4β1 log |zµ|+ 4β2

0 log2 |zµ|) + · · · (E.28)

that agrees with eq. (E.21) for O = F 2, γ(F 2)
0 = 2β0 and γ

(F 2)
1 = 4β1.

F Callan-Symanzik equation in d̃ = 4 − 2ϵ dimensions in the momentum
representation

F.1 Callan-Symanzik equation for C
(F 2,O)
1 (p)

The CS equation in dimensional regularization for the fully renormalized OPE coefficient
in the momentum representation in eq. (4.17):

C
(F 2,O)
1 (p) = ZF 2C

(F 2
0 ,O)

1 (p) + Z1c.t. (F.1)

follows from the renormalization-scale independence of the bare coefficient:

µ
dC

(F 2
0 ,O)

1 (p)
dµ

∣∣
ϵ,g0

= 0 (F.2)

for fixed bare parameters ϵ and g0. In the massless case, employing µ d
dµ = µ ∂

∂µ + β(g, ϵ) ∂
∂g

with β(g, ϵ) = −ϵg + β(g), we obtain:(
µ
∂

∂µ
+ β(g, ϵ) ∂

∂g
+ γF 2(g)

)
C

(F 2,O)
1 (p, µ, g(µ)) = γ1c.t.(g) (F.3)

where:

γ1c.t.(g) = µ
dZ1c.t.
dµ

+ γF 2Z1c.t.

= µ
dg

dµ

∂Z1c.t.
∂g

+ γF 2Z1c.t.

= β(g, ϵ)∂Z1c.t.
∂g

+ γF 2Z1c.t. (F.4)

Given that Z1c.t. is a series of pure poles in ϵ in MS-like schemes, γ1c.t. in eq. (F.4) may
contain poles in ϵ in addition to O(ϵ0) terms, but no O(ϵ) terms, since in the r.h.s. of eq. (F.4)
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all the terms that contain factors of ϵ are multiplied by poles. Hence, γ1c.t. is ϵ independent
if and only if it is not divergent as ϵ → 0. Yet, the r.h.s. of eq. (F.3) must be finite as
ϵ→ 0 consistently with the finiteness as ϵ→ 0 of the fully renormalized C

(F 2,O)
1 in the l.h.s.

It follows that γ1c.t. is finite as ϵ → 0 and, therefore, ϵ independent. Since the solution of
eq. (F.3) solely depends on the ratio p

µ , we write:

(
p · ∂

∂p
− β(g, ϵ) ∂

∂g
− γF 2(g)

)
C

(F 2,O)
1 (p, µ, g(µ)) = −γ1c.t.(g) (F.5)

The CS equation in d = 4 dimensions is obtained from eqs. (F.3) and (F.5) by replacing
β(g, ϵ) with β(g). Hence, for d = 4:(

p · ∂
∂p

− β(g) ∂
∂g

− γF 2(g)
)
C

(F 2,O)
1 (p, µ, g(µ)) = −γ1c.t.(g) (F.6)

F.2 General solution for C
(F 2,O)
1 (p)

The general solution of eq. (F.3) or (F.5) is:

C
(F 2,O)
1 (p, µ, g(µ)) = Z(F 2)(g̃(p), g(µ))

(
G(O)(g̃(p)) + ∆(O)(g̃(p), g(µ))

)
(F.7)

where:

Z(F 2)(g̃(p), g(µ)) = exp
∫ g̃(p)

g(µ)

γF 2(g)
β(g, ϵ)dg

= β(g̃(p), ϵ)
g̃(p)

g(µ)
β(g(µ), ϵ) (F.8)

with the second equality implied by eq. (A.8), and:

∆(O)(g̃(p), g(µ)) = −
∫ g̃(p)

g(µ)

γ1c.t.(g)
β(g, ϵ) exp

(
−
∫ g̃(p)

g

γF 2(g′)
β(g′, ϵ)dg

′
)
dg

= −
∫ g̃(p)

g(µ)

γ1c.t.(g)
β(g, ϵ) Z

(F 2)−1
(g̃(p), g) dg (F.9)

G(O)(g̃(p)) in eq. (F.7) is a function of the running coupling g̃(p) in the momentum repre-
sentation in d̃ = 4− 2ϵ dimensions. The latter can be obtained from g̃(z) in appendix D by
the substitution z → 1/p. By means of eqs. (F.8) and (F.9), eq. (F.7) reads:

C
(F 2,O)
1 (p, µ, g(µ)) = g(µ)

β(g(µ), ϵ)

(
G(O)(g̃(p))β(g̃(p), ϵ)

g̃(p) −
∫ g̃(p)

g(µ)

γ1c.t.(g)
g

dg

)
(F.10)

The solution of the CS eq. (F.6) in d = 4 dimensions is obtained by replacing β(g, ϵ) with
β(g) and g̃(p) with g(p) in eq. (F.10), where g(p) can be obtained from g(z) in appendix E
by the substitution z → 1/p. Hence, for d = 4:

C
(F 2,O)
1 (p, µ, g(µ)) = g(µ)

β(g(µ))

(
G(O)(g(p))β(g(p))

g(p) −
∫ g(p)

g(µ)

γ1c.t.(g)
g

dg

)
(F.11)
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Employing eq. (4.50):

C
(F 2,O)
1 (p) = ZF 2C

(F 2
0 ,O)

1 (p) + ZF 2
2γO(g)− 2cO

β(g)
g

ϵ
(F.12)

we obtain:

Z1c.t. = ZF 2
2γO(g)− 2cO

β(g)
g

ϵ
(F.13)

and from eq. (F.4):

γ1c.t.(g) = β(g, ϵ)∂Z1c.t.
∂g

+ γF 2Z1c.t.

= β(g, ϵ)
{
∂ZF 2

∂g

2γO(g)− 2cO
β(g)

g

ϵ
+ 2ZF 2

ϵ

(
∂γO

∂g
− cO

∂

∂g

(
β(g)
g

))}

+ZF 2g
∂

∂g

(
β(g)
g

)2γO(g)− 2cO
β(g)

g

ϵ

= −ZF 2g
∂

∂g

(
β(g)
g

)2γO(g)− 2cO
β(g)

g

ϵ
+ 2β(g, ϵ)

ϵ
ZF 2

(
∂γO

∂g
− cO

∂

∂g

(
β(g)
g

))

+ZF 2g
∂

∂g

(
β(g)
g

)2γO(g)− 2cO
β(g)

g

ϵ

= 2β(g, ϵ)
ϵ

ZF 2

(
∂γO

∂g
− cO

∂

∂g

(
β(g)
g

))
= −2g

(
∂γO

∂g
− cO

∂

∂g

(
β(g)
g

))
(F.14)

that is, indeed, manifestly ϵ independent by employing β(g, ϵ) = −ϵg+ β(g), eqs. (A.8), (A.6)
and:

β(g, ϵ)∂ZF 2

∂g
= −ZF 2g

∂

∂g

(
β(g, ϵ)
g

)
= −ZF 2g

∂

∂g

(
β(g)
g

)
(F.15)

Then, the solution in eq. (F.10) reads:

C
(F 2,O)
1 (p, µ, g(µ)) = 2cO +

(
G(O)(g̃(p))− 2cO

)β(g̃(p), ϵ)
g̃(p)

g(µ)
β(g(µ), ϵ)

+2g(µ) γO(g(µ))
β(g(µ), ϵ)

(
γO(g̃(p))
γO(g(µ))

− 1
)

(F.16)

where the identity:

β(g̃(p), ϵ)
g̃(p) − β(g(µ), ϵ)

g(µ) = β(g̃(p))
g̃(p) − β(g(µ))

g(µ) (F.17)

has been conveniently employed, and the solution in d = 4 dimensions in eq. (F.11) reads:

C
(F 2,O)
1 (p, µ, g(µ)) = 2cO +

(
G(O)(g(p))− 2cO

)β(g(p))
g(p)

g(µ)
β(g(µ))

+2g(µ)γO(g(µ))
β(g(µ))

(
γO(g(p))
γO(g(µ))

− 1
)

(F.18)
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F.3 Specializing to C
(F 2,F 2)
1 (p)

For O = F 2 the fully renormalized OPE coefficient in eq. (F.1) has been explicitly computed in
perturbation theory up to order g4 [3, 14]. Moreover, in this case the additive renormalization,
i.e. Z1c.t. in eq. (F.1), has also been determined to all orders in perturbation theory [2]:

C
(F 2,F 2)
1 (p) = ZF 2C

(F 2
0 ,F 2)

1 (p) + ZF 2

2g ∂
∂g

(
β(g)

g

)
− 4β(g)

g

ϵ
(F.19)

where [3, 14]:

ZF 2C
(F 2

0 ,F 2)
1 (p) = 4− 4B1,1g

2 − 4B1,2g
4 + 4β1g

4

ϵ

−4β0g
2 log p

2

µ2 + 4β2
0g

4 log2 p
2

µ2 + 4B1,3g
4 log p

2

µ2 + · · · (F.20)

and [2]:

ZF 2

2g ∂
∂g

(
β(g)

g

)
− 4β(g)

g

ϵ
= −4β1g

4

ϵ
+ · · · (F.21)

so that to order g4:

C
(F 2,F 2)
1 (p) = 4− 4B1,1g

2 − 4B1,2g
4

−4β0g
2 log p

2

µ2 + 4β2
0g

4 log2 p
2

µ2 + 4B1,3g
4 log p

2

µ2 + · · · (F.22)

The fully renormalized coefficient C(F 2,F 2)
1 (p) in eq. (F.22) must be a solution of eq. (F.6) and,

equivalently, eq. (F.3) for ϵ→ 0. Indeed, we straightforwardly verify it inserting eq. (F.22)
into eq. (F.6) and employing for O = F 2:

γ1c.t.(g) = (−ϵg + β(g))∂Z1c.t.
∂g

+ γF 2Z1c.t.

= −ϵg ∂
∂g

(
− 4β1g

4

ϵ

)
+ · · ·

= 16β1g
4 + · · · (F.23)

that follows from eq. (F.4) with Z1c.t. given by eq. (F.21).
We also verify that C

(F 2,F 2)
1 (p) in eq. (F.22) is of the form in eq. (F.11) with the

RG-invariant coefficient for O = F 2:

G(F 2)(g(p)) = 4− 4B1,1g
2(p)− 4B1,2g

4(p) + · · · (F.24)
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Indeed, for O = F 2 the perturbative expansion of eq. (F.11) reads:

C
(F 2,F 2)
1 (p,µ,g(µ)) = g(µ)

β(g(µ))

{
β(g(p))
g(p) G(F 2)(g(p))−

∫ g(p)

g(µ)

γ1c.t.(g)
g

dg

}
= −1
β0g2

(
1−β1

β0
g2
){

−β0g
2(p)

(
1+β1

β0
g2(p)

)(
4−4B1,1g

2(p)−4B1,2g
4(p)

)
−4β1g

4
(g4(p)
g4 −1

)}
+· · ·

= g2(p)
g2

(
1+β1

β0
g2
(g2(p)
g2 −1

))(
4−4B1,1g

2(p)−4B1,2g
4(p)

)
+4β1

β0
g2
(g4(p)
g4 −1

)
+· · ·

=
(
1−g2β0 log

p2

µ2 +g
4
(
−2β1 log

p2

µ2 +β
2
0 log2 p

2

µ2

))
(
4−4B1,1g

2
(
1−g2β0 log

p2

µ2

)
−4B1,2g

4
)
−8β1g

4 log p
2

µ2 +· · ·

= 4−4B1,1g
2−4B1,2g

4

−4β0g
2 log p

2

µ2 +4β2
0g

4 log2 p
2

µ2 +(−8β1+8β0B1,1)g4 log p
2

µ2

−8β1g
4 log p

2

µ2 +· · ·

= 4−4B1,1g
2−4B1,2g

4

−4β0g
2 log p

2

µ2 +4β2
0g

4 log2 p
2

µ2 +4B1,3g
4 log p

2

µ2 +· · · (F.25)

where we have employed in the second equality β(g) = −β0g
3 − β1g

4 + · · · , eqs. (F.23)
and (F.24), the perturbative expansions for the running coupling g(p) in terms of g:

g2(p) = g2
(
1− g2β0 log

p2

µ2 + g4(− β1 log
p2

µ2 + β2
0 log2 p

2

µ2
)
+ · · ·

)
g4(p) = g4

(
1− g22β0 log

p2

µ2 + g4(− 2β1 log
p2

µ2 + 3β2
0 log2 p

2

µ2
)
+ · · ·

)
(F.26)

in the fourth equality and in the last equality B1,3 = −4β1 + 2β0B1,1, with B1,3 and B1,1
computed in [3] and reported in eq. (4.26). The last equality in eq. (F.25) reproduces the
perturbative result in eq. (F.22) to order g4, as it should be.

F.4 Callan-Symanzik equation for C
(O,O)
0 (p)

The CS equation in dimensional regularization for the fully renormalized OPE coefficient
C

(O,O)
0 (p) in the momentum representation:3

C
(O,O)
0 (p) = Z2

OC
(O0,O0)
0 (p) + p2∆O0−4µ2(1−δO)ϵZ0c.t. (F.27)

3See [32] for an analogous example.
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with ∆̃O0 = ∆O0 − δOϵ the canonical dimension of O in d̃ = 4− 2ϵ dimensions, follows from
the renormalization-scale independence of the bare coefficient:(

µ
∂

∂µ
+ β(g, ϵ) ∂

∂g
+ 2γO(g)

)
C

(O,O)
0 (p, µ, g(µ)) = p2∆O0−4µ2(1−δO)ϵγ0c.t.(g) (F.28)

with:
µ
d

dµ
= µ

∂

∂µ
+ β(g, ϵ) ∂

∂g
(F.29)

and:

γ0c.t.(g) = µ
dZ0c.t.
dµ

+ 2γOZ0c.t. + 2(1− δO)ϵZ0c.t.

= β(g, ϵ)∂Z0c.t.
∂g

+ 2γOZ0c.t. + 2(1− δO)ϵZ0c.t. (F.30)

where γ0c.t. is finite as ϵ → 0 and ϵ independent analogously to γ1c.t. in eq. (F.4). For the
dimensionless object C(O,O)

0,DL :

C
(O,O)
0 (p, µ, g(µ)) = p2∆O0−4µ2(1−δO)ϵC

(O,O)
0,DL ( p

µ
, g(µ)) (F.31)

that solely depends on the ratio p
µ , we also write:

(
p · ∂

∂p
− β(g, ϵ) ∂

∂g
− 2γO(g)

)
C

(O,O)
0,DL ( p

µ
, g(µ)) = −γ0c.t.(g) (F.32)

The CS equation in d = 4 dimensions is obtained from eq. (F.28) by removing the explicit
ϵ dependence. Hence, for d = 4:(

µ
∂

∂µ
+ β(g) ∂

∂g
+ 2γO(g)

)
C

(O,O)
0 (p, µ, g(µ)) = p2∆O0−4γ0c.t.(g) (F.33)

F.5 General solution for C
(O,O)
0 (p)

The general solution of eq. (F.28) is:

C
(O,O)
0 (p, µ, g(µ)) = p2∆O0−4µ2(1−δO)ϵZ(O)2(g̃(p), g(µ))

(
G(O)

2 (g̃(p)) + ∆(O)
2 (g̃(p), g(µ))

)
(F.34)

where:

Z(O)(g̃(p), g(µ)) = exp
∫ g̃(p)

g(µ)

γO(g)
β(g, ϵ)dg (F.35)

and:

∆(O)
2 (g̃(p), g(µ)) = −

∫ g̃(p)

g(µ)

γ0c.t.(g)
β(g, ϵ) exp

(
− 2

∫ g̃(p)

g

γO(g′)
β(g′, ϵ)dg

′
)
dg

= −
∫ g̃(p)

g(µ)

γ0c.t.(g)
β(g, ϵ) Z

(O)−2(g̃(p), g) dg (F.36)
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In d = 4 dimensions, the solution of eq. (F.33) reads:

C
(O,O)
0 (p, µ, g(µ)) = p2∆O0−4Z(O)2(g(p), g(µ))

(
G(O)

2 (g(p)) + ∆(O)
2 (g(p), g(µ))

)
(F.37)

where:

Z(O)(g(p), g(µ)) = exp
∫ g(p)

g(µ)

γO(g)
β(g) dg (F.38)

and:

∆(O)
2 (g(p), g(µ)) = −

∫ g(p)

g(µ)

γ0c.t.(g)
β(g) exp

(
− 2

∫ g(p)

g

γO(g′)
β(g′) dg

′
)
dg

= −
∫ g(p)

g(µ)

γ0c.t.(g)
β(g) Z(O)−2(g(p), g) dg (F.39)

Equivalently, eq. (F.37) is obtained by taking ϵ → 0 in eq. (F.34).

F.6 Specializing to C
(F 2,F 2)
0 (p)

Eq. (F.27) reads for O = F 2:

C
(F 2,F 2)
0 (p) = Z2

F 2C
(F 2

0 ,F 2
0 )

0 (p) + p4µ−2ϵZ0c.t. (F.40)

where ∆̃F 2
0
= ∆F 2

0
− δF 2ϵ = d̃ = 4 − 2ϵ is the canonical dimension of F 2 in d̃ = 4 − 2ϵ

dimensions. The general solution of eq. (F.28) for O = F 2 then reads:

C
(F 2,F 2)
0 (p, µ, g(µ)) = p4µ−2ϵZ(F 2)2

(g̃(p), g(µ))
(
G(F 2)

2 (g̃(p)) + ∆(F 2)
2 (g̃(p), g(µ))

)
(F.41)

with Z(F 2) in eq. (F.8):

Z(F 2)(g̃(p), g(µ)) = β(g̃(p), ϵ)
g̃(p)

g(µ)
β(g(µ), ϵ)

∼ g̃2(p)
g2(µ)

(
µ

p

)−2ϵ

= 1
1− β0g2(µ) (µ/p)2ϵ−1

ϵ + · · ·

= 1− β0g
2(µ) log p

2

µ2 + · · · (F.42)

where we have employed eq. (D.23) with the replacement z → 1
p and its expansion in g(µ)

as ϵ → 0, and:

∆(F 2)
2 (g̃(p), g(µ)) = −

∫ g̃(p)

g(µ)

γ0c.t.(g)
β(g, ϵ) exp

(
− 2

∫ g̃(p)

g

γF 2(g′)
β(g′, ϵ)dg

′
)
dg

= −
∫ g̃(p)

g(µ)

γ0c.t.(g)
β(g, ϵ) Z

(F 2)−2
(g̃(p), g) dg (F.43)
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Given Z0c.t. to order g2 according to eq. (7.13):

Z0c.t. =
N2 − 1
4π2

{
− 1
ϵ
+ g2β0

ϵ2
+ g2c1

ϵ

}
+ · · · (F.44)

we obtain for γ0c.t. in eq. (F.30) for O = F 2 to order g2:

γ0c.t.(g) = β(g, ϵ)∂Z0c.t.
∂g

+ 2γF 2Z0c.t. − 2ϵZ0c.t.

= N2 − 1
4π2

{
− ϵg 2g

(
c1
ϵ
+ β0
ϵ2

)
+ 4β0g

2

ϵ
− 2ϵ

(
− 1
ϵ
+ g2c1

ϵ
+ g2β0

ϵ2

)
+ · · ·

}
= N2 − 1

4π2

{
2− 4c1g

2 + · · ·
}

(F.45)

that is, indeed, ϵ independent to order g2. The solution in d = 4 dimensions is obtained
from eq. (F.37) for O = F 2:

C
(F 2,F 2)
0 (p, µ, g(µ)) = p4Z(F 2)2

(g(p), g(µ))
(
G(F 2)

2 (g(p)) + ∆(F 2)
2 (g(p), g(µ))

)
(F.46)

where:

Z(F 2)(g(p), g(µ)) = exp
∫ g(p)

g(µ)

γF 2(g)
β(g) dg

= β(g(p))
g(p)

g(µ)
β(g(µ))

= −β0g
2(p) + · · ·

−β0g2(µ) + · · ·

= 1− β0g
2(µ) log p

2

µ2 + · · · (F.47)

and the RG-invariant coefficient:

G(F 2)
2 (g(p)) = Ḡ(F 2)

2 (0)(1 + η
(F 2)
2 g2(p) + · · · )

= Ḡ(F 2)
2 (0)(1 + η

(F 2)
2 g2(µ) + · · · ) (F.48)

have been perturbatively expanded to order g2, and:

∆(F 2)
2 (g(p), g(µ)) = −

∫ g(p)

g(µ)

γ0c.t.(g)
β(g) Z(F 2)−2

(g(p), g) dg (F.49)

so that:

Z(F 2)2
(g(p), g(µ))∆(F 2)

2 (g(p), g(µ)) = −
(

g(µ)
β(g(µ))

)2 ∫ g(p)

g(µ)
γ0c.t.(g)

β(g)
g2 dg (F.50)
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Inserting eq. (F.45) into eq. (F.50) we further obtain to order g2:

Z(F 2)2
(g(p), g(µ))∆(F 2)

2 (g(p), g(µ))

= − 1
β2

0g
4(µ)

(
1− 2β1

β0
g2(µ) + · · ·

)
N2 − 1
4π2

∫ g(p)

g(µ)
(2− 4c1g

2 + · · · )(−β0g − β1g
3 + · · · ) dg

= − 1
β2

0g
4(µ)

(
1− 2β1

β0
g2(µ) + · · ·

)
N2 − 1
4π2{

− β0
(
g2(p)− g2(µ)

)
+
(
c1β0 −

1
2β1

)(
g4(p)− g4(µ)

)
+ · · ·

}
= − 1

β2
0g

4(µ)

(
1− 2β1

β0
g2(µ) + · · ·

)
N2 − 1
4π2{

− β0

(
− g4(µ)β0 log

p2

µ2 + g6(µ)
(
− β1 log

p2

µ2 + β2
0 log2 p

2

µ2

)
+ · · ·

)
+
(
c1β0 −

1
2β1

)(
− 2g6(µ)β0 log

p2

µ2 + · · ·
)
+ · · ·

}
= N2 − 1

4π2
1

β2
0g

4(µ)

{
− β2

0g
4(µ) log p

2

µ2 + g6(µ)
(
β3

0 log2 p
2

µ2 + 2c1β
2
0 log

p2

µ2

)
+ · · ·

}
= N2 − 1

4π2

{
− log p

2

µ2 + β0g
2(µ) log2 p

2

µ2 + 2c1g
2(µ) log p

2

µ2 + · · ·
}

(F.51)

where we have employed eq. (F.26). Hence, setting g(µ) = g, the complete solution in
eq. (F.46) reads to order g2:

C
(F 2,F 2)
0 (p, µ, g) = p4

{
Ḡ(F 2)

2 (0)
(
1− 2β0g

2 log p
2

µ2 + · · ·
)(

1 + η
(F 2)
2 g2 + · · ·

)
+N

2 − 1
4π2

(
− log p

2

µ2 + β0g
2 log2 p

2

µ2 + 2c1g
2 log p

2

µ2

)
+ · · ·

}
(F.52)

For:
Ḡ(F 2)

2 (0) = N2 − 1
4π2 (F.53)

we get:

C
(F 2,F 2)
0 (p, µ, g) = p4N

2 − 1
4π2

{
1− log p

2

µ2 + g2β0 log2 p
2

µ2

+2g2(c1 − β0) log
p2

µ2 + g2η
(F 2)
2 + · · ·

}
(F.54)

Hence, for a given value of the scheme-dependent coefficient c1 entering the additive renor-
malization in eq. (F.44), the scheme-dependent coefficient of the subleading log p2

µ2 to order
g2 that solves the CS equation is 2(c1 − β0). Eq. (7.11), given eqs. (7.12) and (7.13), is of
the form in eq. (F.54) and it is a solution of the CS equation for any value of c1.
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bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
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