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1 Introduction and background

1.1 Motivation

Holographic duality [1–3] is a major forefront in modern theoretical physics that makes contact
with many different subdisciplines of physics including quantum gravity, quantum information,
and condensed matter. This is because holographic duality offers a means to address two
outstanding challenges in theoretical physics; namely, 1) constructing a quantum gravity theory
that is ultraviolet (UV) complete, and 2) developing new tools to understand strongly-coupled
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quantum systems. While these questions seem unrelated at face value, they are connected by
the observed duality between a low-energy, semiclassical supergravity theory and a large-N
super Yang-Mills gauge theory on a flat background. On the one hand, the duality allows the
physics of the strongly-coupled (non-gravitational) gauge theory to be solved more easily in the
weakly-coupled gravitational theory variables. On the other hand, taking the duality seriously,
one would hope that the quantum gauge theory can provide a non-perturbative UV-completion
of supergravity. Holographic duality is most well-understood for gravitational theories with an
asymptotically anti-de Sitter (aAdS) geometry, for which the dual theory is a conformal field
theory (CFT) in one lower dimension. Accordingly, this duality is also known as the AdS/CFT
correspondence. In this case, the isometry group of AdS space is mapped to the conformal
symmetry group of the CFT. States in the CFT are mapped to states of normalizable modes
in AdS; non-normalizable modes in AdS are mapped to source fields in the CFT [2, 4]

Holographic duality is a manifestation of the more general holographic principle, which
presumes that the information content of a gravitational theory is fully encoded in a theory
with one lower dimension [5, 6]. One piece of evidence for the generalized holographic principle
is that the entanglement entropy of a spatial region is bounded by its area — a fact first
proven in the context of black holes that is expected to hold more generally [7–9]. This raises
the question of how generic holographic models are. Can such a correspondence exist beyond
the AdS/CFT paradigm? Said another way, what are the minimal ingredients necessary for a
QFT to have a gravitational bulk dual description? Various important features of known
holographic theories have been discussed in the literature, including conformal symmetry,
the presence of a gap in scaling dimension, the Ryu-Takayanagi formula of entanglement
entropy [10], etc. However, it remains to be seen whether these are all essential for a
holographic theory, or if it is possible to extend holographic duality to more general theories.

A related question is how to explicitly construct the holographic dictionary, i.e. the
mapping between bulk operators and boundary operators. A more explicit construction of
the dictionary would help us understand how general holographic theories are. Different
protocols for bulk operator reconstruction have been put forth and discussed in literature.
For instance, in the Hamilton-Kabat-Liftschytz-Lowe (HKLL) approach [11–13], a quasilocal
bulk operator in AdS space is reconstructed from spacelike-separated boundary operators,
plus higher order corrections in the gravitational coupling constant GN . The HKLL approach
is an explicit realization of causal wedge reconstruction, in which a boundary subregion is
used to reconstruct bulk operators within its causal wedge. The boundary representation of
a reconstructed bulk operator is nonlocal, with support spread over the spacelike-separated
boundary region. The original HKLL construction relied on the bulk equation of motion,
although more general constructions based on the boundary modular Hamiltonian have been
discussed [14, 15]. Meanwhile, alternate approaches have been proposed which perform local
reconstruction of bulk operators in a bigger bulk subregion known as the entanglement wedge,
and which apply to more general bulk geometries [16–22]. Compared to entanglement wedge
reconstruction, the HKLL approach applies to a smaller bulk subregion, but has the advantage
of being more explicit and depending only on simple operators in a boundary spacetime region.

In this paper, we develop a new method for bulk reconstruction which generalizes the
HKLL approach and applies to more general boundary theories. Crucially, our method does
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not require prior knowledge of the semiclassical bulk geometry and equations of motion; rather,
our reconstruction protocol proceeds entirely from boundary data. In addition, our approach
does not require the boundary theory to have conformal symmetry or even approximate
conformal symmetry, as conventionally required of holographic boundary models. Instead,
the key ingredient in our construction is that the boundary theory describes interacting
generalized free fields (GFFs), i.e. bosonic or fermionic fields for which the correlation functions
satisfy Wick’s theorem. By introducing a boundary time discretization, we are able to provide
a general and explicit algorithm to map a boundary GFF to a canonically-free bulk field
(boson or fermion). With the only assumption being the causal structure, the bulk theory
is uniquely determined by the boundary two point functions up to a local basis choice. In
this paper, we will focus our attention on the correspondence between a (0 + 1)d boundary
theory and a (1 + 1)d bulk theory, but the ideas should also apply to reconstruction in
higher dimensions as well.

Using the large-q Sachdev-Ye-Kitaev (SYK) model and variations thereof as a test bench,
we show how the bulk dynamics and geometric features emerge from the boundary model. We
realize our construction explicitly by performing a discretization of the boundary dynamics,
and obtain a discretized bulk. For a generic boundary thermal state, our construction predicts
the existence of a black hole horizon in the dual description, in the sense of a reflectionless
semi-infinite “bath” for bulk particles. We obtain an explicit formula of the horizon modes
in term of boundary operators. The infalling modes have universal correlation functions
which are independent of the details of the boundary theory, relying only on generalized
free fields and the Kubo-Martin-Schwinger (KMS) condition [23, 24]. We also discuss how
to numerically study a continuous limit of the bulk fermion dynamics and geometry, and
verify that and AdS bulk geometry indeed emerges from our construction. Our approach
also applies to the thermofield double state, and enables us to study entanglement between
bulk fermions that are dual to two boundary systems. We find that the mutual information
between the two bulk regions is consistent with an eternal black hole geometry with the
two exterior regions sharing a bifurcation horizon. In addition to the thermofield double
state, we also studied more generic SYK models with a bilinear coupling. When the bilinear
coupling is turned on only at one time instant, we obtain a shockwave geometry [25] where
the correlation between the two coupled systems is suppressed. Our approach allows us to
study such changes in the correlation patterns by studying the mutual information between
bulk regions. We also studied the ground state of a coupled SYK model which corresponds
to an eternal traversable wormhole [27]. Our approach correctly predicts qualitative changes
in the dual geometry, such as the existence of an end-of-the-word brane and the absence of a
horizon. It should be emphasized that the known duality for the black hole, shockwave and
eternal traversable wormhole geometries only apply to low energy limit of the SYK model,
while our construction holds for general temperature and energy scales, which enables the
bulk dynamics and geometry to be defined for such systems.

The remainder of the paper is organized as follows: in section 2 we provide an overview
of holographic duality and HKLL reconstruction. In section 3 we discuss our construction
procedure starting from generalized free fields. We will show how the bulk dynamics (in
the form of a quantum circuit) and bulk quantum state are constructed explicitly by an
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orthogonalization procedure. In section 4 and 5 we present numeric and analytic results for
the example of SYK model and coupled SYK model. Finally in section 6, we summarize
our conclusions and discuss several open questions.

2 Overview of HKLL reconstruction

In this section, we review key facts in holographic duality and HKLL reconstruction that
will be useful in subsequent discussions.

If holographic duality is an exact correspondence between the bulk and boundary theories,
then their Hilbert spaces should be isomorphic,

Hboundary ↔ Hbulk (2.1)

and there should be a unitary map between their Hilbert spaces such that each operator of
the boundary theory is uniquely mapped to an operator in the bulk theory. This mapping
would ensure that correlation functions on the two sides match, as required for a duality.
Such an exact correspondence would also enable one to define non-perturbative states in
quantum gravity using the boundary theory variables.

It is a nontrivial task to define the full bulk quantum mechanical state space, which
includes non-perturbative states with no smooth geometry. However, in the perturbative
quantum gravity regime when GN → 0, the bulk is described by a semiclassical geometry with
boundary, and the bulk and boundary Hilbert spaces can be approximately identified. In this
limit, the bulk theory is described by a QFT on a curved spacetime with asymptotically AdS
geometry. However, the correspondence between the bulk and boundary Hilbert spaces is not
perfectly straightforward, because the bulk QFT is local while the boundary theory is defined
in one lower dimension, so the bulk-boundary mapping must be nonlocal. The equation of
motion for the bulk fields generally admits both normalizable and non-normalizable solutions.
The normalizable modes correpond to boundary quantum fields while the non-normalizable
modes correspond to source terms in the boundary theory [2]. The duality between the bulk
and boundary Hilbert spaces is defined perturbatively, with an identification between the
low-energy subspace of a small number of normalizable bulk matter excitations, and the
low-energy subspace of the boundary theory.

As an example of the bulk-boundary mapping, we review the extrapolate dictionary of
AdS/CFT, which will be useful for setting up our construction. Suppose the low-energy bulk
theory is described by a scalar field ϕ(z,x, t) on a semiclassical AdS background with metric

ds2 = R2

z2

(
−dt2 + dx2 + dz2

)
(2.2)

where z is the coordinate associated to the extra bulk dimension. A free scalar field ϕ in
the bulk has equation of motion (EOM)

(□−m)ϕ = 0 (2.3)

with □ ≡ gµν∂µ∂ν . We would like to relate normalizable solutions of the EOM — which
are the quanta of the bulk theory — to the quanta of the boundary theory. This may be
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done by computing bulk correlators and pulling them to the conformal boundary. While the
correlators of normalizable bulk modes vanish at the boundary, their leading order behavior
can be used to identify bulk operators with their boundary operator representations. For
instance, the two point functions in AdS/CFT are identified as

lim
z→0

z−2∆ ⟨Ωblk|ϕ(z,x1, t1)ϕ(z,x2, t2) |Ωblk⟩ = ⟨Ωbdy| O(x1, t1)O(x2, t2) |Ωbdy⟩ (2.4)

where O(x, t) are the boundary CFT primary operators with conformal dimension ∆, and
|Ωblk⟩ and |Ωbdy⟩ denote the ground states of the bulk and boundary Hilbert spaces, respec-
tively. The extrapolate dictionary then provides the following mapping between quasilocal
operators in the bulk and boundary theories:

lim
z→0

z−∆ϕ(z,x, t) = O(x, t) (2.5)

The relevant low-energy bulk Hilbert subspace is generated by normalizable excitations
with an O

(
N0) number of ϕ quanta, where N the number of flavors in the large-N dual

boundary theory. This is the small subspace of the full bulk Hilbert space for which the
correspondence is well-defined.

Naïvely, the bulk appears to contain more states than the boundary theory (even when
restricted to the low-energy subspace), since all boundary states can be associated to bulk
states generated by the quasilocal bulk ϕ operators in the neighborhood of the boundary.
There are apparently more bulk states which are generated by quasilocal excitations deeper
in the bulk interior. However, such quasilocal excitations will generally propagate to the
boundary at later times — at least in the semiclassical gravitational picture — and therefore,
may be identified with boundary excitations. In other words, local operators in the bulk
correspond to some time-evolved operators on the boundary, which are nonlocal operators
(in Heisenberg picture) [28].

Accordingly, a natural way to relate bulk operators and boundary operators is by evolving
quasilocal bulk operators to the future or the past. To make this relation more precise, we
can explicitly write down bulk fields which satisfy eq. (2.5) using the approach by HKLL.
Normalizable solutions ϕ(z,x, t) to the bulk EOM may be obtained by expanding in a basis
of normalizable modes, and imposing the extrapolate dictionary on the asymptotic behavior
in the extra bulk coordinate. This provides a linear relation between the boundary operator
O(x, t) and the part of the bulk normalizable modes that only depends on (x, t). If the
bulk EOM is linear, there exists a linear kernel K that relates normalizable bulk operators
to the boundary operators as

ϕ(z,x, t) =
∫
dt′dx′K(z,x, t|x′, t′)O(x′, t′) (2.6)

HKLL showed that K can be taken to have support only on the boundary points (x′, t′)
that are spacelike-separated from the bulk point (z,x, t) [11, 29]. Roughly speaking, one
can view the kernel as a spacelike Green’s function that describes propagation along the
z direction rather than time. The existence of such a Green’s function is related to the
time-like tube theorem applied to the bulk QFT [30–33].
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When the bulk is two-dimensional, the reconstruction formula simplifies to

ϕ(z, t) =
∫ t+z

t−z
dt′K(z, t|t′)O(t′) (2.7)

When ϕ is not a free field, the bulk interactions can be considered perturbatively. For example
a scalar field with a ϕ4 interaction satisfies the modified equation of motion (□−m)ϕ = −λϕ3,
which can be used to derive a nonlinear kernel relation between ϕ and O [29].

In the HKLL approach, the bulk equation of motion of a (nearly) free field plays an
essential role in the reconstruction. As a consequence, this approach has only been applied
to few cases such as the AdS vacuum where the kernel can be obtained analytically. In
the next section we will describe a new bulk reconstruction procedure which is similar to
HKLL but proceeds purely from boundary data, without assuming the bulk geometry or
equations of motion. In particular, we will describe a procedure for finding the kernel that
relates bulk and boundary operators by imposing a bulk causal structure. Our approach
may be regarded as a realization of causal wedge reconstruction where we assume a causal
structure to constrain the possible kernel solutions. We will show that for a (0+1)d boundary
theory of GFFs, this constraint is sufficient to uniquely determine an emergent (1+1)d bulk
description, up to a local basis choice.

3 Bulk reconstruction from boundary generalized free fields

In this section, we describe our bulk reconstruction approach, which relies purely on boundary
data and is applicable to any boundary model with generalized free fields (GFFs). A GFF is
any (generically interacting) bosonic or fermionic field whose correlation functions satisfy
Wick’s theorem. Section 3.1 reviews the definition of GFFs. Section 3.2 develops the procedure
that determines the bulk-boundary mapping kernel using the boundary two point functions.
From the kernels, one can determine the bulk dynamics and bulk state. For simplicity, we
shall restrict our attention to a (0+1)d boundary model with an emergent (1+1)d bulk
description. Our method can accommodate higher-dimensional boundary models, though
bulk locality in all directions is not guaranteed (see discussion in section 6).

3.1 Generalized free fields

First, we review the definition of a GFF. GFFs may possess either bosonic or fermionic
statistics, but for concreteness and anticipating the future discussion of the SYK model,
we shall focus on fermionic GFFs. Consider a set of Majorana fermion fields χi(t) with
i = 1, . . . , N in (0 + 1)d. The χi(t) are Heisenberg operators evolved by a given Hamiltonian
H(t) (which may be time-dependent), and that satisfy the Heisenberg equation i∂tχi(t) =
[χi(t), H(t)]. Majorana fields are defined to satisfy the equal-time canonical anticommutation
relations

{χi(t), χj(t)} = δij (3.1)

A field χi(t) is a GFF with respect to state ρ if and only if all of its correlation functions
computed in the state ρ satisfy Wick’s theorem; that is, all 2p-point correlators are factorizable

– 6 –



J
H
E
P
0
8
(
2
0
2
4
)
1
0
7

into a product of p two point correlators, summed over all possible Wick contractions, while
odd moments vanish.1 For example, the four-point function of the fermionic GFFs χi(t)
should satisfy

⟨χi(t1)χj(t2)χk(t3)χl(t4)⟩ = ⟨χi(t1)χj(t2)⟩⟨χk(t3)χl(t4)⟩
− ⟨χi(t1)χk(t3)⟩⟨χj(t2)χl(t4)⟩
+ ⟨χi(t1)χk(t4)⟩⟨χj(t2)χl(t4)⟩

(3.2)

where the relative sign between the terms comes from the fermionic nature of the fields. Here,
all expectation values are taken with respect to a fixed reference state with ⟨. . .⟩ ≡ tr (ρ . . .)
and ρ normalized such that Tr(ρ) = 1. Hence, the GFF condition is a requirement on both
the state and the Hamiltonian.

Free fields, which possess a Hamiltonian that is quadratic in the fields, are trivially
GFFs provided that ρ is a Gaussian state. For example, a free theory of Majorana fields
χi(t) has a quadratic Hamiltonian of the general form H(t) = 1

2
∑

i,j hij(t)χiχj , where h is
an antisymmetric Hermitian matrix (i.e. Hermitian and purely imaginary). Note that H
is a time-dependent Schrödinger picture Hamiltonian. The time evolution of a collection
of free fields is linear:

i∂tχi(t) = hij(t)χj(t),

⇒ χi(t) = Uij(t, t′)χj
(
t′
)
, Uij(t, t′) ≡

(
T exp

[
−i
∫ t

t′
dτh(τ)

])
ij

(3.3)

Uij(t, t′) is a unitary transformation in the linear space spanned by fermion fields χi(t),
and should not be confused with the fermion Hilbert space time evolution operator Ũ(t),
which implements Heisenberg evolution as χj(t) = Ũ †(t)χj(0)Ũ(t). For the fields χi(t) to be
GFFs, the state ρ needs to be a Gaussian state of the form ρ ≡ Z−1e

−
∑

i,j
h̃ijχiχj where h̃ij

encodes the quadratic parent Hamiltonian, which is also called the modular Hamiltonian.
Note that the modular Hamiltonian is generically different from the Hamiltonian governing
Heisenberg evolution.

Interestingly, in the large-N limit where the Hilbert space dimension approaches infinity,
it is possible to have interacting theories of Majorana fermions in which χi(t) is a GFF for
all correlation functions that involve a finite number of field insertions [34, 35]. An example
of such a theory is the Sachdev-Ye-Kitaev (SYK) model [36–39], which we will detail in the
following section. For now, we will describe our reconstruction procedure in a general context,
without specializing to any particular boundary model.

The difference between a canonically free field and an interacting GFF plays an essential
role in our reconstruction. To illustrate this difference, consider the Wightman functions

Gjk(t, t′) = ⟨χj(t)χk

(
t′
)
⟩ = 1

2
(
Ajk(t, t′) + Cjk(t, t′)

)
(3.4)

Ajk(t, t′) = ⟨
{
χj(t), χk

(
t′
)}
⟩ (3.5)

Cjk(t, t′) = ⟨
[
χj(t), χk

(
t′
)]
⟩ (3.6)

For any GFF, we have the following fact as a consequence of Wick’s theorem:
1For bosonic GFFs, odd moments are nonzero if the field has a nonzero one-point function, but this can be

removed by a redefinition of the field.
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Fact 1. For any bosonic multi-point operators O1 = χi1(t1)χi2(t2) . . . χi2p(t2p), O2 =
χl1(t1)χl2(t2) . . . χl2p(t2q), the correlation function satisfies

⟨O1
{
χj(t), χk

(
t′
)}

O2⟩ = Ajk(t, t′)⟨O1O2⟩ (3.7)

This factorization can be directly verified by considering all Wick contractions. The
anticommutator is a sum of two terms, ⟨O1χj(t)χk(t′)O2⟩ and ⟨O1χk(t′)χj(t)O2⟩. Every
Wick contraction of the first term where χj(t′) and χk(t′) are paired with different χ’s in
O1 and O2 is canceled by the equivalent index contraction coming from the second term
where χj(t) and χk(t′) start off in reverse order. Thus, the only surviving contractions are
when χj(t) is paired with χk(t′), yielding eq. (3.7). The above equation implies that we
can write the operator identity{

χj(t), χk

(
t′
)}

= Ajk(t, t′)1 (3.8)

for the subspace of states with finite number of fermion excitations on top of the reference
state ρ. More precisely, we can define a linear space of states spanned by O1ρO2 with each
Oi taking on the form Oi =

∑k
p=0

∑
i1,...,i2p

ψi1,i2,...,i2pχi1(t1)χi2(t2) . . . χi2p(t2p). As long as
the maximal length 2k satisfies 2k/N → 0 in the large N limit, the operator identity holds.

The key difference between free and interacting GFFs is in the structure of the spectral
function Ajk(t, t′). For a free fermion theory, one can show using eq. (3.3) that Ajk(t, t′) =
Ujk(t, t′) is unitary in the flavor indices j, k.2 In contrast, for interacting GFFs, Ajk(t, t′) is
generically non-unitary. For instance, for the large-N SYK model in the zero temperature
limit, we have Ajk(t, t′) ∝ δjk (t− t′)−2/q. Physically, the unitarity of the spectral function of
a free fermion theory reflects the fact that single-particle states at different times only differ
by a single-particle basis transformation. In contrast, in an interacting theory, a single particle
can decay into multiple particles, and Ajk(t, t′) encodes the probability that a single-particle
state remains a single-particle state at later time, which generically decays with time. The
ability for single particles to decay is crucial to our reconstruction; as we will soon show,
this is what allows the emergent bulk direction to appear.

The key observation that leads to our reconstruction is that all multipoint functions of a
given GFF may be reproduced by those of a free theory with one extra spatial dimension,
which we call the bulk theory. Correspondingly, the original theory with GFFs is regarded as
the boundary theory. Because of Wick’s theorem, all bulk correlation functions are encoded
by the boundary Wightman function Gjk(t, t′). We will further show that the bulk theory
constructed from a boundary theory of fermionic GFFs is determined by the spectral function
Ajk(t, t′), and that the bulk fields are unique up to some unimportant local basis choice. An
analogous bulk construction holds for bosonic GFFs, where Ajk(t, t′) in eq. (3.7) is replaced
by the commutator matrix Cjk(t, t′).

3.2 Bulk-boundary mapping from boundary two point functions

Here, we explicitly delineate our bulk reconstruction protocol, using Majorana fermion
operators as our archetypal example. We consider a (0+1)d boundary theory with N

2This essentially follows from the fact that the time evolution of free fields is linear and that the coupling
matrix h is Hermitian.

– 8 –



J
H
E
P
0
8
(
2
0
2
4
)
1
0
7

Majorana fields that are GFFs. We begin by discretizing the boundary time t by sampling
t = T∆t, T ∈ Z. Note that boundary evolution itself still occurs in continuous time, but we are
simply taking snapshots at discrete time points to simplify the mathematical problem we are
dealing with. For these discrete time points, the two point function Gjk(t, t′) becomes a matrix
G of dimension N ·nt×N ·nt where nt is the number of discrete time points being considered.3

Correspondingly, the spectral function containing the anticommutator data becomes a matrix
A with matrix elements Ajk(t, t′). Note that A is real and positive semi-definite.4

The key result of this paper is that the matrix A determines a bulk dual theory which is
described by a Gaussian quantum circuit as illustrated in figure 1, and the bulk-boundary
correspondence is given by an HKLL-like kernel which is also completely determined by A.
We first state the result and then provide a constructive proof.

Result 1. For Majorana GFFs χi(t) with a given time discretization ∆t, there exists a dual
description given by a discrete bulk theory of canonically free Majorana fields ψia(z, t) with
a = L,R and (z, t) = (Z∆t, T∆t) and Z ± T ∈ Z, Z ≥ 0, for which the dynamics is described
by a local unitary Gaussian quantum circuit with reflective boundary conditions at z = 0, as
illustrated in figure 1. ψia(z, t) is related to the boundary fermions in the region [t− z, t+ z]
by a linear transformation

ψja(z, t) =
t+z∑

t′=t−z

Kja,k(z, t|t′)χk(t′), a = L,R (3.9)

The bulk theory satisfies the following conditions:

1. Bulk fermions that are spacelike-separated satisfy the canonical anticommutation rela-
tions. (A more precise definition of “spacelike-separated” for quantum circuits will be
presented below.)

2. The kernel K is uniquely determined by the boundary spectral function matrix A, up to a
local basis choice Kja,k(z, t|t′) →

∑
mOjm(z, t)Kma,k(z, t|t′) with O(z, t) an orthogonal

matrix that can be chosen independently at each bulk spacetime point.

3. The unitary gates U(z, t), V (z, t) in the bulk (see figure 1) are also uniquely determined
by A, up to the same freedom of local orthogonal transformations.

4. The unitary circuit has a reflective boundary condition at z = 0 ψiL(z = 0, t) =
ψiR(z = 0, t) = χi(t). This is the discrete analog of the extrapolate dictionary. The
circuit is either semi-infinite or has another reflective boundary condition at some finite
z = zmax(t). This secondary reflective boundary condition is also determined by A.

3Note that for finite nt, the discretized two point functions cannot be truly time-translation invariant. This
has implications on the discrete bulk theory which is constructed from the sampled boundary data. However,
in certain cases, the discrete bulk theory approaches a continuum theory whose behavior in certain bulk
regions reflects the underlying time-translation invariance of the original boundary data. See section 4.4 for
an example in the case study of the SYK model.

4To show that A is positive semi-definite: Let M ≡
∑

j
vjχj be a linear combination of the N Majorana

operators. Then v†Av = (v†)j Tr(ρ{χj , χk})vk = Tr
(
ρ
(
v∗

jχjχkvk + v∗
jχkχjvk

))
= Tr

(
ρM†M

)
+Tr

(
MM†)

)
.

Both terms are non-negative because M†M,MM† and ρ are all positive semi-definite.
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Let us now explain the derivation of Result 1. We will first define the Gaussian unitary
circuit corresponding to the bulk theory and discuss its causal structure. Then we will explain
how the kernel K and the gates are determined by an orthogonalization procedure. In general,
a local quantum circuit can be viewed as implementing a discretized time evolution using
unitary gates where each gate only couples a finite number of nearby qubits. The circuit we
consider for our bulk description consists of gates which couple qubits on neighboring sites,
as shown in figure 1. The qubits and corresponding bulk fermion operators are associated to
the circuit lines/links while the circuit gates are denoted by the colored vertices. We label
each vertex by coordinates (z, t) where z, t are discretized by half-integer multiples of ∆t,
i.e. z ≡ Z∆t and t ≡ T∆t with Z, T both integer or half-integer. The gates for half-integer
coordinates are denoted by Ũ while those for integer coordinates are denoted by Ṽ . For
each gate at vertex (z, t), we denote the fermion operators at the left-moving input leg as
ψiL(z, t), and denote those at the right-moving output leg as ψiR(z, t). For convenience, we
will occasionally label the bulk gates and fermions by their discrete labels (Z, T) instead of
(z, t), so ψiL(Z, T) and Ũ(Z, T) has the same meaning as ψiL(z, t) and Ũ(z, t), respectively.
The Hilbert space of the circuit at a given time T is a direct product of the single-site Hilbert
spaces of all links intermediated by a horizontal cut. Each quantum gate acts on the 2N
Majorana fermions on two neighboring sites. Generically, the gates could be any unitary
operator in the 2N -dimensional Hilbert spaces of the two sites, but we will focus on Gaussian
quantum circuits in which all gates are Gaussian unitaries, which implement the discrete
analog of eq. (3.3). A Gaussian unitary gate Ũ(Z, T) satisfies5

Ũ †(Z, T)ψiR

(
Z − 1

2 , T − 1
2

)
Ũ(Z, T) = αijψjR

(
Z − 1

2 , T − 1
2

)
+ βijψjL (Z, T)

Ũ †(Z, T)ψiL(Z, T)Ũ(Z, T) = γijψjR

(
Z − 1

2 , T − 1
2

)
+ ζijψjL (Z, T) (3.10)

Grouping the linear coefficients on the right hand side into a matrix U(Z, T), we have(
ψL

(
Z − 1

2 , T + 1
2

)
ψR(Z, T)

)
≡ Ũ †(Z, T)

(
ψR

(
Z − 1

2 , T − 1
2

)
ψL(Z, T)

)
Ũ(Z, T)

= U(Z, T)
(
ψR

(
Z − 1

2 , T − 1
2

)
ψL(Z, T)

) (3.11)

with U(Z, T) an orthogonal 2N × 2N matrix. Similarly, each gate Ṽ (Z, T) corresponds to an
orthogonal single-particle transformation matrix V (Z, T).

Although the quantum circuit is not endowed with a metric,6 it has a well-defined causal
structure, defined by a discrete analog of light cones. Because unitary gates preserve the
canonical anticommutation relations between fermions, if fermions along a horizontal cut
(ψjR(Z, T) and ψjL(Z, T + 1/2) for fixed T) are anticommuting with each other, then they
remain anticommuting after application of one or more local unitary gates. This is what

5Note that following our convention (see figure 1b), ψiR(Z − 1
2 ,T − 1

2 ) and ψiL(Z,T) are the 2N input
fermions to U(Z,T), and the two operators on the right-hand side of the equation are the outputs.

6In fact, we shall later show in some example cases how metric emerges from the bulk circuit dynamics in
the continuum limit ∆t→ 0.
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Figure 1. a) Imposing anticommutation relations for the bulk fermions along the horizontal cuts,
such as those given by the green and purple dashed lines, implies that the fermions residing along the
orange dashed line also obey anticommutation relations. This essentially follows from the brickwork
locality of the circuit. b) The spacelike-separated wedges for the right (left)-moving fermions indicated
in orange (green) are demarcated by dashed lines. Bulk fermions associated to the vertices fully
contained in the shaded orange (green) region anticommute with the right (left)-moving fermion at
the highlighted vertex. To each vertex coordinate (z, t), one can associate a pair of outgoing and
incoming bulk fermion modes, as shown in the legend on the right.

defines whether a particular cut in the circuit is spacelike. For all spacelike-separated pairs
of points (a, Z, T) and (b, Z′, T′)

{
ψia(Z, T), ψjb(Z′, T′)

}
= δijδabδZZ′δTT′ (3.12)

It is straightforward to see that all pairs of points with |Z−Z′| > |T−T′| are spacelike-separated.
For points along diagonal cuts with |Z − Z′| = |T − T′|, we need to separately consider the left
and right-movers. As is shown in figure 1(b), ψiR(Z, T) (orange arrow) anticommutes with
fermions ψiR(Z− n

2 , T + n
2 ), n ∈ Z residing on the links crossing the downwards-sloping orange

dashed line. By contrast, right-movers along the other orange dashed line ψiR(Z + n
2 , T + n

2 )
are not spacelike-separated. However, the left-movers along the parallel cut indicated by
the green dashed line anticommute with each other.

With this preparation, we may now determine the kernel map from the boundary to
bulk fermion operators defined in eq. (3.9). Before deriving the kernel, we first present a
heuristic counting argument why such a bulk-boundary correspondence makes sense in this
discrete setup. In figure 2(a), the time interval t ∈ [1, 5] corresponds to a causal wedge,
which is the triangular region enclosed by the green and orange dashed lines. One observes
that each spatial cut in this causal wedge, such as the orange, green or purple dashed lines,
intersects 5 links. For each boundary time interval, the number of bulk fermion sites in its
causal wedge region is the same as that of boundary time points. Following the convention
in relativistic field theory, we call each spatial cut a Cauchy surface. Each Cauchy surface
Σ corresponds to a square matrix KΣ such that

ψΣ = KΣχ (3.13)
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Figure 2. Quantum circuit representation of the discretized (1+1)d bulk. The two types of gates U
(pink) and V (blue) live on the integer and half-integer vertices, respectively. a) Various cuts indicated
by the orange, purple, and green lines represent choices for the spacelike-separated bulk operators
(residing on the black lines) to use when finding the kernels. b) Choosing diagonal cuts allows one to
find right-moving and left-moving bulk fermion modes.

Here ψΣ denotes the vector of ψia(z, t) for all links intersecting Σ, and χ denotes the vector
of χi(t) for t in the corresponding time interval. Since any two points on a Cauchy surface are
spacelike-separated, ψΣ satisfies the canonical anticommutation relation (3.12), which implies{

ψΣ, ψ
⊺
Σ
}

= KΣ
{
χ, χ

⊺}
K

⊺
Σ = 1 (3.14)

In other words, KΣ must satisfy the matrix equation

KΣAK
⊺
Σ = 1 (3.15)

Eq. (3.15) by itself does not determine KΣ since any orthogonally-transformed kernel
K̃Σ ≡ OKΣ also satisfies the same equation. This ambiguity is mostly removed by the
requirement (3.9) on the support of the kernel, which restricts the distribution of nonzero
matrix elements in KΣ. The only remaining ambiguity is the local basis transformation
mentioned in Result 1.

To demonstrate the procedure of determining the kernel more explicitly, we choose
to work with the diagonal cuts (orange and green dashed lines in figure 2(a)). We shall
refer to these cuts as the past and future “light cones” even though the cuts are one-
dimensional and the bulk fermions crossing the cuts are spacelike-separated. We choose the
convention of placing the reflective boundary of the causal wedge to the left. For a given
boundary time interval t ∈ [t1, t2] with t1,2 = T1,2∆t, T2 − T1 ∈ Z, the future light cone Σf

corresponds to the right-moving bulk fermions associated to vertices (z, t) = (Z∆t, T∆t) with
Z = 0, 1

2 , 1, . . . ,
T2−T1

2 and T = T2 − Z. Similarly, the past light cone Σp corresponds to the
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left-moving bulk fermions on (z, t1 + z) with z = Z∆t for the same Z. First, consider the
right-moving fermions on the future light cone. The support of the kernel (3.9) requires
that ψiR(z, t2 − z) is a linear transformation of the boundary fermions in the time interval
[t2 − 2z, t2]. For example, ψiR(0, 5) = χi(5) are the boundary fermions at time 5, while
ψiR

(
1
2 ,

9
2

)
=
∑

n=4,5Kij

(
1
2 ,

9
2 |n
)
χj(n) is a linear superposition of χj(4) and χj(5), which is

required to anticommute with all χj(5), and anticommute among themselves. Mathematically,
the condition KAK⊺ = 1 can be interpreted as an orthonormality condition for the row
vectors of K with respect to the metric A. From this point of view, the boundary fermion
operators may be regarded as non-orthogonal vectors with respect to the inner product defined
by (χi(T), χj(T′)) ≡ Aij(T, T′) while the bulk fermions along the future light cone correspond
to orthonormal vectors (ψiR(Z, T2 − Z), ψjR(Z′, T2 − Z′)) = δijδZZ′ . The bulk operators along
Σf may be obtained by an iterative Gram-Schmidt orthogonalization procedure for the
boundary operators in [T1, T2] starting from Z = 0 and moving along Σf . The kernel is
therefore the basis transformation between the non-orthogonal boundary operators and the
orthogonal bulk operators. A schematic of the orthogonalization procedure is illustrated in
figure 3. An analogous procedure may be applied for the left-moving bulk fermions along Σp,
whose kernels are supported on the same boundary time interval. Thus, the bulk fermions on
the past light cone correspond to another orthogonal basis of the same linear space, with
reverse ordering of the iterative Gram-Schmidt process.7 We summarize the key observations
regarding the kernels for Σf,p in the following:

Result 2. Let VT = span {χi(T), i = 1, 2, . . . , N} be the linear space of single fermion opera-
tors at a given time, and V[T1,T2] = ∪T∈[T1,T2]VT be the space spanned by all fermion operators
in the time interval [T1, T2]. We have the following results for this linear space:

1. The anticommutator matrix defines an inner product in this linear space (χi(T), χj(T′)) ≡
Aij (T, T′).

2. The mapping [T1, T2] −→ V[T1,T2] preserves inclusion. In equation form,

[
T′

1, T′
2
]
⊆ [T1, T2] =⇒ V[T′

1,T′
2] ⊆ V[T1,T2] (3.16)

3. For a bulk coordinate (Z, T), the right-moving fermion operators ψiR(Z, T) span a linear
subspace Wf

Z,T which is the orthogonal complement of V[T−Z+1,T+Z] in the (generically
bigger) space V[T−Z,T+Z]. In equation, Wf

Z,T ⊕V[T−Z+1,T+Z] = V[T−Z,T+Z]. Similarly, the
left-moving bulk fermion operators ψiL(Z, T) span a space Wp

Z,T that is the orthogonal
complement of V[T−Z,T+Z−1] in the space V[T−Z,T+Z].

We now make some more practical remarks on the computation of kernels Kf,p associated
to Σf,p. The kernel matrices can be subdivided into N ×N blocks with row blocks labeled
by the bulk coordinates (Z, T). For the right-movers on the future light cone, the associated
kernel matrix Kf (Z, T2 − Z|T) is block upper right-triangular if we arrange Z in descending

7It is interesting to note the similarity between our orthogonalization procedure and the discussion of
Krylov space [40]. More quantitative comparison between these two approaches is reserved for future work.
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Figure 3. Schematic illustrating the orthogonalization procedure for generating Wp
z,t. At t = 0,

we have a linear space V0 generated by {χi(0)}. {χi(1)} and {χi(2)} generate linearly-independent
subspaces V1 and V2. One can iteratively orthogonalize these linear subspaces to generate Wp

1
2 , 3

2
and

Wp
1,1. The linear spaces are associated to vertices in the bulk circuit as shown on the right.

order. For example, for the time interval T ∈ [1, 5] in figure 2(a), eq. (3.13) takes on the form



ψiR(2, 3)
ψiR(3

2 ,
7
2)

...

...
ψiR(0, 5)


=



kf
2,1 kf

2,2 kf
2,5

0 kf
3
2 ,2 k

f
3
2 ,3 kf

3
2 ,5

0 0 1





χj(1)
χj(2)

...

...
χj(5)


(3.17)

where each kf
Z,T is an N ×N block that acts on the flavor indices. Likewise, the past light

cone kernel Kp(Z, T1 + Z|T) with block matrix elements labeled by (Z, T) is a lower left block
triangular matrix, if we sort Z in ascending order. However, as mentioned in Result 1,
there is an O(N) ambiguity associated to a local basis transformation at each bulk site,
which preserves the block triangular structure of the kernel matrix. Hence, we can choose
Kf,p to not only be block triangular, but also strictly triangular. This can be viewed as a
gauge fixing. Such a choice allows us to obtain the kernels using QR/QL decomposition. In
particular, to find Kf , we can rewrite KfAK

⊺
f = 1 as KfA

1/2 = Qf , with QfQ
⊺
f = 1, so that

Q⊺
fKf = A−1/2. Hence, choosing Kf to be upper triangular implies that it is obtained by a

QR decomposition of matrix A−1/2 where Qf is an orthogonal matrix of the decomposition.
Likewise, Kp can be obtained by a QL decomposition A−1/2 = Q⊺

pKp with Qp another
orthogonal matrix. Since A is real, Kf,p may also be chosen to be real. We summarize the
essential algorithm behind our numerics in the following pseudocode:

Q
⊺
f ,Kf = QR

[
A−1/2

]
Q

⊺
p,Kp = QL

[
A−1/2

]
(3.18)
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With the above gauge choice, the only remaining freedom is an overall ± sign in the linear
expansion of each bulk fermion operator (appendix A). One is free to choose the signs so
long as the choice is consistent with fermion number parity conservation. We postpone the
discussion of this detail to section 4.2.

Once the kernels Kf,p are obtained, the bulk dynamics are fully determined. For example,
A−1/2 = Q⊺

fKf = Q⊺
pKp implies that Kf = QfQ

⊺
pKp, such that ψf = QfQ

⊺
pψ

p. Here ψf (ψp)
denotes all right-moving (left-moving) fermions on the future (past) light cone. Therefore
the matrix QfQ

⊺
p is exactly the single-particle time evolution of ψp into ψf . Likewise, we

can use the kernels to determine the single-particle linear transformations U(Z, T) and V (Z, T)
(eq. (3.11)) for each gate in the quantum circuit. For clarity we postpone details of the
derivation of the gate transformations to section 4.2, where we can use the SYK model
as a concrete example.

The bulk gates determine the bulk dynamics, but do not specify the quantum state in
the bulk. Just as a system with a given fixed Hamiltonian can evolve different quantum
states, to fully specify the bulk physics, we need to determine the bulk quantum state. A
Gaussian state on a given Cauchy surface Σ is fully determined by the two point functions
⟨ψia(z, t)ψjb(z′, t′)⟩ on Σ. Since the anticommutator between bulk fermions on Σ is canonical,
the bulk Gaussian state is fully determined by the bulk commutators on Σ:

(CbΣ)ia,jb

(
z, t; z′, t′

)
=
〈[
ψia(z, t), ψjb(z′, t′)

]〉
(3.19)

The linear relationship between bulk and boundary fermions means the bulk commutators
are determined by the boundary commutators and the kernels. In matrix form, we have

CbΣ = KΣCK
⊺
Σ (3.20)

where C is the boundary commutator matrix defined in eq. (3.6), and is imaginary and
Hermitian. All properties of the bulk state are encoded in CbΣ. For example, in section 4.4,
we use CbΣ to study the entanglement entropy in the bulk dual of the SYK model.

Results 1, 2 and eqs. (3.18), (3.20) summarize the key conclusions for our bulk construction.
Our setup explicitly shows that the bulk theory is completely determined by the boundary
two point function (3.4).

Before concluding this section, we make a few remarks about our construction. The
first point is that the method of QR decomposition (3.18) only applies if A is non-singular.
If A is singular, the bulk fermions along the light cones may still be obtained by iterative
orthogonalization as summarized in Result 2, though the number of bulk fermion modes
obtained may be smaller than N . For example, if Ajk(T, T′) is non-singular for time interval
[T1 + 1, T2] but singular for [T1, T2], that means the corresponding linear space V[T1,T2] has a
dimension smaller than the number of boundary operators (T2 − T1 + 1)N . Consequently,
the number of orthonormal bulk fermion modes at position Z = T2−T1

2 , T = T2+T1
2 is

dim
(
V[T1,T2]

)
− dim

(
V[T1+1,T2]

)
. Our construction continues to apply to increasingly longer

boundary intervals, unless dim
(
V[T1,T2]

)
= dim

(
V[T1+1,T2]

)
, in which case there is no bulk

fermions at the corresponding bulk vertex. In that case, this point (Z, T) becomes a boundary
point. In section 5.2, we discuss an example of a coupled SYK model which corresponds
to a geometry with a finite boundary at Z = Zmax.
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As a second remark, Result 2 implies that the only mathematical requirement for the
construction of bulk operators is a nested family of linear spaces satisfying eq. (3.16). This
implies our construction of bulk unitary dynamics in the form of a quantum circuit is very
general, which also applies to other problems where the inner product has a different physical
interpretation. The case of bosonic GFF can be studied in parallel with the fermion case,
but the inner product needs to be replaced by a symplectic form. This case is discussed
in appendix C.

The third point we would like to mention is that it is not strictly necessary to assume
a local quantum circuit representation for the operator dynamics a priori. Instead, if we
begin by assuming that there exists a kernel which defines bulk fermions by eq. (3.9), and
the bulk fermions satisfy cannonical anticommutation relation on a spacelike slice, we can
prove that the discretized bulk dynamics must be given by a local quantum circuit. The
choice of coordinates (z, t) = (Z∆t, T∆t) is simply a discrete version of conformal coordinates.
In 2d curved space, one can always find coordinates in which the metric is conformally flat,
taking on the form ds2 = Ω2(z, t)

(
dz2 − dt2

)
. Therefore the requirement that the kernel

for bulk fermion at (z, t) is supported at time interval [t − z, t + z] is a gauge choice that
fixes the coordinate choice of the bulk. Further discussion of the bulk metric is presented
in section 4.5. The canonical anticommutation relations defined by the orthogonalization
procedure in Result 2 is sufficient to prove that the bulk fermion dynamics is given by a local
Gaussian quantum circuit. Details of the proof may be found in appendix B.

3.3 Notation and Conventions

For convenience, here we summarize our chosen notation and conventions throughout the
paper.

Quantity Boundary Bulk
continuous coordinates t (z, t)

discrete coordinates T (Z,T)
fermionic operators χi(t) ψia(z, t), a=L,R

matrix of 2-point Wightman functions G Gb

matrix of anticommutators (real part of 2-pt function) A Ab

matrix of commutators (imaginary part of 2-pt function) C Cb

We shall normalize the Majorana operators such that

{χj(t), χk(t)} = δjk =⇒ χ2
j (t) = 1

21 (3.21)

Bulk circuit coordinates (z, t) are discretized in units of ∆t/2, where ∆t is the discretization
of the boundary time and z ≡ Z∆t and t ≡ T∆t where Z, T are either both integers or both
half-integers. We will go between labelling operators and gates with the continuum coordinate
labels z, t or the discrete integer coordinates Z, T, depending on the context. In other words,
we will use the notations χj(t), ψja(z, t), U(z, t), V (z, t) and χj(T), ψja(Z, T), U(Z, T), V (Z, T)
interchangeably, depending on the context.
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4 The SYK model thermal state

In this section and the next, we will apply our reconstruction procedure to various SYK-type
models. The SYK model consists of N Majorana fermions with random q-body interactions,
and is of interest as a low-dimensional toy model for holography. At large N and strong
coupling (the latter of which is often given in the form of a low temperature limit), the SYK
model acquires an approximate conformal symmetry in the IR, where its low-energy behavior
is captured by (1+1)d JT gravity — a model that also arises as the effective action near
the horizon of an extremal black hole. Accordingly, the SYK model exhibits many features
expected of black holes, including fast scrambling and a macroscopic ground state degeneracy
in its semiclassical limit. However, the dual of SYK is not a simple JT gravity theory since
there is a tower of other correlation functions that are not captured by JT gravity [41–43].
It is an open question whether the SYK model admits a bulk dual description beyond the
low-temperature limit. Using our generalized HKLL construction, we may determine the bulk
fermion operators and their dynamics from the SYK two point functions. We show that the
boundary thermal state admits a dual description as free bulk fermion dynamics in (1+1)d
with a horizon, even away from the low temperature limit. In the dual description, we can
study the bulk quantum state and its properties such as entanglement entropy. Furthermore,
we can apply our construction to the thermofield double state, and confirm that the low-
temperature physics of the bulk dual is consistent with a two-sided black hole geometry.
Later in section 5, we study coupled SYK models, which correspond to two-sided geometries
which are modified by positive or negative energy shockwaves. For our investigations, we
use the analytic results for the large-q, finite-temperature two point functions in the usual
SYK model [44] and the coupled, two-sided variant [27, 45].

4.1 Overview of the SYK model and its generalizations

In this subsection, we briefly review the main results of the SYK model. For key computations
in the SYK model, see [44, 46, 47], and for pedagogical reviews on the SYK model and its
connection to holography, see [41, 48] and references therein.

The SYK model describes a system of N Majoranas fermions {χi}N
i=1 which are Hermitian

representations (χ†
i = χi) of the algebra {χi, χj} = δij . Finite-dimensional representations of

the Majorana algebra may be found, and are given by square matrices of minimum dimension
2N/2 × 2N/2. The SYK Hamiltonian is given by

HSYK = iq/2 ∑
1≤i1<···<iq≤N

Ji1,...,iqχi1 . . . χiq (4.1)

where the coupling constants Ji1,...,iq are random real variables. One can also regard the
coupling constants as the entries of a random antisymmetric tensor J whose antisymmetry
enforces the anticommutation relations of the Majoranas. Typically, the coupling constants
are i.i.d. Gaussian variables of mean zero and variance σ2(J ) where J is a tunable parameter
which dictates the characteristic energy scale. Following the convention in [44], we will
choose the variance to be

σ2(J ) ≡ J2
i1,...,iq

= 2q−1

q

J 2(q − 1)!
N q−1 (4.2)

where the scaling of the variance with N is chosen to produce sensible large-N asymptotics.
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One can think of the SYK model as representing an ensemble of Hamiltonians, each
with a different instantiation of the random couplings. As with any model with disorder,
one typically considers the disorder-average of physical quantities like correlators. For q ≥ 4,
the model is self-averaging for many quantities, meaning that a typical instantiation of J
gives values close to the disorder-average.

The SYK model is analytically treated at large N , which is the regime in which it
classicalizes. In this limit, one can find equations for the normalized two point function,

G(t, t′) = 1
N

N∑
i=1

⟨χi(t)χi(t′)⟩β (4.3)

where ⟨.⟩β denotes the expectation value computed in the thermal or KMS state with inverse
temperature β. The Schwinger-Dyson equations for G(t, t′) are given by

∂tG(t, t′) −
∫
dt′′Σ(t, t′′)G(t′′, t′) = δ(t− t′) Σ(t, t′) = J 2

q

(
2G(t, t′)

)q−1 (4.4)

where Σ plays the role of the self-energy (i.e. sum of all one-particle irreducible diagrams) in
the Feynman diagrammatic approach. Because of the time translation invariance of the bilocal
fields G and Σ, the first equation is often written in Fourier space, giving the pair of equations

1
G(ω) = 1

G0(ω) − Σ(ω) Σ(t) = J 2 (2G(t))q−1 (4.5)

where G0(ω) is the Fourier transform of the free two-point function and t in the second
equation is the difference between the two times in the bilocal fields. For finite q and finite
temperature, eq. (4.4) can only be solved numerically. In the large-q limit defined by N, q → ∞
with q2/N → 0, an analytic solution can be obtained for all temperatures, and is given by:

G(t) = 1
2

 cos(πν/2)
cos

(
πν
(

1
2 − i t

β

))
2/q

= 1
2

 cos(πν/2)
cosh

(
πν
(

i
2 + t

β

))
2/q

βJ = πν

cos(πν/2)

(4.6)

Note that this two point function decays exponentially for finite β, as a consequence of
thermalization. From the quantum mechanical perspective, this is because local χ operators
are developing components on products of many single-fermion operators. As we will show
later, using our holographic circuit construction of the SYK model, we can attribute a bulk
geometric explanation for the decay of correlations: localized boundary fermion wavepackets
propagate deeper into the bulk and escape into a bulk bath, which may be interpreted as
an effective horizon.

The fact that the Majorana fermion fields are GFFs in the large N limit is a consequence
of the suppression of connected four-point function by 1

N . In the path integral language, the
disorder-averaged partition function can be expressed as a path integral over collective fields
G(t, t′) and Σ(t, t′), and this path integral is dominated by the saddle point in the large N limit.
The saddle point equations are precisely the Schwinger-Dyson equations given in eq. (4.4).
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In the low energy limit 1 ≪ βJ ≪ N , the model has an approximate symmetry under
reparameterization,

G(t, t′) 7→
[
f ′(t)f ′(t′)

]∆
G
(
f(t), f(t′)

)
Σ(t, t′) 7→

[
f ′(t)f ′(t′)

]∆(q−1) Σ
(
f(t), f(t′)

) (4.7)

which is broken by the iω term in eq. (4.4). As a consequence, long wavelength fluctuations
are described by the Schwarzian theory of the reparametrization field f(τ) [46, 49]. The
low temperature solution has the form

G(t) = sgn t c∆

|t|2∆ c∆ =
((1

2 − ∆
) tan(π∆)

π∆

)∆
(4.8)

which is conformally-invariant under SL(2,R) transformations with conformal dimension
∆ = 1

q . The Schwarzian theory agrees with the 2d JT gravity, which is the grounds for
the statement that the SYK model admits a holographic interpretation. The fact that JT
gravity emerges as the effective dimensionally-reduced theory of the near-horizon physics
of an extremal black hole then connects the physics of the SYK model to that of black
holes. Indeed, the SYK model reproduces many of the features of near extremal black holes,
including scrambling behavior and a macroscopic zero temperature degeneracy. Since the
holographic duality of SYK model relies on the Schwarzian theory, the dual theory is not
known for finite βJ . One key result of our approach is a bulk dual theory that applies to
arbitrary finite temperature, at the level of two point functions.

4.2 Bulk reconstruction for the SYK thermal state

In this subsection, we perform the reconstruction detailed in section 3.2 using the thermal
two point function given by eq. (4.6). In the large-N limit, the two point function is diagonal
in the Majorana flavor indices, i.e. Gij(t, t′) = G(t, t′)δij . Our construction starts from
the anticommutators of the SYK Majorana fermions, which is twice the real part of the
Wightman function:

Aij(t, t′) ≡
〈{
χi(t), χj(t′)

}〉
= 2 Re

[
G(t, t′)

]
δij (4.9)

We construct A by considering a discrete set of times t, t′ = n∆t, n ∈ Z, and then obtain the
kernels Kf,p via QR (QL) decomposition of A−1/2, as in eq. (3.18). Note that because the
matrix A is diagonal in the Majorana flavor indices, the resulting kernel matrix will also be
diagonal in the flavor indices and possess identical components for each index i. Thus, the
bulk Majorana fermions along the future and past light cones may be written as

ψR(L)i(z, t) =
∑

t−z≤t′≤t+z

Kf(p)(z, t|t′)χi(t′) (4.10)

where the right (left) moving fermions reside on the future (past) light cones. As a consequence,
the bulk dual that we will construct may be thought of as comprised of N identical copies
of a (1+1)d bulk Majorana theory. We will henceforth omit the flavor indices for both the
bulk and boundary fermions since they play no role in the construction.

An example of the kernel components for a right-moving bulk fermion ψRi(z, t) is shown
in figure 4(a). The bulk fermion is a linear superposition of boundary fermions with an
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Figure 4. Bulk fermions for the thermal state of large-q SYK model for (q, β, J,∆t) = (16, 106, 1, 0.5).
a) We show the components of the kernel Kf (z, t|t′) for a right-moving bulk fermion at a fixed location
(z, t), indicated schematically on the circuit diagram by the dot and arrow. The left panel is a plot of
Kf (z, t|t′) (horizontal axis) as a function of t′ (vertical axis). b) Evidence of locality as indicated by
the bulk propagator (4.11). The first bulk fermion in the anticommutator is a right-moving fermion
fixed at the circuit leg in the red outlined square. The location of the second bulk fermion is swept over
all locations in the reconstructed causal wedge. As the colormap shows, the anticommutator vanishes
for spacelike-separated fermions, and is strongly supported in the light-like direction corresponding to
the direction of propagation of the first bulk fermion.

oscillatory coefficient, as shown in the left panel of the subfigure. Note that the kernel for
the right-moving bulk fermion is mainly supported in the past end of the boundary interval
[t−z, t+z]. Likewise, the left-mover at (z, t) will be a superposition of the boundary fermions
whose support is concentrated on the future end of the same interval. We may use the kernels
to understand the bulk dynamics via the bulk-bulk anticommutator

Ab

(
c, z′, t′, d, z, t

)
=
〈{
ψc(z′, t′), ψd(z, t)

}〉
(4.11)

with c, d ∈ {L,R}. Because the bulk operators are canonically free (appendix B),
Ab (c, z′, t′, d, z, t) represents the probability amplitude ψd(z, t) evolves to ψc(z′, t′). Fur-
thermore, because spacelike-separated bulk operators anticommute, Ab is guaranteed to be
an orthogonal matrix, with one entry indexed by c, z′, t′ and the other entry indexed by
d, z, t. Figure 4(b) shows the absolute value of the matrix elements of Ab where the first
bulk fermion in the anticommutator is fixed to be a particular right-mover c = R at location
(z′, t′) indicated by the pixel with red boundary. Each pixel resides at the center of a link in
the circuit, so the figure captures the anticommutator with both right- and left-moving bulk
fermions. The color intensity of each pixel represents the magnitude of the corresponding
matrix element of Ab. We see that evolution to the past brings the local bulk fermion to a
superposition of boundary and bulk fermions, while the evolution to the future is mainly a
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U

ψa ψb

ψc ψd

Figure 5. Schematic of an arbitrary bulk gate U with labeled legs.

free motion with the speed of light (i.e. maximum speed in the quantum circuit), with some
small probability of reaching other points in the future light cone. This is consistent with
the existence of black hole horizon, which we will analyze below.

To understand the bulk dynamics more quantitatively, we obtain the gates in the bulk
circuit. In particular, we find the orthogonal linear transformation that corresponds to the
r.h.s. of eq. (3.11). For a given gate in the bulk, the input and output fermions are both
expressed as linear superpositions of the boundary fermions, so that one can find the linear
transformation corresponding to the gate itself. Because the flavor indices decouple in the
large-N SYK model, the gate corresponds to a simple 2 × 2 linear transformation. A gate
at vertex (z, t) acts on the incoming operators ψR(z − 1

2 , t −
1
2) and ψL(z, t), and outputs

the operators ψL(z − 1
2 , t+ 1

2) and ψR(z, t). For convenience, let us call the two inputs ψa

and ψb, and the two outputs ψc and ψd, respectively, and denote the gate of interest by U

(figure 5). The gate U acts linearly on the bulk operators as:(
ψc

ψd

)
=
(
Uca Ucb

Uda Udb

)(
ψa

ψb

)
(4.12)

Because the gate preserves the bulk operator norm (ψ2 = 1
2) and the spacelike separation

of the pair of inputs and the pair of outputs ({ψa, ψb} = {ψc, ψd} = 0, i.e. the operators
anticommute), the gate is an orthogonal matrix. The input and output fermions are linear
superpositions of boundary fermions in different time windows. We denote this by ψi = Kiχ

with i = a, b, c, d. Ki are corresponding row vectors of the kernel matrix (3.17). Thus the
orthogonal matrix U can be determined from Ka,Kb:—— Kc ——

—— Kd ——


 |
χ

|

 =
(
Uca Ucb

Uda Udb

)—— Ka ——

—— Kb ——


 |
χ

|


⇓(

Uca Ucb

Uda Udb

)
=
(
K⊺

cAKa K
⊺
cAKb

K⊺
dAKa K

⊺
dAKb

)
(4.13)

In a generic system, the kernel needs to be separately obtained for the four fermions a, b, c, d,
but for the thermal state the computation can be simplified due to time translation invariance
of the state. The time translation invariance also implies time reflection symmetry of
the matrix A(t, t′), since G∗(t, t′) = G(t′, t) and thus A(−t,−t′) = A(−t′,−t) = A(t, t′).
Therefore, for the time translation invariant state, the kernels Kp and Kf are related by time
reflection: Kp(z, t|t′) = ±Kf (z, t|2t− t′). The ± sign is an ambiguity, which does not affect
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the canonical anticommutation relations of the bulk fermions on Σf,p. However, the gauge
choice for this sign must respect fermion parity conservation. In general, for 2M Majorana
fermions ψk, k = 1, 2, . . . , 2M , if we implement an orthogonal transformation ψ̃k =

∑
l Oklψl,

with O⊺O = 1, then the associated fermion parity operators F = iMψ1ψ2 . . . ψ2M and
F̃ = iM ψ̃1ψ̃2 . . . ψ̃2M are related by F̃ = det (O)F . A physical gate acting on fermions should
always preserve the fermion parity number, which means we should require det (U(z, t)) =
det (V (z, t)) = 1. Therefore, U, V are 2 × 2 special orthogonal matrices which may be
parametrized as

U(z, t) =
(

cos(θU (z)) − sin(θU (z))
sin(θU (z)) cos(θU (z))

)

V (z, t) =
(
− cos(θV (z)) − sin(θV (z))
sin(θV (z)) − cos(θV (z))

) (4.14)

where the gates U(z, t) and V (z, t) each depend on a single parameter θU (z), θV (z). The
gate angles θU,V (z) are plotted in figure 6(a). It can be shown that this gauge choice can
be realized by requiring Kf to always have positive diagonal components, and requiring Kp

to have an alternating sign defined by

Kp(z, t|t′) = (−1)2zKf (z, t|2t− t′) (4.15)

4.3 Emergence of black hole horizon

Due to time translation invariance of the thermal state correlation functions, the U (half-
integer) and V (integer) gates only depend on the z coordinate. As shown in figure 6(a) and
(b), we find that upon increasing z, the gate angle for both U and V -type gates exponentially
approaches π

2 :

θβ(z) ∼ π

2 − e−z∆t/ξθ (4.16)

with a characteristic length ξθ ∝ β at low temperature. As a consequence, in the region
z ≫ ξ each gate is well-approximated by a swap gate, as is illustrated in figure 6(c). In this
region, the right-moving fermion modes decouple from the left-moving ones, which means
the right-moving fermion will “fly freely” for ever, with the deep bulk interior playing the
role of a reflectionless geometric bath.8 This explains why in figure 4(b), the right-moving
fermion propagates along the light cone, almost without dispersion.

The existence of a reflectionless bath region is a direct consequence of the decay of
the two point function. As long as the two point function does not have a recurrence at
long times, the reflectionless bath region is semi-infinite. Physically, this is because the
bulk fermions are obtained by a constrained orthogonalization procedure. The right-mover
ψR(z, t) is obtained by taking boundary fermion χ(t − z) and orthogonalizing it with all
χ(t′) in the range (t− z, t+ z]. By comparison, ψR

(
z + 1

2 , t+ 1
2

)
(the next fermion along

8In the many-body notation, the bulk fermion operators in the swap region satisfy ψR(z, t) =
ψR

(
z + 1

2 , t+ 1
2

)
, ψL(z, t) = −ψL

(
z − 1

2 , t+ 1
2

)
for the gauge choice we made.
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Figure 6. Depth dependence of the gate angles of the bulk circuit and the emergence of an effective
horizon. The data shown is obtained for (q,J ,∆t) = (22, 1, 0.5). a) The gate angles θU , θV defined in
eq. (4.14) both quickly approach π

2 at large z. b) The characteristic depth ξ that controls the exponen-
tial decay π

2 −θU,V ∝ e−z/ξθ , which depends linearly on β at low temperature. c) A schematic of the bulk
circuit dual to the thermal state. The region z ≫ ξθ demarcated by the orange dashed line has θU , θV ≃
π
2 , which means the left-movers and right-movers decouple. Note that this is consistent with figure 4(b).
d) A schematic of the maximally-extended, two-sided Penrose diagram for an eternal AdS2 black hole.
The z ≫ ξ regions in subfigure (c) corresponds to the near horizon region in the Penrose diagram.

the lightlike direction of propagation) is obtained by orthogonalization of χ(t− z) with χ(t′)
in the range (t − z, t + z + 1]. Therefore, ψR (z, t) and ψR

(
z + 1

2 , t+ 1
2

)
differ only by an

extra orthogonalization with χ(t+ z + 1). If the boundary time separation 2z + 1 is much
larger than the thermal correlation length, χ(t − z) and χ(t + z + 1) are almost already
orthogonal, so ψR (z, t) and ψR

(
z + 1

2 , t+ 1
2

)
are almost the same. Analogous reasoning

holds for ψL(z, t) and ψL

(
z + 1

2 , t−
1
2

)
.

The presence of a reflectionless bath is also consistent with the holographic description
of the thermal equilibrium state of SYK as an eternal black hole. In this interpretation,
the thermal correlators of the SYK model at low temperatures are dual to the thermal
correlators of JT gravity for an AdS black hole. The region z ≫ ξθ corresponds to the
region near the black hole horizon, as illustrated in figure 6(d). The decoupling between
left-movers and right-movers can be viewed as a consequence of the gravitational redshift
near the horizon. When a bulk fermion falls into the black hole, the proper time it spends
in the near-horizon region is short, even if the corresponding asymptotic boundary time
(in the exterior coordinate system) is infinite. The free-flying, right-moving fermion modes
correspond to the infalling modes crossing the horizon. More quantitative analysis of the
bulk geometry will be presented in section 4.5.

– 23 –



J
H
E
P
0
8
(
2
0
2
4
)
1
0
7

Importantly, our approach clarifies that for generalized free fields the concepts of a black
hole horizon and horizon modes are well-defined for all systems with exponentially decaying
two point functions, even if these systems do not have a holographic dual in the usual sense
(such as the finite temperature SYK model). This observation suggests that holographic
duality between chaotic models and black hole geometries may occur more generally than one
would conservatively expect from the AdS/CFT correspondence. However, it should be noted
that our approach does not directly distinguish the black hole horizon from other causal
horizons such as an AdS Rindler horizon. If we consider the state in the limit βJ → +∞,
the boundary two point function has a power-law decay behavior, so the corresponding
gate angles θU , θV approach π

2 in large z but with a deviation that decreases as a power
law of z. In this case, the bulk fermion also has a reflectionless bath, which corresponds
to the Poincare horizon in AdS2 space.

Now let us further discuss the boundary interpretation of the horizon modes. The fact
that the gates approach θ = π

2 at large z guarantees that the right-movers (left-movers)
converge to a well-defined mode at large bulk depths. For instance, the future horizon modes
are well-defined as the following limit of the right-moving fermion operators:

ψf (u) ≡ lim
z→∞

ψR(z, z + u) with u = n∆t (4.17)

where u = 0 corresponds to the furthest interior point on the future light cone of the causal
wedge, and z = Z∆t with half-integer Z. Note that the horizon modes are only well-defined at
discrete points u along the light cone. Recall that for different z, ψR(z, z+u) is a superposition
of boundary fermions in the interval [u, u+ 2z] where the coefficients are given by the kernel
Kf (z, z + u|τ + u) and τ ∈ [0, 2z] labels the time relative to the first time in the interval. For
large z, the kernel is mostly supported near the initial time u with a spread of ξθ, and thus
converges to a z-independent “wavepacket”, as illustrated earlier in figure 4(a). The bulk
fermions on the future horizon can be expressed in terms of the boundary fermions as

ψf (u) =
+∞∑
τ=0

W (τ)χ(τ + u), W (τ) = lim
z→∞

Kf (z, z − τ) (4.18)

where we have written the kernel as Kf (z, z − τ) = Kf (z, z + u|τ + u) since it only depends
on the time difference z − τ due to time translation symmetry. The past horizon modes
can be analogously obtained by ψp(u) = limz→∞ ψL(z, z − u), and are supported on the
boundary time interval (−∞, u]. The future and past horizon modes for the SYK fermions
are discussed in appendix A and ref. [50].

To understand the physical interpretation of the horizon modes, note that{
ψf (u), χ(t)

}
= 0, ∀t > u (4.19)

which follows from the orthogonalization procedure. Consider a boundary probe, which
is a generic bosonic operator O ≡ χj1(t1)χj2(t2) . . . χj2n(t2n) with tk > u∀k = 1, 2, . . . , 2n.
Eq. (4.19)) implies that

⟨[ψf (u), O]⟩ = 0 (4.20)
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Therefore, ψf (u) is invisible for arbitrary boundary measurements made after time u and
involving a finite number of fermions. In fact, for any given time u, all future horizon modes
ψf (u′) with u′ ≤ u commute with a generic operator O at t > u, so the same must true for a
product of such operators. As a consequence, there is an infinite family of quantum states

σ (u1, u2, . . . , uℓ) =
(
ψf (u1)ψf (u2) . . . ψf (uℓ)

)
ρth
(
ψf (uℓ)ψf . . . (u2)ψf (u1)

)
(4.21)

with uj ≤ u ∀j = 1, 2, . . . , ℓ which are all indistinguishable from the thermal equilibrium
state ρth after time u:

tr [O (σ − ρth)] = 0 (4.22)

The above is an explicit consequence of the fact that the operator algebra for all boundary
operators after a certain time (or more generally, for the spacetime region in the future of
a Cauchy surface) for GFFs depends nontrivially on the Cauchy surface [51].

Physically, the invisibility of the horizon modes with respect to operators after a certain
time is equivalent to the statement that the information carried by the horizon modes is sent
into the interior of the black hole and cannot be recovered. Of course this is only true in the
large-N limit. At finite N , the commutator in eq. (4.20) acquires a finite value ∝ 1

N , which
allows infalling qubits to be reconstructed by the boundary observer.

4.4 Bulk state and entanglement entropy

As mentioned in section 3.2, the bulk state may be characterized using the reconstructed
bulk operators. Since the bulk state is Gaussian, the particular state and all of its correlation
functions are determined by the bulk two point functions. Let us temporarily denote the
bulk fermions on a Cauchy surface Σ as ψΣ(z) since no two fermions on the same Cauchy
surface will have the same z. Because the ψΣ(z) are spacelike-separated, the anticommutators
vanish independent of the bulk state, and the two point functions on Σ reduce to the bulk
commutators:

CbΣ(z, z′) ≡
〈[
ψΣ(z), ψΣ(z′)

]〉
(4.23)

Given ψΣ = KΣχ, we can express CbΣ in terms of the boundary commutators:

CbΣ = KΣCK
⊺
Σ (4.24)

where C(t, t′) = ⟨[χ(t), χ(t′)]⟩. The bulk correlators CbΣ(z, z′) may be analyzed to extract
properties of the bulk state.

For simplicity, we study the bulk correlators for the right-moving fermions along the
future light cone Σf , as is illustrated in figure 7(a). The bulk commutator matrix is thus
Cb = KfCK

⊺
f . As shown in figure 7(b), the correlation function decays with the distance

between bulk points. For low temperature (β = 105), the commutator decays like a power
law with an exponent that remains fixed in the continuum limit ∆t→ 0, as demonstrated
in figure 7(c). This is consistent with the expected power law decay of the boundary two
point function at low temperatures. For small, finite β, the boundary correlators decay
approximately exponentially with a correlation length that behaves as ξ = β

2π , as seen from
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Figure 7. Bulk correlators for (q,J ) = (22, 1). a) Schematic of a pair of bulk fermions ψR(z1) and
ψR(z2) on a Cauchy slice (dashed line) used to study commutators. We chose the Cauchy slice to be
the future light cone, and denote the bulk commutators along this light cone by Cff (z1, z2). b) Bulk
commutators along a Cauchy slice shows evidence of locality in the correlations in the state. Color
plot shown is for β = 105, ∆t = 0.2. c) Spatial dependence of the bulk commutator on z ≡ z2 − z1 for
fixed β = 105. We observe a power law decay of correlations |Cff | ∼ (z∆t)−r, with a constant power
law exponent r ∼ 1 in the continuum limit as shown in the inset. d) For fixed ∆t = 0.25, we fit an
exponential to the decay of correlators deeper in the bulk and observe a correlation length ξ that is
proportional to β with a slope that is approximately 2π, as expected from eq. (4.6).

eq. (4.6). Figure 7(d) shows that the relationship between ξ−1 and 1
β is indeed approximately

linear, with a slope of 2π. The small flat region at low temperatures is indicative of the
power law behavior observed in figure 7(c), while the deviation at high-temperatures is a
reflection of the ν-dependence of the decay of the boundary two point function in eq. (4.6),
which becomes relevant when β−1 ∼ ∆t.

We may further characterize the bulk state by computing its entanglement entropy. For
the Gaussian bulk state, the von Neumann entanglement entropy of a bulk subregion is
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determined by the commutator matrix Cb for that region [52–54]:

SvN (ρ) = −1
2 Tr

(1 + Cb

2 ln 1 + Cb

2 + 1 − Cb

2 ln 1 − Cb

2

)
(4.25)

Physically, the eigenstates of Cb correspond to complex fermion modes built out of pairs of
Majorana fermions, and the eigenvalues of Cb determine their expected occupation numbers.
Because Cb is imaginary and Hermitian, its eigenvalues come in pairs ±λi, with λi ≥ 0. The
probability of having occupation number ni = 1 for the ith mode is pi = 1−λi

2 ∈ [0, 1]. The
entropy of a bulk subregion is a sum of the entropies of each complex fermion degree of
freedom, and essentially counts the number of complex fermions in the subregion.

We numerically study the entropy of a bulk spacelike interval that ends at the boundary.
Since states related by a unitary transformation have the same entropy, it suffices to study the
entropy of an interval along the future light cone, as indicated by the purple line in figure 8(a).
As a technical aside, the bulk entropy can be computed without explicitly obtaining the
associated kernel K. Given that K satisfies K = QA−1/2 with QQ⊺ = 1, we can define a
“rotated” version of the bulk commutators

C̃b = Q
⊺
CbQ = A−1/2CA−1/2 (4.26)

and compute the von Neumann entropy from C̃b directly, which only involves the boundary
quantities A−1/2 and C. To compute the entropy of a bulk interval along Σf with spatial
coordinates in [0, z], we sample the boundary time interval [−z,+z] with an integer number
nt of points, which results in discretization ∆t = 2z

nt−1 . The entropy S(z,∆t) is computed
using eq. (4.26) and the results are summarized in figure 8. As seen in figure 8(b), for a fixed
z, S(z,∆t) approaches a finite value as ∆t→ 0. We estimate the continuum limit value for
the entropy of the interval by parametrizing the small ∆t regime by a quadratic function
S(z,∆t) = S0(z) + γ1∆t+ γ2∆t2. For sufficiently low temperatures, S0(z) depends linearly
on z as shown in figure 8(d), which means the bulk entropy along the light cone satisfies a
“volume law” in the particular continuum limit considered (finite total boundary time with
∆t → 0). Importantly, the fact that the entropy appears to have a finite continuum limit
suggests that the continuum limit of the circuit is qualitatively different from a quantum
field theory, which should have UV-divergent entropy.

This conformal coordinate volume law can be understood as a consequence of the
universal behavior of C̃b deep in the bulk, and the existence of a “near-horizon” regime.
For sufficiently large z, the bulk fermions along discrete points along the future light cone
approach the horizon modes discussed in the previous subsection. For these horizon modes,
discrete translation of the bulk coordinate along the light cone corresponds to discrete time
translation of the boundary wavepacket representations. In the near-horizon region, the
bulk two point functions along the future light cone are approximately lattice translation
invariant with lattice constant determined by ∆t. If the near-horizon region deep in the bulk
admits a continuum description, then the horizon modes are parameterizable by a continuum
light-cone coordinate u and their correlators approach a continuum function Cb(u, u′) which is
translation invariant in the continuous sense. This is equivalent to the condition that the bulk
is continuous near the horizon. Our numerical observations show that this is approximately
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Figure 8. Entanglement entropy for a bulk subinterval for (q,J , β) = (22, 1, 105). a) The von
Neumann entanglement entropy is computed for a subinterval along the future light cone of a fixed
total boundary time interval of duration 2z. b) The entropy S is computed as a function of ∆t
for different values of z in the range [100, 150]. The colors get darker for ascending z values. The
dashed line shows a quadratic fit of S versus ∆t as ∆t → 0. c) The continuum limit entropy S0(z)
extrapolated to ∆t = 0 as a function of z for β ∼ 105. The black dashed line is the linear fit for this
value of β. d) The blue data points show the scaled future light cone correlator Cb(n∆t, n′∆t′) divided
by ∆t for pairs of points on the future light cone for a fixed boundary interval [−150, 150] for ∆t = 0.5.
In the continuum limit of the near horizon region, we anticipate that Cb(n∆t, n′∆t) approaches a
continuum function Cb(u, u′), with the blue points representing samples u whose coordinates are given
by well-defined fractions of the total boundary length 2z. The data shown is for the first fermion fixed
at u ≡ 2t = 240, which is well into the near horizon region for β = 105. The black dashed line is the
analytic continuum theory result in eq. (4.29).

true. Note that the volume law in figure 8(c) is obtained by first taking the continuum limit
∆t→ 0 for a fixed boundary time interval [−z, z], and then the taking the limit z → ∞. In
this continuum limit, the matrix C̃b defined by eq. (4.26) approaches a continuum function
C̃b(t, t) supported on [−z, z]. Nominally, this function is not time-translation invariant, as
the matrix product and its continuum generalization as an integral is supported only over a
finite interval. However, we find that for any ∆t, the matrix C̃b gives correlators that track
well with the translation invariant correlators for a KMS state (figure 8(d)).

It turns out the boundary quantity C̃b(t, t′) is given by a universal expression for thermal
states when t is allowed to range over (−∞,∞). The continuum functional analog of eq. (4.26)
implies that C̃b(t, t′) is given by a convolution integral, and thus, is a translation invariant
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function. Accordingly, we can consider its Fourier decomposition C̃b(ω) which satisfies

C̃b(t− t′) =
∫ +∞

−∞

dω

2π C̃b(ω)eiω(t−t′)

C̃b(ω) = C(ω)
A(ω) (4.27)

where A(ω) and C(ω) are the Fourier transforms of A(t− t′) and C(t− t′), respectively. The
right-hand side of eq. (4.27) is entirely universal for thermal states9 as determined by the
KMS condition [23, 24], and is given by:

C(ω)
A(ω) = tanh βω2 (4.28)

Performing the inverse Fourier transform back into the time domain gives C̃b(t−t′). Identifying
this with Cb(u−u′) implies that the two point function for the future horizon modes Cb(u, u′)
in the continuous limit ∆t → 0 has the universal form〈[

ψf (u), ψf (u′)
]〉

= − i2π
β sinh π(u−u′)

β

(4.29)

where we recall the definition of a future horizon mode as a limit of a right-moving fermion,
ψf (u) = limz→∞ ψR(z, u + z). Thus, the frequency ω on the boundary is the conjugate
variable to the horizon coordinate u. Accordingly, the bulk horizon modes have occupation
number n(ω) = 1

2

(
tanh βω

2

)
=
(
eβω + 1

)−1
, which precisely agrees with that of a chiral

Majorana fermion of momentum ω. In other words, given an arbitrary Majorana fermionic
GFF on the boundary, so long as the boundary is in thermal equilibrium such that KMS
condition holds, a bulk fermion at the horizon is always equivalent to the thermal state of
a chiral Majorana fermion with linear dispersion and inverse temperature β.

This in turn implies that the entropy of a bulk interval can be computed using the
conformal field theory formula [55]:

SA = 1
12 log

(
β

π
sinh πz

β

)
+ const (4.30)

(Note that the coefficient is c
6 rather than c

3 because the theory is a chiral Majorana fermion,
with c = 1

2 .) For a region with length z ≫ β we obtain

SA ≃ πz

12β + const. (4.31)

Numerically, we observe a linear z dependence in the entropy, but the coefficient does not
match the expected value of π

12β . This discrepancy is likely a consequence of the discretization,
but a more quantitative explanation is unknown to us.

9We acknowledge Yingfei Gu for pointing out this to us.
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4.5 Geometry and Curvature

We have constructed a bulk Gaussian quantum circuit which possesses the causal structure
expected of a local bulk theory. However, one may wonder if it is possible to extract a more
refined notion of bulk locality from the circuit representation. To address this question, we
can assume that in the small ∆t limit the circuit dynamics is equivalent to a non-interacting
Majorana fermion field theory in curved space, and then investigate the bulk geometry based
on this assumption. While in general, quantum circuits do not inherently carry a notion of
geometry, in the (1+1)d case, we can actually deduce the bulk geometry by comparing the
circuit dynamics to the discretized dynamics of free Majorana fermions on a general (1+1)d
spacetime. This comparison is facilitated by the fact that any two-dimensional metric is
conformally-equivalent to the flat-space Minkowski metric, which implies that one can always
find coordinates (t, z) such that the metric takes on the following form:

ds2 = Ω2(t, z)
(
−dt2 + dz2

)
(4.32)

where Ω(t, z) is called the conformal factor. It is natural to compare the discretized circuit
coordinates t, z with the conformal coordinates in the equation above, since they both have
light cones at t = ±z. The conformal form of metric does not completely fix the choice of
bulk coordinate system, since we can define u = t + z and v = t − z and any coordinate
change u = f(Ũ), v = g(Ṽ ) will preserve the conformal form of the metric. However, such a
conformal transformation will also change the boundary metric. If the boundary is defined by
taking z → 0 uniformly, and the boundary metric component g00 = 1 is fixed by the boundary
dynamics, then there is a unique coordinate choice which corresponds to a unique Ω(t, z), up
to a trivial rescaling t→ λt, z → λz, Ω → λ−1Ω. More details of the relation between bulk
and boundary metric and the comparison with quantum circuit at z → 0 are discussed in
appendix D. As an example, the AdS Rindler wedge is expected to be the dual description of
the (0 + 1)d thermal state at low temperatures has a metric with conformal factor

Ω(t, z) = 2π
β sinh 2πz

β

(4.33)

where we have defined the coordinates such that the time periodicity is β when the metric
is Wick rotated to imaginary time.

Free Majorana fermion dynamics on a fixed curved background with the metric in (4.32)
is described by the action

A =
∫
dtdz [ψR (i∂t + i∂z)ψR + ψL (i∂t − i∂z)ψL − 2imΩ(t, z)ψLψR] (4.34)

Note that the conformal factor Ω(t, z) only appears in the mass term, since the kinetic energy
terms are simply the action of a massless Majorana fermion, which is conformally invariant.
Canonical quantization leads to the following Hamiltonian

H(t) =
∫
dz [ψR (−i∂z)ψR − ψL (−i∂z)ψL + 2imΩ(t, z)ψLψR] (4.35)

where ψL,R satisfies the canonical anticommutation relation {ψa(z, t), ψb(z′, t)} = δabδ (z − z′).
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Figure 9. (a) and (b) Mass parameter as a function of z for zero temperature and finite temperature,
respectively. The value in the legend is ∆t. Note that we plotted asinh 1

m(z) at finite temperature
and 1

m(z) at zero temperature. (c) Ricci curvature R(z) as a function of z, computed using eqs. (4.36)
and 4.38), for different temperature. (d) 1

2−m from zero temperature fitting (eq. (4.37)) as a function of
1/q. The dashed line is the theoretical value m = 1

2 −
1
q . The computation in (a)-(c) are done for q = 10.

We would like to compare the fermion dynamics determined by eq. (4.35) with the
quantum circuit in small ∆t limit. The right-movers and left-movers in the quantum circuit
correspond to the continuous fermions ψR and ψL, respectively, since they move with speed
of light if they are decoupled from each other. The coupling between left-movers and right-
movers are determined by mΩ(t, z) in the continuous theory, and by the gate angle θU and
θV in the quantum circuit. Therefore, for a given quantum circuit, we can determine the
value of mΩ(t, z) that provides an optimal approximation to the dynamics. Here, we present
the result with a simplified argument, leaving the precise derivation to appendix. D. In the
long wavelength limit, the transition amplitude from a right-mover to a left-mover in time
∆t, i.e. after applying one layer of U gates and one layer of V gates, is given by sin(θU + θV ).
By comparison, in the continuous theory this amplitude is mΩ(z)∆t. Therefore, we obtain

mΩ(z) = lim
∆t→0

π − θU (z) − θV (z)
∆t (4.36)

This result assumes that Ω(t, z) is smooth over a scale much larger than lattice constant ∆t,
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which means this equation does not apply to z very close to the boundary, where θU , θV

change rapidly. Numerically, we confirm that θU + θV depends linearly on ∆t so that the
∆t → 0 limit is well-defined.

The resulting mΩ(z) for zero temperature and finite temperature are shown in figure 9(a)
and (b), respectively. At zero temperature, mΩ(z) has the following behavior (except for
a region near the boundary):

mΩ(z) = m

z − z0
(4.37)

In AdS/CFT, we expect m = 1
2 − ∆ = 1

2 − 1
q . A numerical fit for the coefficient of the z−1

decay in the expression above yields m ≃ 0.495 − 1
q (figure 9(d)), which agrees with the

analytic result except a small offset ∼ 0.005. At finite temperature, mΩ(z) fits well with the
function mΩ(z) = 1

sinh(αz+γ) which qualitatively agrees with the expected AdS behavior.
To make a more quantitative comparison with the AdS geometry, we can compute the

Ricci scalar of Ω(z), which for the conformal coordinate is given by

R = 2
Ω2(t, z)

(
∂2

t − ∂2
z

)
log Ω (4.38)

The result is shown in figure 9(c). As expected, the curvature approachs −2 in the bulk.
Interestingly, the curvature appears to diverge near the boundary, though as discussed above,
the comparison fails when θU + θV is not a smooth function of z. Nevertheless, the curvature
divergence near the boundary is expected to be a consequence of UV physics at the boundary.10

5 Two-sided bulk reconstruction for coupled SYK models

In the previous section, we conducted bulk reconstruction of the thermal state of SYK
model using our generalized protocol. The resulting bulk dual possessed only one asymptotic
boundary. In this section, we will apply our reconstruction scheme to two-sided models, i.e.
boundary models dual to bulk geometries with two boundaries, including the thermofield
double state of the SYK model and the coupled SYK model. In the limit of low tempera-
ture/small bilinear coupling, these models are dual to JT gravity theory with a modified
dilaton equation of motion. Using our method, we can study the bulk dual without relying
on the low temperature/coupling limit.

5.1 Thermofield double state and the coupled SYK model

Here, we review some key facts about the thermofield double formalism and the coupled
SYK model.

Given a generic quantum many-body system with Hamiltonian H, we can define a new
system comprised of two identical copies of the original system with a Hilbert space given
by the tensor product H = H1 ⊗H2 where the subscripts label the copy. Let H1 = H ⊗ 12

10A similar kind of curvature divergence occurs if we take the Eulidean two point function of large-q
SYK model and interpret it as decaying exponentially with geodesic distance on a disk with the metric
ds2 = Ω(z)2(dτ2 + dz2) [56].
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and H2 = 11 ⊗H. The thermofield double state (TFD) is a particular entangled state in
H of the joint system that is invariant under H1 − H2:

|TFD⟩ = 1√
Z

∑
n

e−βEn/2 |n⟩1 ⊗ |n⟩2 Z ≡ Tr
(
e−βH

)
(5.1)

where En are the energy eigenvalues of H, and the trace in Z is defined for a single copy
of the original system. Note that the reduced density matrix for either copy is the thermal
state. Hence, the TFD state may be regarded as a purification of the thermal state density
operator ρ = Z−1e−βH . Note that a unitary change of basis of one copy in the tensor product
Hilbert space does not affect any physical properties, so long as one considers the covariantly
transformed operators. For example, one can pick a unitary operator U2 in system 2 and
redefine |TFD⟩ → U2 |TFD⟩, H2 → U2H2U

†
2 , and physical properties will be unaffected

as long as all operators in system 2 are conjugated by the same unitary. By construction,
|TFD⟩ is invariant under the decoupled time evolution H1 −H2, with (H1 −H2) |TFD⟩ = 0.
For the SYK model, a convenient choice of the TFD state is H1 = (−1)q/2H2, which is
chosen such that the infinite temperature state |I⟩ ≡ 2−N/4∑

n |n⟩1 ⊗ U2 |n⟩2 is a Gaussian
state satisfying (χi1 + iχi2) |I⟩ = 0. This condition is essential for ensuring that the fermion
correlation functions in |TFD⟩ satisfy the GFF condition under time evolution given by
H1 + H2 where H is the SYK Hamiltonian.

In AdS/CFT, the TFD state of two copies of a (d + 1)-dimensional CFT admits an
interpretation as a maximally-extended asymptotically-AdS black hole in (d+2) dimensions [57,
58]. The boost symmetry of the maximally extended geometry corresponds to the symmetry
of the TFD state under H1 − H2. The two exterior regions of the two-sided black hole
geometry are causally disconnected, which corresponds to the fact that the two boundaries
evolve under independent Hamiltonians H1 and H2, and the joint boundary Hilbert space
factorizes into that of the two systems. Based on this correspondence, the TFD state of the
low temperature SYK model, with decoupled time evolution of the two copies, corresponds
to a two-sided eternal black hole geometry in JT gravity, which in 2d is also the same as an
AdS-Rindler geometry. Using our construction, we can analyze the dual description of the
TFD state of the large-q SYK model for generic temperatures, beyond the applicability of
the JT gravity dual description. Importantly, for the TFD state, we regard both copies of
the SYK model as physical, encoding the physics of the two-sided geometry. We can also
consider a setup where the two copies of the SYK model are coupled, which will modify the
geometric interpretation above, and which we now discuss.

There are various generalizations of SYK model [27, 59–64] that are solvable using the
standard large-N solution and associated Schwinger-Dyson equation. Our approach applies
to all such generalizations as long as the fermionic degrees of freedom in the model are still
GFFs. The generalization that we will consider is the coupled SYK model with a bilinear
coupling term [27, 45]:

H = H1 +H2 + iµ(t)
∑

j

χj1χj2 (5.2)

For constant µ, ref. [27] shows that for small µ/J , the ground state of the above model
is dual to a global AdS2 geometry, with two boundaries that are causally connected. This
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geometry is a two-dimensional version of a traversable wormhole. Interestingly, in the large-q
limit, the ground state of this model is identical to TFD state with a particular temperature
β(µ), but undergoing different dynamics from the usual invariant TFD state due to the
coupling term in the Hamiltonian.

Defining µ(t) = µ̂(t)/q and taking q → ∞ for fixed µ̂(t) yields a simplified Schwinger-
Dyson equation, which allows one to obtain an analytic solution for the two point functions
in the coupled model. Ref. [45] obtains explicit formulas for the two point functions for a
generic µ̂(t), with the condition that the initial state of time evolution is a TFD state. (One
can equivalently view the condition on the initial state as the condition that µ̂ is constant
before the initial time t = 0 so that the evolution starts from the ground state of a certain
µ̂.) In the following, we review key formulas for the two point functions in the coupled SYK
model without derivation. More details can be found in ref. [45].

The two point functions in the coupled model may be expressed as

G11(t, t′) =
(
− ζ ′(t)ζ ′(t′)∗

sin2 ζ(t)−ζ∗(t′)
2

)1/q

(5.3)

G12(t, t′) = i

(
ζ ′(t)ζ ′(t′)∗

cos2 ζ(t)−ζ∗(t′)
2

)1/q

(5.4)

where ζ(t) is a complex function defined by

ζ ′(t) = eip(t)√
e2ϕ(t) − 1

(5.5)

The variables p(t) and ϕ(t) behave like the canonical momentum and position in classical
Hamilton dynamics with the Hamiltonian11

H = − cos p
√

1 − e−2ϕ + µϕ (5.6)

ζ(t) may be related to µ̂(t) by the Hamilton equations of motion

ṗ = −∂H
∂ϕ

= −µ̂+ e−2ϕ

√
1 − e−2ϕ

cos p (5.7)

As an example, the thermofield double state corresponds to µ̂ = 0 and

ζ(t) = 2atan
[
tanh

(
πν

2β

(
t− β

2

)
− i

π

4

)]
(5.8)

with ν defined in eq. (4.6). The eternal traversable wormhole solution of ref. [27] corresponds
to a linear function

ζ(t) = VGt− iδ (5.9)

δ = atanhe−ϕ0 , VG =
(
e2ϕ0 − 1

)−1/2

e−2ϕ0 = 2µ̂√
µ̂2 + 4 + µ̂

(5.10)

11It’s worth pointing out that the quantum version of this Hamiltonian can also be derived from the double
scaling limit of the SYK model [65].
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Figure 10. (a) Illustration of the bulk fermions in the eternal black hole geometry. (b) two point
correlation function between the two exterior regions. ψf and ψp correspond to the blue and red
arrows in subfigure (a) respectively. (c) Entropy and mutual information as a function ∆t, for a fixed
interval [0, z] with z = 80. (d) Mutual information I12 as a function of z (red line with dots). The
dashed line is a fitting with the slope π

3β . The calculation is done with β = 5.

In the low temperature limit, the coupled SYK system with a time-dependent coupling
µ(t) corresponds to JT gravity with a modified dilaton profile, induced by sending in matter
with energy-momentum from the boundary. The sign of µ(t) dictates whether the matter’s
energy density is positive or negative, which correspondingly suppresses or enhances the
correlation between the two boundaries. However, it should be noted that the large-q solution
applies for arbitrary temperature/energy, though the gravitational interpretation is only
known for the low temperature limit.

5.2 Bulk dual of the thermofield double state

In this subsection, we apply our bulk construction to the TFD state undergoing decoupled
time-evolution H = HSYK1 +HSYK2 . Unlike the previous investigation of the SYK thermal
state, we will be considering two-sided correlators, and the constructed bulk operators will
be generically be supported on two boundaries. The two point function matrix can be
constructed as before, but now carries an additional “flavor” index for the copy s, s′ = 1, 2.
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Due to large-N factorization, we again drop the Majorana species index j = 1, . . . , N . The
corresponding anticommutator matrix has the form

Ass′(t, t′) = ⟨TFD|
{
χs(t), χs′(t′)

}
|TFD⟩ = δss′A(t− t′) (5.11)

where the second equality is due to the fact that the two copies are decoupled. However,
the TFD state of the two copies has nontrivial entanglement between the two copies so
that the commutator matrix

Css′(t, t′) = ⟨TFD|
[
χs(t), χs′(t′)

]
|TFD⟩ (5.12)

has nontrivial off-diagonal elements C12(t, t′). Since A is diagonal in the copy index, the kernel
that determines the bulk fermions is decoupled for the two sides, so bulk fermions in the causal
wedge of one boundary can be written using the same kernel used for the thermal state with
only one boundary. Applying the kernel to boundary fermions χs(t), s = 1, 2, one defines bulk
fermions ψs

L,R, where the superscript indicates whether the bulk fermion resides in the causal
wedge of the first or second boundary. In principle, we can choose different discretizations
of time for the two copies, which corresponds to different discretizations of the two bulk
boundaries, but for simplicity we will always choose the same ∆t for the two boundaries.

Upon obtaining the ψs
L,R, we can study the quantum entanglement between the two bulk

causal wedges. The TFD state is invariant under time evolution by H1 −H2, which leads
to the symmetry C12(t, t′) = C12(t + τ, t′ − τ), Css(t, t′) = Css(t + τ, t′ + τ), s = 1, 2. As
a consequence of this symmetry and the entanglement of the TFD state, the bulk fermion
ψ1R(0, z) is strongly correlated with ψ2

L(0, z) which is independent of z. (Figure 10(a) and (b))
It should be noted that here L,R are defined with respect to the causally-connected boundary,
so the orientation for wedge 2 is opposite from that in the Penrose diagram of an eternal black
hole. We will often use the labels f, p to clarify the choice of orientation. The z-independent
coupling leads to a large mutual information between the two systems. Figure 10(c) shows
the entropy and mutual information of the two regions in bulk wedges 1 and 2 from the
boundary to bulk point (0, z) as a function of ∆t. (Note that the coordinate starts from z = 0
from both boundaries, and z increases towards the horizon.) While the entropy has a nearly
linear dependence on ∆t (like the single-sided case), the mutual information is essentially
independent of ∆t. This is because mutual information is a UV finite quantity. When z is
varied, we observe a linear dependence of the mutual information in z (figure 10)(d). In the
bulk interpretation, this unbounded growth of mutual information is consistent with the fact
that the distance between the endpoints of the two causal wedges decreases exponentially.
In particular, for AdS, the distance d(z) is given by

d(z) = 2
∫ +∞

z
Ω(z)dz ≃ 4e−2πz/β (5.13)

If the bulk fermions are described by a Majorana fermion CFT in the UV, we expect the
mutual information to have logarithmic divergence:

I12(z) ≃ c

3 log d(z) ≃ πz

3β (5.14)

This agrees well with our numerics, as is shown in figure 10(d).
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5.3 Shockwave geometry and traversable wormhole

We now investigate the coupled SYK model, and study the effect of the coupling on the bulk
fermion state and dynamics. First, we consider the simple case of a δ-function shockwave. The
Hamiltonian is eq. (5.2) with µ(t) = ν

q δ(t). In the large-q limit, the effect of the δ-function
shock is to induce a first-order discontinuity in the complex function ζ(t) in the expressions
for the two point functions. For simplicity, we choose a symmetrically-applied shock, as
illustrated in figure 11(a). The shockwave-altered ζ(t) is obtained by patching the TFD
solution (5.8) for time t < −t0 and t > t0 after a translation along the real axis. Physically,
this situation corresponds to a time-evolved TFD state |TFD(−t0)⟩ which is “kicked” by
the shock to |TFD(+t0)⟩. This is a fine tuned situation since t0 and ν̂ have to be related
in order for the final state to be |TFD(+t0)⟩, but this choice does not qualitatively affect
the physics we are interested in.

Given this function ζ(t), the boundary two point function Gab(t1, t2) is determined in
eq. (5.3) and (5.4). As a side remark, for t1 > 0, t2 < 0, the derivative

∂Gss′(t1, t2)
∂ν

∣∣∣∣
ν=0

= −⟨TFD| [χi1(0)χi2(0), χjs(t1)]χjs′(t2) |TFD⟩ (5.15)

is the out-of-time-order correlation function (OTOC) [25, 37, 66, 67]. For SYK models, only
the early time behavior of this four point function can be computed, which grows exponentially
with t if we take t1 = −t2 = t. For the standard large-q SYK model, ∂νGss′(t1, t2) can be
computed exactly for finite ν.

From Gss′(t1, t2), we can construct the bulk fermions. The largest correlation between
the two boundaries occurs for time t on boundary 1 and time −t on boundary 2, which
implies high correlation between the future-directed bulk fermion ψf

1 (z) (blue arrows in
the left wedge of figure 11(d)) and the past-directed bulk fermion ψp

2(z) (red arrows in
the right wedge of the same figure). As is shown in figure 11(b), this two point function
iCfp

12 (z, z) =
〈
i
[
ψf

1 (z), ψp
2(z)

]〉
saturates to a finite value for the TFD state ν = 0 but

exponentially decreases for ν ̸= 0. This illustrates how the correlation between the two
wedges is disrupted by the shockwave, and the effect is significant for any finite ν as a
consequence of chaos in the system.

We can study the correlation between the two boundaries from the bulk perspective using
the mutual information between the two bulk intervals [0, z], as illustrated in figure 11(c). In
contrast to the linearly-growing mutual information for the TFD in the previous subsection,
in the presence of a shockwave, the mutual information (red curve) saturates to a finite
value. This is consistent with the gravitational picture that the two bulk exterior regions
become separated by a finite distance, rather than sharing a bifurcation horizon. The key
finding here is that our framework makes the geometric concepts such as distance between
horizons well-defined, even for the finite temperature SYK model where the duality with
JT gravity does not apply.

The last example we would like to discuss is the eternal traversable wormhole [27], which
is the geometry corresponding to the ground state of Hamiltonian (5.2) with a constant
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Figure 11. (a) The ζ(t) function for a δ-function shockwave. (b) The two point function Cfp
12 (z, z)

(correlation between blue arrow in wedge 1 and red arrow in wedge 2 in (d)) as a function of z, for the
TFD state (blue) and the shockwave case (red). (c) The mutual information between two regions
[0, z] in the two wedges, for the TFD state (blue) and the shockwave case (red). (d) Illustration of the
Penrose diagram corresponding to the shockwave geometry.

µ = µ̂
q . The two point function is given by12

G11(t, t′) =

− V 2
G

sin2
(

VG
2 (t− t′) − iδ

)
1/q

(5.16)

G12(t, t′) = i

 V 2
G

cos2
(

VG
2 (t− t′) − iδ

)
1/q

(5.17)

with VG, δ determined by eqs. (5.9) and (5.10). Compared to the previously studied examples,
a key difference is that in this geometry, the two point function at long time is oscillatory
insteading of decaing, with a period T = 2π

VG
. In the low temperature limit, this system is

dual to a global AdS2 geometry, with two reflective boundaries that are in causal contact

12A subtle technical point is that the branch of q-th root in this equation must be chosen such that the two
point function is continuous in t− t′.
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Figure 12. (a) Illustration of the global AdS2 geometry in JT gravity, folded such that two boundaries
1, 2 are both on the left side. A particle starting from boundary 1 reaches the other boundary at
time T/2. (b) A pseudocolor plot that shows the propagator

{
χ1(0), ψf,p

1,2 (z, t)
}

as a function of
z, t. Both left-movers and right-movers in the bulk are assigned the (z, t) coordinate at the center of
the corresponding bond. The red and blue color represent flavor 1 and 2 respectively. z = 0.5zmax
corresponds to the right end of the JT gravity picture, but in the quantum circuit it is a partial
reflection surface. (c) The orthogonal component W⊥(t) of χs(t) defined with respect to the linear
space of operators χs(t′), t ≥ t′ < t + 2z. (d) The transmission probability sin2 θU,V for U and V

gates. (e) The mutual information between the spatial regions [0, z] (for both flavors 1 and 2) and
[z, zmax]. The calculations are done for µ = 10−7.

with one another. A particle from boundary 1 can propagate to boundary 2 in time T/2,
and return to the same boundary in time T .

Because of the fractional power 1/q in eqs. (5.16) and (5.17), the two point function
satisfies a twisted boundary condition Gss′(t + T, t′) = Gss′(t, t′)e−i 2π

q . As a consequence
we obtain the following linear equation

A12

(
t, t′ + T

2

)
+ 1

2 sin π
q

[
A11(t, t′) −A11(t, t′ + T )

]
= 0 (5.18)

A more detailed discussion is presented in appendix E. This linear equation implies that
det (A) = 0 for any time interval with duration ≥ T . The zero determinant implies that our
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bulk kernel construction, which requires KAK⊺ = 1, can only work until the duration of the
time window reaches T , or correspondingly z = zmax ≡ T

2 . In other words, the bulk circuit
has a finite width, as is illustrated in figure 12(a). At z = zmax, the right-mover is reflected
back as left-mover, in the same way as at z = 0. This example demonstrates that the topology
of bulk spacetime can change depending on the behavior of boundary correlation functions.

In this model, each gate U(z, t) or V (z, t) is a 4×4 matrix that captures “local” inter-site
coupling and coupling between the two wedges. To measure the inter-site coupling described
by the gate, we denote

U(z, t) =
(
URL URR

ULL ULR

)
(5.19)

We consider the off-diagonal 2 × 2 block URR, which measures the transition amplitude
from right-mover to right-mover. We denote the singular values of URR by sin θUs(z) with
s = 1, 2, and similarly for V (z, t). θU(V )s are basis-independent measures of the gates. It
turns out θU(V )s is degenerate in s = 1, 2, which is shown in figure 12(d). (At z = zmax,
the gate angle θU = θV = 0, which is not shown.)

Interestingly, there is a almost-reflecting wall at z = zmax/2, where θU,V is nearly 0,
but then returns to near π

2 . This corresponds to the behavior of bulk fermion illustrated in
figure 12(b). This figure is a color plot of the anticommutator

{
χ1(0), ψf,p

1,2(z, t)
}

between
bulk fermions and a boundary fermion in system 1 at t = 0, which is the analog of the
earlier figure 4(b), where we now denote the extra flavor index 1, 2 by red and blue. We see
that at z = zmax/2 the bulk fermion from wedge 1 will transition into wedge 2 with a high
probability. This is the analog of what happens in JT gravity (illustrated in figure 12(a)).
However, in JT gravity this reflection has probability 1, but in our model we instead see a
finite probability of transmission. The particle passing the surface at zmax/2 will propagate
more or less freely till zmax, where it will be reflected the same wedge. zmax is an analog
of “end-of-the-world brane” (EOTW brane) in holographic duality.

To further understand the EOTW brane, we study the diagonal component (in s = 1, 2)
of the kernel of a bulk fermion. The expansion of a future-directed bulk fermion may be
written with the diagonal component separated out as:

ψf
s (z, t) = K(z, t|t− z)χs(t− z) +

∑
t−z<t′≤t+z

K(z, t|t′)χs(t′), s = 1, 2 (5.20)

The inverse of the diagonal component W⊥(z) = K−1(z, t|t− z) measures the magnitude of
the projection of operator χs(t− z) in the subspace Vf

⊥ (see Result 2) that is perpendicular
to the subspace formed by χs(t′), t′ ∈ [t− z + 1, t+ z]. Figure 12(c) captures the behavior
of W⊥(z). We see that W⊥(z) has a finite almost constant value for z < zmax/2, and drops
to a much smaller but nonzero value for z ∈ [zmax/2, zmax]. Numerically, the two plateau
values of W⊥(z) are both proportional to 1/q in the large q limit.

We can also study the entanglement entropy in the bulk state. In particular, we study
the spatial entanglement between regions [0, z) and [z, zmax]. As expected, the entire system
is in a pure state, and the mutual information I(z) = S[0,z) + S[z,zmax] = 2S[0,z) is shown in
figure 12(e). We see that the entanglement entropy is proportional to volume, in a Page-like
fashion, but the slope is far from the maximal value (log 2).
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An open question which we reserve for future work is whether there is a physical
interpretation of this “doubling” phenomena we observed in term of a modified 2d gravity
theory. Using the same technique employed in this subsection, we can study more complicated
boundary systems. For example, we can start from a TFD state and turn on a fine-tuned
coupling µ̂ = µ̂(β) for a finite time before turning it off. This corresponds to a traversable
wormhole that is kept open for a finite time (related to the discussions in refs. [68, 69].
Without presenting more details in this work, we will comment that the bulk geometry in
this case will contain an end-of-the-world brane that falls into a black hole horizon.

6 Discussion and conclusions

Let us briefly summarize what we have done. We have developed a general protocol for
mapping a theory of (fermionic or bosonic) generalized free fields to canonically-free bulk
fields purely from boundary data. For a (0+1)d boundary theory, the boundary two point
functions along with a chosen discretization of time are sufficient to uniquely determine the
bulk quantum state and dynamics with a corresponding spacetime discretization. The only
assumption about the bulk is either the causal structure of the dynamics, or the existence
of a linear boundary-to-bulk mapping. Our bulk construction takes the form of a Gaussian
quantum circuit, which implements linear evolution of the bulk free fermions or bosons. The
bulk two point functions evaluated at the boundary reproduce the boundary model’s two
point functions, as per required of a duality. Meanwhile, an arbitrary bulk operator in the
causal wedge of a boundary region is mapped to a linear superposition of the boundary
operators in this region. Our construction is agnostic to the particular type of interacting
boundary dynamics, and does not require time translation symmetry or any other symmetry.

Notably, our bulk construction is only enabled when the boundary theory has interacting
GFFs. The set of single-particle (fermionic or bosonic) operators form an order O(N)-
dimensional subspace of the entire space of operators with exponentially large dimension.
Unlike a free theory, the subspace of single-particle operators for an interacting theory is
not preserved by time evolution. The single-particle operators are orthogonal with respect
to the anticommutator ⟨{., .}⟩ρ for fermions or the commutator ⟨[., .]⟩ρ for bosons, which
enables the definition of emergent bulk fields with additional independent degrees of freedom.
In other words, the emergent spatial dimension is a geometrization of operator scrambling
in the boundary dynamics. Meanwhile, the fact that the dual bulk dynamics are free is
a consequence of large-N factorization of the boundary GFFs. Our prescription offers a
unique and constructive way to determine the bulk free field dynamics without making any
assumptions about the bulk geometry. The bulk dynamics can then be used as a way to
probe the bulk geometry. Our numerical results in large-q SYK model uncover different bulk
dynamics for different boundary theory, which generalizes the JT gravity dual in the low
energy region. Our results clarified that phenomena such as black hole horizon, bulk negative
curvature, end-of-the-world brane, etc. are well-defined at the level of two point functions
even if the boundary is not asymptotically conformal invariant.

We now remark on several important open questions related to this work. First, although
our protocol is explicitly realized by discretizing time, the construction of the kernel is
mathematically well-defined for continuous time system. The analog of equations (3.13)
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and (3.15) can be written down in the continuous case as integral relations on K. Explicitly
performing the construction in the continuum would enable one to directly determine the
bulk dynamics and geometry, which is an avenue we are exploring in further work. Secondly,
we would like to discuss the effect of considering finite N . A crucial aspect of our approach is
the ability to perform orthogonalization of the boundary operators in the boundary model
to generate the bulk operators. In principle, one can imagine performing an analogous
orthogonalization for a finite N theory. However, such a procedure would necessarily need to
involve higher-point boundary correlators, and the emergent bulk operators would no longer
be linearly related to the boundary operators. Rather, the emergent bulk description would
describe interacting bulk fields, whose interactions are suppressed by 1

N corrections. For
example, the boundary four point function is schematically given by

⟨χχχχ⟩ =
∑

contractions
⟨χχ⟩⟨χχ⟩ + 1

N
⟨χχχχ⟩c + . . . (6.1)

where all the χ’s generically have different time indices, and ⟨χχχχ⟩c is the connected four
point function. The strong hologrpahic principle says that the above expression should be
equal to a four point function of the bulk operators evaluated at the boundary. However, the
bulk operators will now be some nonlinear function13 of the boundary operators,

ψ = K(1)χ+K(3)χχχ+ . . . (6.2)

Imposing bulk causality in the interacting case amounts to finding a set of coefficients K(n)

such that spacelike-separated ψ are still orthonormal. Given given knowledge of the boundary
correlators, it is not immediately obvious how to do the orthogonalization in general, or
whether this can be done to all orders in 1

N . However, as causality imposes a rather strong
constraint on the operator algebra, we expect that at least perturbatively, this is able to select
out a bulk theory. A key question would then be the locality of the bulk theory. Generically,
there is no reason to expect the interaction in the bulk will be local, but our approach may
lead to a more quantitative probe of the (non)-locality of the bulk theory. It is interesting to
relate this direction to the recent works in double-scaled SYK model [65, 70–72], since the
latter provides an example model in which Wick’s theorem does not hold, but correlation
functions can still be computed exactly.

The third open question is how to generalize our approach to higher dimensions. Given a
general boundary model of GFFs in (d+ 1)-dimensions, our approach can be applied directly,
whereby the extra boundary spatial coordinates are treated in the same way as the internal
flavor indices in the coupled SYK model. If the boundary theory has spatial translation
symmetry, we can carry out the bulk reconstruction for each momentum separately, and define
bulk fields ψia(k⃗, z, t). The problem is that this construction does not seem to guarantee
locality in the tranverse directions. When the boundary is a generic model which could be
non-relativistic, this may not be a problem. When the boundary is relativistic with a strict
light cone, an open question is whether the emergent bulk also has strict light cone. This
discussion is related to entanglement wedge reconstruction, which relates butterfly cones
on the boundary to light cones in the bulk [73, 74].

13For a similar discussion in the usual HKLL protocol, see ref. [29].
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We also draw a parallel between the bulk Hilbert space in our construction, and the
construction of Hilbert spaces from operator algebras. Because the large-N factorization is
only present in a certain state ρ (e.g. in the SYK model, this is the TFD), the bulk Hilbert
space is constructed around this state. This is reminiscent of recent results investigating
emergent bulk operator algebras in large-N theories [75]. Furthermore, we would like to make
some more general connections between our approach and recent work regarding operator
algebras and holography [75, 76]. From the point of view of operator algebra, our construction
relies on the qualitative difference between the operator algebras of interacting GFFs and
that of free fields or finite-N systems. For finite-N Majorana fermion theories, there is no
other operator that anticommutes with all χi(t = 0). The operators χi(t) and χi(0) are
not independent from each other. Only in the large-N limit do χi(t) and χi(0) become
independent, allowing one to define the bulk fermion operators. This is consistent with the
operator algebra discussed in ref. [76]. An interesting question is whether we can explicitly
follow the approach in this work to obtain time evolution in the black hole interior. From
the point of view of the bulk Gaussian quantum circuit, the interior dynamics does not seem
to be constrained, since it occurs in the future of all events in the exterior regions. An key
question is providing a physical explanation for selecting out the interior dynamics given by
the modular operator in ref. [76]. Another question is how to better understand how bulk
causality (or more generally, geometric locality) emerges from the operator algebra. In our
construction, bulk causality is imposed, and this is sufficiently constraining to pick out an
emergent bulk operator algebra. This appears to be consistent with ref. [76] which suggests
that causality is not a generic feature of operator algebras, but rather emerges for a special
boundary operator algebras. In this reference, the authors argued that sharp bulk light cones
can only emerge when the boundary operator algebra is a Type III1 von Neumann algebra
and acts on a non-factorizable Hilbert space. While this is consistent with our construction
of an bulk operator algebra in the large-N limit when the boundary operators can be shown
to be of Type III1, it is not immediately obvious from the perspective of our construction
that locality cannot be guaranteed for boundary operator algebras of Type II, where the
operators are infinite-dimensional but admit a suitable notion of “finite rank” projectors. In
other words, it is not obvious whether the ability to execute our orthogonalization procedure
necessitates a type III boundary algebra.

Lastly, we discuss some general remarks and takeaways from our work. To date, holo-
graphic duality is only well established as duality between the low-energy Hilbert spaces
of perturbative quantum gravity and a large-N gauge theory with conformal symmetry.
Prior work seems to suggest the importance of matching the conformal symmetry in the
boundary theory to isometries in the gravitational bulk. However, our results show that
one can distill an emergent bulk description even in the absence of conformal symmetry
in the boundary theory. This suggests that holography can potentially be extended to
more general models without a canonical bulk dual (e.g. the SYK model). The ability to
conduct the orthogonalization procedure to produce bulk operators can give some insight
into the minimal criteria necessary for a theory to contain an emergent local bulk description.
Furthermore, because our explicit construction of the bulk naturally gives an isomorphism,
one can potentially use our method to construct putative holographic boundary models for
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(0, t− z)

(0, t+ z)

(z, t)χ

ψf

ψp

Figure 13. Schematic of the ordering choice along Σf and Σp of the vertex (z, t), as well as the
ordering along the boundary interval I in its causal wedge.

a given bulk theory, such as matter on a de Sitter background. Finding a “boundary” dual
theory of de Sitter space gravity is an active area of research [77–79], and our approach
provides a new angle in investigating this problem.
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A QR decomposition

In our bulk construction, we would like to find solutions K to the matrix equation KAK⊺ = 1
where K is restricted to be upper or lower triangular for bulk operators on the past and
future light sheets. These solutions will correspond to Kf and Kp, respectively, as dictated by
the ordering choice for the bulk fermions along Σf and Σp. The ordering choice is exemplified
by the following schematic:

Because A is symmetric, it may be diagonalized as A = V DV ⊺ where D is a diagonal
matrix and V is orthogonal. Eigenvalues of D are non-negative since A is positive semi-definite.
Assuming A is nonsingular, we can define the symmetric square root A−1/2 = V D−1/2V ⊺.
The equation KAK⊺ = 1 can therefore be written as Q = KA1/2, QQ⊺ = 1, where Q is
orthogonal. Consequently, we have

A−1/2 = Qf(p)⊺Kf(p) (A.1)

In the ordering convention of figure 13, Kf is a upper triangular matrix, so that eq. (A.1) is a
QR decomposition. Similarly Kp is lower triangular, which is obtained by a QL decomposition
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of A−1/2. (Equivalently, one can obtain Kp by a QR decomposition after reversing the order
of both the boundary time and the ψp coordinate.)

Fact 2. For a non-singular matrix M , the upper triangular matrix in QR decomposition
M = QR is unique up to a sign for each row of R.

Proof. Let M = QR = Q̃R̃. Then

Q̃
⊺
Q = R̃R−1 (A.2)

Since the product of upper right triangular matrices is also upper right triangular, the r.h.s.
is upper right triangular. Furthermore, the l.h.s. is orthogonal. The only matrices that are
both orthogonal and upper right triangular are the diagonal “sign” matrices

D± ≡



±1 0 0

0 ±1

0
0 0 ±1


(A.3)

This can be shown by taking an upper right triangular matrix, and imposing orthonormality of
the rows or columns. (e.g. start from the last row, impose normality, then impose orthogonality
with the second to last row, impose normality on the second to last row, and so on). Hence,
any two QR decompositions are related as

Q̃R̃ = QD±R (A.4)

where R̃ differs only by R by a sign choice for each row.

This implies the kernel is unique up to a sign choice for each row of the kernel.

B An alternate derivation of local bulk dynamics

In this section, we present an alternative argument that leads to the bulk description by a local
Gaussian quantum circuit. In section 3, we start by making an ansatz that the bulk theory is
given by a certain Gaussian quantum circuit, and then prove that there exists a unique kernel
(up to local orthogonal transformations) with compact support that is consistent with the
ansatz, and determines the bulk theory from boundary correlation functions. Here we would
like to offer a different line of reasoning. We instead start by assuming compact support of
the kernel, and that the canonical anticommutation relations hold only within each time
slice. From this, we derive that the bulk dynamics are unitary and free, and can therefore be
represented by a local Gaussian quantum circuit of the form given in section 3.

As a starting point, consider a boundary model with a discretization of time t = T∆t, T ∈
Z, and the anticommutator matrix A defined in eq. (3.5). We define the bulk fermions
ψiR,L(Z, T) as generators of the linear spaces Wf,p

Z,T in Result 2. As a reminder, such linear
spaces are defined entirely in terms of V[T1,T2] and the inner product defined by matrix
A, which does not require the bulk dynamics to be unitary. With this definition, we can
prove the following statements.
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Claim 3 (Orthogonality of spacelike-separated operators). The bulk fermions constructed
using the orthogonalization procedure in Result. 2 anticommute when the following hold,
with the convention that Z > Z′,{

ψiR(Z, T), ψjR,L(Z′, T′)
}

= 0, if Z − Z′ > T − T′ ≥ Z′ − Z (B.1){
ψiL(Z, T), ψjR,L(Z′, T′)

}
= 0, if Z − Z′ ≥ T − T′ > Z′ − Z (B.2)

Proof. Consider the right-movers ψiR(Z, T), which one can think about as further in the
bulk interior than the point (Z′, T′). These operators span Wf

Z,T, which by construction is
orthogonal to V[T−Z+1,T+Z], denoted by

Wf
Z,T ⊥ V[T−Z+1,T+Z] (B.3)

ψjR(Z′, T′) spans space Wf
Z′,T′ ⊆ V[T′−Z′,T′+Z′]. Similarly, ψjL(Z′, T′) spans Wp

Z′,T′ ⊆
V[T′−Z′,T′+Z′]. When Z − Z′ > T − T′ ≥ Z′ − Z, we have T′ − Z′ > T − Z, T′ + Z′ ≤ T + Z,
such that [T′ − Z′, T′ + Z′] ⊆ [T − Z + 1, T + Z]. Consequently

Wf,p
Z′,T′ ⊆ V[T′−Z′,T′+Z′] ⊆ V[T−Z+1,T+Z] (B.4)

The above two equations lead to the conclusion

Wf
Z,T ⊥ Wf,p

Z′,T′ (B.5)

Following the same reasoning, we can prove Wp
Z,T ⊥ Wf,p

Z′,T′ for Z − Z′ ≥ T − T′ > Z′ − Z.

Result 3 clarifies that the bulk has a sharp light cone, like a local quantum circuit. We
can also use the linear space formalism to provide a direct proof that there is a unitary gate
mapping ψiR

(
Z − 1

2 , t−
1
2

)
and ψiL(Z, t) to ψiL

(
Z − 1

2 , t+ 1
2

)
and ψiR(Z, t), as shown below.

Claim 4 (Unitarity of gates). The linear space spanned by ψiR

(
Z − 1

2 , T − 1
2

)
and ψiL(Z, T) is

the same as that spanned by ψiL

(
Z − 1

2 , T + 1
2

)
and ψiR(Z, T).

Wf

Z− 1
2 ,T− 1

2
⊕ Wp

Z,T = Wp

Z− 1
2 ,T+ 1

2
⊕ Wf

Z,T (B.6)

Consequently, ψiR

(
Z − 1

2 , T − 1
2

)
, ψiL(Z, T) and ψiL

(
Z − 1

2 , T + 1
2

)
, ψiR(Z, T) are two sets of

orthonormal bases for the same linear space, and thus must be related by a local unitary
linear transformation, which can be taken to be orthogonal since the ψia(Z, T) are real. Since
this is true for all Z, T, we have a local unitary Gaussian quantum circuit.

Proof. By definition

Wf

Z− 1
2 ,T− 1

2
⊕ V[T−Z+1,T+Z−1] = V[T−Z,T+Z−1] (B.7)

Wp
Z,T ⊕ V[T−Z,T+Z−1] = V[T−Z,T+Z] (B.8)

which implies

Wf

Z− 1
2 ,T− 1

2
⊕ Wp

Z,T ⊕ V[T−Z+1,T+Z−1] = V[T−Z,T+Z] (B.9)
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In the same way we can prove

Wp

Z− 1
2 ,T+ 1

2
⊕ Wf

Z,T ⊕ V[T−Z+1,T+Z−1] = V[T−Z,T+Z] (B.10)

This proves eq. (B.6), since both sides of the equation are equal to the orthogonal complement
of V[T−Z+1,T+Z−1] in the bigger space V[T−Z,T+Z].

Results 3 and 4 clarify that the definition of the bulk fermions via orthogonalization is
sufficient for determining the bulk dynamics as a local Gaussian quantum circuit.

C Bosonic generalized free fields

In this appendix, we discuss how to carry our bulk construction when the given (0+1)d
boundary model describes bosonic GFFs bi(t) with canonical commutation relations[

bi(t), b†j(t)
]

= δij (C.1)

Let ξ(t) be a vector with 2N components,

ξI(t) =
(
bi(t)
b†i (t)

)
(C.2)

Correlation functions of bi(t) are required to satisfy Wick’s theorem. In parallel with the
fermionic case, one can prove that the commutator of bosons at different times is an identity
operator (in the large-N limit in which Wick theorem applies, and in the Hilbert space of finite
number of excitations). Let ρ be the state for which Wick’s theorem holds. Then, we have

tr
(
ρO2

[
ξI(t), ξJ(t′)

]
O1
)

=
〈[
ξI(t), ξJ(t′)

]〉
⟨O2O1⟩ (C.3)

for all O1, O2 that are finite superpositions of b, b†. We define the matrix

AIJ(t, t′) =
〈[
ξI(t), ξJ(t′)

]〉
(C.4)

We would like to construct bulk bosonic fields out of a linear superposition of the ξI , just as
in the fermionic case. The procedure is analogous with the fermionic case where we demand
that the bulk operators satisfy the correct algebra on a Cauchy slice, except that the inner
product associated to the canonical algebra is now replaced by a symplectic form

AIJ(t, t) = JIJ (C.5)

J =
(

0 1
−1 0

)
(C.6)

We again make a linear ansatz

ϕI,L(R)(Z, T) =
∑

T′∈[T−Z,T+Z]
KIL(R),J(Z, T|T′)ξJ(T′) (C.7)
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In particular, for the future and past light cone, we can write the linear equation in ma-
trix form as

ϕf(p) = Kf(p)ξ (C.8)
Kf(p)AK

⊺
f(p) = J (C.9)

Here J = J ⊗ 1 is identity in spatial indices and symplectic in the flavor indices. The
algorithm that determines Kf(p) is an orthogonalization procedure that is similar to Result 2,
but with the inner product replaced by the corresponding symplectic form. The analog of
QR decomposition is to express the anti-symmetric matrix A in the form

A = ΛJΛ⊺ (C.10)

such that

Q ≡ Kf(p)Λ (C.11)
QJQ⊺ = J (C.12)

Q is a symplectic matrix and Q−1Kf(p) = Λ−1 is the analog of the QR decomposition.
The discussion about gate unitary in appendix B can be straightforwardly general-

ized to the case of bosonic fields, where the bulk bosons ϕiR

(
Z − 1

2 , T − 1
2

)
,ϕiL (Z, T) and

ϕiL

(
Z − 1

2 , T + 1
2

)
, ϕiR (Z, T) are two different bases of the same linear space, which is the

symplectic complement of V[T−Z+1,T+Z−1] in the bigger space V[T−Z,T+Z]. Therefore the
single-particle transformation of the gate U(Z, T) and V (Z, T) are symplectic matrices.

D Comparison between quantum circuits and continuous Majorana
fermions

In this appendix, we compare the Gaussian quantum circuit model with a continuous Majorana
fermion theory on a curved (1+1)d background. The goal is to determine the continuous
limit of the circuit model, and be able to determine its geometry.

In a two-dimensional curved space with metric

ds2 = Ω(t, z)2
(
dt2 − dz2

)
(D.1)

the Majorana fermion action has the form

A =
∫
dtdz [ψR (i∂t + i∂z)ψR + ψL (i∂t − i∂z)ψL − 2imΩ(t, z)ψLψR] (D.2)

where the conformal factor Ω(t, z) only appears in the mass term, since the massless part
of the Majorana fermion action is conformally-invariant. The Hamiltonian corresponding
to this action is

H(t) =
∫
dz
[
ψR (−i∂z)ψR − ψ

⊺
L (−i∂z)ψL + 2imΩ(t, z)ψLψR

]
(D.3)

When we compare this continuous theory with the quantum circuit, it is natural to identify the
right-mover and left-mover with those in the quantum circuit. If m = 0, the right-mover and
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Figure 14. The dependence of π− θU − θV as a function of ∆t for a fixed location z. The calculation
is done for q = 10, β = 30.

left-mover decouple, and the equation of motion gives ψR(z, t) = ψR(z−t), ψL(z, t) = ψL(z+t).
This agrees with the quantum circuit time evolution when each gate is given by a swap

U = V =
(

0 1
−1 0

)
(D.4)

up to a −1 sign that we have discussed in the main text. Thus we see that a finite m

corresponds to a gate with angle θU,V ̸= π
2 .

To make a more quantitative comparison, we want to compare the unitary evolution
operator e−i∆tH(t) with two layers of unitary gates in the quantum circuit, consisting of
one layer of V gates followed by one layer of U gates. This bilayer of gates is the unit of
circuit time evolution. For example, if there is time translation symmetry, time evolution
by t = n∆t is (Ũ Ṽ )n in the quantum circuit, while it is e−in∆tH in the continuous theory.
As a reminder, Ũ and Ṽ denote the many-body operators while U and V are single-particle
transformation matrices.

To determine the correspondence between the gates and the Hamiltonian dynamics in
∆t → 0 limit, we consider a translation invariant Hamiltonian Ω(t, z) = Ω, and compare
it with a translation invariant circuit U(z, t) = U, V (z, t) = V . This is different from our
physical situation, but we expect the correspondence between m and gate angles is local
and does not depend on the spatial inhomogeneity. In the translation invariant case, we
can go to momentum space and write the Hamiltonian as

H =
∫
dk (ψR,−k ψL,−k)

(
k −imΩ

imΩ k

)(
ψR,k

ψL,k

)
(D.5)

where ψL(R),k is the fourier transform of ψL(R)(z). To compare with the quantum circuit, we
need to compare the time evolution operator. The single-particle time evolution is given by(

ψR,k(∆t)
ψL,k(∆t)

)
= Uc(k,∆t)

(
ψR,k(0)
ψL,k(0)

)
(D.6)

Uc(k,∆t) = exp
[
−i∆t

(
k −im
im −k

)]
(D.7)
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Now we compare Uc(k,∆t) of the continuous theory with the bi-layer of unitaries in a
translation invariant quantum circuit. We label the bulk fermions in the quantum circuit
by the integer sites (V gates in figure 2(a)).14 In this convention, the V gates are on-site
and U gates couple the neariest neighbor sites. Labeling the outputs of all sites by integers
ψnL, ψnR we have(

ψR,n(∆t/2)
ψL,n(∆t/2)

)
≡ Ṽ †

(
ψR,n(0)
ψL,n(0)

)
Ṽ =

(
sin θV − cos θV

− cos θV − sin θV

)(
ψR,n(0)
ψL,n(0)

)
(D.8)(

ψR,n+1(∆t)
ψL,n(∆t)

)
≡ Ũ †

(
ψR,n(∆t/2)
ψL,n+1(∆t/2)

)
Ũ =

(
sin θU cos θU

cos θU − sin θU

)(
ψR,n(∆t/2)
ψL,n+1(∆t/2)

)
(D.9)

Carrying out the Fourier transform, the single-particle transformation in k-space after
combining the U and V gates can be written as(

ψR,k(∆t)
ψL,k(∆t)

)
= Ud(k,∆t)

(
ψR,k(0)
ψL,k(0)

)
(D.10)

Ud(k,∆t) =
(
e−ik∆t sin θU cos θU

cos θU −eik∆t sin θU

)(
sin θV − cos θV

− cos θV − sin θV

)
(D.11)

Note that we define k∆t ∈ [0, 2π) as the crystal momentum, so that k directly corresponds
to the physical momentum that we can compare with the continuous theory. We expect
Ud(∆t) ≃ Uc(∆t). To compare these two SU(2) unitaries we expand Ud for small ∆t and
assume π

2 − θU,V ∝ ∆t. More explicitly we assume

π

2 − θU,V ≃ λU,V ∆t (D.12)

which is confirmed numerically (figure 14). In this limit we can write

Ud(k,∆t) = e−i k∆t
2 σze−iσyλU ∆te−i k∆t

2 σze−iσyλV ∆t (D.13)

with σy, σz Pauli matrices. To the linear order of ∆t we can neglect the commutator and obtain

Ud(k,∆t) ≃ exp [−ik∆tσz − i (λU + λV ) ∆tσy] (D.14)

Comparing eq. (D.14) with eq. (D.7) we see that

mΩ = λU + λV = lim
∆t→0

π − θU − θV

∆t (D.15)

In the region where θU,V is a smooth function of z, t, in the limit of ∆t → 0 we expect
the same equation to hold locally:

mΩ(z, t) = λU + λV = lim
∆t→0

π − θU (z, t) − θV (z, t)
∆t (D.16)

E Zero determinant for the eternal traversable wormhole spectral function

In this appendix, we explain why the spectral function Aab(t, t′) for the eternal traversable
wormhole geometry has a zero determinant for t′ − t ≥ T = 2π

VG
. The two point function
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Figure 15. Long time behavior of the anticommutator matrix for eternal traversable wormhole
geometry (eqs. (5.16) and (5.17)) for q = 8.

in large-q limit is defined in eqs. (5.16) and (5.17). Due to the 1/q power, the two point
functions are periodic in qT , as is shown in figure 15.

To understand the behavior of this two point function, denote

eg(t) ≡ − V 2

sin2
(

VG
2 t− iδ

) = 2V 2

cos (VGt− 2iδ) − 1 (E.1)

The denominator can be expanded to

cos (VGt− 2iδ) − 1 = cos (VGt) cosh δ − 1 + i sinh δ sin (VGt) (E.2)

which has a winding number 1 around the origin of the complex plane when t grows from
0 to T . Consequently, the two point function G11(t) satisfies the boundary condition
G11(t + T ) = G11(t)e−i 2π

q . The branch of 1/q power is fixed by the boundary condition
G11(0) = 1, which corresponds to g(0) = 0. The function g(t) is completely determined
by eq. (E.2) together with the boundary condition g(0) = 0 and the continuity condition
in t. With this definition of g(t), the diagonal and off-diagonal two point function can
both be expressed by g(t):

G11(t, t′) = eg(t−t′)/q, G12(t, t′) = ie[g(t−t′+ T
2 )+iπ]/q (E.3)

The shift of iπ is because g
(

T
2

)
= −iπ, and ReG12(0, 0) = A12(0, 0) = 0. Consequently, for

t ∈ [0, T ] we have the following two equations:

G11(t, 0) −G11(t, T ) = eg(t)/q − e[g(t)+2πi]/q (E.4)

G12

(
t,
T

2

)
= ie[g(t)+iπ]/q = − 1

2 sin π
q

[G11(t, 0) −G11(t, T )] (E.5)

14Note that this notation is different from the notation in the main body of the paper. We label ψR(z =
n, t = 0) as ψR,n, and denote ψL

(
z = n− 1

2 , t = 1
2

)
as ψL,n, for integer n.
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Therefore we can take the real part and replace t by t− t′ to obtain the linear equation

A12

(
t, t′ + T

2

)
+ 1

2 sin π
q

[
A11(t, t′) −A11(t, t′ + T )

]
= 0 (E.6)

If we consider a time interval with width ≥ T , this equation is a linear equation satisfied
by the matrix Aab(t, t′), such that detA = 0.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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