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1 Introduction

Six dimensional (6d) superconformal field theories (SCFTs) hold a special place among
quantum field theories (QFTs). Owing to the classification discovered in the seminal work by
Nahm [1], superconformal symmetry is only possible in six and fewer spacetime dimensions.
Moreover, N = (2, 0) is the maximal amount of supersymmetry (SUSY) that a 6d theory can
have. Combining this amount of SUSY with conformal symmetry constrains a 6d N = (2, 0)
SCFT to such a degree that the only additional information that is necessary to completely
determine the theory is the choice of a gauge algebra.

The study of the 6d N = (2, 0) theory is thus of fundamental importance in QFT, for
many reasons. For example, the 6d N = (2, 0) SCFT determines the physics of many other
QFTs in 6d, via SUSY-breaking deformations [2–4] such as orbifolds [5–8]. By suitable
(partial) topological twisting, the 6d theory compactified on, e.g., a Riemann surface [9] or a
3-manifold [10] can also determine the physics of infinite families of QFTs in d < 6.

The 6d N = (2, 0) SCFT is also of fundamental importance in quantum gravity. Currently,
the leading candidate for an ultra-violet (UV)-complete theory of quantum gravity is M-theory.
M-theory’s fundamental objects are M2-branes [11] and M5-branes [12], and the low-energy
worldvolume theory on M coincident M5-branes is the 6d N = (2, 0) SCFT with gauge
algebra AM−1 [13]. Understanding the 6d N = (2, 0) SCFT is thus essential to understanding
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M-theory in general. In particular, via the Anti-de Sitter/CFT (AdS/CFT) correspondence,
the 6d N = (2, 0) SCFT can provide a fully non-perturbative definition of M-theory on an
asymptotically 7d AdS spacetime, AdS7, times a four-sphere, S4 [14–16].

Strongly interacting SCFTs constructed in string- and M-theory, including the non-
Abelian 6d N = (2, 0) SCFT, are prohibitively difficult to study, for many reasons, of which
we will mention only three. First, the N = (1, 0) and N = (2, 0) SUSY multiplets include a
chiral two-form gauge field, and writing a local, gauge-invariant Lagrangian for a non-Abelian
higher-form gauge field remains a major open problem. These SCFTs thus have no known
Lagrangian descriptions. Second, in the space of renormalization group (RG) flows, these
SCFTs are isolated fixed points, and in particular they cannot be reached as infra-red (IR)
fixed points of RG flows from UV fixed points. Third, these SCFTs are intrinsically strongly
interacting. For example, the 6d N = (2, 0) SCFT has no dimensionless parameter besides
M that can be tuned to allow a perturbative expansion.

As a result, practically all of our direct knowledge1 of interacting 6d SCFTs comes
from non-perturbative methods, such as the superconformal bootstrap [18], F-theory [19],
and especially AdS/CFT [20], where holographic computations of quantities like Weyl
anomalies [21] and the entanglement entropy (EE) [22] are used to great effect to characterize
6d SCFTs at large M .

An aspect of 6d SCFTs, and generally of QFTs in three and higher dimensions, that
requires particularly careful treatment to characterize is the spectrum of 2d, string-like or
surface, defects. In the co-dimension one case, 2d defects in 3d QFTs arise as boundaries
or interfaces, and so are more easily studied and, thus, more familiar than their higher co-
dimension realizations. Despite being somewhat more exotic in standard treatments of QFTs,
2d defects of co-dimension two and greater show up in a number of settings:2 from free field
theories [24–27] to strongly interacting and non-Lagrangian 4d QFTs, e.g. [28–30], to being
fundamental objects in 6d SCFTs [31] and in the study of EE and Renyi entropies [32, 33].
As such, the last few decades have seen tremendous advancements in characterizing [34] and
constraining [35, 36] the properties of 2d defects, and it is vitally important in the study
of QFTs, generally, to continue this effort by finding novel constructions of surface defects
and examining their unique physics.

Of interest to us in the current work are the holographic descriptions, afforded by
AdS/CFT, of 6d SCFTs and the defects that they support. In particular, we will primarily
focus our attention on solutions to 11d supergravity (SUGRA) that are contained in a one-
parameter family of solutions with superisometry given by the exceptional Lie superalgebra
d(2, 1; γ) ⊕ d(2, 1; γ) [37]. Crucially, an asymptotically AdS7 × S4 solution is possible only at
certain values of γ. Indeed, as a historical note, prior to the full classification given in [37],
evidence of d(2, 1; γ)⊕d(2, 1; γ) invariant SUGRA solutions that exist for general γ was found
in superconformal Janus solutions in 4d gauged N = 8 SUGRA [38], which extended beyond
the known γ = 1 AdS4 × S7 Janus solution of 11d SUGRA [39].

1Indirect methods such as dimensional reduction to 5d N ≤ 2 SUSY QFTs have also been used to great
effect to study these theories, e.g. by using the resulting lower dimensional Lagrangian description together
with supersymmetric localization techniques [17].

2This is by no means an exhaustive list of the work done on 2d defects. For a recent review of boundaries
and defects in QFTs and further references on the topic, see [23].
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More pertitent to the cases that we will study below, the most well studied case among
the values of γ that admit asymptotically locally AdS7 × S4 solutions is γ = −1/2, which
holographically describes 1/2-BPS Wilson surface operators in the 6d AM−1 N = (2, 0) SCFT
that preserve a large N = (4, 4) 2d SUSY. These BPS Wilson surface operators have a long
history in M-theory descriptions of 6d SCFTs [13, 31, 40–42], and there has been a recent
resurgence of interest in these defects where holographic [43–45] and field theoretic [46–48]
computations have characterized these defect CFTs through their EE and Weyl anomalies.

Recently, new solutions in 11d SUGRA have been constructed that are proposed to be
holographically dual to 2d BPS surface defects in 6d N = (1, 0) SCFTs preserving “small”
N = (4, 4) or N = (0, 4) 2d SUSY [49]. In the sections below, we will clearly demonstrate
that these new solutions also fit into the one-parameter family of solutions in [37] in the
limit where γ → −∞. It will turn out that the solutions in [49] are, in fact, a particular case
within a broader class of solutions that can be realized in the γ → −∞ limit, which we will
characterize by computing their contributions to the EE of a spherical region.

A crucial point that we emphasize in our construction of the γ → −∞ solutions is that
the superisometry algebra of the near-horizon limit of a stack of M5-branes, osp(8∗|4), does
not contain d (2, 1; γ) ⊕ d (2, 1; γ) as a sub-superalgebra [50–52]. In the supergravity solution,
this is manifested by the appearance of additional terms in the four-form flux as compared
to that due to pure M5-branes. Nevertheless, the geometry is still locally asymptotically
AdS7 × S4, which is in line with the fact that the bosonic subalgebra of d (2, 1; γ) ⊕ d (2, 1; γ)
is a subalgebra of osp(8∗|4).

One upshot of our analysis that follows from the identification of the global symmetries
in the γ → −∞ limit is that it allows for a suitable regulation scheme, which we will
employ when we compute the defect sphere EE. Lacking a generalized program of holographic
renormalization for SUGRA solutions dual to defects on the field theory side, we will use
a background subtraction scheme in order to remove the ambient degrees of freedom and
isolate contributions to physical quantities coming from the defect. The key step in this
background subtraction scheme is the correct identification of the vacuum solution, and as
will be made clear, the ambient theory with a “trivial defect” is a deformed 6d N = (2, 0)
SCFT preserving the bosonic superconformal subalgebra so(2, 2) ⊕ so(4) ⊕ so(5) ⊂ osp(8∗|4).
Since the solutions in [49] belong to the class of solutions that we study below, in finding
a vacuum solution that manifests the corresponding isometries and carefully carrying out
background subtraction, we will also resolve a puzzle in [49], where physical quantities like
the “defect central charge” were divergent.

Ultimately, we will see that the universal part of the defect sphere EE, S(univ)
EE , i.e. the

coefficient of its log-divergent part, is determined in terms of the highest weight vector, ϖ,
of an AM−1 irreducible representation determined by a Young diagram that encodes the
partition of M5-branes that specifies the defect. Explicitly, we will show that

S
(univ)
EE = −(ϖ,ϖ)

5 , (1.1)

where (·, ·) is the scalar product on the weight space. This result is similar to the Wilson
surface sphere EE [44] in that both are expressible in terms of scalar quantities derived
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R1,1 r θ1 θ2 χ z ρ φ1 φ2 ϕ

KK′ – – – – – – – · · · ISO
M5′ – – – – – – · · · · ·

M2 – – · · · · – ∼ ∼ ∼ ∼

M5 – – · · · · ∼ – – – –
KK – – · · · ISO – – – – –

Table 1. The 1/8-BPS brane setup of [49], with M2-M5 defect branes intersecting orthogonal
M5′-branes, and with both stacks of 5-branes probing A-type singularities. In our conventions, –, ·
and ∼ denote directions along which a brane is extended, localized, and smeared, respectively, while
ISO(metric) denotes the compact direction of the KK-monopoles.

from representation data but differ in that eq. (1.1) is negative definite3 and is completely
determined by the highest weight vector.

In section 2, we begin by reviewing the 11d supergravity solutions dual to 2d small
N = (4, 4) defects in 6d N = (1, 0) SCFTs found in [49]. In section 3 we briefly review
the d(2, 1; γ) ⊕ d(2, 1; γ)-invariant solutions to 11d supergravity found in [37], and we show
that by orbifolding the solutions in the γ → −∞ limit, we can recover the solutions in [49].
We then use the γ → −∞ limit to construct new 2d small N = (4, 4) defects with finite
Ricci scalar in section 4. Further in section 4, we demonstrate that the naïve AdS7 × S4

vacuum is inappropriate to use in a background subtraction scheme for regulating holographic
computations in the γ → −∞ limit, and we identify the correct background to use in this
scheme. In section 5, we utilize the new γ → −∞ supergravity solutions and correct regulating
scheme in a computation of the contribution of a flat 2d small N = (4, 4) superconformal defect
to the EE of a spherical region in a 6d SCFT. We then summarize our findings and discuss
remaining issues and open questions surrounding these new defect solutions in section 6.

In addition, there are two appendices that detail technical aspects of the computations in
the main text. First, in appendix A, we analyze the asymptotic expansion of the supergravity
data that specify the new solutions in the γ → −∞ limit and construct the map to Fefferman-
Graham (FG) gauge. Lastly, in appendix B, we carefully treat the integral in the area
functional of the Ryu-Takayanagi (RT) surface in the computation of the holographic EE
of the defect in the dual field theory.

2 Review: small N = (4, 4) surface defects

We begin with a brief summary of the results of [49]. The particular 11d supergravity
metric constructed therein is the uplift of a 7d charged AdS3 × S3 domain wall initially
found in [53], and is given by

ds2 = 4kQM5H
−1/3
M5′

(
ds2

AdS3 + ds2
S3/Zk

)
+H

2/3
M5′

(
dz2 + dρ2 + ρ2ds2

S̃3/Zk′

)
, (2.1)

3Unlike in an ordinary 2d CFT, eq. (1.1) being strictly negative does not necessarily signal that the theory
may be non-unitary. Indeed, the 2d defect sphere EE is expressible as a signed linear combination of defect
Weyl anomaly coefficients [45], which is not bounded from below.
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for some parameter QM5 and a function HM5′ defined over a 4d space parametrized by the
coordinates {z, ρ, φ1, φ2}. The solution above captures the near-horizon geometry of the
brane intersection depicted in table 1. Namely, a “bound state” (in the sense discussed in
footnote 4) of M2- and M5-branes, with charges QM2 and QM5, intersects an orthogonal stack
of M5′-branes, thus forming a 1/4-BPS brane setup. In 2d notation, this corresponds to
N = (4, 4) supersymmetry, with the large R-symmetry realized geometrically as the isometry
of the two 3-spheres S3 and S̃3 with coordinates {χ, θ1, θ2} and {ϕ, φ1, φ2}, respectively. In
addition, the two stacks of 5-branes can be made to probe ALE singularities by introducing
two Kaluza-Klein (KK) monopoles, with charges k and k′ and Taub-NUT directions ∂χ and
∂ϕ, respectively. The inclusion of any one of the two KK monopoles results in a further
breaking of the preserved supersymmetries and a degeneration to an 1/8-BPS setup, which
in 2d language corresponds to (large) N = (0, 4) supersymmetry. The presence of the second
KK monopole does not incur a further loss of supersymmetry, so the final brane configuration
is always at least a 1/8-BPS supergravity solution.

Furthermore, the defect M2- and M5-branes are fully localized within a 2d submanifold
of the worldvolume of the M5′-branes. This is to be expected from the holographic realization
of a surface defect in a 6d SCFT; this interpretation was first attached to the 7d domain wall
in [54] and to the full 11d SUGRA background in [49]. On the other hand, the defect branes
are smeared in the directions transverse to the worldvolume of the M5′-branes,4 so that their
charge is localized within S3/Zk, but not S̃3/Zk′ . Therefore, while the metric in eq. (2.1)
manifests the isometry groups of both (orbifolded) 3-spheres, the R-symmetry is partially
broken, giving rise to small N = (0, 4) supersymmetry. For k′ = 1, the solution above fits into
the classification of N = (0, 4) AdS3 × S3/Zk × CY2 backgrounds foliated over an interval
performed in [56], where CY2 = R4 contains the (round) S̃3. In particular, the solution above
corresponds to taking the M5′-branes to be completely localized in their transverse space.

On shell, the defect brane charges are constrained to be equal, QM2 = QM5, while the
function HM5′ satisfies [49]

∇2
R3

ρ̂
HM5′(z, ρ̂) + k′∂2

zHM5′(z, ρ̂)
ρ̂

= 0, (2.2)

where we rescaled ρ̂ = ρ2/(4k′), and denoted by R3
ρ̂ the three-dimensional subspace which is

transverse to the M5-branes, parallel to the M5′-branes, and along which the M2-branes are
smeared. Following the parametrization adopted in table 1, R3

ρ̂ is then the space spanned by
{∂ρ̂, ∂φ1 , ∂φ2}, with ρ̂ being the radial coordinate and {φ1, φ2} parametrizing a 2-sphere.

In terms of the brane setup described above, then, the spacetime in eq. (2.1) is reached
by approaching the brane intersection locus from within the worldvolume of the M5′-branes
in a radial fashion, i.e. by taking r → 0. In this limit, the ISO(1, 1) isometry group gets
promoted to SO(2, 2), and the M5′-brane worldvolume becomes AdS3 × S3/Zk.

4It is this property — that the M2- and M5-branes do not share transverse directions with the M5′-branes,
other than those along which the former are smeared — which we are implicitly referring to when we describe
the M2- and M5-branes as forming a “bound state”. This aligns with the terminology used in [49], and should
not to be confused with the dyonic supermembrane [55], which is a rather different multimembrane solution of
11d supergravity. Indeed, in the setup described by table 1, there is no M2-brane charge dissolved within the
M5-brane worldvolume, nor do the M2-branes polarize into a fuzzy 3-sphere via the Myers effect.
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A particular solution to eq. (2.2) is, for any α ∈ R,

HM5′(z, ρ) = 4
√

2
g3

1
P+P−

√
P 2

+ + P 2
− − 4α2 + 2P+P−

P 2
+ + P 2

− + 2P+P−
, (2.3)

where P± =
√
z2 + (ρ± α)2. By redefining

ρ = α
cos ξ√
1 − µ5 (2.4a)

z = αµ
5
2

sin ξ√
1 − µ5 (2.4b)

and setting α = (27/4g3/2kQM5)−1, the particular solution in eq. (2.3) can be matched to
the one found in eq. (2.17) of [49], which we now reproduce for clarity:5

HM5′(µ, ξ) = 227/4(√gkQM5)3 µ
5/2(1 − µ5)3/2

µ5 cos2 ξ + sin2 ξ
. (2.5)

Furthermore, in [49] it was argued that, as µ→ 1 (which corresponds to a non-linear limit in
the original coordinates ρ̂ and z), the near-horizon geometry in eq. (2.1) locally recovers the
AdS7/Zk × S4/Zk′ vacuum of M-theory. This was shown by realizing the 11d line element as
the uplift of the domain wall solution to N = 1, d = 7 supergravity (whose gauge coupling
constant g appears in eq. (2.5) above) found in [53], which interpolates between AdS7 (as
µ → 1) and an infrared singularity (at µ = 0).

While the singular nature of the solution is not immediately obvious, it can be made
manifest by studying the Ricci scalar, R, in the z → 0 limit. For metrics generally of the
form of eq. (2.1), and following [52], we can write the expression for the Ricci scalar for
an arbitrary harmonic function HM5′ as

R = H
−2/3
M5′

[
1
6

(∂zHM5′)2 + (∂ρHM5′)2

H2
M5′

− 2
3
∂2

zHM5′ + ∂2
ρHM5′

HM5′
− 2∂ρHM5′

ρHM5′

]
. (2.6)

The function HM5′ has a branch point located at z = 0 and ρ = α and correspondingly
admits two different expansions as z → 0, depending on whether ρ is larger or smaller than
α. The choice of sign for the branch cut can be determined by the requirement P+P− ≥ 0.
For ρ > α, this leads to

R = g2(2α2 − 3ρ2)2

12ρ2/3(ρ2 − α2)5/3 + O(z2) (2.7)

which has a pole as ρ → α. This corresponds to setting ξ = 0, with the pole appearing
as µ → 0. For ρ < α, we find

R = g2α2/3(α2 − ρ2)
12z8/3 + O

( 1
z2/3

)
(2.8)

which corresponds to taking µ → 0 with ξ ̸= 0. Thus for all values of ξ, we find that the
Ricci scalar diverges as µ → 0.

5To see this, it is convenient to first rationalize the product P+P− as P+P− = α2(1 + µ5 − (1 −
µ5) cos(2ξ)

)
/2(1 − µ5).
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3 From large to small N = (4, 4) surface defects

To begin, we will briefly review the classification due to [37, 52] of the d = 11 supergravity
solutions with superisometry given by two copies of the exceptional Lie superalgebra d(2, 1; γ).
This classification represents the foundation for the new defect solutions we present below.

In particular, we will be interested in the real form d(2, 1; γ; 0) which arises as a real
subsuperalgebra of the fixed points of an involutive semimorphism of d(2, 1; γ) [50]. Recall
that the 9-dimensional maximal bosonic subalgebra of the real form d(2, 1; γ; 0) is so(2, 1) ⊕
so(3)⊕so(3). Labelling each factor in this subalgebra by an index a ∈ {1, 2, 3}, the generators
T (a) satisfy

[T (a)
i , T

(b)
j ] = iδabεijkη

kl
a T

(a)
l for i, j ∈ {1, 2, 3} , (3.1)

where εijk and ηkl
a are the totally anti-symmetric tensor (with ε123 = 1) and the canonical

metric induced by the Killing form, respectively. In addition to the bosonic sector, d(2, 1; γ)
contains an 8-dimensional fermionic generator with components FA1A2A3 , where the indices
Aa ∈ {±} transform in the spinorial representation 2 of the ath factor in the even subalgebra.
Furthermore, the components FA1A2A3 obey the following anti-commutation relation

{FA1A2A3 , FB1B2B3} = β1CA2B2CA3B3(Cσi)A1B1T
(1)
i (3.2)

+ β2CA1B1CA3B3(Cσi)A2B2T
(2)
i

+ β3CA1B1CA2B2(Cσi)A3B3T
(3)
i ,

where C ≡ iσ2 is the charge conjugation matrix, {σi}3
i=1 are the Pauli matrices, and {βi}3

i=1
are real parameters satisfying

∑3
a=1 βa = 0, which follows from the (generalized) Jacobi

identity. This last constraint, together with the possibility of absorbing any rescaling
{λβ1, λβ2, λβ3} for λ ∈ C into a redefinition of the normalization of the fermionic generator,
implies that d(2, 1; γ) is entirely specified by the choice of a ratio of any two of the three
β parameters; here, we take γ ≡ β2/β3. Note that d(2, 1; γ) is the only (finite-dimensional)
Lie superalgebra admitting a continuous parametrization.

Amongst the possible values that γ can take, there are clearly three special values
corresponding to the vanishing of any one of the β parameters. Specifically, choosing β1 = 0
fixes γ = −1. The more interesting case, and the one relevant to our analysis, is β3 = 0,
which corresponds to γ → ±∞. The case β2 = 0 corresponds to γ = 0 and is equivalent to
the γ → ±∞ limit under a group involution as discussed at the end of this section. In the
limit β3 = 0, the anticommutator in eq. (3.2) degenerates to

{FA1A2A3 , FB1B2B3} = β1
(
CA2B2CA3B3(Cσi)A1B1T

(1)
i − CA1B1CA3B3(Cσi)A2B2T

(2)
i

)
.

(3.3)
Consequently, the so(4)R

∼= so(3) ⊕ so(3) R-symmetry of the large superalgebra is broken
into the single so(3)R factor which constitutes the R-symmetry of a small superalgebra.
Note that the other so(3) factor remains a bosonic symmetry of the supergravity solution;
however, it is now realized as a flavor symmetry, rather than as an outer automorphism
of the supersymmetry algebra.
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In addition, there are isolated points of interest in the γ-parameter space where the real
form d(2, 1; γ; 0) reduces to classical Lie superalgebras:

d(2, 1; γ; 0) = osp(4∗|2) for γ ∈ {−2,−1/2} (3.4a)
d(2, 1; γ; 0) = osp(4|2;R) for γ = 1 . (3.4b)

In particular, γ = −1/2 is the only value (up to algebra involutility, as we will discuss shortly)
for which d(2, 1; γ; 0)⊕d(2, 1; γ; 0) admits a canonical inclusion into the superisometry algebra
osp(8∗|4) of AdS7 × S4. This case was studied extensively in [44]; it is the holographic
realization of Wilson surfaces, 1/2-BPS codimension-4 superconformal solitons, within the 6d
N = (2, 0) SCFT. In this case, the ambient 6d SCFT is undeformed, in the sense that the
supergroup of symmetries preserved by the defect is a subgroup of the 6d superconformal
symmetry group. This is a common feature throughout the study of defects embedded in
higher-dimensional theories.

For generic values of γ, including the limit γ → ±∞, the superisometry algebra
d(2, 1; γ; 0) ⊕ d(2, 1; γ; 0) is not a subalgebra of the osp(8∗|4) superconformal Lie super-
algebra [44]. As a result, we expect the 6d ambient theory to be deformed as we tune γ
away from the special value γ = −1/2. In the supergravity solutions we construct below,
this deformation will appear at leading order in the asymptotic expansion of the four-form
flux. Additionally, the warp factors of the symmetric spaces corresponding to T (1) and T (2)

have the correct normalization to create an AdS7 space only when |β1| = |β2|, which can
happen only when γ = −1/2 or γ → ±∞.

Finally, we note that the complex Lie superalgebra d(2, 1; γ) enjoys a triality symmetry
generated by γ 7→ γ−1, γ 7→ −(γ + 1), and γ 7→ −γ/(γ + 1), any two of which are linearly
independent. However, only the γ 7→ γ−1 involutility survives at the level of the real form
d(2, 1; γ; 0), due to the distinguished nature of the T (1) generator. Therefore, our analysis
below can be equivalently carried out in the γ → ±∞ limits, or even in the γ → 0 limit (albeit
with a permutation of the two so(3) ⊕ so(3) factors contained in two copies of d(2, 1; γ; 0)).6

The physical interpretation of the choice of either limit corresponds to fixing the orientation
of the M5-branes that engineer the ambient 6d SCFT.

3.1 Supergravity solutions for general γ

In this section, we will review the structure of supergravity solutions with d(2, 1; γ; 0) ⊕
d(2, 1; γ; 0) superisometry algebra, for generic γ, as first described in [37, 52, 57]. The
odd subspace of this superalgebra is 16-dimensional for all γ, so that all supergravity
backgrounds discussed below are 1/2-BPS. Furthermore, the maximal bosonic subalgebra
of d(2, 1; γ; 0) ⊕ d(2, 1; γ; 0) is

so(2, 2) ⊕ so(4) ⊕ so(4) . (3.5)

6In spite of the involution relating the γ → −∞ and γ → 0 limits, these two descriptions cannot be smoothly
deformed into one another by varying γ. Indeed, the two regimes are separated by the decompactification
point γ = −1.
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To realize this superisometry, the supergravity metric must be of the form7

(AdS3 × S3 × S̃3) ⋉ Σ2 , (3.6)

for a Riemann surface Σ2.
The Killing spinor equations on such manifolds can be recast into conditions on two

auxiliary functions, h and G, defined over the Riemann surface Σ2 [37, 52, 57]. Specifically,
if we employ local complex8 coordinates {w, w̄} on Σ2, so that the metric on the Riemann
surface is given by ds2

Σ2
= dwdw̄, the function h is constrained to be R-valued and harmonic

∂w∂w̄h = 0 , (3.7)

while G is C-valued and satisfies the conformally covariant equation

∂wG = 1
2
(
G+ Ḡ

)
∂w ln h . (3.8)

Note that both constraints above hold for generic γ.
Regularity conditions on the auxiliary functions h and G have been discussed in [37].

Here, we will consider Riemann surfaces with a boundary, ∂Σ2 ̸= ∅. In short, regularity of
the supergravity solution constrains G = ±i on ∂Σ2, while the (holomorphic part of the)
function h must either vanish or have a simple pole at any point of ∂Σ2.

The triple (h,G, γ) uniquely specifies a bosonic background within the space of 11d
supergravity solutions with superisometry algebra d(2, 1; γ; 0) ⊕ d(2, 1; γ; 0). In particular,
the metric field in the supergravity solution can be written in terms of this data as

ds2 = f2
AdS3ds2

AdS3 + f2
S3ds2

S3 + f2
S̃3ds2

S̃3 + f2
Σ2ds2

Σ2 , (3.9)

where the metric factors are functions over Σ2 and can be expressed in terms of the auxiliary
functions

W± := |G± i|2 + γ±1(GḠ− 1) (3.10)

as [37]

f6
AdS3 = h2W+W−

β6
1(GḠ− 1)2 , (3.11a)

f6
S3 = h2(GḠ− 1)W−

β3
2β

3
3W

2
+

, (3.11b)

f6
S̃3 = h2(GḠ− 1)W+

β3
2β

3
3W

2
−

, (3.11c)

f6
Σ2 = |∂wh|6

β3
2β

3
3h

4 (GḠ− 1)W+W− . (3.11d)

7For the previously mentioned special values γ = −1 and γ = 0, AdS3 Wigner-İnönü contracts to R2,1 and
one of the 3-spheres decompactifies into R3, respectively.

8The SUGRA orientation and Riemannian metric automatically endow the Riemann surface Σ2 with a
complex structure.
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The bosonic sector of the 11d supergravity solution is completed by a three-form gauge
potential C(3), which can be written in terms of the (h,G, γ) data as

C(3) =
3∑

i=1
bMi volMi (3.12)

where volMi denotes the volume form on the manifold Mi = {AdS3, S
3, S̃3}i. We also

introduced the gauge potentials

bAdS3 := τ1
β3

1

[
−h(G+ Ḡ)

1 −GḠ
+ (2 + γ + γ−1)Φ − (γ − γ−1)h̃+ b0

1

]
, (3.13a)

bS3 := τ2
β3

2

[
−γh(G+ Ḡ)

W+
+ γ(Φ − h̃) + b0

2

]
, (3.13b)

bS̃3 := τ3
β3

3

[
h(G+ Ḡ)
γW−

− Φ + h̃

γ
+ b0

3

]
, (3.13c)

where {b0
i }3

i=1 are integration constants, while the dual harmonic function h̃ and the real
auxiliary function Φ are defined in terms of h and G via

∂wh̃ = −i∂wh , (3.14a)
∂wΦ = Ḡ∂wh . (3.14b)

Finally, in eq. (3.13) we made use of the signs τi = ±1 for i ∈ {1, 2, 3}, which are subject
to the constraint

3∏
i=1

βifMi + h
3∏

i=1
τi = 0 . (3.15)

As discussed above, regularity conditions force h and G to have a prescribed behavior on
∂Σ2. The solutions that we are interested in studying are asymptotically AdS7 × S4, and
are indeed described by G = ±i and h having a single simple pole, which corresponds to
having a single asymptotic AdS7 × S4 region. Generically at any point on ∂Σ2, the regularity
constraint on h implies that its Laurent expansion reduces to

h = −ih0w + c. c. = 2h0 sinϑ
ϱ

, (3.16)

for some real constant h0. In the second equality, we have introduced a new convenient set of
coordinates {ϱ, ϑ} on Σ2 defined by w = eiϑ/ϱ. Adopting these new polar coordinates and
using eq. (3.16) allows us to perturbatively solve eq. (3.8) in small ϱ to find

G = −i+ a1ϱe
iϑ sinϑ+ O(ϱ2) , (3.17)

for some constant a1. If we then insert eq. (3.17) into eqs. (3.10) and (3.18), we can
perturbatively expand eq. (3.9) in small ϱ to find

ds2 = L2 dϱ2

ϱ2 − 2γL2

a1(1 + γ)2ϱ

(
ds2

AdS3 + (1 + γ)2

γ2 ds2
S3

)
+ L2

(
dϑ2 + sin2 ϑds2

S̃3

)
+ . . . (3.18)
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with

L6 = a2
1h

2
0(1 + γ)6

β6
1γ

2 . (3.19)

We can see the AdS7 × S4 asymptotic geometry in eq. (3.18) clearly for certain values of
γ. The obvious case is if we choose γ = −1/2, which was studied extensively in [37, 43, 44].
The other possibility, namely the limits γ → ±∞, will be discussed in the next section.

For γ < 0 and for the function h given in eq. (3.16), the general solution to eq. (3.8) for the
function G with an even number 2n+2 of branch points {ξi}2n+2

i=1 ⊂ ∂Σ2 was found in [58] to be

G = −i

1 +
2n+2∑
j=1

(−1)j w − ξj

|w − ξj |

 , (3.20)

where G flips sign ±i → ∓i upon crossing each branch point ξi.

3.2 The γ → −∞ limit

Of particular interest to us in the following sections are solutions that are constructed by
taking the scaling limit

γ → ±∞ , γa1 → constant , L→ constant . (3.21)

From eq. (3.18) and the requirement γa1 → constant, we can see that this scaling limit
realizes an AdS7 × S4 asymptotic geometry. In this and the following subsections, we will
consider the γ → −∞ limit in greater detail and show that the solutions engineered in this
limit contain the class of solutions found in [49] which we reviewed in section 2. Below, we will
expand upon these solutions and construct new surface defects with small N = (4, 4) SUSY.

To begin, we introduce a complex function F via

G = −i
(
1 + γ−1F

)
, (3.22)

and we rescale β1 = β̂(−γ)1/3. This ensures that L remains finite as required by the limiting
procedure of eq. (3.21). In this limit, the metric in eq. (3.18) becomes

ds2 =
[

4h2

β̂6(F + F̄ )

] 1
3 (

ds2
AdS3 + ds2

S3

)
+
[
h2(F + F̄ )2

16β̂6

] 1
3
(

ds2
S̃3 + 4|∂wh|2

h2 dwdw̄
)
. (3.23)

In addition, the gauge potentials are given by

bAdS3 = bS3 = −2h̃
β̂3
, bS̃3 = h

2β̂3
−i(F − F̄ )

2 − Φ̂ , (3.24)

where the function Φ̂ is defined via

∂wΦ̂ = F̄
∂wh̃

β̂3
. (3.25)
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Let us introduce a new set of coordinates {z, ρ} on Σ2 defined via w = z+ iρ, and choose
h0 in eq. (3.16) such that the harmonic function h = β̂3h1ρ for some constant h1. Let us also
parametrize the real and imaginary parts of the complex function F such that

F = 2ρ2

h1
H + iFI , (3.26)

for real functions H and FI . Note that the latter does not enter the metric field; indeed,
we can rewrite the line element in eq. (3.23) entirely in terms of H as

ds2 = h1H
− 1

3
(
ds2

AdS3 + ds2
S3

)
+H

2
3
(
dz2 + dρ2 + ρ2ds2

S̃3

)
. (3.27)

The condition in eq. (3.8) implies that the complex function F satisfies the first order equation

∂wF = 1
2(F − F̄ )∂w ln h , (3.28)

which in turn can be recast into a second order equation for its real part,

∂2
ρH + 3

ρ
∂ρH + ∂2

zH = 0 . (3.29)

The supergravity solution in the {z, ρ} parametrization of Σ2 is completed by the following
expressions for the gauge potentials,

bAdS3 = bS3 = 2h1z, bS̃3 = h1ρ

2 FI + Φ̂ . (3.30)

In particular, a more explicit form can be given for the derivatives of bS̃3 as

∂ρbS̃3 = ρ3∂zH, ∂zbS̃3 = −ρ3∂ρH . (3.31)

These solutions have a scaling symmetry under the transformation

z → λz, ρ→ λρ, H → λ−3H, h1 → λ−1h1, (3.32)

for which the metric and flux are invariant. This transformation could be used to fix the
value of h1 so that the solution is uniquely given by choice of function H.

3.3 Inclusion of KK-monopoles and recovering known solutions

At the level of the local geometry described by eq. (3.27), KK-monopoles can be included
in a straightforward fashion by replacing S3 and S̃3 with the lens spaces S3/Zk and S̃3/Zk′ ,
respectively, where k and k′ are the orbifold charges. The lens spaces can be realized as
the total spaces of circle bundles over 2-spheres, where the orbifold acts on the Hopf fiber;
this amounts to the substitutions

ds2
S3 → ds2

S3/Zk
= 1

4

[(dχ
k

+ ω

)2
+ ds2

S2

]
, (3.33a)

ds2
S̃3 → ds2

S̃3/Zk′
= 1

4

[(dϕ
k′

+ η

)2
+ ds2

S̃2

]
, (3.33b)
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where dω = volS2 and dη = volS̃2 . The inclusion of either KK-monopole incurs the loss of
1/2 of the existing supersymmetry generators, resulting in a small N = (0, 4) supersymmetry
algebra. Indeed, dimensional reduction along the Taub-NUT direction produces a D6-brane
which breaks half of the supersymmetries of the massless type IIA AdS7 vacuum. The
second KK-monopole can be added without bringing about any further breaking of the
supersymmetries, and provides a second isometric direction upon which the background can
be dimensionally reduced to massless type IIA supergravity. Therefore, the final solution
is an 1/8-BPS configuration. At the level of the superconformal symmetry algebra, this
corresponds to a reduction from d (2, 1; γ) ⊕ d (2, 1; γ) to d (2, 1; γ).

The inclusion of orbifolds allows us to match the γ → −∞ solutions of section 3.2 to
those found in [49] and reviewed in section 2. In particular, we see that the γ → −∞
metric in eq. (3.27), subject to the inclusion of KK-monopoles as in eq. (3.33), matches the
M2-M5-KK-M5′-KK′ near-horizon in eq. (2.1) under the identifications h1 = 4kQM5 and
H = HM5′ . In particular, the functions H and HM5′ solve the same equation, since eq. (3.29)
maps to eq. (2.2) under the rescaling ρ̂ = ρ2/4. We have thus managed to fully recover the
solutions described in [49] as a limiting case of those in [37].

4 New small N = (4, 4) surface defects

In this section, we will construct a new explicit family of solutions H(z, ρ) to eq. (3.29). In
particular, without loss of generality we will specialize to the γ → −∞ limit. We recall that
for γ < 0, a general solution with an even number of branch points {ξi}2n+2

i=1 ⊂ ∂Σ2 was
given by eq. (3.20). We rescale the singular points ξj as

ξj = νj − γ−1ξ̂j ∈ ∂Σ2 for j ∈ {1, 2, . . . , 2n+ 2} , (4.1)

where the collapse points satisfy νj ≤ νj+1 for all j, so as to preserve the total order of the set
{ξj} following the γ → −∞ limit. Furthermore, to ensure finiteness of the complex function
F in this limit, we must also demand that all points νj , for 1 ≤ j ≤ 2n+ 2, correspond to
the collapse of even-dimensional clusters {ξk, ξk+1, . . . , ξk+2m+1} of singular points, where
k ≤ j ≤ k + 2m + 1. This can be implemented by identifying

νk ≡ νk+1 ≡ . . . ≡ νk+2m+1 (4.2)

for each cluster. Finally, in order to preserve the ordering of the singular points throughout
the γ → −∞ limit, we must also arrange the corresponding collapse parameters within each
cluster so that ξ̂k < ξ̂k+1 < . . . < ξ̂k+2m+1. Without loss of generality, then, it suffices to
consider a pairwise collapse of neighboring singular points, which can be realized by identifying

ν2i−1 ≡ ν2i for i ∈ {1, 2, . . . , n+ 1} . (4.3)

However, we will later comment on certain phenomena which appear only when the singular
points collapse in clusters of 4 or more.

An illustration of the pairwise collapse described by eq. (4.1) and eq. (4.3) is shown in
figure 1. Under this collapse dynamic, the complex function F becomes, in the γ → −∞ limit,

F (w, w̄) =
2n+2∑
j=1

(−1)j ξ̂j
w̄ − w

2(w̄ − νj)|w − νj |
. (4.4)
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Σ2

z
ξ1 ν1 ξ2 ξ3 ν3 ξ4 · · · ξ2n+1 ν2n+1 ξ2n+2

γ → −∞

Figure 1. A particular choice of collapse points νj ∈ ∂Σ2 and the behavior of the singular points
ξi ∈ ∂Σ2 as γ → −∞ under pairwise collapse. The collapse points νj can be chosen arbitrarily, while
maintaining νj < νj+1, but for clarity in the figure have been depicted at the midpoint in the region
[ξj , ξj+1] to demonstrate pairwise collapse.

The corresponding function H is given by

H(z, ρ) = h1
2

2n+2∑
j=1

(−1)j ξ̂j

(ρ2 + (z − νj)2)3/2 . (4.5)

For pure AdS7 × S4, this procedure produces what we refer to as the single-pole vacuum
(1PV) solution with

F1PV(w, w̄) = ξ̂
w̄ − w

w̄|w|
, (4.6a)

H1PV(z, ρ) = h1ξ̂

(z2 + ρ2)
3
2
, (4.6b)

which can be obtained by taking n = 0, ξ2 = −ξ1 = ξ, and ν1 = ν2 = 0. Alternatively, this
solution can also be obtained by collapsing all singular points to the origin, i.e. νj = 0 for all
j. Note that eq. (3.29) is linear in H and admits a translation symmetry under shifts of z.
Using these two properties, the general solutions given in eq. (4.5) can be reconstructed from
the 1PV solution by taking linear combinations and making use of the translation symmetry.

One may worry that since the solution for the potential H in eq. (4.5) is generically
singular at the points (z, ρ) = (νi, 0) for all i ∈ {1, 2, . . . , 2n+ 2}, the resulting supergravity
metric may have a singularity or these points may simply correspond to horizons. In order
to investigate the regularity of the spacetime geometry, we compute the scalar curvature
at these points. Without loss of generality we can choose to evaluate the Ricci scalar at
the point (z, ρ) = (ν2j , 0). Recall that for metrics generally of the form in eq. (3.27), the
scalar curvature is given by eq. (2.6) with HM5′ replaced by H. Note that since all collapse
points ν2k−1 with odd labels are identified with even-labelled ones ν2k via eq. (4.3), the point
(z, ρ) = (ν2j , 0) is indeed generic within the set of collapsed points. Ultimately, we find

R
∣∣
(z,ρ)=(ν2j ,0) = 3

2L2
S4

(
ξ̂2j − ξ̂2j−1

m̂1

)−2/3

, (4.7)

which is indeed finite, where LS4 and m̂1 are strictly positive constants introduced below.
This suggests that the geometry is regular at these points.

We also note that the 1PV solution corresponds to a spacetime with a constant scalar
curvature given by

R = 3
2L2

S4
, (4.8)

with LS4 = (h1ξ̂)1/3.
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4.1 Asymptotic local behavior

We will now show explicitly that the solutions described by eq. (4.5) are asymptotically
locally AdS7 × S4. As described in greater detail in appendix A, the Riemann surface Σ2
admits a parametrization by Fefferman-Graham (FG) coordinates {v, ϕ} in terms of which
the line element takes the following asymptotic form for small v,

ds2 =
4L2

S4

v2

[
dv2 + α1

(
ds2

AdS3 + ds2
S3

)]
+ L2

S4

[
α3dϕ2 + α4 sin2 ϕ ds2

S̃3

]
, (4.9)

where the metric factors are of the form αi = 1 + O(v4) for i ∈ {1, 3, 4}. They are given
explicitly, together with the asymptotic mapping to FG coordinates on Σ2, in appendix A.
The asymptotic S4 radius LS4 can be expressed in terms of the moments

m̂k :=
2n+2∑
j=1

(−1)j ξ̂k
j (4.10)

as
L3
S4 = h1m̂1

2 . (4.11)

As claimed above, we may recognize within eq. (4.9), at leading order in v, the large-x limit
of the line element of AdS7 (with radius 2LS4) written in AdS3 slicing,

ds2
AdS7 = 4L2

S4

[
dx2 + cosh2 x ds2

AdS3 + sinh2 x ds2
S3

]
, (4.12)

where the coordinate normal to the AdS3 foliation is related to the FG coordinate via
x = log(2/v). The large-x limit trivializes the relative warping coth2 x between the AdS3
and the S3 subspaces, matching the behavior seen in eq. (4.9).

In the γ → −∞ limit, the auxiliary functions Φ and h̃ admit the following FG expansions,

Φ = −h̃ = 4m̂1 cosϕ
v2 + 2n̂1

m̂1
+ m̂1n̂2 − n̂2

1
m̂3

1
cosϕ v2 + O(v4) , (4.13)

where the moments n̂i are defined in eq. (A.9). Using these expansions, we find that the
asymptotic geometry in eq. (4.9) is supported by a four-form flux9

F(4)
L3
S4

= −16 cosϕ
v3 dv ∧ (volS3 + volAdS3) − 8 sinϕ

v2 dϕ ∧ (volS3 + volAdS3) (4.14)

+ 3 sin3 ϕ dϕ ∧ volS̃3 + 4 cosϕ m̂1n̂2 − n̂2
1

m̂4
1

v dv ∧ (volS3 + volAdS3) + O(v2).

The first line in the equation above manifests the deformation of the 6d ambient SCFT by
the insertion of a source, as already hinted at by the superalgebra structure discussed in
section 3. This deformation takes the form of an S-wave over the internal S̃3. It can be
compared to the undeformed theory, which corresponds to γ = −1/2. In that case, the
four-form field strength at the conformal boundary v = 0 is F(4) = 3L3

S4 volS4 , where S4 is

9In the following, we have made a choice on the signs τ1,2,3 in line with the constraint
∏3

i=1 τi = 1 which
follows from evaluating eq. (3.15) on the γ → −∞ solutions.
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Σ2

z
νξ1 ξ2

Ca

Ca

Σ2

ξ1

ν

ξ2

Figure 2. The 1PV solution described in section 4.2 is characterized by two singular points ξ{1,2},
which collapse to the same ν ∈ ∂Σ2 in the γ → −∞ limit. As discussed in section 4.3, the basis of
non-contractible four-cycles for this solution is one-dimensional. The profile of a representative cycle
Ca along Σ2 is shown; note that the same 3-sphere collapses at both of its endpoints on ∂Σ2. On the
right, the 1PV on the upper half plane is mapped to a semi-infinite strip.

the internal 4-sphere spanned by ϕ and S̃3. We can recognize this term as the first term
in the second line of eq. (4.14).

The field theory dual of the bulk S-wave described above can be studied by leveraging
the correspondence between the mass spectrum of fields in an asymptotically AdS spacetime
and the spectrum of scaling dimensions of the operators in the dual CFT [59–61]. In
particular, the mass of a 3-form gauge field in an asymptotically AdS7 spacetime is given
by m2 = λ2 = (∆ − 3)2 [61], where the leading v−3 divergence in eq. (4.14) determines
λ = 2. The solution for the scaling dimension of the dual boundary operator is either ∆ = 1
or ∆ = 5, but since only the latter sits above the unitarity bound, we will confine our
attention to ∆ = 5 operators in the dual field theory. There are only two such single trace
operators in the spectrum of superconformal primaries of the 6d N = (2, 0) superconformal
algebra; in the notation of [61], they are trψψ and trHϕ, which transform in the (6,10)
and (10,5) representations of Spin(6) × Sp(2)R, respectively. The field of candidates can be
further narrowed down by noting that the S-wave structure of the bulk deformation over
the internal 3-sphere suggests that the dual operator should be a singlet with respect to
an R-symmetry subalgebra su(2) × su(2) ∼= so(4) ⊂ so(5)R

∼= sp(2)R. The decompositions
10 → (2,2) ⊕ (3,1) ⊕ (1,3) and 5 → (1,1) ⊕ (2,2) allow us to identify trHϕ as the field
theory counterpart to the bulk deformation captured by eq. (4.14).

4.2 Single-pole vacuum

For later reference, we now identify a vacuum solution within the family of supergravity
backgrounds presented above. An appropriate choice of vacuum is necessary for computing
properties associated to a defect embedded in a holographic CFT. Indeed, in order to isolate
quantities which are intrinsic to a defect, one must ensure that the contributions due to
the ambient degrees of freedom are taken into account. The gravitational analogue of this
operation, upon recasting a field theory computation into a bulk one, is vacuum subtraction. In
particular we must use a vacuum solution which is characterized by the same bulk deformation
as the general solutions discussed above. As discussed above, pure AdS7 × S4 with γ = −1/2
does not satisfy this criterion, as the solutions we consider here with γ → −∞ contain a bulk
deformation as can be seen in the asymptotic expression for the flux given in eq. (4.14).
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We take the vacuum to be the 1PV we identified in eq. (4.6), which is the solution
corresponding to the γ → −∞ of pure AdS7 × S4, i.e. two singular points ξ{1,2} collapsing
to a single point ν, as shown in figure 2. More precisely, for general γ, the 1PV metric
is given in FG form by

ds2
1PV(γ)
L2
S4

= 4
v2

[
dv2 +

(
1 + 2γ + 3 − (2γ + 1)c2ϕ

16(γ + 1)2 v2
)

ds2
AdS3 (4.15)

+
(

(γ + 1)2

γ2 + 2γ − 1 − (2γ + 1)c2ϕ

16γ2 v2
)

ds2
S3 + O(v4)

]

+
[(

1 + (2γ + 1)(2c2ϕ + 1)
12(γ + 1)2 v2

)
s2

ϕds2
S̃3 +

(
1 +

(2γ + 1)c2
ϕ

4(γ + 1)2 v
2
)

dϕ2 + O(v4)
]
,

where in order to keep the expression manageable, we have adopted the abusive notation

cosx ≡ cx, and sin x ≡ sx, (4.16)

which will be employed from this point forward. For γ = −1/2, the 1PV recovers the
AdS7 × S4 vacuum in FG gauge. In the γ → −∞ limit which is of relevance here, the line
element of the 1PV becomes instead

ds2
1PV(γ → −∞) = 4LS4

v2

[
dv2 + ds2

AdS3 + ds2
S3 + O(v4)

]
+ L2

S4

[
s2

ϕds2
S̃3 + dϕ2 + O(v4)

]
.

(4.17)
Furthermore, as a quick sanity check, we can take the 1PV limit of eq. (4.7), which recovers
R|1PV = 3/(2L2

S4) as expected.
As remarked above, the 1PV contains no explicit defect data — as we will see later,

no Young Tableau can be associated to it. However, it does fully capture the bulk S-wave
deformation discussed previously. This follows from the fact that all terms in eq. (4.14) which
do not vanish at the conformal boundary v = 0 are independent of the moments {m̂i, n̂j}.
Therefore, the 6d ambient theory dual to the 1PV is deformed by the same sources as the
theories dual to completely generic γ → −∞ bulk solutions, and so, in this limit, there is
no smooth deformation of the field theory parameters that restores the ambient conformal
symmetry in full. This is to be contrasted with the global AdS7 × S4 solution, which enjoys
the full SO(6, 2) conformal symmetry. Lastly, in taking the 1PV limit, the solution exhibits
a flavor symmetry enhancement SO(4) → SO(5).

In the construction of [49] reviewed in section 2, the 1PV solution can be obtained from
eq. (2.2) by taking α→ 0 and setting g3 = 2

√
2/h1ξ̂. Alternatively, it can also be obtained

in the limit g → 0. To see this, first make a scale transformation using the scaling symmetry
given by eq. (3.32), take g to scale with λ as g3 = 2

√
2/h1ξ̂λ

3, and then take λ → ∞.

4.3 Partition data

In this subsection, our aim is to identify within the γ → −∞ solutions of eq. (4.5) a
basis of independent, non-contractible cycles threaded by four-form flux. Integrating the
flux along these cycles will allow us to compute the integral M-brane charges that label a
supergravity solution. In turn, this characterization will enable us to recast the specification
of a supergravity solution in the form of a partition containing the representation data
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associated to the defect string in the dual gauge theory, in analogy with the Wilson surfaces
of the γ = −1/2 solutions [44]. We begin by searching for independent, non-contractible
four-cycles through the 11d geometry of the pairwise-collapsed γ → −∞ solutions. Later, we
will comment on how the cycles are modified if less generic collapse dynamics are considered.

It is straightforward to see that, in the γ → −∞ limit, the volume of S3 vanishes on
∂Σ2 − {νj}2n+2

j=1 , i.e. all along the boundary of the Riemann surface, except at the locations
of the collapse points νj . In turn, any open curve on Σ2 with end points on ∂Σ2 − {νj}2n+2

j=1
will be a closed curved in the full 11d geometry. Therefore, any curve encircling at least one
of the distinct collapse midpoints νj will not be contractible to a point. This observation
allows us to build a basis for non-contractible four-cycles Ca, by taking the product of such
curves on Σ2 with S̃3, i.e.

Ca ≡ {Reiθ − ν2a−1 | 0 ≤ θ ≤ π} × S̃3 , (4.18)

for 1 ≤ a ≤ n+ 1. Note that any curve enveloping multiple νa’s can be decomposed into a
linear combination of curves enclosing a single collapse point; hence, to build an irreducible
basis of cycles, we take the radius R above such that Ca encircles only a single collapse point νa.

The Ca cycles alone do not exhaust the set of all non-contractible four-cycles. Indeed,
we can consider a four-cycle constructed from a curve on Σ2 connecting singular points νa.
For irreducibility, we only consider curves connecting neighboring collapse points. While
the singular nature of their endpoints might make such curves appear problematic at first
glance, building a regular four-cycle from such a curve is possible as the volume of S3 vanishes
at both endpoints, while the volume of S̃3 remains finite. Indeed, the metric factor of S3

contains h1H
−1/3, while the metric factor of S̃3 has ρ2H2/3, and from eq. (4.5), the function

H goes as ρ−3 near any collapse point νa. Thus, the cycle

C′
a ≡

{1
2(ν2a+1 − ν2a−1)eiθ + 1

2(ν2a+1 + ν2a−1)
∣∣∣ 0 ≤ θ ≤ π

}
× S3 , (4.19)

has the desired behavior of a non-contractible four-cycle. The distinction between the Ca and
C′

a cycles is illustrated in figure 3. Given that, by construction, they connect neighboring
collapse points, there are n distinct such cycles C′

a. Combining them with the n+ 1 cycles Ca,
we can thus build a basis consisting of 2n+ 1 non-contractible four-cycles in the solutions
defined by eq. (4.5).

Having identified a basis for non-contractible four-cycles, we are now in a position to
derive the M-brane charges by integrating the four-form flux over the Ca. To ease the
computation, we abstractly write the flux as [49]

F(4) = 2h1 volAdS3 ∧dz + 2h1 volS3 ∧dz
+ ∂zHρ

3dρ ∧ volS̃3 −∂ρHρ
3dz ∧ volS̃3 .

(4.20)

The pull-back of the four-form field strength F(4) onto any of the Ca cycles eliminates the
first two terms in eq. (4.20). Integrating along a given Ca then yields∫

Ca

PCa [F(4)] = 2h1 Vol(S̃3)(ξ̂2a − ξ̂2a−1) . (4.21)
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Σ2

z

ρ

ν2a−3 ν2a−1 ν2a+1

C′
aCa

Figure 3. The profile of the non-contractible four-cycles Ca and C′
a in Σ2. Every point on the red

and blue curves is a 3-sphere.

The choice of orientation we made while defining the cycles Ca ensures that the integral
above is positive. This enables us to define the following charge

Ma = 1
2(4π2GN )1/3

∫
Ca

PCa [F(4)] , (4.22)

which can be interpreted as the number of M5-branes in the ath stack [37], which obeys∑
aMa = M with M being the total number of M5-branes.

It is also possible to generalize the construction above. As we mentioned previously, we
can in fact build four-cycles surrounding more than one collapse point νa. The four-cycle
defined by Cbc ≡

∑c
a=b Ca, with 1 ≤ b ≤ c ≤ n+ 1, is also non-contractible by construction,

and is characterized by a charge∫
Cbc

PCbc
[F(4)] = 2h1 Vol(S̃3)

c∑
a=b

(ξ̂2a − ξ̂2a−1) , (4.23)

under the four-form field strength.
We can follow a similar analysis for the flux threading the other set of non-contractible

four-cycles, which we labelled C′
a earlier. In this case, only the second term in eq. (4.20)

provides a non-vanishing contribution after pulling back the four-form field strength F(4)
to the cycle C′

a. Integrating the flux through C′
a gives∫

C′
a

PC′
a
[F(4)] = 2h1 Vol(S3)(ν2a+1 − ν2a−1) . (4.24)

Similar to the integrated fluxes through the Ca cycles, we define the charge

M ′
a = 1

2(4π2GN )1/3

∫
C′

a

PC′
a
[F(4)] , (4.25)

which is read as the number of M5′-branes in the ath stack (see table 1).
Again, we can easily generalize this analysis to four-cycles that connect non-neighboring

collapse points νa. Denoting the sum of four-cycles as C′
bc ≡

∑c
a=b C

′
a, where given the

construction of the C′
a in eq. (4.24) 1 ≤ b ≤ c ≤ n, the integral of the flux through this

cycle is simply ∫
C′

bc

PC′
bc

[F(4)] = 2h1 Vol(S3)
c∑

a=b

(ν2a+1 − ν2a−1) . (4.26)
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N1

M1

M2

M3

M4

N4

(a)

N1

M1

M2

M3

N3

(b)

Figure 4. (a) Young diagram corresponding to the partition specifying a γ → −∞ solution with
5 distinct νa constructed by pairwise collapse of 10 different ξj . (b) Young diagram obtained by
“multiwise” collapse of 10 different ξj to 4 distinct νa. Another way to realize the construction of (b)
starts from the partition in (a) and collapses ν2 = ν3.

In addition, following [37] we can deduce the number of M2-branes ending on the ath

stack of M5-branes, which we denote

Na =
n∑

b=a

M ′
b = h1 Vol(S3)

(4π2GN )1/3

n∑
b=a

(ν2b+1 − ν2b−1) . (4.27)

One may notice how the definition of the collapse points νa influences the properties of Na.
Indeed, since {νa} is an ordered set, we see that Na ≥ Nb for a ≤ b. In other words, the set
{Na} forms a partition of the total number of M2-branes N =

∑
aNa, and so it is possible to

define a Young diagram to encode the brane charges as illustrated in figure 4(a).
We can now recast the various moments defined in eqs. (4.10) and (A.9) in terms of

this partition data. Since only m̂1 appears in the asymptotic expansions in appendix A,
and so also in the physical quantities computed using those expansions, we will not treat
the higher m̂j moments and simply write

m̂1 =
2n+2∑
j=1

(−1)j ξ̂j = (4π2GN )1/3

h1 Vol(S̃3)
M , (4.28)

which gives back the usual relation between M and the length scale on the S4,

L3
S4 = h1m̂1

2 = (GN )1/3

(2π)4/3 M . (4.29)

The n̂j moments are a bit trickier to re-express in terms of Ma and Na, but one can show
that the following relation holds for any j

j∑
k=0

(−1)j+k j!
k!(j − k)!ν

k
2n+1 n̂j−k =

(
G

1/3
N

h1π(2π)1/3

)j+1 n+1∑
a=1

MaN
j
a , (4.30)
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where it is understood that n̂0 = m̂1. However, we will only require relations up to j = 2
moving forward. Using the expressions above, we can write

n̂2
1 − m̂1n̂2 = G

4/3
N

h4
1π

4(2π)4/3

(n+1∑
a=1

MaNa

)2

−M
n+1∑
a=1

MaN
2
a

 , (4.31)

which will be useful in the following section.
Before moving on, we recall from our previous discussion that it is also possible to

consider solutions where more than two branch points ξj collapse to a single point νa and,
of course, build non-contractible four-cycles around or connecting them. Let us again index
the p distinct loci of collapse as νa, where now 1 ≤ a ≤ p+ 1 with p ≤ n. The limiting case
p = n recovers the pairwise collapse described above. It will be useful to label Ia and Ka

respectively as the smallest and largest j-indices of the ξj branch points which collapse to a
given νa, i.e. νa := νIa = νIa+1 = · · · = νKa . The ordering of the collapse points νa and of
the branch points ξj was discussed previously in section 4; in particular, we recall that the
parameters ξ̂j ’s associated to the branch points collapsing to the same νa are ordered amongst
themselves. In the end, the analysis for these “multiwise” collapse solutions is identical to
the one presented above for the pairwise collapse scenario, up to the replacements

ξ̂2a − ξ̂2a−1 −→
Ka∑

j=Ia

(−1)j ξ̂j (4.32)

and n→ p throughout the expressions above. The net effect is that the partition data yields a
differently shaped Young diagram, illustrated in figure 4(b). In particular, since the multiwise
collapse can greatly reduce the number of singular points on the boundary of the Riemann
surface, we see that the Young tableaux specifying the γ → −∞ solutions have at most p
rows. This is a striking difference compared to the Young tableau construction of [44] for
the Wilson surface solutions with γ = −1/2, whose associated Young tableaux always have
n rows. This difference is maximal in the 1PV solution described in section 4.2, to which
one cannot attach any Young tableau interpretation at all. This is due to the fact that the
1PV solution features a single collapse point ν, so that the construction of the C′

a cycle fails,
thus preventing the definition of the M ′

a and Na charges.

5 Entanglement entropy of small N = (4, 4) surface defects

The entanglement entropy SEE of a spatial subregion B within a QFT is defined as the
von Neumann entropy of the reduced density matrix obtained by tracing out the states in
the complementary region B of the QFT. For CFTs with weakly coupled gravity duals, the
RT prescription [62–64] holographically recasts the computation of SEE into the following
Plateau problem in the asymptotically AdS bulk,

SEE = min
ζ

A[ζ]
4GN

, (5.1)

where A[ζ] is the area functional evaluated on a bulk hypersurface ζ which is homologous
to the chosen spatial subregion in the dual CFT: ζ ∪ B = ∂b for some static bulk subregion
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b. We will denote this extremal bulk hypersurface as ζRT. In the computations below, we
choose the spatial subregion to be an Euclidean 5-ball, B = B5

R ↪→ R5, with radius R. We
take B to be centered on the spatial extent of the surface defect, which has a Lorentzian
worldvolume Υ2 = R1,1.

In an ordinary QFT, the presence of highly entangled UV degrees of freedom induces
short-distance divergences near the surface ∂B = S4. Most of the divergences in the EE of a
general QFT are non-universal and shape-dependent. However, in even dimensional theories,
there are universal log-divergent contributions to the EE, which are generically related at
conformal fixed points to the Weyl anomalies of the CFT.

This is true in the presence of a defect as well, but we see additional divergences that arise
from the defect degrees of freedom near Υ2 ∩ ∂B. In order to isolate these defect-localized
contributions, we will adopt a scheme where we subtract off the EE of the deformed, vacuum
ambient CFT, SEE[∅], from the EE computed in the presence of the defect SEE[Υ2]. We can
then extract the coefficient of the universal, log-divergent part of the defect contribution
to the sphere EE by

S
(univ)
EE = R

d
dR (SEE[Υ2] − SEE[∅])

∣∣
R→0 . (5.2)

In [45], it was shown that the contribution to the log-divergent part of the EE of a spherical
region coming from a flat, 2d conformal defect embedded in a d-dimensional flat-space
ambient CFT takes the form of a linear combination of defect localized Weyl anomalies.
Explicitly, for a 6d ambient CFT

S
(univ)
EE = 1

3

(
aΥ − 3

5d2

)
. (5.3)

where aΥ is the A-type defect Weyl anomaly coefficient — i.e. appearing with the intrinsic
Euler density — and d2 is the B-type anomaly that enters with the trace of the pullback of
the ambient Weyl tensor. Importantly, while [45] demonstrated that d2 ≥ 0 based on energy
conditions, aΥ, though obeying a defect “c-theorem”, has no positivity constraints. This
means that as opposed to an ordinary, unitary 2d CFT where the universal part of the EE is
proportional to the central charge [65] and, hence, is non-negative, it is clear from eq. (5.3)
that S(univ)

EE is not similarly bounded nor is it RG monotonic.
In completing the holographic computation, we also need to contend with the fact that

the FG expansion is not globally defined as it typically breaks down in a region near the AdS
submanifold that is dual to the insertion of the defect in the field theory. However, we have a
full analysis of the asymptotic expansions of the data specifying the γ → −∞ solutions in
appendix A, and we have the general prescription for the FG transformation suitable for the
defect EE in [66]. Together, we will be able to unambiguously holographically compute S(univ)

EE .
To begin the holographic computation of the defect EE, we choose the following

parametrization for the AdS3 subspace in eq. (4.9),

ds2
AdS3 = 1

u2

(
du2 − dt2 + dx2

∥

)
. (5.4)

Furthermore, we take the RT hypersurface ζ to wrap both S3 and S̃3, and its profile in
the remaining subspace to be described by x∥(u, ρ, z). The area of ζ as measured against
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the metric in eq. (4.9) is then

A[ζ] = Vol(S3) Vol(S̃3)
∫

du
∫

Σ2
dρdz L , (5.5)

where the Lagrangian is

L = h2
1ρ

3

u2

[
h1
(
(∂ρx∥)2 + (∂zx∥)2

)
H(z, ρ) + u2

(
1 + (∂ux∥)2

)
H(z, ρ)2

]1/2
. (5.6)

As shown in [67], the minimal area surface wraps the Riemann surface Σ2 too, so that
∂ρx∥ = ∂zx∥ = 0. The Lagrangian is thus minimized by

x2
∥ + u2 = R2, (5.7)

for a constant R, so that the area of the extremal hypersurface ζRT is

A[ζRT] = h3
1 Vol(S3) Vol(S̃3) log

(2R
ϵu

)∫
Σ2

dρdz ρ3
2n+2∑
j=1

(−1)j ξ̂j

(ρ2 + (z − νj)2)3/2 + O(ϵ2u), (5.8)

where we introduced a small-u cut-off ϵu > 0.
The evaluation of the integral above is performed in detail in appendix B. The resulting

holographic entanglement entropy is

SEE[Υ2] =
π4L9

S4

GN
log

(2R
ϵu

)[64
3

1
ϵ4v

+ 16
5
n̂2

1
m̂4

1
− 16

5
n̂2
m̂3

1
+ O(ϵ2v)

]
+ O(ϵ2u), (5.9)

where ϵv > 0 is a small-v cutoff in the FG parametrization.
Subtracting off the 1PV contribution to the entanglement entropy, S1PV

EE , precisely
removes the ϵ−4

v divergence from eq. (5.9), and leaves the O(ϵ0v) term unchanged. To see this,
we recall that the 1PV limit takes n̂k → 0, which in eq. (5.9) gives

S1PV
EE =

π4L9
S4

GN
log

(2R
ϵu

)[64
3

1
ϵ4v

+ O(ϵ2v)
]

+ O(ϵ2u). (5.10)

Therefore, we can at once compute the coefficient of the universal part of the defect sphere
EE using eq. (5.2) and plugging in eqs. (5.9) and (5.10) with SEE[∅] = S1PV

EE to find

S
(univ)
EE = 16

5
π4L9

S4

GN

n̂2
1 − m̂1n̂2
m̂4

1
(5.11a)

= 1
5M

(n+1∑
a=1

MaNa

)2

−M
n+1∑
a=1

MaN
2
a

 , (5.11b)

where we have mapped to field theory quantities using L3
S4 = G

1/3
N

(2π)4/3M and used the definitions
of moments n̂j , m̂j in terms of the numbers of branes in eqs. (4.28) and (4.31). In terms of
the highest weight ϖ of the AM−1 irreducible representation encoded in the Young diagrams
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that specify the defect discussed in the previous section, we can re-express the defect sphere
EE as [44]

S
(univ)
EE = −(ϖ,ϖ)

5 , (5.12)

where (·, ·) is the scalar product on the weight space induced by the Killing form.
We also note that the contribution of the aforementioned bulk deformation to the

coefficient of the universal, log-divergent component of the vacuum-subtracted entanglement
entropy is

S
(univ,bulk−def.)
EE = 8

3
π4L9

S4

GN
= M3

6 . (5.13)

This is independent of the moments (m̂i, n̂j), in line with the lack of Young Tableau data
associated to the bulk deformation. Had we subtracted in eq. (5.2) the AdS7 × S4 vacuum,
rather than the 1PV, the resulting entanglement entropy would have received both the defect
and bulk deformation contributions above.

Finally, we note that the same quantity can be trivially computed in the orbifolded
theory described in section 3.3 simply by rescaling

S
(univ)
EE −→ Vol(S3/Zk) Vol(S̃3/Zk′)

Vol(S3) Vol(S̃3)
S

(univ)
EE = S

(univ)
EE
kk′

. (5.14)

6 Summary and outlook

In this work, we have constructed a novel class of solutions in 11d SUGRA that are holograph-
ically dual to 2d superconformal defects preserving small N = (4, 4) and N = (0, 4) SUSY in
6d SCFTs at large M . These solutions fit into the one-parameter family organized in a general
classification scheme of 11d SUGRA solutions with superisometry d(2, 1; γ) ⊕ d(2, 1; γ) [37];
specifically, they are obtained in the γ → −∞ limit. There are several features of these new
solutions that separate them from the more familiar γ = −1/2 case that holographically
corresponds to 1/2-BPS Wilson surface type defects in the 6d N = (2, 0) AM−1 SCFT.

Within the one-parameter family of solutions labelled by γ, the γ → −∞ limit is slightly
unusual from the superalgebra perspective. Despite producing an AdS7 × S4 asymptotic
geometry as shown in section 3, taking the γ → −∞ limit means that d(2, 1; γ) ⊕ d(2, 1; γ)
is not a subalgebra of the osp(8∗|4) superisometry of AdS7 × S4. On the field theory side
of the holographic duality, this means that the ambient theory into which the defects are
inserted is some deformation of the 6d N = (2, 0) SCFT.

We have seen that choosing all of the singular loci in the internal space to collapse to a
single point — a configuration which we label 1PV — destroys the data that specifies the
defect, i.e. the Young diagram corresponding to the arrangement of M5-branes. However, as
is clear from the discussion in section 4.2, the vacuum that we arrive at has an isometry group
of SO(2, 2) × SO(3) × SO(5), as opposed to the vacuum solution at γ = −1/2, which instead
enjoys the full SO(6, 2). In the latter case, the trivial defect corresponds to a Wilson surface
transforming in the 1 of AM−1, and the conformal symmetry of the ambient 6d N = (2, 0)
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theory is restored. For γ → −∞, the trivial defect dual to the 1PV still possesses what
looks like the ‘defect’ conformal symmetry despite being the vacuum solution, which renders
giving a precise definition for and interpretation of the defect CFT difficult. The 1PV does,
however, enable us to correctly employ a background subtraction scheme10 and arrive at a
finite result for S(univ)

EE and, we believe, resolves the puzzling appearance of divergences in
the “defect central charge” computed in [49].

On a more fundamental level, the small N = (4, 4) defects at γ → −∞ cannot be
viewed as a smooth deformation of the Wilson surface defects at γ = −1/2. Indeed, the
γ → −∞ solutions cannot even be smoothly deformed into the solution at γ = 0, to which
they are related by the involution γ 7→ 1/γ with an exchange of the so(3) ⊕ so(3) factors in
d(2, 1; γ; 0)⊕ d(2, 1; γ; 0). The reason is that there is a special point at γ = −1 where the real
form d(2, 1; γ; 0) becomes osp(4|2;R). At this value of γ, SO(2, 2) Wigner-İnönü contracts
to ISO(1, 2), and AdS3 becomes R2,1. Therefore, the γ → −∞ solutions are isolated from
the other class of asymptotically AdS7 × S4 geometries.

In light of the new small N = (4, 4) solutions that we have constructed and holographically
studied, there are a number of open questions that remain to be answered.

Firstly, as we discussed at the start of section 5 , the contribution from a flat 2d conformal
defect to the log-divergent, universal part of the EE of a spherical region in a d ≥ 4 ambient
CFT is built from a linear combination of two defect Weyl anomaly coefficients, aΥ and d2
that characterize the defect theory. In order to disentangle these two fundamental defect
quantities, we would compute a second holographic quantity that contains either aΥ or d2.
For instance, d2 controls the normalization of the one-point function ⟨Tµν⟩ of the stress-
energy tensor, which can be readily computed for most 10d or 11d supergravity solutions
by dimensional reduction on the internal space [68, 69]. Therefore, it is natural to try to
compute d2 and S

(univ)
EE in order to isolate the independent defect Weyl anomalies.11 This

was successfully done for the Wilson surfaces at γ = −1/2 in [44] and for codimension-2
defects in [71]. However, the γ → −∞ solutions are more subtle, and a naïve application
of dimensional reduction techniques would be inappropriate. Namely, in reducing the 11d
solutions to 7d, the presence of the non-trivial four-form flux modifies the gravitational
equations of motion at the conformal boundary of AdS7, which violates the assumptions
in [68]. Therefore, computing d2 holographically from ⟨Tµν⟩ requires a generalization to
account for flux contributions, which is the subject of ongoing work.

Furthermore, it is natural to look for physical observables which can be reliably computed
on the field theory side and employed to test the holographic predictions made above. For
2d BPS conformal defects in 6d AM−1 and DM N = (2, 0) SCFTs at large M , recent
developments in analytic bootstrap methods have enabled the computation of correlations
functions in the presence of 2d defects that are controlled by anomalies [47, 72]. Further,
despite the lack of a Lagrangian description and of supersymmetric localization methods for

10Here, “correctly” refers to a background subtraction which also removes any contributions from the trivial
defect. As we have demonstrated, the same cannot be said of a subtraction scheme which utilizes vacuum
AdS7 × S4.

11In fact, aΥ and d2 are the only independent defect Weyl anomaly coefficients for superconformal defects
preserving at least 2d N = (0, 2) supersymmetry. This was shown for co-dimension four defects in 6d SCFTs
in [47] and co-dimension two defects in 4d SCFTs in [70].
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6d SCFTs at large M , chiral algebra methods have also been shown to give exact results
for defect correlators [72] and the defect SUSY Casimir energy [17, 46]. Currently, only
Wilson surface type defects, i.e. the holographically dual theories to the γ = −1/2 solutions,
have been studied using these field theory techniques. It is reasonable to wonder whether
any of these methods are applicable to the types of defects in the deformed 6d theory that
we have constructed in this work.

The biggest hurdle to clear in trying to generalize bootstrap or chiral algebra methods
for use in the dual to the 1PV of the γ → −∞ solutions is clarifying the precise role of the
deformation parameter γ. As we have explained in the γ → −∞ limit, the ambient 6d theory
has reduced global and conformal symmetries, and there is no smooth path in field theory
space as γ is varied through the point γ = −1 to get from the 6d AM−1 N = (2, 0) theory
to the dual of the 1PV solution. While it is currently unknown precisely what symmetry
breaking operators are sourced on the field theory side in the γ → −∞ limit, we have identified
trHϕ as the most promising candidate dual operator. As this is a dimension five operator, it
can be integrated over Υ2 × S3 with Υ2 corresponding to the submanifold supporting the
Wilson surface and the transverse S3 being wrapped by the 3-form H. A simple check for
this proposal would be to see if this deformation preserves supersymmetry in the free theory.
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A Fefferman-Graham parametrization

In this appendix, we will be concerned with finding a reparametrization {w, w̄} → {v, ϕ} of the
Riemann surface Σ2 under which the 11d SUGRA solution in eq. (3.9) can be asymptotically
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(in particular, for small v) recast into the following form,

ds2 =
4L2

S4

v2

[
dv2 + α1ds2

AdS3 + α2ds2
S3

]
+ L2

S4

[
α3dϕ2 + α4s

2
ϕds2

S̃3

]
, (A.1)

for some O(v0) metric factors {αi}4
i=1. By imposing that the metric factor in the v direction

be exact in v, as above, we can reconstruct the asymptotic reparametrization order by order
in v and in terms of polar coordinates

r =
√
z2 + ρ2 and θ = arctan(ρ/z) (A.2)

on Σ2 to be the following,

r(v, ϕ) = −2(γ + 1)2m1
γv2 + (2γ + 1)m1 (c2ϕ − 3)

24γ + m2cϕ

2m1
+
[

3γ2m2
2 (7c2ϕ + 1)
4m3

1
(A.3a)

− γ2m3 (5c2ϕ + 3)
m2

1
−

2γ(2γ + 1)m2cϕs
2
ϕ

m1
− 1

16(8γ(γ + 1) + 3)m1c2ϕ

+ 37
48γ(γ + 1)m1 + 73m1

192 + 19
192(2γ + 1)2m1c4ϕ

]
v2

48γ(γ + 1)2 + O(v4),

θ(v, ϕ) = ϕ+ (2γ + 1)m2
1cϕ + 3γm2

12(γ + 1)2m2
1

sϕv
2 +

[
9γ2m2

2s2ϕ

8m4
1

− 5γ2m3s2ϕ

6m3
1

(A.3b)

+ cϕsϕ

(
5(2γ + 1)2c2ϕ − 24γ(γ + 1) − 7

)
48

+ γ(2γ + 1)m2 (3c2ϕ − 1) sϕ

12m2
1

]
v4

16(γ + 1)4 + O(v6) ,

where we introduced the moments

mk :=
2n+2∑
j=1

(−1)jξk
j . (A.4)

Under this mapping, the metric takes the desired form of eq. (A.1) with the following
metric factors

α1(γ) = 1 + 2γ + 3 − (1 + 2γ)c2ϕ

16(γ + 1)2 v2 +
[
9
(
4(3γ − 13)γ + 16γ2κ− 17

)
(A.5a)

−67(2γ + 1)2c4ϕ + 12
(
8(3γ + 1)γ + 20γ2κ+ 3

)
c2ϕ

] v4

18432(γ + 1)4 + O(v6) ,

α2(γ) = (γ + 1)2

γ2 + 2γ − 1 − (1 + 2γ)c2ϕ

16γ2 v2 +
[
9
(
4(3γ + 19)γ + 16γ2κ+ 47

)
(A.5b)

−67(2γ + 1)2c4ϕ + 12
(
8(3γ + 5)γ + 20γ2κ+ 19

)
c2ϕ

] v4

18432γ2(γ + 1)2 + O(v6) ,

α3(γ) = 1 +
(2γ + 1)c2

ϕ

4(γ + 1)2 v
2 +

[
−12(γ + 1)γ − 24γ2κ− 9 + 6(2γ + 1)2c2ϕ (A.5c)

+7(2γ + 1)2c4ϕ

] v4

768(γ + 1)4 + O(v6) ,
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α4(γ) = 1 + (2γ + 1)(2c2ϕ + 1)
12(γ + 1)2 v2 +

[
−52(γ + 1)γ − 24γ2κ− 19 (A.5d)

+79(2γ + 1)2c4ϕ + 12
(
−2(γ + 1)γ − 10γ2κ− 3

)
c2ϕ

] v4

4608(γ + 1)4 + O(v6) ,

where, to the order shown, the moments {mi} enter the metric factors only in the combination

κ ≡ 3m2
2 − 4m1m3
m4

1
. (A.6)

Note that κ is invariant under coordinate transformations {ξi 7→ ξi + λ}, even though m2
and m3 are not individually. From this mapping, we also deduce the curvature scale of
the asymptotic local S4 in FG gauge,

L3
S4 = |1 + γ|3

γ2
h1m1

2 . (A.7)

We can now take the γ → −∞ limit, accompanied by appropriate rescalings as described
in section 4, to determine the asymptotic local behavior of the metric in eq. (3.27). In
this limit, we find that

κ

γ2 → 12(n̂2
1 − m̂1n̂2)
m̂4

1
, (A.8)

where we introduced the additional moments

n̂k :=
2n+2∑
j=1

(−1)jνk
j ξ̂j . (A.9)

Furthermore, we find that this limiting procedure trivializes the relative warping between
AdS3 and S3; that is, α1(γ → −∞) = α2(γ → −∞). Overall, the limit γ → −∞ produces
the FG line element advertized in eq. (4.9), with the following metric factors,

α1(γ → −∞) = 1 + (3 + 5c2ϕ)(n̂2
1 − m̂1n̂2)

32m̂4
1

v4 (A.10a)

− 5(1 + 7c2ϕ)(2n̂3
1 − 3m̂1n̂1n̂2 + m̂2

1n̂3)cϕ

144m̂6
1

v6 + O(v8),

α3(γ → −∞) = 1 + 3(m̂1n̂2 − n̂2
1)

8m̂4
1

v4 + 5(2n̂3
1 − 3m̂1n̂1n̂2 + m̂2

1n̂3)cϕ

12m̂6
1

v6 + O(v8), (A.10b)

α4(γ → −∞) = 1 + (1 + 5c2ϕ)(m̂1n̂2 − n̂2
1)

16m̂4
1

v4 (A.10c)

+ 5(5cϕ + 7c3ϕ)(2n̂3
1 − 3m̂1n̂1n̂2 + m̂2

1n̂3)
144m̂6

1
v6 + O(v8) ,

and with S4 radius given by eq. (4.11).
Finally, we note that, if all points are taken to collapse to the origin, νj = 0 for

j ∈ {1, 2, . . . , 2n+ 2}, the asymptotic reparametrization in eq. (A.3) becomes exact,

r(v, ϕ) = 2m̂1
v2 (A.11a)

θ(v, ϕ) = ϕ . (A.11b)
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B Area of the Ryu-Takayanagi hypersurface

In this appendix, we fill in the technical details of the computation of the holographic
entanglement entropy in eq. (5.9).

We begin by treating the integral in eq. (5.8). In order to exploit the geometry of the
internal space and facilitate an easier path to evaluating the remaining integral, we first
transform to polar coordinates {r, θ}, introduced in eq. (A.2), with θ ∈ [0, π]. We can then
expand the summands in eq. (5.8) on the complete basis of L2(0, π) functions spanned by
the Legendre polynomials, Pk(cθ). The harmonic function H can then be written in two
equivalent representations

H(r, θ) =


h1
2
∑2n+2

j=1 (−1)j ξ̂j |νj |−3
(∑∞

k=0 r
kν−k

j Pk(cθ)
)3
, r ∈ [0, |νj |),

h1
2
∑2n+2

j=1 (−1)j ξ̂jr
−3
(∑∞

k=0 r
−kνk

j Pk(cθ)
)3
, r ∈ (|νj |,Λr(ϵv, 0)],

(B.1)

which converge when integrated in r over their respective domains. We have also introduced
in the second line of eq. (B.1) a cutoff scale Λr at large r, which from the transformation
to FG gauge in eq. (A.3) can be expressed in a small ϵv expansion as

Λr(ϵv, θ) = 2m̂1
ϵ2v

+ n̂1cθ

m̂1
+ (3 + 5c2θ)m̂1n̂2 − (5 + 3c2θ)n̂2

1
16m̂3

1
ϵ2v + O(ϵ4v). (B.2)

Thus, the remaining integral in the area functional can be partitioned into two separate
contributions

A[ζRT] =
32π4L9

S4

m̂3
1

log
(2R
ϵu

) 2n+2∑
j=1

(−1)j ξ̂j

(
I(1)

j + I(2)
j

)
+ O(ϵ2u), (B.3)

where both integrals

I(1)
j =

∫ π

0
dθ
∫ |νj |

0
dr r4s3

θ

 1
|νj |

∞∑
k=0

(
r

νj

)k

Pk(cθ)

3

, (B.4a)

I(2)
j =

∫ π

0
dθ
∫ Λr(ϵv ,θ)

|νj |
dr r s3

θ

( ∞∑
k=0

(
νj

r

)k

Pk(cθ)
)3

, (B.4b)

are convergent.
At first glance, eq. (B.4) may not seem to put us in a better position to evaluate the

integral, but we can exploit the properties of Pk(cθ) over the interval θ ∈ [0, π]. In particular,
we can make use of the orthogonality relation of the triple-product of Legendre polynomials

∫ π

0
dθ sθ Pℓ1(cθ)Pℓ2(cθ)Pℓ3(cθ) = 2

ℓ1 ℓ2 ℓ3
0 0 0

2

, (B.5)

where the right-hand side is the Wigner 3j-symbol. Since this particular 3j-symbol has
vanishing magnetic quantum numbers, if ℓ ≡ ℓ1 + ℓ2 + ℓ3 is even and together the ℓi satisfy
the triangle inequality, then it can neatly be expressed asℓ1 ℓ2 ℓ3

0 0 0

 = (−1)ℓ/2(ℓ/2)!√
(ℓ+ 1)!

3∏
i=1

√
(ℓ− 2ℓi)!

(ℓ/2 − ℓi)!
. (B.6)
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Otherwise, if ℓ is not even or the triangle inequality is violated, the 3j-symbol vanishes.
Additionally, the following identity

Pℓ1Pℓ2 =
ℓ1+ℓ2∑

ℓ3=|ℓ1−ℓ2|

ℓ1 ℓ2 ℓ3
0 0 0

2

(2ℓ3 + 1)Pℓ3 , (B.7)

is particularly useful in the evaluation of the θ-integrals in eq. (B.4), where for brevity we
denoted Pℓ ≡ Pℓ(cθ). Eventually, after applying both eqs. (B.5) and (B.7), we find that the
θ-integrals in I(1)

j can be handled with the help of

∫ π

0
dθ s3

θPℓ1Pℓ2Pℓ3 = 4
3

ℓ1 ℓ2 ℓ3
0 0 0

2

− 4
3

2+ℓ1∑
k=|2−ℓ1|

(2k + 1)

2 ℓ1 k
0 0 0

2k ℓ2 ℓ3
0 0 0

2

. (B.8)

The integrals I(1)
j and I(2)

j may be further simplified by considering the convergence
properties of the sum, which allow us to integrate each term in r separately. Doing so, we
rapidly see the usefulness of the previous θ-integral formulae, which appear explicitly as

I(1)
j =

∑
ℓ1,ℓ2,ℓ3

1
5 + ℓ

νℓ+2
j

|νj |ℓ
∫ π

0
dθ s3

θPℓ1Pℓ2Pℓ3 , (B.9a)

I(2)
j =

∑
ℓ1,ℓ2,ℓ3

ℓ̸=2

νℓ
j

2 − ℓ

∫ π

0
dθ s3

θPℓ1Pℓ2Pℓ3

[
Λ2−ℓ

r (ϵv, θ) −
ν2

j

|νj |ℓ

]

+
∑

ℓ1,ℓ2,ℓ3
ℓ=2

ν2
j

∫ π

0
dθ s3

θPℓ1Pℓ2Pℓ3 ln
(

Λr(ϵv, θ)
|νj |

)
, (B.9b)

where we have isolated the ℓ = 2 mode in I(2)
j in order to handle the potential log divergence

as a separate case.
Starting with the sum on the second line of eq. (B.9b), we first expand the integral in

small ϵv using eq. (B.2). Using the integral formulae for the Legendre polynomials above,
we find that the leading ln

(
2m̂1/ϵ

2
v

)
divergence contains no additional θ-dependence, and so

due to the constraint that ℓ = 2, is weighted with P 2
1 + P2, and vanishes upon integration.

Thus, we find that

2n+2∑
j=1

(−1)j ξ̂j

∑
ℓ1,ℓ2,ℓ3

ℓ=2

ν2
j

∫ π

0
dθ s3

θPℓ1Pℓ2Pℓ3 ln
(

Λr(ϵv, θ)
|νj |

)
= O(ϵ4v) . (B.10)

Hence, the only meaningful contributions to A[ζRT] from I(2)
j come from the first line in

eq. (B.9b).
Moving on to the cutoff-dependent integrand on the first line of eq. (B.9b), we can

again utilize the small ϵv expansion in eq. (B.2). Since the leading divergence in Λr(ϵv, θ)
is O(1/ϵ2v), we can neglect any integral for ℓ > 2 as it will vanish as O(ϵ2v). Truncating to
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the sum to ℓ < 2, expanding in small ϵv, and evaluating the sum over j, we find that the
total contribution to A[ζRT] from the first sum in eq. (B.9b) is

2n+2∑
j=1

(−1)j ξ̂j

∑
ℓ1,ℓ2,ℓ3

ℓ ̸=2

νℓ
j

2 − ℓ

∫ π

0
dθ s3

θPℓ1Pℓ2Pℓ3Λ2−ℓ
r (ϵv, θ) = 8m̂3

1
3ϵ4v

+ 2n̂2
1

5m̂1
+ O(ϵ2v). (B.11)

Finally, we treat the remaining sums in eq. (B.9a) and the second term on the first line
of eq. (B.9b) together. Firstly, we note that the integral at ℓ = 2 in I(1)

j vanishes due the
integrand being of the form P 2

1 +P2. Secondly, we make use of eq. (B.8) explicitly and observe
that only the ℓ = 0 term contributes. That is, if we decompose the sum as partial sums in ℓ,

∑
ℓ1,ℓ2,ℓ3

ℓ̸=2

( 1
5+ℓ

− 1
2−ℓ

)∫ π

0
dθ s3

θPℓ1Pℓ2Pℓ3 =
∞∑

a=0
a ̸=2

( 1
5+a

− 1
2−a

) ∑
ℓ1,ℓ2,ℓ3

ℓ=a

∫ π

0
dθ s3

θPℓ1Pℓ2Pℓ3

=−2
5 − 5

6
∑

ℓ1,ℓ2,ℓ3
ℓ=1

∫ π

0
dθ s3

θPℓ1Pℓ2Pℓ3 + . . . , (B.12)

we find that all the partial sums with ℓ > 0 vanish and −2/5 is the exact result.
Putting all of the results above together and taking the sum over j, we find

2n+2∑
j=1

(−1)j ξ̂j(I(1)
j + I(2)

j ) = 8m̂3
1

3ϵ4v
+ 2

5
n̂2

1 − n̂2m̂1
m̂1

+ O(ϵ2v). (B.13)

Plugging in to eq. (B.3), the unregulated area of the RT hypersurface is

A[ζRT] = π4L9
S4 log

(2R
ϵu

)[256
3

1
ϵ4v

+ 64
5
n̂2

1
m̂4

1
− 64

5
n̂2
m̂3

1
+ O(ϵ2v)

]
+ O(ϵ2u). (B.14)

It is then straightforward to see that SEE is given by eq. (5.9).

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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