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1 Introduction

The modular symmetry plays a crucial role in string theory. It was known that the one-loop
closed bosonic string amplitude defined over the quotient of the upper half-plane of SL(2,Z)
is free of ultra-violet divergence. This discussion can be extended to higher-loop orders.1

For genus h Riemann surfaces, the SL(2,Z) modular group is replaced by the Sp(2h,Z)
modular group. The modular symmetry in the string worldsheet can also be seen in the
target space of string theory.

In toroidal compactifications, the modular symmetry can be regarded as a geometric
symmetry of torus, which puts strong constraints on the four-dimensional (4D) low-energy
effective field theory. Indeed, the modulus τ parametrizing the SL(2,Z) modular symmetry
appears in couplings of matter fields, as known in heterotic orbifold models [2–5] and magne-
tized D-brane models [6–13]. In these models, chiral zero-modes have certain representations
of the congruence subgroup of SL(2,Z) with a modular weight, and these holomorphic Yukawa
couplings are described by a certain modular form under the congruence subgroup. It is

1For more details, see, e.g., ref. [1].
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remarkable that the inhomogeneous modular group Γ̄ = PSL(2,Z) has several finite subgroups
such as S3, A4, S4, A5 [14]. These modular groups will be important to understand the flavor
structure of quarks and leptons [15–19]. (See, ref. [20], for modular flavor model building.)

In Calabi-Yau (CY) compactifications as an extension of toroidal backgrounds,2 the
modular symmetry is enhanced to Sp(2h+2,Z) with h being the number of moduli fields [22,
23]. Such a symplectic modular symmetry will constrain the 4D low-energy effective action [24,
25]. It was pointed out in ref. [24] that the flavor symmetry of matter fields can be embedded
into the symplectic modular symmetry in the context of heterotic string theory with standard
embedding. However, it is still unclear whether holomorphic Yukawa couplings are described
by modular forms. The derivation of holomorphic Yukawa couplings is also important to
understand the hierarchical structure of quark and lepton masses.3 The purpose of this paper is
to derive explicit forms of holomorphic Yukawa couplings in heterotic string theory on concrete
CY threefolds. We find that the SL(2,Z) modular symmetry emerges in asymptotic regions
of the complex structure and Kähler moduli spaces. The instanton-corrected holomorphic
Yukawa couplings are then described by modular forms of SL(2,Z) or its congruence subgroups
such as Γ0(3) and Γ0(4). Furthermore, it turns out that these holomorphic modular forms
as well as Kähler metric of matter fields can lead to the hierarchical structure of physical
Yukawa couplings.

This paper is organized as follows. In section 2, we review the 4D low-energy effective
field theory of heterotic string theory with standard embedding, focusing on the role of
modular symmetry. In section 3, we study instanton-corrected holomorphic Yukawa couplings
on two CY threefolds. The structure of instanton numbers determines the modular form
of holomorphic Yukawa couplings such as modular forms of SL(2,Z). As an application of
modular forms, we investigate whether one can realize the hierarchical structure of physical
Yukawa couplings in section 4. Section 5 is devoted to conclusions. The Γ0(3) and Γ0(4)
modular forms of holomorphic Yukawa couplings are discussed in appendices A and B,
respectively. In appendix C, we summarize several holomorphic modular forms under the
Γ0(N) modular group.

2 Modular invariant effective action

In this section, we briefly review the 4D low-energy effective field theory action derived from
E8 × E′

8 heterotic string theory on smooth Calabi-Yau threefolds with standard embedding.4

In particular, we emphasize the role of symplectic modular symmetry in the effective action
of matter fields which are in one-to-one correspondence with the moduli fields.

Kähler potential It is known that the low-energy group is described by E6 ×E′
8 due to the

identification of background SU(3) ⊂ E8 gauge field with the spin connection of CY threefolds.
There are h1,1 number of chiral superfields Aa in the 27 representation of E6 and h2,1 number
of chiral superfields Ai in the 27 representation of E6. Here, h1,1 and h2,1 denote the hodge
numbers of CY threefolds. Thanks to the one-to-one correspondence between moduli and

2See, ref. [21], for a construction of modular symmetric models from higher-dimensional theory on gen-
eral grounds.

3See for the derivation of holomorphic Yukawa couplings for heterotic line bundle models [26].
4The discussion is the same for SO(32) heterotic string theory.
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chiral matter fields, the matter field Kähler metrics are written by the following form [27]:5

K
(27)
ab

= e
1
3 (Kcs−Kks)(Kks)ab,

K
(27)
ij

= e−
1
3 (Kcs−Kks)(Kcs)ij , (2.1)

where (Kks)ab = ∂a∂b̄Kks and (Kcs)ij = ∂i∂j̄Kcs are the metric of the Kähler moduli and the
complex structure moduli, respectively. To see an explicit form of the matter field Kähler
metric, let us focus on the Kähler moduli sector for concreteness. The Kähler potential of
the Kähler moduli is well controlled in the large volume regime V ≫ l6s

Kks = − lnV = − ln
[
i
κabc

6 (ta − ta)(tb − tb)(tc − tc)
]
. (2.2)

Here, κabc denotes a triple intersection number of CY threefolds. It results in the Kähler
metric of 27 matters:

K
(27)
ab

= e
1
3 KcsV1/3(Kks)ab

= e
Kcs

3

[ 1
V5/3

(
κade

2 (td − td)(te − te)
)(

κbfg

2 (tf − tf )(tg − tg)
)
+ i

V2/3 κabh(th − th)
]
,

(2.3)

where we use

(Kks)ab =
1
V

(
∂aV∂b̄V

V
− ∂a∂b̄V

)
= 1

V2

(
κade

2 (td − td)(te − te)
)(

κbfg

2 (tf − tf )(tg − tg)
)
+ i

V
κabh(th − th). (2.4)

The Kähler metric of 27 matters is written by the same expression, where the large volume
regime corresponds to the large complex structure moduli. If we restrict Kähler moduli to
the universal value, that is, t := ti for all i, the matter field Kähler metric is proportional to

K
(27)
ab

∝ e
1
3 Kcs 1

i(t̄ − t)
. (2.5)

In the following, we focus on the effective action of 27 matter fields, but a similar analysis
can be done for the 27 matters.

Yukawa couplings The 3-point coupling of moduli fields is given by the third derivative
of the prepotential with respect to corresponding moduli fields. In the large volume regime,
this 3-point coupling is nothing but the triple intersection numbers κabc classically. However,
it will be corrected by instanton contributions. It is known that instanton-corrected Yukawa
couplings are obtained in the following form [28, 29]

yabc = κabc +
∞∑

d1,d2,...,dm=0

(dadbdc)nd1,d2,...,dm

1−Πm
l=1qdl

l

Πm
l=1qdl

l , (2.6)

with ql = e2πitl , where the instanton numbers nd1,d2,...,dm are determined once the background
CY geometry is fixed. The 27 matter superpotential is then written by

W = yabcA
aAbAc. (2.7)

5Note that the overall factor e±
1
3 (Kcs−Kks) is different in toroidal orbifolds due to the enlarged symmetry [27].
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Modular symmetry In the large volume regime, the effective action is controlled by a
certain subgroup of symplectic modular group Sp(2h1,1+2,Z), which depends on the structure
of the intersection numbers κabc. The full modular group can be described in projective
coordinates Y A with A = 1, 2, . . . , h1,1 + 1. Here, the Kähler moduli correspond to

ta = Y a

Y 0 , (2.8)

with a = 1, 2, . . . , h1,1. As discussed in ref. [25], the symplectic modular transformations
of matter fields and their Kähler metric

Aa → Ãa = (Ỹ 0)−1/3 ∂t̃a

∂tb
Ab,

K
(27)
ab̄

→ K̃
(27)
ab̄

= |Ỹ 0|2/3 ∂tc

∂t̃a

∂t̄d̄

∂˜̄tb̄
K

(27)
cd̄

, (2.9)

are consistent with the modular symmetry of the Kähler moduli: ta → t̃a. Furthermore,
Yukawa couplings are expected to be transformed as

yabc → ỹabc = Ỹ 0 ∂td

∂t̃a

∂te

∂t̃b

∂tf

∂t̃c
ydef . (2.10)

Thus, the symplectic modular symmetry will determine the flavor symmetry of matter fields.
Note that instanton effects may further break the remained modular group into a smaller

one. The tree-level Yukawa couplings κabc are moduli-independent constants and correspond
to trivial modular forms of weight zero. On the other hand, moduli-dependent holomorphic
Yukawa coupling terms induced by instanton effects can be non-trivial modular forms. That
is interesting from both theoretical and phenomenological viewpoints. In the following section,
we study explicitly several CY threefolds in order to reveal unbroken modular symmetries
and concrete forms of non-trivial modular forms.

3 Holomorphic Yukawa couplings

In this section, we study a modular invariance of the effective action for matter fields. We
first derive a SL(2,Z) modular form for holomorphic Yukawa couplings of matter fields, which
are realized in specific CY threefolds with two moduli in section 3.1 and three moduli in
section 3.2. In both examples, holomorphic Yukawa couplings are described by an Eisenstein
series with weight 4 which transforms as a singlet representation under SL(2,Z).

3.1 Two moduli

We first study a CY threefold defined by the degree 18 hypersurface in weighted projective
space CP1,1,1,6,9[18], where the number of Kähler moduli is h1,1 = 2. We revisit the work of
ref. [30] from the viewpoint of effective action of matter fields. By solving the corresponding
Picard-Fuchs equation, the prepotential for two Kähler moduli was known to be

F = −1
6
(
9t3

1 + 9t2
1t2 + 3t1t2

2

)
, (3.1)

where we omit the higher-order corrections including instanton effects, and the triple in-
tersection numbers are given by

κ111 = 9, κ112 = 3, κ122 = 1, (3.2)
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d1 \ d2 0 1 2 3
0 3 -6 27
1 540 -1080 2700 -17280
2 540 143370 -574560 5051970
3 540 204071184 74810520 -913383000

Table 1. Instanton numbers up to d1, d2 ≤ 3.

and otherwise 0. Instanton-corrected holomorphic Yukawa couplings are of the form:

yabc = κabc +
∞∑

d1,d2=0

cabc(d1, d2)nd1,d2qd1
1 qd2

2
1− qd1

1 qd2
2

, (3.3)

with

c111 = (d1)3, c112 = (d1)2d2, c122 = d1(d2)2, c112 = (d2)3. (3.4)

Here, the instanton numbers nd1,d2 are given in table 1. Remarkably, instanton numbers nd1,0
are the same number 540 for all d1. When we restrict ourselves to the regime q2 ≪ q1 with
q1 = e2πit1 and q2 = e2πit2 such that the t2-dependent instanton corrections are suppressed,
only the sector with d2 = 0 contributes to the holomorphic Yukawa couplings. In this regime,
holomorphic Yukawa couplings are described by an Eisenstein series with weight 4:

y111 = 9 + 540
∞∑

k=0

k3qk
1

1− qk
1
= 27

4 + 9
4E4(t1),

y112 = 3,

y122 = 1,

y222 = 0, (3.5)

where

E4(t) = 1 + 240
∞∑

k=0

k3qk

1− qk
. (3.6)

It indicates an existence of SL(2,Z) modular symmetry, as confirmed at the level of period
integrals [30]. When we move to the following basis:

t := t1, s := 3
2 t1 + t2, (3.7)

the SL(2,Z) symmetry can appear manifest in the regime qs ≪ qt with qt := q1 and
qs := e2πis = q

3/2
1 q2. In this basis, the prepotential is rewritten in terms of the redefined

moduli as

F = −1
6

(9
4 t3 + 3ts2

)
. (3.8)

To see the modular invariance of the effective action, let us consider the modular weights
of matter fields, which can be read off from the moduli Kähler potential:

Kks = − ln
[
i

(3
8(t − t)3 + 1

2(t − t)(s − s)2
)]

. (3.9)
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Since the corresponding moduli Kähler metric is given in the regime Im(t) ≪ Im(s):

(Kks)tt̄ ≃ − 1
(t − t)2 , (Kks)ss̄ ≃ − 2

(s − s)2 , (Kks)ts̄ = Kst̄ ≃ 0, (3.10)

one can determine the matter modular weights from t-dependent part of the moduli Kähler
metric by using eq. (2.1),

K
(27)
tt

∼ e
1
3 (−Kks)(Kks)tt ≃

1
(t − t)5/3 ,

K
(27)
ss ∼ e

1
3 (−Kks)(Kks)ss ≃ (t − t)1/3. (3.11)

It leads to the modular weights −5
3 for A

(27)
t and 1

3 for A
(27)
s . Then, the modular weights of

holomorphic Yukawa couplings are determined, and their explicit forms are rewritten as

yttt =
9
4E4(t) (weight 4),

ytts = 0 (weight 2),

ytss = 1 (weight 0),

ysss = 0 (weight − 2). (3.12)

In this basis, they are described by modular forms of weights 4, 2, 0, -2, respectively. Since
there are no modular forms of weights 2 and -2 under SL(2,Z), they are forced to be zero.
By definition, the modular form of weight 0 is just a modulus-independent constant. Thus,
this result is consistent with the modular invariance of 4D effective action. Indeed, under
the SL(2,Z)t modular transformation:

t → at + b

ct + d
(3.13)

with ad − bc = 1, the Kähler potential and superpotential

K = − ln
[

i

2(t − t)(s − s)2
]
+K

(27)
tt

|A(27)
t |2 + K

(27)
ss |A(27)

s |2,

W = ytttA
(27)
t A

(27)
t A

(27)
t + ytssA

(27)
t A(27)

s A(27)
s (3.14)

transform as

K → K + ln |ct + d|2, W → (ct + d)−1W, (3.15)

and the Kähler invariant quantity eK |W |2 is modular invariant.

3.2 Three moduli

We move to a CY threefold with a K3 fibration structure embedded in weighted projec-
tive spaces:

CP
(
6 4 1 0 1 0
6 4 0 1 0 1

)[
12
12

]
. (3.16)
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d1 \ d2 0 1 2 3
0 -2
1 480 480
2 480 282888 480
3 480 17058560 17058560 480

Table 2. Nonvanishing instanton numbers up to d1, d2 ≤ 3.

As studied in ref. [31], the leading part of the prepotential for three Kähler moduli is
described by

F = −4
3 t3

1 − t2
1t2 − t2

1t3 − t1t2t3, (3.17)

where the triple intersection numbers are

κ111 = 8, κ112 = 2, κ113 = 2, κ123 = 1, (3.18)

and otherwise 0. The holomorphic Yukawa couplings of matter fields are determined by
the classical part and instanton contribution:

yabc = κabc +
∞∑

d1,d2,d3=0

cabc(d1, d2, d3)nd1,d2,d3qd1
1 qd2

2 qd3
3

1− qd1
1 qd2

2 qd3
3

, (3.19)

with

cabc(d1, d2, d3) = dadbdc, q1 = e2πit1 , q2 = e2πit2 , q3 = e2πit3 . (3.20)

Let us consider the regime q1, q2 ≪ q3; one can approximate the instanton expansion by
focusing on d3 = 0. The nonvanishing instanton numbers nd1,d2,0 are given in table 2. As
seen in the previous section, instanton numbers nd1,0 and nd1,d1 are the same number 480
for all d1. When we restrict ourselves to the regime q2 ≪ q1 such that the t2-dependent
instanton corrections are suppressed, the sector with d2 = 0 is relevant for holomorphic
Yukawa couplings:

y111 = 8 + 480
∞∑

k=0

k3qk
1

1− qk
1
= 6 + 2E4(t1),

y112 = 2,

y113 = 2,

y123 = 1. (3.21)

Since an Eisenstein function with weight 4 is a modular function under SL(2,Z), it indicates
the SL(2,Z) modular symmetry for the effective action of matter fields. To check the modular
invariance of the effective action, let us redefine the moduli as

t := t1, u := t1 + t2, s := t1 + t3. (3.22)

In this basis, the prepotential becomes

F = −4
3 t3

1 − t2
1t2 − t2

1t3 − t1t2t3

= −1
6
(
2t3 + 6tus

)
. (3.23)
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The limit q2 → 0 and q3 → 0 correspond to qu = e2πiu = q2qt → 0 and qs = e2πit3 = q3 → 0,
respectively. The moduli Kähler potential is also given by

Kks = − ln
[
i

(1
3(t − t)3 + (t − t)(u − u)(s − s)

)]
, (3.24)

and the corresponding moduli Kähler metric in the regime Im(t) ≪ Im(s), Im(u):

(Kks)tt̄ ≃ − 1
(t − t)2 , (Kks)ss̄ ≃ − 1

(s − s)2 ,

(Kks)uū ≃ − 1
(u − u)2 , (3.25)

and otherwise 0. By using eq. (2.1), one can determine the matter modular weights from
t-dependent part of the moduli Kähler metric:

K
(27)
tt

∼ e
1
3 (−Kks)(Kks)tt ≃

1
(t − t)5/3 ,

K
(27)
uu ∼ e

1
3 (−Kks)(Kks)uu ≃ (t − t)1/3,

K
(27)
ss ∼ e

1
3 (−Kks)(Kks)ss ≃ (t − t)1/3, (3.26)

that is, modular weight −5
3 for A

(27)
t and 1

3 for A
(27)
s and A

(27)
u . Then, the modular weights

of holomorphic Yukawa couplings are determined, and their explicit forms are rewritten as

yttt = 2E4(t) (weight 4),
ystu = 1 (weight 0), (3.27)

and otherwise 0. In this basis, they are described by modular forms of weights 4, 0, respectively.
Thus, this result is consistent with the modular invariance of 4D effective action. Indeed,
under the SL(2,Z)t modular transformation:

t → at + b

ct + d
(3.28)

with ad − bc = 1, the Kähler potential and superpotential

K = − ln
[
i
(
(t − t)(u − u)2 + (t − t)(u − u)(s − s)

) ]
+
∑
a,b

K
(27)
ab

A(27)
a A

(27)
b ,

W = ytttA
(27)
t A

(27)
t A

(27)
t + ystuA(27)

s A
(27)
t A(27)

u (3.29)

transform as

K → K + ln |ct + d|2, W → (ct + d)−1W, (3.30)

and the Kähler invariant quantity eK |W |2 is modular invariant.
Note that this effective theory also seems to have another coupling selection rule. The

matter fields A
(27)
s and A

(27)
u have the same modular weight. The modular invariance allows

ysstA
(27)
s A

(27)
s A

(27)
t and ytuuA

(27)
t A

(27)
u A

(27)
u couplings. For example, if A

(27)
s and A

(27)
u are

– 8 –
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S4 doublet and A
(27)
t is a S4 singlet, ysstA

(27)
s A

(27)
s A

(27)
t and ytuuA

(27)
t A

(27)
u A

(27)
u couplings

are forbidden, but ytttA
(27)
t A

(27)
t A

(27)
t and ystuA

(27)
s A

(27)
t A

(27)
u are allowed [17]. One can

replace S4 by S3. The S4 group as well as the S3 group is originated from Sp(8,Z).
So far, we have discussed the SL(2,Z) modular form for holomorphic Yukawa couplings

of matter fields. However, the SL(2,Z) modular symmetry may be broken to subgroups
such as Γ0(N) by instanton effects on the background CY geometry. That depends on the
structure of instanton numbers. Indeed, we show in appendices A and B that the holomorphic
Yukawa couplings described by modular forms under Γ0(3) and Γ0(4) as subgroups of SL(2,Z)
are realized in specific CY threefolds.

4 Hierarchical structure of physical Yukawa couplings

In this section, we discuss the flavor structure of physical Yukawa couplings in more details.
Specifically, we focus on the CY threefold in section 3.2, but it is possible to other modular
forms listed in appendices A and B.

To see the flavor structure of 27 matters, let us consider the physical Yukawa couplings
by diagonalizing the kinetic terms of 27 matter fields:

AaK
(27)
ab̄

Āb̄ = Aa(L†)¯̂c
aΛ¯̂cĉL

ĉ
b̄
Āb̄ =: AâĀ¯̂a (4.1)

with

Aâ = Ad(L†)¯̂a
d(
√
Λ)¯̂aâ, (4.2)

where Lĉ
b̄

is an unitary matrix to diagonalize the matter field Kähler metric K
(27)
ab̄

, and
Λ¯̂aâ denotes its eigenvalue matrix, that is, (LKL†)¯̂aâ = Λ¯̂aâ. Then, the physical Yukawa
couplings are expressed by

Yâb̂ĉ = eK/2(Λ−1/2L)d
â(Λ−1/2L)e

b̂
(Λ−1/2L)f

ĉ ydef , (4.3)

where we use

eK/2ydefA
dAeAf = eK/2ydef(Λ−1/2L)d

â(Λ−1/2L)e
b̂
(Λ−1/2L)f

ĉA
âAb̂Aĉ =Yâb̂ĉA

âAb̂Aĉ. (4.4)

We can estimate the physical Yukawa couplings in the regime Im(t1) ≪ Im(t2) =
Im(t3) by using the nonvanishing holomorphic Yukawa couplings (3.21) and the matter
field Kähler metric:

K11̄ K12̄ K13̄
K21̄ K22̄ K23̄
K31̄ K32̄ K33̄

 = e
Kcs

3

2


Im(t3)2/3

Im(t1)5/3
Im(t1)1/3

Im(t3)4/3
Im(t1)1/3

Im(t3)4/3

Im(t1)1/3

Im(t3)4/3
Im(t1)1/3

Im(t3)4/3 0
Im(t1)1/3

Im(t3)4/3 0 Im(t1)1/3

Im(t3)4/3

 . (4.5)

Since the eigenvalues of the matter field Kähler metric

Λ¯̂cĉ =
e

Kcs
3

2 diag
(
Im(t1)1/3

Im(t3)4/3 ,
Im(t1)1/3

Im(t3)4/3 ,
Im(t3)2/3

Im(t1)5/3

)
(4.6)
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are hierarchical in the regime Im(t1) ≪ Im(t3), it will be accessible to the hierarchical physical
Yukawa couplings from the hierarchical structure of matter field Kähler metric [32]. Such a
hierarchical structure arises from the coexistence of both the positive and negative modular
weights for matter fields. Indeed, if the matter fields share the same modular weights, the
matter field Kähler metric takes a moduli-independent form whose value is of O(1). See,
ref. [33], for a theoretical study about a lepton model building by utilizing the positive
and negative modular weights.

Let us study the flavor structure of matter fields. For simplicity, suppose that the
Higgs field belongs to A3̂, and three generations of quarks and leptons are originated from
the elements of {A1̂,A2̂,A3̂}. In this case, the eigenvalues of physical Yukawa couplings
Y3̂âb̂ are found as

Eigen(Y3̂âb̂) = 2diag
(
−
( Im(t3)
Im(t1)

)2
, (3 + E4(t1))

( Im(t3)
Im(t1)

)4
,
−1 + E4(t1)
3 + E4(t1)

( Im(t3)
Im(t1)

)2)
,

(4.7)

up to the contribution from the complex structure moduli. By using the explicit form of the
Eisenstein function, the ratios of these eigenvalues r1 and r2 are evaluated as

r1 ≃ −1
4

( Im(t1)
Im(t3)

)2
,

r2 ≃ 15
( Im(t1)
Im(t3)

)2 ∞∑
k=0

k3qk

1− qk
. (4.8)

Thus, we can obtain the hierarchical physical Yukawa couplings due to the instanton effects
as well as the hierarchical moduli values Im(t1) ≪ Im(t3). In this region, the determinant
of physical Yukawa couplings is also proportional to q-expansion

∑∞
k=0

k3qk

1−qk . Since the
axion Re(t1) controls the size of CP violation, it would be accessible to the small value
of Jarlskog invariant, which is beyond the scope of this paper and will be the subject of
future investigation.

Just for simple illustration, we have assumed that the Higgs field belongs to A3̂. In general,
the Higgs fields may correspond to linear combinations of {A1̂,A2̂,A3̂}, and coefficients of
linear combinations may be different between the up and down sectors of the Higgs fields. That
may lead to more realistic mass matrices including mixing angles. At any rate, a direction
of light Higgs pair is fixed by mass terms of the Higgs sector, which may be generated by
vacuum expectation values of singlets and/or non-perturbative effects. Such a study is beyond
our scope, but it would be interesting to study it in realistic CY compactifications in future.

5 Conclusions and discussions

In this paper, we studied heterotic string theory with standard embedding from the viewpoint
of the modular symmetry. We found that the 4D low-energy effective action is controlled
by the SL(2,Z) and its subgroups in the asymptotic regions of Calabi-Yau moduli space. In
asymptotic limits, the holomorphic Yukawa couplings are described by holomorphic modular
forms, as shown in section 3. To extract a modular form, we focused on a novel structure of
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instanton numbers, e.g., the same instanton number for a particular modulus for the SL(2,Z)
modular form. In the orbifold limit of the moduli space, the moduli are decomposed to
untwisted moduli and twisted ones. Among the full Sp(2h+2,Z) symmetry, only the modular
symmetries corresponding to the untwisted (bulk) moduli become manifest, although some
symmetries such as permutation symmetries of twisted moduli remain among the Sp(2h+2,Z)
modular symmetry. The regime of the moduli space, which we studied in this paper, may be
another limit, where some subgroups of the Sp(2h+2,Z) modular symmetry become manifest.

We also evaluated the physical Yukawa couplings of matter fields in a specific CY
compactification. So far, it was pointed out in refs. [32, 34] that the matter field Kähler
metric plays an important role in understanding a hierarchical structure of physical Yukawa
couplings. We found the coexistence of both the positive and negative modular weights
for matter fields. Such a sign difference of the modular weights leads to the hierarchical
structure of matter field Kähler metric. It was also argued in ref. [33] that the coexistence of
both the positive and negative modular weights for matter fields provides a new direction
for lepton model building. Our finding results reproduce these observations. Furthermore,
we showed that the instanton corrections also give rise to a hierarchical structure thanks
to the nature of modular forms.6

In this paper, we examined the holomorphic Yukawa couplings in the 4D low-energy
effective action, and they transform under the modular symmetry. However, there are several
unsolved problems:

1. The origin of Γ0(N) structure

We have seen the non-trivial structure of instanton numbers, determining the remaining
modular symmetry in the low-energy effective action. However, our analysis was
constrained as a limited class of CY threefolds. It would be important to perform a
comprehensive study about the modular symmetry in the asymptotic region of CY
moduli space. It will provide a better understanding of Γ0(N) symmetry for underlying
CY threefolds.7 In the bottom-up approach, moduli-dependent Yukawa couplings was
widely used in the so-called modular flavor models. (See refs. [40, 41] and references
therein.) It would also be fascinating to apply our finding Γ0(N) structure to the flavor
structure of matter fields. We hope to report on this bottom-up direction in the future.

2. Stringy selection rule

The 4D low-energy effective field theory derived in this paper seems to have additional
coupling selection rules. Some of them can be originated from the original Sp(2h+2,Z)
symplectic modular symmetry. Also, the doublet structure was found. It would be
important to study more on stringy selection rules.

3. Siegel modular forms

We have studied the regime, where instanton effects of a single modulus are finite, but
the other vanish. In this regime, SL(2,Z) or its subgroup becomes manifest and their

6Such an exponential suppression was also seen in holomorphic Yukawa couplings of twisted modes in
heterotic orbifold models [35–37].

7Similar subgroups Γ0(N) were found in specific orbifold limits [38, 39].
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modular forms appear. CY threefolds have larger Sp(2h+ 2,Z) modular symmetry and
many moduli. It would be interesting to study modular symmetries larger than SL(2,Z)
including multi-moduli and their Siegel modular forms.8 We would study it elsewhere.

The modular symmetry controls not only 3-point couplings of matter fields, but also
higher order couplings [45, 46]. Furthermore, the gauge threshold corrections are constrained
by the modular symmetry anomalies [47], although explicit calculations were done in heterotic
orbifold models [48]. Moreover, moduli-dependence of the species scale was also constrained
by the modular symmetry [49, 50]. The modular symmetry is relevant to other aspects.
Hence, the modular symmetry is quite important in most of aspects of 4D low-energy effective
field theory derived from string theory. Our analysis has opened various interesting directions
to study the modular symmetry in CY compactifications.
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A Holomorphic Yukawa couplings described by Γ0(3) modular forms

In this section, we focus on specific CY threefolds with two moduli in section A.1 and three
moduli in section A.2, leading to Γ0(3) modular form for holomorphic Yukawa couplings.
The Γ0(N) modular forms are summarized in appendix C.

A.1 Two moduli

We start with a CY threefold defined by a hypersurface in a product of two projective spaces:

CP2

CP2

[
3
3

]
, (A.1)

where the number of Kähler moduli is h1,1 = 2. The moduli effective action was studied in
ref. [51] by using the mirror symmetry technique. Here, we study whether the effective action
of matter fields enjoys the modular symmetry. By solving the corresponding Picard-Fuchs
equation, the leading part of the prepotential for two Kähler moduli was known to be

F = −1
6
(
9t2

1t2 + 9t1t2
2

)
, (A.2)

where the triple intersection numbers are given by

κ111 = κ222 = 0, κ112 = κ122 = 3. (A.3)

Instanton-corrected holomorphic Yukawa couplings are of the form:

yabc = κabc +
∞∑

d1,d2=0

cabc(d1, d2)nd1,d2qd1
1 qd2

2
1− qd1

1 qd2
2

, (A.4)

8Some Siegel forms were studied explicitly in magnetized D-brane models on T 6 compactification [42]. See
also for heterotic orbifold models refs. [43, 44].
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d1 \ d2 0 1 2 3 4 5 6
0 189 189 162 189 189 162
1 189 8262 142884 1492290 11375073 69962130
2 189 142884 13108392 516953097 12289326723
3 162 1492290 516953097 55962304650
4 189 11375073 12289326723
5 189 69962130
6 162

Table 3. Instanton numbers up to bidegree d1+d2 ≤ 6. Note that there exists the exchange symmetry
nd1,d2 = nd2,d1 .

with

c111 = (d1)3, c112 = (d1)2d2, c122 = d1(d2)2, c112 = (d2)3. (A.5)

Here, the instanton numbers nd1,d2 are given in table 3. Remarkably, instanton numbers
nd1,0 have an interesting structure such as nd1,0 = 162 for d1 = 3Z+ and otherwise 189.
Thus, when we restrict ourselves to the regime q2 ≪ q1 such that the t2-dependent instanton
corrections are suppressed, only t1-dependent instantons contribute to the holomorphic
Yukawa couplings. In particular, one of the holomorphic Yukawa couplings is described
by an Eisenstein series with weight 4:

y111 = 189
∞∑

k=0

k3qk
1

1− qk
1
− 27

∞∑
m=0

(3m)3q3m
1

1− q3m
1

= 189
240

(
1 + 240

∞∑
k=0

k3qk
1

1− qk
1

)
− 272

240

(
1 + 240

∞∑
m=0

(m)3q3m

1− q3m
1

)
+ 9

4

= 9
4 + 63

80E4(t1)−
243
80 E4(3t1),

y112 = 3,

y122 = 3,

y222 = 0. (A.6)

Since E4(3τ) is not a modular form under SL(2,Z), the effective action does not have the
full SL(2,Z) modular symmetry. However, as shown in appendix C.2, both E4(τ) and E4(3τ)
are modular forms of weight 4 under Γ0(3). To see the modular invariance of the effective
action, we move to the following basis:

t := t1, s := 1
2 t1 + t2, (A.7)

where q2 ≪ q1 corresponds to qs ≪ qt with qs := q
1/2
1 q2 and qt := q1. In this basis, the

prepotential is rewritten in terms of the redefined moduli as

F = −1
6

(
−9
4 t3 + 9ts2

)
. (A.8)
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Since the moduli Kähler potential is approximately given in the regime Im(t) ≪ Im(s):

Kks = − ln
[3i

2 (t − t)(s − s)2
]
, (A.9)

the corresponding moduli Kähler metric is found as

(Kks)tt̄ ≃ − 1
(t − t)2 , (Kks)ss̄ ≃ − 2

(s − s)2 , (Kks)ts̄ = (Kks)st̄ ≃ 0. (A.10)

Thus, one can read off the matter modular weights from a t-dependent part of the moduli
Kähler metric by using eq. (2.1),

K
(27)
tt

∼ e
1
3 (−Kks)(Kks)tt ∝ (t − t)−5/3,

K
(27)
ss ∼ e

1
3 (−Kks)(Kks)ss ∝ (t − t)1/3. (A.11)

It leads to the modular weight −5
3 for A

(27)
t and 1

3 for A
(27)
s . In this basis, the nonvanishing

holomorphic Yukawa couplings are also rewritten as

yttt =
63
80E4(t)−

243
80 E4(3t) (weight 4),

ytss = 9 (weight 0), (A.12)

which correspond to the modular forms of weight 4 and 0 under Γ0(3), respectively. Note
that ytts vanishes, although the modular weight of ytts must be 2 and there exists a modular
form of weight 2 under Γ0(3). (See appendix C.) It suggests that the low-energy effective field
theory derived from this CY compactification has another coupling selection rule in addition
to the Γ0(3) modular symmetry. If A

(27)
t has even Z2 charge and A

(27)
s has odd Z2 charge,

the ytttA
(27)
t A

(27)
t A

(27)
t coupling and the ytssA

(27)
t A

(27)
s A

(27)
s coupling are allowed, but the

yttsA
(27)
t A

(27)
t A

(27)
s coupling is forbidden. Such Z2 charges can be originated from Sp(6,Z).

At any rate, the above result is consistent with the modular invariance of 4D effective action.
To check the modular invariance of the effective action, let us consider the Γ0(3) modular

transformation:

t → at + b

ct + d
(A.13)

with ad − bc = 1 and c ≡ 0 (mod 3), the Kähler potential and superpotential

K = − ln
[

i

2(t − t)(s − s)2
]
+K

(27)
tt

|A(27)
t |2 + K

(27)
ss |A(27)

s |2,

W = ytttA
(27)
t A

(27)
t A

(27)
t + ytssA

(27)
t A(27)

s A(27)
s (A.14)

transform as

K → K + ln |ct + d|2, W → (ct + d)−1W, (A.15)

and the Kähler invariant quantity eK |W |2 is modular invariant.
Note that instanton numbers n0,d2 have the same behavior as nd1,0. Similarly, we

can discuss the regime q1 ≪ q2. Then, we can find the Γ0(3) modular symmetry and its
modular forms.
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d1 \ d3 0 1 2 3 4
0 18
1 216 216
2 216 2106 216
3 48 17856 17856 48
4 216 95094 414720 95094 216

Table 4. Nonvanishing instanton numbers up to d1, d2 ≤ 4.

A.2 Three moduli

We move to a favorable complete intersection CY threefold:

CP1

CP1

CP3

0 2
2 0
3 1

 , (A.16)

where the number of Kähler moduli is h1,1 = 3. As studied in ref. [31], the leading part of
the prepotential for three Kähler moduli is calculated as

F = −1
6
(
18t2

1t2 + 18t2
1t3 + 18t1t2t3

)
, (A.17)

where the triple intersection numbers are

κ112 = 6, κ113 = 6, κ123 = 3, (A.18)

and otherwise 0. The holomorphic Yukawa couplings of matter fields are determined by
the classical part and instanton contribution as in eq. (3.19). Let us consider the regime
q2 ≪ q1, q3 such that only q1,3 are relevant for the instanton expansion. The nonvanishing
instanton numbers nd1,0,d3 are given in table 4. As seen in the previous section, instanton
numbers nd1,0,0 and nd1,0,d1 have an interesting structure such as nd1,0,0 = nd1,0,d1 = 48 for
d1 = 3Z+ and otherwise 216. Thus, when we restrict ourselves to the regime q3 ≪ q1 such
that the t3-dependent instanton corrections are suppressed, only the modulus t1 contributes to
the holomorphic Yukawa couplings.9 In particular, one of the holomorphic Yukawa couplings
is described by an Eisenstein series with weight 4. We list the nonvanishing holomorphic
Yukawa couplings:

y111 = 216
∞∑

k=0

k3qk
1

1− qk
1
− 168

∞∑
m=0

(3m)3q3m
1

1− q3m
1

= 216
240

(
1 + 240

∞∑
k=0

k3qk
1

1− qk
1

)
− 168× 27

240

(
1 + 240

∞∑
m=0

(m)3q3m
1

1− q3m
1

)
+ 18

= 18 + 9
10E4(t1)−

189
10 E4(3t1),

y112 = 6,

y113 = 6,

y123 = 3. (A.19)
9We can realize the same structure in the regime q1 = q3.
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Thus, we observe the Γ0(3) modular form in the same manner as in the previous example.
To see the modular invariance of the effective action, we move to the following basis:

t := t1, s := t1 + t2, u := t1 + t3, (A.20)

where the regime q2, q3 ≪ q1 correspond to qs, qu ≪ qt with qu := e2πiu, qs := e2πis and
qt := e2πit. In this basis, the prepotential is rewritten in terms of the redefined moduli as

F = −1
6
(
−18t3 + 18stu

)
. (A.21)

Since the moduli Kähler potential is approximately given in the regime Im(t) ≪ Im(s), Im(u):

Kks = − ln
[
3i(t − t)(s − s)(u − u)

]
, (A.22)

the corresponding moduli Kähler metric is found as

(Kks)tt̄ ≃ − 1
(t − t)2 , (Kks)ss̄ ≃ − 1

(s − s)2 , (Kks)uū ≃ − 1
(u − u)2 , (A.23)

and otherwise 0. Thus, one can read off the matter modular weights from a t-dependent
part of the moduli Kähler metric by using eq. (2.1),

K
(27)
tt

∼ e
1
3 (−Kks)(Kks)tt ∝ (t − t)−5/3,

K
(27)
ss ∼ e

1
3 (−Kks)(Kks)ss ∝ (t − t)1/3,

K
(27)
uu ∼ e

1
3 (−Kks)(Kks)uu ∝ (t − t)1/3. (A.24)

It leads to the modular weight −5
3 for A

(27)
t and 1

3 for A
(27)
s and A

(27)
u . The holomorphic

Yukawa couplings are also rewritten as

yttt =
9
10E4(t)−

189
10 E4(3t) (weight 4),

ytsu = 3 (weight 0), (A.25)

and otherwise 0. In this basis, they are described by modular forms of weights 4 and 0
under Γ0(3), respectively. Thus, this result is consistent with the modular invariance of
4D effective action. Note that the effective theory has the same coupling selection rule,
as shown in section 3.2.

To check the modular invariance of the effective action, let us consider the Γ0(3) modular
transformation:

t → at + b

ct + d
(A.26)

with ad − bc = 1 and c ≡ 0 (mod 3), under which the Kähler potential and superpotential

K = − ln
[
i(t − t)(u − u)(s − s)

]
+
∑
a,b

K
(27)
ab

A(27)
a A

(27)
b ,

W = ytttA
(27)
t A

(27)
t A

(27)
t + ystuA(27)

s A
(27)
t A(27)

u (A.27)

transform as

K → K + ln |ct + d|2, W → (ct + d)−1W. (A.28)

Thus, the Kähler invariant quantity eK |W |2 is modular invariant.
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d1 \ d2 0 1 2 3 4
0 54
1 54 180 54
2 54 144 54
3 54 180 54
4 54 144

Table 5. Nonvanishing instanton numbers up to d1, d2 ≤ 4.

B Holomorphic Yukawa couplings described by Γ0(4) modular forms

In this section, we focus on specific CY threefolds with three moduli in section B.1 and four
moduli in section B.2, leading to Γ0(4) modular forms for holomorphic Yukawa couplings.
The Γ0(N) modular forms are summarized in appendix C.

B.1 Three moduli

We start with a CY threefold defined by a single polynomial in three projective spaces:

CP1

CP1

CP3

22
3

 , (B.1)

where the number of Kähler moduli is h1,1 = 3. As studied in ref. [52], the leading part of
the prepotential for three Kähler moduli is calculated as

F = −1
6
(
6t1t2

3 + 6t2t2
3 + 18t1t2t3

)
, (B.2)

where the triple intersection numbers are

κ233 = 2, κ133 = 2, κ123 = 3, (B.3)

and otherwise 0. The holomorphic Yukawa couplings of matter fields are determined by
the classical part and instanton contribution as in eq. (3.19). Let us consider the regime
q3 ≪ q1, q2; only q1,2 contribute to the instanton expansion. The nonvanishing instanton
numbers nd1,d2,0 are given in table 5. Remarkably, instanton numbers nd1,0,0 and nd1,d2,0
have an interesting structure, i.e., nd1+1,d1,0 = nd1,d1+1,0 = 54 for all d1, and nd1,d1 = 144
for d1 = 2Z+ and otherwise 180. Specifically, nonvanishing holomorphic Yukawa couplings
are described by

y111 =
∞∑

d1,d2=0

(d1)3nd1,d2,0qd1
1 qd2

2

1−qd1
1 qd2

2

=
∞∑

d1=0

[(d1)3nd1,d1,0qd1
1 qd1

2

1−qd1
1 qd1

2
+(d1)3nd1,d1+1,0qd1

1 qd1+1
2

1−qd1
1 qd1+1

2
+(d1+1)3nd1+1,d1,0qd1+1

1 qd1
2

1−qd1+1
1 qd1

2

]
,

y112 =
∞∑

d1,d2=0

(d1)2d2nd1,d2,0qd1
1 qd2

2

1−qd1
1 qd2

2

=
∞∑

d1=0

[(d1)3nd1,d1,0qd1
1 qd1

2

1−qd1
1 qd1

2
+(d1)2(d1+1)nd1,d1+1,0qd1

1 qd1+1
2

1−qd1
1 qd1+1

2
+(d1+1)2d1nd1+1,d1,0qd1+1

1 qd1
2

1−qd1+1
1 qd1

2

]
,
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y122 =
∞∑

d1,d2=0

d1(d2)2nd1,d2,0qd1
1 qd2

2

1−qd1
1 qd2

2

=
∞∑

d1=0

[(d1)3nd1,d1,0qd1
1 qd1

2

1−qd1
1 qd1

2
+ d1(d1+1)2nd1,d1+1,0qd1

1 qd1+1
2

1−qd1
1 qd1+1

2
+(d1+1)(d1)2nd1+1,d1,0qd1+1

1 qd1
2

1−qd1+1
1 qd1

2

]

= y112,

y222 =
∞∑

d1,d2=0

(d2)3nd1,d2,0qd1
1 qd2

2

1−qd1
1 qd2

2

=
∞∑

d1=0

[(d1)3nd1,d1,0qd1
1 qd1

2

1−qd1
1 qd1

2
+(d1+1)3nd1,d1+1,0qd1

1 qd1+1
2

1−qd1
1 qd1+1

2
+(d1)3nd1+1,d1,0qd1+1

1 qd1
2

1−qd1+1
1 qd1

2

]

= y111,

y123 =3, y233 = y133 =2. (B.4)

When we restrict ourselves to the regime t1 = t2, they are rewritten as

y111 =
∞∑

d1=0

[(d1)3nd1,d1,0q2d1
1

1−q2d1
1

+54(d1)3q2d1+1
1

1−q2d1+1
1

+54(d1+1)3q2d1+1
1

1−q2d1+1
1

]

=
∞∑

d1=0

[
180(d1)3q2d1

1

1−q2d1
1

−36(2d1)3q
2(2d1)
1

1−q
2(2d1)
1

+54
4

(
(2d1+1)3q2d1+1

1

1−q2d1+1
1

+3(2d1+1)q2d1+1
1

1−q2d1+1
1

)]

=180
(

E4(2t1)−1
240

)
−288

(
E4(4t1)−1

240

)
+54

4

∞∑
d1=0

[(
(d1)3qd1

1

1−qd1
1

− (2d1)3q2d1
1

1−q2d1
1

)
+3
(
(d1)qd1

1

1−qd1
1

− (2d1)q2d1
1

1−q2d1
1

)]

=−27
32+

3
160(3E4(t1)+16(E4(2t1)−4E4(4t1))−

27
16 (E2(t1)−2E2(2t1)) ,

y112 =
∞∑

d1=0

[(d1)3nd1,d1,0q2d1
1

1−q2d1
1

+54(d1)2(d1+1)q2d1+1
1

1−q2d1+1
1

+54d1(d1+1)2q2d1+1
1

1−q2d1+1
1

]

=180
(

E4(2t1)−1
240

)
−288

(
E4(4t1)−1

240

)
+27

2

∞∑
d1=0

[(
(2d1+1)3q2d1+1

1

1−q2d1+1
1

− (2d1+1)q2d1+1
1

1−q2d1+1
1

)]

= 45
32+

3
160(3E4(t1)+16(E4(2t1)−4E4(4t1))+

9
16 (E2(t1)−2E2(2t1)) ,

y122 = y112,

y222 = y111,

y123 =3, y233 = y133 =2. (B.5)

Note that E2(t1)− 2E2(2t1) and E4(nt1) for n|N are modular forms of weight 2 and 4 under
Γ0(4), respectively. See appendix C, for more details about the modular form of Γ0(N). To
see the modular invariance of the effective action, we move to the following basis:

t := t1 − t2

2 , s := t1 + t2

2 , u := 2t3 +
3
4(t

1 + t2). (B.6)
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In this basis, the prepotential is rewritten in terms of the redefined moduli as

F = −1
6

(
−27

4 s3 + 27
2 st2 − 9t2u + 3su2

)
. (B.7)

The corresponding moduli Kähler potential is given by

Kks =− ln
[

i

2(s−s)(u−u)2− 9i

8 (s−s)3+9i

4 (s−s)(t−t)2− 3i

2 (t−t)2(u−u)
]
. (B.8)

In an asymptotic regime qu ≪ qs ≪ qt with qt := e2πit, qu := e2πiu and qs := e2πis,
corresponding to q3 ≪ q1, q2 and q2 → q1, the moduli Kähler metric is obtained as

(Kks)ss̄ ≃− 1
(s−s)2 , (Kks)uū ≃− 2

(u−u)2 , (Kks)tt̄ ≃− 3
2(s−s)(u−u) , (B.9)

and otherwise 0. Thus, one can read off the matter modular weights from a s-dependent
part of the moduli Kähler metric by using eq. (2.1),

K
(27)
ss ∼ e

1
3 (−Kks)(Kks)ss ∝ (s − s)−5/3,

K
(27)
uu ∼ e

1
3 (−Kks)(Kks)uu ∝ (s − s)1/3,

K
(27)
tt

∼ e
1
3 (−Kks)(Kks)tt ∝ (s − s)−2/3. (B.10)

It leads to the modular weight −5
3 for A

(27)
s , 1

3 for A
(27)
u and −2

3 for A
(27)
t . Then, the

modular weights of holomorphic Yukawa couplings are determined, and their explicit forms
are rewritten as

ysss = 9
20E4(s) +

12
5 (E4(2s)− 4E4(4s)) (weight 4),

ystt = −9
2 (E2(s)− 2E2(2s)) (weight 2),

ysuu = 1 (weight 0), (B.11)

and otherwise 0. Note that modular forms of the weight 2 under Γ0(4) are given by a linear
combination: E2(s) − 2E2(2s) and E2(2s) − 2E2(4s), as shown in appendix C.1.

To check the modular invariance of the effective action, let us consider the Γ0(4) modular
transformation:

s → as + b

cs + d
(B.12)

with ad − bc = 1 and c ≡ 0 (mod 4), under which the Kähler potential and superpotential

K = − ln
[

i

2(s − s)(u − u)2
]
+
∑
a,b

K
(27)
ab

A(27)
a A

(27)
b ,

W = ysssA(27)
s A(27)

s A(27)
s + ysttA

(27)
s A

(27)
t A

(27)
t + ysuuA(27)

s A(27)
u A(27)

u + yttuA
(27)
t A

(27)
t A(27)

u

(B.13)

transform as

K → K + ln |cs + d|2, W → (cs + d)−1W. (B.14)

Thus, the Kähler invariant quantity eK |W |2 is modular invariant.
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d1 \ d2 0 1 2 3 4
0 48
1 48 160 48
2 48 128 48
3 48 160 48
4 48 128

Table 6. Nonvanishing instanton numbers up to d1, d2 ≤ 4.

B.2 Four moduli

We next discuss a CY threefold defined by a single polynomial in four projective spaces:

CP1

CP1

CP1

CP1


2
2
2
2

 , (B.15)

where the number of Kähler moduli is h1,1 = 4. As studied in heterotic string theory with
line bundles [53], the leading part of the prepotential for four Kähler moduli is calculated as

F = −1
6 (12t1t2t3 + 12t1t2t4 + 12t1t3t4 + 12t2t3t4) , (B.16)

where the triple intersection numbers are

κ123 = κ124 = κ134 = κ234 = 2, (B.17)

and otherwise 0. The holomorphic Yukawa couplings of matter fields are determined by
the classical part and instanton contribution:

yabc = κabc +
∞∑

d1,d2,d3,d4=0

cabc(d1, d2, d3, d4)nd1,d2,d3,d4qd1
1 qd2

2 qd3
3 qd4

4
1− qd1

1 qd2
2 qd3

3 qd4
4

(B.18)

with

cabc(d1,d2,d3)= dadbdc, q1 = e2πit1 , q2 = e2πit2 , q3 = e2πit3 , q4 = e2πit4 . (B.19)

To simplify our analysis, let us focus on the regime q3, q4 ≪ q1, q2; only q1,2 contribute to
the instanton expansion. The nonvanishing instanton numbers nd1,d2,0,0 are given in table 6.
As shown in the previous example, instanton numbers have an interesting structure, i.e.,
nd1+1,d1,0,0 = nd1,d1+1,0,0 = 48 for all d1, and nd1,d1,0,0 = 128 for d1 = 2Z+ and otherwise 160.
In a similar manner as in section B.1, we restrict ourselves to the regime t1 = t2 in which
nonvanishing holomorphic Yukawa couplings are described by

y111 =
∞∑

d1=0

[(d1)3nd1,d1,0,0q2d1
1

1−q2d1
1

+48(d1)3q2d1+1
1

1−q2d1+1
1

+48(d1+1)3q2d1+1
1

1−q2d1+1
1

]

=
∞∑

d1=0

[
160(d1)3q2d1

1

1−q2d1
1

−32(2d1)3q
2(2d1)
1

1−q
2(2d1)
1

+48
4

(
(2d1+1)3q2d1+1

1

1−q2d1+1
1

+3(2d1+1)q2d1+1
1

1−q2d1+1
1

)]
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=160
(

E4(2t1)−1
240

)
−256

(
E4(4t1)−1

240

)
+48

4

∞∑
d1=0

[(
(d1)3qd1

1

1−qd1
1

− (2d1)3q2d1
1

1−q2d1
1

)
+3
(
(d1)qd1

1

1−qd1
1

− (2d1)q2d1
1

1−q2d1
1

)]

=−3
4+

1
60(3E4(t1)+16(E4(2t1)−4E4(4t1))−

3
2 (E2(t1)−2E2(2t1)) ,

y112 =
∞∑

d1=0

[(d1)3nd1,d1,0q2d1
1

1−q2d1
1

+54(d1)2(d1+1)q2d1+1
1

1−q2d1+1
1

+54d1(d1+1)2q2d1+1
1

1−q2d1+1
1

]

=160
(

E4(2t1)−1
240

)
−256

(
E4(4t1)−1

240

)
+12

∞∑
d1=0

[(
(2d1+1)3q2d1+1

1

1−q2d1+1
1

− (2d1+1)q2d1+1
1

1−q2d1+1
1

)]

= 5
4+

1
60(3E4(t1)+16(E4(2t1)−4E4(4t1))+

1
2 (E2(t1)−2E2(2t1)) ,

y122 = y112,

y222 = y111,

y123 = y124 = y133 = y234 =2. (B.20)

Note that E2(t1) − 2E2(2t1) and E4(nt1) for n|N are modular forms of weight 2 and 4
under Γ0(4), respectively. To see the modular invariance of the effective action, we move
to the following basis:

t := t1 − t2

2 , s := t1 + t2

2 , u := t3 +
1
4(t

1 + t2), r := t4 +
1
4(t

1 + t2). (B.21)

In this basis, the prepotential is rewritten in terms of the redefined moduli as

F = −1
6
(
24sur − 6s3 − 12t2u − 12t2r + 12t2s

)
. (B.22)

The corresponding moduli Kähler potential is approximately given by

Kks = − ln
[
i
{
4(s − s)(u − u)(r − r)− (s − s)3 − 2(t − t)2 ((r − r) + (t − t))− (s − s)

} ]
.

(B.23)

Note that we consider an asymptotic regime q3, q4 ≪ q1, q2 with q1 = q2, corresponding
to qu, qr ≪ qs ≪ qt with qt := e2πit = 1, qs := e2πis, qu := e2πiu and qr := e2πir, the
corresponding moduli Kähler metric is found as

(Kks)ss̄ ≃ − 1
(s − s)2 , (Kks)tt̄ ≃ − 1

(s − s)

( 1
u − u

+ 1
r − r

)
,

(Kks)uū ≃ − 1
(u − u)2 , (Kks)rr̄ ≃ − 1

(r − r)2 , (B.24)

and otherwise 0. Thus, one can read off the matter modular weights from a s-dependent
part of the moduli Kähler metric by using eq. (2.1),

K
(27)
ss ∼ e

1
3 (−Kks)(Kks)ss ∝ (s − s)−5/3,

K
(27)
tt

∼ e
1
3 (−Kks)(Kks)tt ∝ (s − s)−2/3,
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K
(27)
uu ∼ e

1
3 (−Kks)(Kks)uu ∝ (s − s)1/3,

K
(27)
rr ∼ e

1
3 (−Kks)(Kks)rr ∝ (s − s)1/3. (B.25)

It leads to the modular weight −5
3 for A

(27)
s , −2

3 for A
(27)
t , and 1

3 for A
(27)
u and A

(27)
r . Then,

the modular weights of holomorphic Yukawa couplings are determined, and their explicit
forms are rewritten as

ysss = 6
15E4(s) +

32
15 (E4(2s)− 4E4(4s)) (weight 4),

ystt = −4 (E2(s)− 2E2(2s)) (weight 2),

yttu = yttr = −4 (weight 0),

ysur = 4 (weight 0), (B.26)

and otherwise 0. Note that modular forms of the weight 2 under Γ0(4) are given by a linear
combination: E2(s) − 2E2(2s) and E2(2s) − 2E2(4s), as shown in appendix C.1.

To check the modular invariance of the effective action, let us consider the Γ0(4) modular
transformation:

s → as + b

cs + d
(B.27)

with ad − bc = 1 and c ≡ 0 (mod 4), under which the Kähler potential and superpotential

K = − ln
[
4i(s − s)(u − u)(r − r)

]
+
∑
a,b

K
(27)
ab

A(27)
a A

(27)
b ,

W = ysssA(27)
s A(27)

s A(27)
s + ysttA

(27)
s A

(27)
t A

(27)
t

+ ysurA(27)
s A(27)

u A(27)
r + yttrA

(27)
t A

(27)
t A(27)

r + yttuA
(27)
t A

(27)
t A(27)

u (B.28)

transform as

K → K + ln |cs + d|2, W → (cs + d)−1W. (B.29)

Thus, the Kähler invariant quantity eK |W |2 is modular invariant.
Note that the 4D low-energy effective theory has the permutation symmetry between

A
(27)
r and A

(27)
u . Such a Z2 permutation symmetry is originated from Sp(10,Z).

C Γ0(N) modular forms

In this appendix, we briefly summarize the modular forms of Γ0(N) rather than SL(2,Z).
For more details, see, e.g., ref. [54]. As discussed before, Γ0(3) modular forms can be realized
on specific CY threefolds. Γ0(N) is a congruence subgroup of level N , which is defined as

Γ0(N) =
{(

a b

c d

)
, c ≡ 0 (modN)

}
. (C.1)
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Before discussing the modular form of Γ0(N), let us remark the modular forms of SL(2,Z).
It was known that the Eisenstein series Ek for k ≥ 4 are holomorphic modular forms of
weight k, but there are no holomorphic modular forms of weight 2. The Eisenstein series E2
is a holomorphic function, but not a modular form.10 Indeed, the modular transformation
of E2 is given by

E2(γτ) = (cτ + d)2E2(τ) +
12
2πi

c(cτ + d) (C.2)

with γ being the element of SL(2,Z). Note that a modular covariant differential operator
Dk acting on modular forms of weight k is defined as

Dk = 1
2πi

d

dτ
− k

12E2(τ), (C.3)

which maps a modular form of weight k to a modular form of weight k + 2. Thus, E2(τ) is
regarded as a modular connection rather than a modular form, and it can be rewritten as

E2(τ) =
1
2πi

∂τ ln∆(τ) (C.4)

where ∆ is a weight 12 modular (cusp) form of SL(2,Z). Specifically, ∆ is the discriminant
of Weierstrass equation, which is defined by using the Dedekind η-function:

∆(τ) = (2π)12η(τ)24. (C.5)

This modular function ∆ is convenient to define the holomorphic Eisenstein series for Γ0(N).
Let us consider the following modular transformation of Γ0(N):

τ → τ ′ = τ

Nτ + 1 (C.6)

under which ∆(nτ) with n ∈ N transforms as

∆(nτ) → ∆(nτ ′) =
(
−Nτ + 1

nτ

)12
∆
(
−N

n
− 1

nτ

)
. (C.7)

Recalling that the modular transformation of ∆(τ) is given by

∆(τ) → ∆(γτ) = (cτ + d)12∆(τ). (C.8)

Eq. (C.7) is simplified as

∆(nτ ′) = (Nτ + 1)12∆(nτ), (C.9)

for n|N . It indicates that ∆(nτ) with n|N is regarded as a weight 12 modular form of Γ0(N).

C.1 Weight 2

By using the modular transformation of ∆(nτ) (C.9), one can construct a modular form of
weight 2 under Γ0(N). Let us consider the modular transformation of E2(n1τ) with n1|N :

E2(n1τ ′) = 1
(2πi)n1

∂τ ′ ln∆(n1τ ′)

= 1
(2πi)n1

∂τ

∂τ ′∂τ (12 ln(Nτ + 1) + ln∆(n1τ))

= (Nτ + 1)2E2(n1τ) + N

n1

12
2πi

(Nτ + 1). (C.10)

10A non-holomorphic but modular function of weight 2 is given by E∗
2 (τ) := E2(τ) − 3

πIm(τ) introduced
by Siegel.
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It indicates that a linear combination of E2(τ) and E2(n1τ) transforms as

E2(τ ′)− c1E2(n1τ ′) = (Nτ + 1)2 (E2(τ)− c1E2(n1τ)) + 12N

2πi
(Nτ + 1)

(
1− c1

n1

)
. (C.11)

Thus, when the constant c1 is chosen as c1 = n1 with n1|N , E2(τ) − n1E2(n1τ) is a
modular form under Γ0(N) of weight 2. Furthermore, the modular transformation of
E2(n2τ) − c2E2(n3τ) with n2,3|N and c2 being a constant

E2(n2τ ′)− c2E2(n3τ ′) = (Nτ + 1)2 (E2(n2τ)− c2E2(n3τ)) + 12N

2πi
(Nτ + 1)

( 1
n2

− c2
n3

)
(C.12)

indicates that E2(n2τ) − n2
n3

E2(n3τ) is a modular form under Γ0(N) of weight 2.
For instance, there are two linearly independent modular forms of weight 2 under Γ0(4):

E2(τ)− 2E2(2τ),
E2(2τ)− 2E2(4τ). (C.13)

C.2 Weight 4

The Eisenstein series E4(τ) is a modular form of weight 4 under SL(2,Z). Since E4(τ) is
written by E2(τ)

E4(τ) = − 12
2πi

d

dτ
E2(τ) + E2(τ)2, (C.14)

the modular transformation of E4(nτ) under Γ0(N) is obtained by using that of E2(nτ).
It results in

E4(nτ ′) = (Nτ + 1)4E4(nτ), (C.15)

for n|N . Thus, E4(nτ) is a modular form of weight 4 under Γ0(N) for n|N .

C.3 Weight 6

The Eisenstein series E6(τ) is a modular form of weight 6 under SL(2,Z). Since E6(τ) is
written by E4(τ)

E6(τ) = −3D4E4(τ) = − 3
2πi

d

dτ
E4(τ) + E2(τ)E4(τ), (C.16)

the modular transformation of E6(nτ) under Γ0(N) is obtained by using that of E2(nτ)
and E4(nτ). It results in

E6(nτ ′) = (Nτ + 1)6E6(nτ), (C.17)

for n|N . Thus, E6(nτ) is a modular form of weight 6 under Γ0(N) for n|N . In a similar
way, higher modular forms can be constructed by acting the modular covariant differential
operator on modular forms of lower modular forms.
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