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1 Introduction

The AdS/CFT conjecture and its refinements [1–3] naturally lead to the application of
holography to study non-conformal field theories at strong coupling.

There are two well-established ways of constructing duals to confining QFTs. One of
them uses wrapped branes — see for example [4–7]. The second suitably deforms the solution
of D3 branes on the conifold, introducing fractional branes and making contact with quiver
field theories [8–11]. Both lines of work have been thoroughly studied and generalised in
different ways. It is also possible to connect these two lines of study [12, 13].

One issue with the systems discussed above is that while the IR of the QFT is under
good control (thanks to the trustworthy string theory dual), the UV behaviour is less clean.
In the wrapped brane systems we encounter a higher dimensional completion, which in some
cases is non-field theoretical. On the other hand, the quiver system does not strictly speaking
reach a conformal fixed point. For both lines of research, the number of degrees of freedom
(from a 4d perspective) grows without bound at large energies. Aside from this, introducing
the dynamics of degrees of freedom transforming in the fundamental representation of the
gauge group (quarks), is technically challenging. See [14–19].

In this paper, we present progress on the above shortcomings. We construct infinite
families of string theory backgrounds dual to 4d SCFTs that flow to (2 + 1)-dimensional
N = 2 IR-gapped QFTs. More details, both technical and conceptual, can be found in
a companion paper [20].

Our new backgrounds are dual to families of 4d SCFTs deformed by VEVs and by
compactification on a circle. The compactification resembles a twisting procedure. The low
energy QFT is three dimensional, enjoys the existence of four supercharges, and is on a
vacuum giving VEV to a current. These field theories can be Lagrangian or non-Lagrangian,
single node or linear quiver type (with flavours). Field theoretically, the R-symmetry of the
SCFT is used to preserve some amount of SUSY that would have otherwise been broken
by the boundary conditions of fields on the compact S1. In the case of N = 4 SYM, this
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deformation has been carefully studied on the field theory side by Kumar and Stuardo in [21]
and in the work of Cassani and Komargodski [22]. The main technical tools for our work
come from the papers [23–29].

1.1 General idea and outline

When a SUSY QFT is placed on a spacetime of the form R1,d × S1
ϕ, we need to specify

boundary conditions for the fermions, scalars and gauge fields on S1
ϕ. Characteristically this

breaks SUSY, as the scalars and gauge fields in the QFT obey periodic boundary conditions,
whilst the fermions are anti-periodic.

It is possible to preserve some amount of SUSY by mixing the R-symmetry of the
QFT with the part of the Lorentz group associated to translations on S1

ϕ. See [21] for
a nice explanation in the case of N = 4 SYM. The reader will also find instructive the
viewpoint presented in [22].

Indeed, switching on a constant background gauge field A = Aϕdϕ for the R-symmetry
changes the covariant derivative in such a way that allows massless fermions to exist. These
pair up with the gauge field in a supermultiplet. Massive modes for fermions and scalars
also pair up, preserving four supercharges. This leads to an N = 2 SYM theory in three
dimensions (plus massive multiplets). The background gauge field is constant, but has
non-zero holonomy, and hence dynamical effects.

At tree level, after reducing on S1
ϕ and taking the low energy limit we have a pure N = 2

massless vector multiplet. This system presents a run-away potential and the vacuum is
unstable. This is cured by observing that the KK-modes on the circle do not decouple [22]. In
fact, these KK modes are non-symmetric with respect to the origin and integrating them out
generates a Chern-Simons term. The theory flows to a trivial confining vacuum. The level of
the Chern-Simons term for a group SU(N) is N , no matter what the original N = 1 theory in
d = 4 is. This result is also valid for quiver gauge theories and for non-lagrangian theories [22].

The holographic dual to this particular form of twisting is described in a paper by
Anabalón and Ross [23]. See also the papers [24, 30–35] for other holographic studies in
models using the same mechanism.

The idea of this work is to realise the mechanism of partial-SUSY preservation holo-
graphically for a variety of families of 4d SCFTs compactified on S1. Our examples include
single node CFTs, and infinite families of circular and linear conformal quivers. We explicitly
construct backgrounds that geometrically realise the mechanism above described. After that,
we calculate various observable quantities for the QFT.

The material in this work is divided in two main sections.
In section 2, we discuss three new infinite families of backgrounds. These are of the form

ÂdS5 ×M5, where ÂdS5 is a deformation of AdS5 (and of the dual CFT4) and M5 encodes
various characteristics of the CFT4. The first of the new families is based on D3 branes
on the tip of Y p,q cones [36]. The second new family is based on systems of D4-D6-NS5
branes that are dual in the UV to N = 2 SCFTs in four dimensions studied by Gaiotto and
Maldacena [37]. The third new family is based on a system of D6-D8-NS5 branes, which
after compactification on a two-manifold leads to N = 1 SCFTs [38, 39]. These SCFTs are
then deformed as explained above. We present the backgrounds realising the deformation
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of the conformal point for all three families. Our backgrounds are smooth, except at the
location of the flavour branes (if any).

In section 3 we holographically calculate various observables for each dual QFT3. In
particular we identify signs of confinement using Wilson loops and Entanglement Entropy as
our main tools. We also define a quantity that monotonically interpolates between the number
of degrees of freedom of a gapped 3d system and a 4d CFT. We briefly discuss some probes
that display the presence of a Chern-Simons term of level given by the number of colour
branes in the system, the presence of domain walls separating different vacua, and so on.

These interesting new backgrounds can be used to obtain a better handle on the dynamics
of QFTs displaying strongly coupled effects. Notably they allow for the holographic study of
the effects of fundamental matter, with Nf ∼ Nc and SU(Nf ) global symmetry, introducing
a novelty worth exploring in the future.

2 Geometry: new families of backgrounds

In this section we present three new infinite families of backgrounds. Our presentation
emphasises the common geometric origin in all these families. Indeed, even when the dual
QFT (studied in section 3) is very different for each background, geometrically it is easy
to see the common thread.

The common thread mentioned above is due to a form of universality on the gravity
side. Indeed, the solutions presented below are constructed by lifting a seed background in
five-dimensional supergravity [23] to different Type II backgrounds. The details of the lifting
procedures used are given in [20]. In view of this, the reader might question the use of the
adjective ‘new’ for the solutions below, as all the novelty is in the ‘internal’ space. We find that
the while some of the Physics observables are universal (i.e. common to all backgrounds), some
others are dependent on the lift. The universal sector alluded to above could be understood
as the one predicted by Gauntlett and Varela in [40] (see [20] for a more detailed discussion).

We start by writing a background in the context of AdS5×S5, which was already presented
in [23]. We then change the internal space to T1,1 before presenting deformations of generic
AdS5 × Yp,q backgrounds. After this we write other new infinite families of backgrounds
in Type IIA and massive Type IIA, respectively.

2.1 Deformed AdS5 × S5 and AdS5 × Yp,q backgrounds

First consider the deformation of AdS5 × S5 studied in [23]. We give the metric, vielbein
basis and five-form that solve the equations of motion of Type IIB. The metric is

ds2
10 = ds2

5 + l2
{

dθ2 + sin2 θdφ2 + sin2 θ sin2 φ

(
dφ1 + A

l

)2

+ sin2 θ cos2 φ

(
dφ2 + A

l

)2
+ cos2 θ

(
dφ3 + A

l

)2}
, (2.1)
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where the line element ds2
5 and one-form A are given by

ds2
5 = r2

l2
(−dt2 + dx2

1 + dx2
2 + f(r)dϕ2) + l2 dr2

r2f(r) . (2.2)

f(r) = 1 − µl2

r4 − q2l2

r6 , A = q

( 1
r2 − 1

r2
∗

)
dϕ . (2.3)

These expressions for ds2
5 and A (as well as its associated F = dA) will appear in the

backgrounds described in the sections to follow. In the remainder of this section, we choose
the parameter µ = 0, as this implies the preservation of SUSY — see [23] for details. The
parameter r∗ = (ql)1/3 indicates the end of the space, for which f(r∗) = 0.

If we set the angle ϕ to vary in [0, 2πl2
3r∗

] we avoid conical singularities and the background
is smooth. On the other hand, the range of the other angles is θ ∈ [0, π/2], φ ∈ [0, π/2],
φ1, φ2, φ3 ∈ [0, 2π]. This space time defines a natural vielbein,

e1 = r

l
dt , e2 = r

l
dx1 , e

3 = r

l
dx2 , e

4 = l dr
r
√
f(r)

, e5 = r

l

√
f(r)dϕ,

e6 = ldθ , e7 = l sin θdφ , e8 = l sin θ sinφ
(

dφ1 + A
l

)
,

e9 = l sin θ cosφ
(

dφ2 + A
l

)
, e10 = −l cos θ

(
dφ3 + A

l

)
.

(2.4)

It is also useful to introduce the quantities

µ1 = sin θ sinφ, µ2 = sin θ cosφ, µ3 = cos θ. (2.5)

In terms of these we can write

F5 = (1 + ⋆10)G5, G5 = −4
l
e1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 + J2 ∧ ⋆5F ,

J2 = l2
3∑
i=1

µidµi ∧
(

dφi + A
l

)
, F = 2q

r3 e
5 ∧ e4, ⋆5F = −2q

r3 e
1 ∧ e2 ∧ e3. (2.6)

Here, ⋆5 is the Hodge star restricted on ds2
5. We can calculate the number of D3 branes by

computing the flux of the Ramond-Ramond field on the compact manifold Σ5[θ, φ, φ1, φ2, φ3].
The quantisation condition for Dp-branes reads∫

Σ8−p

F8−p = (2π)7−pgsα
′ 7−p

2 NDp, which for p = 3 gives

ND3 = l4

4πgsα′2 . (2.7)

Let us now present new families of solutions. In this family the five sphere is replaced by a
Yp,q manifold [41, 42]. The idea is very much the same as in the background of eqs. (2.1)–(2.6).
We fiber a U(1)R isometry with the ϕ-direction, which is compactified with a suitably chosen
radius to avoid singularities. The functions in ds2

5 are chosen as in eq. (2.3). A structure similar
to that in eq. (2.6) arises for the Ramond forms. As a warm-up we discuss the case of T1,1.
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2.1.1 Deformed AdS5 × T1,1 background

The manifold T1,1 can be written as an S1 bundle over S2×S2, parameterised by (θ1, ϕ1, θ2, ϕ2),

ds2
T1,1 = 1

6

2∑
i=1

(
dθ2

i + sin2 θidϕ2
i

)
+ 1

9

(
dψ +

2∑
i=1

cos θidϕi
)2

, (2.8)

where ψ ∈ [0, 4π]. The Type IIB metric and vielbein are,

ds2
10 = ds2

5 + l2

1
6

2∑
i=1

(
dθ2

i + sin2 θidϕ2
i

)
+ 1

9

(
dψ +

2∑
i=1

cos θidϕi + 3
l
A
)2 . (2.9)

e1 = r

l
dt , e2 = r

l
dx1 , e

3 = r

l
dx2 , e

4 = l dr
r
√
f(r)

, e5 = r

l

√
f(r)dϕ,

e6 = l√
6

dθ1 , e
7 = l√

6
sin θ1dϕ1 , e

8 = l√
6

dθ2,

e9 = l√
6

sin θ2dϕ2 , e
10 = l

3

(
dψ + cos θ1dϕ1 + cos θ2dϕ2 + 3

l
A
)
.

The RR field strength F5 is written in terms of the volume element of the five-spacetime
ds2

5 and the field strength of the one form A = q
(

1
r2 − 1

r2
∗

)
dϕ as,

F5 = G5 + ⋆G5, , G5 = 4
l
vol5 − J ∧ ⋆5F ,

vol5 = e1 ∧ e2 ∧ e3 ∧ e4 ∧ e5, J = −e6 ∧ e7 − e8 ∧ e9. (2.10)

The quantisation of charges works similarly to eq. (2.7). We integrate over T1,1 and obtain

ND3 = 4l4
27πgsα′2 . (2.11)

2.1.2 Deformed AdS5 × Yp,q backgrounds

Following the previous section, we tackle the case of a general Yp,q manifold. Things work in
a similar fashion, though the metric is more involved, see [42]. We find,

ds2
10 = ds2

5+l2
[1 − y

6
(
dθ2 + sin2 θdφ2

)
+ 1
w(y)v(y)dy2 + w(y)v(y)

36 (dβ + cos θdφ)2

+1
9

(
dψ − cos θdφ+ y (dβ + cos θdφ) + 3

l
A
)2
]
,

(2.12)

with

w(y) = 2(a− y2)
1 − y

, v(y) = a+ 2y3 − 3y2

a− y2 , (2.13)
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where a is a parameter.1 The vielbein for this family of backgrounds is,

e1 = r

l
dt , e2 = r

l
dx1 , e

3 = r

l
dx2 , e

4 = l dr
r
√
f(r)

, e5 = r
√
f(r)
l

dϕ,

e6 = l

√
1 − y

6 dθ , e7 = l

√
1 − y

6 sin θdφ , e8 = l√
6H(y)

dy,

e9 = l
H(y)√

6
(dβ + cos θdφ) , e10 = l

3

(
dψ − cos θdφ+ y(dβ + cos θdφ) + 3

l
A
)
.

(2.14)

We have defined H(y) =
√

wv
6 . The Kähler form of the four dimensional base space spanned

by [θ, φ, y, β] is

J = e6 ∧ e7 + e8 ∧ e9. (2.15)

The five-form flux is written in analogy with eq. (2.10):

F5 = 4
l
vol5 −

4
l
e6 ∧ e7 ∧ e8 ∧ e9 ∧ e10 + 2q

r3 e
1 ∧ e2 ∧ e3 ∧ J

− 2q
r3 e

4 ∧ e5 ∧ (e6 ∧ e7 + e8 ∧ e9) ∧ e10.
(2.16)

The charge of D3 branes is quantised in analogy with eq. (2.7).
We emphasize that all the backgrounds we have presented in this section solve the Einstein

and Maxwell equations in Type IIB, together with the Bianchi identities. Additionally, all
these solutions preserve four supercharges.

Let us now present two qualitatively different families of backgrounds. The first is based
on solutions in 11d supergravity written by Gaiotto and Maldacena [37], and the second
family on massive Type IIA backgrounds written by Bah, Passias and Tomasiello in [26].

2.2 Deformed Gaiotto-Maldacena backgrounds

We study an new infinite family of backgrounds based on Gaiotto-Maldacena solutions [37].
The idea is once again to preserve N = 1 SUSY (four supercharges) while deforming the
original backgrounds by a fibration between the R-isometry — in this case SU(2)×U(1) —
and the compactified ϕ-direction in ds5

2.
Using the µi in eq. (2.5) and the one-form A in (2.3) we define

Dµ1 = dµ1 + 2µ2A, Dµ2 = dµ2 − 2µ1A, Dµ3 = dµ3,

VolS̃2 = 1
2ϵ

ijkµiDµj ∧Dµk. (2.17)

In terms of these forms and a single function V (σ, η) and its derivatives, V̇ ≡ σ∂σV and
V ′ ≡ ∂ηV , we can write a configuration in eleven-dimensional supergravity which will
automatically solve the equations of motion so long as the “potential function” V (σ, η)
satisfies the Laplace-like equation

σ∂σ (σ∂σV ) + σ2∂2
ηV = 0. (2.18)

1In particular, for 0 < a < 1 the base manifold B can have the topology of a product of two-spheres and
the coordinate y varies between the two smallest roots of a − 3y2 + 2y3 = 0 which we call y1 and y2.
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The metric and four-form field strength read,

ds2
11

κ2/3 = f1
[
4ds2

5 + f2DµiDµi + f3 (Dχ̃)2 + f4(dσ2 + dη2) + f5
(
dβ̃ + f6Dχ̃

)2 ]
,

G4
4κ = d

[
f7Dχ̃+ f8dβ̃

]
∧ volS̃2 + d(µ3V̇ ) ∧ ⋆5F

+2(f7Dχ̃+ f8dβ̃) ∧ dµ3 ∧ F −
[
d(µ3V̇ ) ∧Dχ̃+ d(µ3η) ∧ dβ̃

]
∧ F .

f1 =
(
V̇ ∆̃
2V ′′

) 1
3
, f2 = 2V ′′V̇

∆̃
, f3 = 4σ2

Λ , f4 = 2V ′′

V̇
,

f5 = 2ΛV ′′

V̇ ∆̃
, f6 = 2V̇ V̇ ′

V ′′Λ , f7 = − V̇
2V ′′

∆̃
, f8 = 1

2

(
V̇ V̇ ′

∆̃
− η

)
,

∆̃ = Λ(V ′′)2 + (V̇ ′)2, Λ = 2V̇ − V̈

V ′′ , Dχ̃ = dχ̃+ A. (2.19)

Suitable boundary conditions must be imposed on V (σ, η). These boundary conditions
encode the particular dual linear-quiver field theory, via a Rank function. This formalism is
summarised in [43] and [44]. It is in this sense that we have an infinite number of backgrounds
in this family, each one associated with a different 4d linear quiver N = 2 SCFT. In our setup
these UV fixed points are deformed into a confining QFT by compactification on the ϕ-circle.

Reducing to Type IIA along the β-circle in order to preserve SUSY (see [44] for details),
we find the ten-dimensional string frame background,

ds2 = f
3
2

1 f
1
2

5

[
4ds2

5 + f2DµiDµi + f4(dσ2 + dη2) + f3(dχ̃+ A)2
]
,

e
4
3 Φ = f1f5, H3 = 4κ d

[
f8 ∧ volS̃2 − ηµ3 ∧ F

]
, C1 = f6Dχ̃,

C3 = 4κf7Dχ̃ ∧ volS̃2 + 4κ µ3V̇ (⋆5F −Dχ ∧ F) . (2.20)

We have used the relation d[volS̃2] = −2d[µ3] ∧ F . Hence

F4 = dC3 −H3 ∧ C1 = 4κ d
[
f7Dχ̃ ∧ volS̃2 + µ3V̇ (⋆5F −Dχ̃ ∧ dA)

]
−H3 ∧ C1.

We have checked that the equations of motion of this background are satisfied, once eq. (2.18)
is imposed. Following the study in [44] we construct the Page fluxes and find quantised
number of D4, D6 and NS five branes. We postpone the careful discussion of the charge
quantisation to the more detailed work [20].

2.3 Deformed D6-D8-NS5 AdS5 backgrounds

In this section we consider deformed holographic duals of an infinite family of four dimensional
non-Lagrangian CFTs. The backgrounds dual to the CFT fixed points are obtained by a
twisted compactification over a hyperbolic space of a system of D6, D8 and NS5 branes [26–28].
A further twisted compactification of the ϕ-direction of the CFT4 leads to the confining
3d system.

The background metric in massive type IIA is written in terms of a function α(z) satisfying

...
α (z) = −162π3F0. (2.21)
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Here the RR field F0 is the ‘mass’ of massive IIA, which is allowed to be piece-wise continuous
and constant. This third order ordinary differential equation needs to be complemented by
initial conditions. The conditions on α̈(z) encode the dual UV-CFT. See [45, 46] for a clear
account. The background metric and the dilaton read,

ds2
10 = 18π

√
− α

6α̈

[
ds2

5 + 1
3ds2

Σ − α̈

6αdz2 − αα̈

6α̇2 − 9αα̈
(
dθ2 + sin2 θDψ2

)]
,

e−4Φ = 1
25317π10

(
− α̈
α

)3 (
2α̇2 − 3αα̈

)2
, Dψ = dψ − 3A−AΣ (2.22)

A = q

( 1
r2 − 1

r2
∗

)
dϕ, AΣ = 2(v1 dv2 − v2 dv1)

1 − v2
1 − v2

2
, ds2

Σ = 4 (dv2
1 + dv2

2)
(1 − v2

1 − v2
2)2 .

The Ramond and Neveu-Schwarz potentials and their associated field strengths can be
compactly written as

B2 = 1
3ξ ∧ Dψ, C1 = α̈

162π2 cos θDψ, C3 = α̇

162πDψ ∧ volΣ,

H3 = dB2, F2 = F0B2 + dC1, (2.23)

F4 =
(

dC3 +B2 ∧ F2 −
1
2F0B2 ∧B2

)
− α̈

18πdz ∧
(
⋆5F − 1

3F ∧ Dψ
)
− α̇

54πF ∧ volΣ,

in terms of a one form ξ, the two form F = dA, and its Hodge dual in five dimensions,

ξ = 3π
(

cos θdz − 2αα̇
2α̇2 − 3αα̈ sin θdθ

)
, F = −2q

r3 dr∧dϕ, ⋆5F = −2q dt∧dx1∧dx2. (2.24)

We have checked that all equations of motion (Einstein, Maxwell and Bianchi) are solved
once eq. (2.21) is imposed.

Let us close this section with some general remarks. As in the previous section, all
the backgrounds presented contain the same ds2

5 given in eq. (2.3). All the backgrounds in
eqs. (2.1), (2.9), (2.19), (2.22) are smooth once the period of the ϕ-coordinate is chosen as
explained below eq. (2.3). They are all asymptotically AdS5 with compact ϕ-direction, cross
an internal manifold, and the deformation away from AdS5 is the same in each case — namely,
the compact ϕ-direction is warped by the function f(r). A U(1)R inside the internal manifold
is fibered over the ϕ-direction (and, if needed to preserve SUSY, over additional compact
manifolds). For µ = 0, and thus f(r) = 1 − q2l2

r6 , the backgrounds preserve four Poincare
supercharges. These common threads in the geometry reflect the fact that all the backgrounds
presented can be obtained as the lift to Type II supergravities of a common seed-solution
in 5d U(1) gauged supergravity: the background and gauge field in eqs. (2.2)–(2.3). As
expected, this has consequences in the dual QFTs. In these, there are universal observables.
There are also some observables that depend explicitly on the particular member of the
infinite family of backgrounds presented.

We move now to explore some holographic aspects of these QFTs as they flow towards
3d gapped theories in the IR.

3 Field theory and observables

In this section we discuss holographic observables for the QFTs dual to the backgrounds
in section 2. We observe certain universal behaviours across all the families of solutions,
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reflecting common features of their dual field theories. Some other physically interesting
observables are presented which distinguish the QFTs. We start with a brief discussion of
the dual QFT for each family of backgrounds. Then we move into calculating observables.

3.1 Comments on the dual QFTs

Expanding on the discussion in section 1.1, we write here some comments on the QFT duals
in view of the backgrounds in section 2.

Consider N = 4 SYM compactified on a circle of fixed size Lϕ = 2πl2
3r∗

. The mixing
between the R-symmetry and the compact direction is holographically represented by the
one-form A in eq. (2.3). Were it not for this mixing, the background would break SUSY
due to the boundary conditions on the ϕ-circle. Note that for the coordinate r → ∞ we
have a constant one form A with a non-trivial holonomy

∮
ϕA = q

r2
∗
Lϕ = 2π

3 l. This is the
manifestation in gravity of the twisting mechanism described in section 1.1.

The presence of the one-form, together with the function f(r) in eq. (2.3), break con-
formality due to the scale introduced by Lϕ. Flowing to low energies leads to a (2 + 1)
dimensional QFT with strongly coupled IR dynamics. This mechanism occurs in all the
examples in this work. The low energy QFT is expected to confine, present discrete vacua,
and to be described by a Chern-Simons TQFT with level N (the number of colour branes)
below the gap, see [21, 22].

The first background presented here implements this ‘twisted compactification’ for N = 4
SYM, see eqs. (2.1)–(2.6). The solution given in eqs. (2.9)–(2.10) is holographically dual to
the same compactification of the Klebanov-Witten CFT. Notice that in this case the CFT
does not admit a weakly coupled regime. The holographic description of quiver field theories
realised on D3 branes on the tip of a cone over a generic Sasaki-Einstein space (after twisted
compactification) is presented by in eqs. (2.12)–(2.16).

This twisted compactification procedure for N = 2 4d linear quiver theories is subtle. In
fact, we need to twist the ϕ-symmetry with a U(1) that is inside SU(2)R× U(1)R. This is
represented by the one form A in eq. (2.3). Note that we are performing the same procedure for
each gauge group in the linear quiver. Each of these linear quivers are characterised by a rank
function used in the resolution of eq. (2.18) — see [43, 44] for the explicit holographic solution.

The example given in eqs. (2.21)–(2.23) describes the twisted compactification of N = 1
non-Lagrangian CFTs — one for each function α(z) — as explained for example in [46, 47].
In spite of the absence of a Lagrangian, we can perform (holographically) the twisted
compactification and study the IR strong dynamics of the effective N = 2, (2+1)-dimensional
QFT. Note that in all of our examples the R-symmetry is non-anomalous.

Applying holographic renormalisation one learns for all of our examples that a current
Jϕ is obtaining a VEV, ⟨Jϕ⟩ ∼ q. Hence we are studying families of 3d QFTs with four
supercharges in a vacuum that gives a VEV to a global current. Had we set the parameter
µ ̸= 0 in f(r) in eq. (2.3) we would have broken SUSY due to an (anistropic) VEV for
Tµν . See [23, 24, 33].

In what follows, we calculate various observables using the holographic backgrounds.
One feature that becomes apparent is that various observable quantities can be written
as a contribution coming from the flow, times another contribution coming from the 4d
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UV SCFT. This is particularly clear in the calculations of Entanglement Entropy or flow
central charge presented below. This phenomenon is the QFT expression of the proposal by
Gauntlett and Varela [40], indicating that if one considers fields in the supercurrent multiplet
of the SCFT, the ten dimensional supergravity background can be reduced to minimal AdS5
gauged supergravity, which is the ‘universal’ part associated with the flow above mentioned.
Note that all of our backgrounds can be obtained as lifts of a seed-solution in this gauged
supergravity. This perspective is discussed in detail in the companion work [20].

3.2 Observables

We discuss here various observables calculated using the backgrounds in section 2. We briefly
sketch the calculation in the various backgrounds, stressing when a universal result is obtained.

3.2.1 Wilson loops

First we compute the Wilson loop for the backgrounds in section 2. We use the standard
holographic prescription of embedding a string with its endpoints fixed at x = ±L/2 and
r = ∞ (see e.g. [48]). Fixing the worldsheet coordinates on the string as τ = t, σ = x1 ≡ x,
with r = r(x) and all other coordinates are taken to be constant, the induced metric on
the string and the associated Nambu-Goto action are

ds2
ind = −r

2

l2
dt2 +

(
r2

l2
+ l2

r2f(r)r
′2
)

dx2,

SNG = T
2πα′

∫ L/2

−L/2
dx
√
r4

l4
+ r′2

f(r) = T
2πα′

∫ L/2

−L/2
dx
√
F (r)2 +G(r)2r′2,

F (r) = r2

l2
, G(r) = 1√

f(r)
. (3.1)

It is important to note that given this embedding of the F1 string, the results in eq. (3.1)
are universal for all of the backgrounds in section 2. This is because these solutions all
contain the same five-dimensional metric on the directions probed by the string, up to overall
warp factors depending on the internal coordinates. Thus for all coordinates except t, r, x1
constant, the various backgrounds differ only by constant factors re-scaling the induced metric.
Consequently the results for Wilson loops discussed below are valid for any of the dual QFTs.

The range of the radial coordinate is [r∗,∞), where r∗ is the largest root of f(r∗) = 0. We
usually consider the parameter µ = 0 in eq. (2.3), hence r6

∗ = q2l2. The value of F (r∗) = r2
∗
l2

is related to the effective tension of the chromoelectric string Teff (see [49–52]). This hints
at the confining behaviour of these systems. A more detailed analysis ascertaining the
presence of confinement follows.2

There is an approximate expression for the separation of the quark pair as a function
of the turning point of the string probe r0. This was derived in [49, 51]. The approximate
length reads in our case,

L̂(r0) = πG(r)
F ′(r)

∣∣∣∣
r0

= πl2r2
0

2
√
r6

0 − µl2r2
0 − q2l2

. (3.2)

2To be generic in the analysis, we keep the parameter µ (for the SUSY case of our interest, µ = 0).
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When r0 → r∗, i.e. the turning point approaches the end of the spacetime, the approxi-
mate length diverges, indicating that it is possible to arbitrarily separate the quark pair.
Following [53] we introduce an effective potential,

Veff(r) = F (r)
F (r0)G(r)

√
F (r)2 − F (r0)2 =

√
r4 − r4

0

r2
0l

2r

√
r6 − l2(µr2 + q2). (3.3)

This approaches zero as r → r0 and diverges ∼ r4 for r → ∞, satisfying the conditions
needed for the proper definition of the Wilson loop and confinement — see [53]. These are
more indications of the confining behaviour. The signature of the confining character of
the backgrounds comes from studying the separation and energy of the quark-anti-quark
pair. These can be read from [53] to be,

LQQ(r0) = 2
∫ ∞

r0

dr
Veff(r) = 2l2r2

0

∫ ∞

r0

dr r√(
r4 − r4

0
)

[r6 − l2(q2 + r2µ)]
, (3.4)

EQQ(r0) = r2
0
l2
LQQ(r0) + 2

l

∫ ∞

r0
dr

√
r4 − r4

0

r2
√
f(r)

− 2
∫ ∞

r∗

dr√
f(r)

. (3.5)

Whilst these integrals are not analytically calculable in general, we can numerically find
LQQ(r0), EQQ(r0) and then parametrically plot EQQ(LQQ). The results are displayed in
figure 1. We see that the scaling of the energy with the separation of the quark-anti-quark-pair
is Coulomb-like for small separations, as required by conformality, and becomes linear for
large separations, indicating confinement.

A careful study of the stability of the string embedding used here should follow the
analysis of [54]. A short-cut is to calculate the derivative of the length function with
respect to the turning point of the U-shaped string profile [30, 50, 51]. The approximate
expression (3.2) yields,

Z(r0) := dL̂(r0)
dr0

= − l4π

4r3
0 f

3/2(r0)

(
4q2

r5
0

+ 2r0
l2

+ 2µ
r3

0

)
< 0. (3.6)

Being negative, this quantity indicates that the embedding is stable. Notice that in this
work, we choose the parameter µ ≥ 0.

A natural question regards the SUSY preservation of the Wilson loop studied above (we
consider the case µ = 0). Given that our embedding does not excite the scalar associated
with the R-symmetry of the QFT, it is likely that our probe F1 is not SUSY. A nice way of
identifying supersymmetry-preserving embeddings (probably requiring a combination of F1
and D1 branes) would be to calculate the pure spinors characterising our backgrounds, for the
parameter µ = 0. Knowing the pure spinors would allow to calculate SUSY probes in general.
We expect that in the case of quiver field theories, Wilson loops in higher representations
could be SUSY, as discussed for the CFT points in the papers [55, 56].

We emphasise two points. First is the universal character of these results across the
backgrounds we have presented. This is obvious from holography and far from obvious from
a QFT perspective. In fact, the confining character of the QFT can only be ascertained
via holography. Second, these results assumed a particular F1 string embedding. It would
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Figure 1. On the left we plot the length of separation of the quark-anti-quark system (3.4) as a
function of the turning point of the string r0. The parameters are fixed to l = µ = q = 1. On the
right is the energy (3.5) with respect to the length of the separation of the pair, which interpolates
between a Coulomb-like behaviour dictated by conformality and a linear one for large values of L,
signaling confinement.

be interesting to study more generic embeddings probing the internal manifold M5. This
might reveal new physical phenomena.

Let us now study another observable, the Entanglement Entropy (EE) on a strip.

3.2.2 Entanglement Entropy on the strip

To calculate the EE on a strip we follow the usual prescription of Ryu and Takayanagi [57],
with the requisite modifications for backgrounds with other NS fields excited [49, 58]. First,
we define an eight-manifold and calculate the determinant of the induced metric on this
surface, weighted by a power of the dilaton. Below we write the eight-manifold and the
induced metric for each of the backgrounds we presented in section 2.

• For the case of the deformed AdS5 × S5 background in eq. (2.1)

Σ8,S5 = [x1, x2, ϕ, θ, φ, φ1, φ2, φ3], r(x1),

ds2
8,S5 = r2

l2

(
dx2

1

(
1 + l4r′2

r4f(r)

)
+ dx2

2 + f(r)dϕ2
)

+ l2
{

dθ2 + sin2 θdφ2 +

+ sin2 θ sin2 φ

(
dφ1 + A

l

)2
+ sin2 θ cos2 φ

(
dφ2 + A

l

)2
+ cos2 θ

(
dφ3 + A

l

)2}
.

• For the deformed AdS5 × Yp,q backgrounds in eq. (2.12), we find

Σ8,Yp,q =[x1,x2,ϕ,θ,φ,y,β,ψ], r(x1),

ds2
8,Yp,q = r2

l2

(
dx2

1

(
1+ l4r′2

r4f(r)

)
+dx2

2+f(r)dϕ2
)

+l2
{1−y

6
(
dθ2+sin2θdφ2

)
+ dy2

w(y)v(y) +w(y)v(y)
36 (dβ+cosθdφ)2+ 1

9

(
dψ−cosθdφ+y(dβ+cosθdφ)+ 3A

l

)2}
.
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• For the deformation on the Gaiotto-Maldacena backgrounds in eq. (2.20) we have,

Σ8,GM = [x1, x2, ϕ, θ, φ, χ̃, σ, η], r(x1),

ds2
8,GM =

(
f3

1 f5
) 1

2
{4r2

l2

(
dx2

1

(
1 + l4r′2

r4f(r)

)
+ dx2

2 + f(r)dϕ2
)

+f2DµiDµi + f4(dσ2 + dη2) + f3(dχ̃+ A)2
}
.

This could also be done by calculating the area of a nine-manifold using the metric in
eq. (2.19).

• Finally, for the deformation of the Bah-Passias-Tomasiello family of backgrounds, we
have

BPT : Σ8,BPT = [x1, x2, ϕ, θ, ψ, v1, v2, z], r(x1),

ds2
8,BPT = 18π

√
− α

6α̈

{
r2

l2

(
dx2

1

(
1 + l4r′2

r4f(r)

)
+ dx2

2 + f(r)dϕ2
)

+ 1
3ds2

Σ − α̈

6αdz2

− αα̈

6α̇2 − 9αα̈
(
dθ2 + sin2 θDψ2

)}
.

To find the EE we calculate [49, 58]

SEE = 1
4GN

∫
d8x

√
e−4Φ det[gΣ8

]. (3.7)

The result in each case is of the form

SEE = Ni

4GN

∫ L/2

−L/2
dx

√
r6

l6
f(r)

(
1 + l4r′2

r4f(r)

)
, (3.8)

where we have introduced the label i ∈ {S5,Yp,q, GM,BPT}, and

NS5 = Lx2 l
5
∫ π/2

0
sin3θcosθ dθ

∫ π/2

0
sinφcosφ dφ

∫ 2π

0
dφ1 dφ2 dφ3

∫ Lϕ

0
dϕ= l5Lx2π

3Lϕ,

NYp,q = Lx2 l
5
∫ y2

y1
dy(1−y)

∫ π

0
sinθdθ

∫ 2π

0
dφ
∫ 2π

0
dβ
∫ 4π

0
dψ
∫ Lϕ

0
dϕ= l5Lx2VolYp,qLϕ,

NGM = 256π2Lx2Lϕ

∫ ∞

0
dσ
∫ P

0
dη σV̇ V ′′ ,

NBPT = 2
243Lx2LϕVolΣ

∫ P

0
dz(−αα̈).

Let us discuss these expressions. The result for the EE can be broken into two parts. One
comes from the flow away from the CFT, represented by the integral in eq. (3.8) — note
that for f(r) = 1 we obtain the CFT result. This integral in eq. (3.8) is universal across
our backgrounds and is discussed in more detail below. The second part, the coefficient
Ni, is characteristic of the particular background (or dual CFT). It encodes information
coming from the far UV of the QFT, at the conformal point. In fact, NS5 and NYp,q are
directly related to the volume of the internal manifold at the UV fixed point and give the
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Figure 2. On the left, we plot the length function and its approximate expression in terms of r0 (the
turning point). On the right is the EE as a function of the length.

central charge of the dual CFT. Similarly, NGM and NBPT are directly related to the free
energies, or central charges, of the CFT in the UV. One can compare the results for NGM

and NBPT with eq. (2.37) in the paper [43] and eq. (2.21) in [47], or eq. (2.14) in [46], to
see this. This field theory observable is decomposed as a part coming from the deformed
AdS5 (the flow) and another coming from the UV-CFT4 (the coefficient Ni). This is how the
Gauntlett-Varela proposal [40] expresses itself in this QFT observable.

Let us come back to the expression for the EE (3.8), which is calculated using an
integral of the form

∫ L/2

−L/2
dx

√
r6

l6
f(r)

(
1 + l4r′2

r4f(r)

)
=
∫ L/2

−L/2
dx

√
F 2 +G2r′2,

which is universal to all the backgrounds and QFTs studied here. The treatment of this
variational problem is analogous to the one we presented for the Wilson loop.

We refer the reader to [49] for a careful derivation of the integral expressions for the
length of the strip and the EE, both in terms of the turning point r0. To be self-contained,
we present some details of the extremisation procedure. From the above expression, we have

SEE = N
4GN

∫ L/2

−L/2
dx
√
F 2 +G2r′2, F 2 = r6

l6
f(r), G2 = r2

l2
(3.9)

The conserved Hamiltonian for this system is

H = F 2
√
F 2 +G2r′2

, (3.10)

equating the Hamiltonian to the (conserved) value H = F (r0), where r0 is the turning point
of the surface, we find the expressions,

dx = F (r0)G(r)
F (r)

dr√
F 2(r) − F 2(r0)

, L(r0) = 2F (r0)
∫ ∞

r0
dr
G(r)
F (r)

dr√
F 2(r) − F 2(r0)

. (3.11)
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A regularised expression for the Entanglement Entropy is obtained replacing the expression
for r′ in eq. (3.9),

SEE = N
4GN

[ ∫ ∞

r0
dr

G(r)F (r)√
F 2(r) − F 2(r0)

−
∫ ∞

r∗
drG(r)

]
. (3.12)

Using these integral expressions we numerically evaluate LEE(r0), SEE(r0) and parametrically
plot SEE(LEE). In figure 2, we display the results for LEE(r0) together with the approximate
expression, in the same line as eq. (3.2). The double valued character of LEE(r0) indicates
that there is a phase transition in the EE, as proposed in [58]. Figure 2 shows also the EE
in terms of LEE, where the phase transition is more obvious. As with the Wilson loop, a
more general embedding might reveal different aspects of the dynamics.

3.2.3 Flow central charge

The goal of this section is to write a quantity that measures the degrees of freedom of the
QFTs in question. This must be monotonous, indicate the IR gapped character of the QFTs
(i.e. vanish towards the IR) and detect the presence of the conformal fixed point in the
UV (i.e. asymptote to a constant value characteristic of the CFT). This is not an easy task
because the QFTs are flowing across dimensions — we have (2 + 1) QFTs in the IR and
(3 + 1) CFTs in the far UV. In other words, these are non-isotropic QFTs. Fortunately,
holography can help us. In [59], see also [45], a generalisation of the holographic central
charge is introduced called cflow. This quantity is capable of detecting fixed points along
flows across dimensions. We briefly summarise the idea here.

Consider a background conjectured as dual to a (d+ 1)-dimensional QFT. The metric
and dilaton are of the form,

ds2 = −α0dt2+α1dx2
1+α2dx2

2+...+αddx2
d+(α1.α2 ...αd)

1
d β(r)dr2+gij(dθi−Ai)(dθj−Aj),

Φ = Φ(r,θi). (3.13)

We define,

Gijdξidξj = α1dx2
1 + α2dx2

2 + . . .+ αddx2
d + gij(dθi −Ai)(dθj −Aj),

H =
[∫

dθi
√
e−4Φ det[Gij ]

]2
, cflow = dd

GN
β

d
2
H

2d+1
2

(H ′)d
. (3.14)

In the case of duals to CFTs (i.e. isotropic systems with equal αi) the result of cflow coincides
with the free energy of the CFT. Various checks for SCFTs in diverse dimensions can be
found in [60]. For the cases that occupy us here, we have field theories in d = 3. The
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values of the αi, β(r), H(r) are,

case of S5 : α1 =α2 = r2

l2
, α3 = r2

l2
f(r), β= l4

r4f(r) 4
3
, H =

N 2
S5

L2
ϕL

2
x2

r6

l6
f(r),

(3.15)

case of Yp,q : α1 =α2 = r2

l2
, α3 = r2

l2
f(r), β= l4

r4f(r) 4
3
, H = N 2

Y p,q

L2
ϕL

2
x2

r6

l6
f(r).

case of GM : α1 =α2 =
√
f3

1 f5
4r2

l2
, α3 =α1f(r), β= l4

r4f(r) 4
3
, H = 64N 2

GM

L2
ϕL

2
x2

r6

l6
f(r).

case of BPT : α1 =α2 = 18π
√
−α
α̈

r2

l2
, α3 =α1f(r), β= l4

r4f(r) 4
3
, H = N 2

BPT

L2
ϕL

2
x2

r6

l6
f(r).

We have used the quantities Ni defined in eq. (3.8), for i ∈ {S5,Yp,q, GM,BPT}. Using
eq. (3.14) we find,

cflow = sil
3Ni

8LϕLx2GN

f(r) 3
2(

f(r) + r
6f

′(r)
)3 . (3.16)

Where si = 8 for the GM-case, and is si = 1 otherwise.
Similar comments as those made for the EE apply here. It is clear from these results

that cflow receives a contribution from the UV, represented by Ni, which is related to the
number of degrees of freedom of each CFT4. The contribution from the flow is ruled by the
r-dependent factor. Note that for µ = q = 0 the function f(r) = 1 and cflow = cCFT4 . Also,
for r → r∗ we have cflow → 0, indicating the gapped character of the IR QFT3.

In summary, we have found a monotonic quantity that interpolates between the number
of degrees of freedom for a CFT4 in the UV (large r) and a gapped QFT3 in the IR (small r).

3.2.4 Other observables

Let us close our investigation of holographic observables by briefly studying some probe
branes that are more sensitive to the particularities of the deformed QFT. We are very
succinct as this is analysed more detail in the companion paper [20].

Let us start by considering a probe D7 brane, that in the geometries of eqs. (2.1) and (2.12)
extend over M8 = [t, x1, x2, θ, φ, φ1, φ2, φ3] at constant values r = r∗, ϕ = ϕ0. We also allow
a gauge field a1 on the brane worldvolume, with field strength f2 = da1.

Our main interest is on the WZ part of the action for this D7 probe,

SWZ = −TD7

∫
C8 − C5 ∧ f2 + 1

2C4 ∧ f2 ∧ f2. (3.17)

In our backgrounds C8 = C5 = 0. Integrating the remaining term by parts,

SWZ = TD7
2

∫
d2+1x a1 ∧ f2

∫
S5
F5 = TD716π4gsα

′2

2 ND3

∫
d2+1x a1 ∧ f2, (3.18)

where we have used eq. (2.7). Note that this action suggests that a Chern-Simons theory
with level ND3 is present in our holographic system. The calculation is exactly the same
in the Yp,q case.
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The situation is analogous, although with subtle differences, for the case of the background
in eqs. (2.22)–(2.23). Indeed, we probe the background in eq. (2.22) with a D6 brane that
extends on M7 = [t, x1, x2, z, v1, v2, ψ] at constant values θ = π

2 , ϕ = ϕ0, r = r∗. Using
that the magnetic parts of C7, C5 vanish in the background, we find after an integration
by parts that the WZ term is given by

SWZ = TD6
2

∫
ψ,z,Σ

dC3

∫
d2+1x a1 ∧ f2. (3.19)

We have used that on this submanifold

ξ = 0, C1 = B2 = F2 = 0, Dψ = dψ, F4 = dC3 = α̈

162πdz ∧ VolΣ ∧ dψ.

Using now eq. (2.12) in [47] we find,

SWZ = TD6
2 ND6VolΣ

∫
d2+1x a1 ∧ f2, (3.20)

where ND6 is the total number of D6 branes in the six dimensional quiver, which under
compactification on Σ2 yields the 4d non-Lagrangian N = 1 SCFT (in the UV) that we
deformed to a 3d QFT in the IR.

One can carry out this calculation for the background in eq. (2.20) using a probe D6
extended on [t, x1, x2, η, χ, θ, φ]. Calculating the integer number appearing in the flux of F4
is more subtle in this case. We discuss this analysis in more detail in [20]. In summary, we
observe that level N Chern-Simons actions appear in our systems.

Based on the arguments of [61], one expects the QFT3 to have various vacua separated
by domain walls. These domain walls should be understood as D1 branes stretched along
(t, x1) and at the point r = r∗. The D1s would have constant tension in all the backgrounds
we have discussed. It should be interesting to understand the origin of these discrete vacua
holographically. One should be able to apply the logic of [61], this applies in our Type
IIB backgrounds straightforwardly. The application to set-ups based on Type IIA is less
clear. We leave this for future study.
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